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Abstract. – Proof theory is the result of a short and tumultuous history, developed
on the periphery of mainstream mathematics. Hence, its language remains often id-
iosyncratic: sequent calculus, cut-elimination, subformula property, etc. This survey is
designed to guide the novice reader and the itinerant mathematician along a smooth
and consistent path, investigating the symbolic mechanisms of cut-elimination, and
their algebraic transcription as coherence diagrams in categories with structure. This
spiritual journey at the meeting point of linguistic and algebra is demanding at times,
but a rewarding experience: to date, no language (either formal or informal) has been
studied by mathematicians as thoroughly as the language of proofs.

Résumé (Sémantique catégorielle de la logique linéaire). – La théorie de la démonstration
est issue d’une histoire courte et tumultueuse, construite en marge des mathéma-
tiques traditionnelles. Aussi, son langage reste souvent idiosyncratique : calcul des
séquents, élimination des coupures, propriété de la sous-formule, etc. Dans cet ar-
ticle, nous avons voulu guider le lecteur à travers la thématique, en lui traçant un
chemin progressif et raisonné, qui part des mécanismes symboliques de l’élimina-
tion des coupures, pour aboutir à leur transcription algébrique en diagrammes de
cohérence dans les catégories monoïdales. Cette promenade spirituelle au point de
convergence de l’algèbre et de la linguistique est ardue parfois, mais aussi pleine d’at-
traits : car à ce jour, aucune langue (formelle ou informelle) n’a été autant étudiée
par les mathématiciens que la langue des démonstrations logiques.

Proof theory is the result of a short and tumultuous history, developed on the
periphery of mainstream mathematics. Hence, its language is often idiosyncratic: se-
quent calculus, cut-elimination, subformula property, etc. This survey is designed to
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guide the novice reader and the itinerant mathematician along a smooth and consis-
tent path, investigating the symbolic mechanisms of cut-elimination, and their alge-
braic transcription as coherence diagrams in categories with structure. This spiritual
journey at the meeting point of linguistic and algebra is demanding at times, but
also pleasantly rewarding: to date, no language (either formal or informal) has been
studied by mathematicians as thoroughly as the language of proofs.

We start the survey by a short introduction to proof theory (Chapter 1) followed by
an informal explanation of the principles of denotational semantics (Chapter 2) which
we understand as a representation theory for proofs – generating algebraic invariants
modulo cut-elimination. After describing in full detail the cut-elimination procedure
of linear logic (Chapter 3), we explain how to transcribe it into the language of
categories with structure. We review three alternative formulations of ∗-autonomous
category, or monoidal category with classical duality (Chapter 4). Then, after giving a
2-categorical account of lax and oplax monoidal adjunctions (Chapter 5) and recalling
the notions of monoids and monads (Chapter 6) we relate four different categorical
axiomatizations of propositional linear logic appearing in the literature (Chapter 7).
We conclude the survey by describing two concrete models of linear logic, based on
coherence spaces and sequential games (Chapter 8) and by discussing a series of future
research directions (Chapter 9).

1. Proof theory: a short introduction

From vernacular proofs to formal proofs: Gottlob Frege. – By nature and taste, the
mathematician studies properties of specific mathematical objects, like rings, mani-
folds, operator algebras, etc. This practice involves a high familiarity with proofs, and
with their elaboration. Hence, building a proof is frequently seen as an art, or at least
as a craft, among mathematicians. Any chair is fine to sit on, but some chairs are more
elegant than others. Similarly, the same theorem may be established by beautiful or
by ugly means. But the experienced mathematician will always look for an elegant
proof.

In his daily work, the mathematician thinks of a proof as a rational argument
exchanged on a blackboard, or exposed in a book – without further inquiry. The
proof is seen as a vehicle of thought, not as an object of formal investigation. In that
respect, the logician interested in proof theory is a peculiar kind of mathematician: one
who investigates inside the language of mathematics the linguistic event of convincing
someone else, or oneself, by a mathematical argument.

Proof theory really started in 1879, when Gottlob Frege, a young lecturer at the
University of Iena, published a booklet of eighty-eight pages, and one hundred thirty-
three formulas [33]. In this short monograph, Frege introduced the first mathematical
notation for proofs, which he called Begriffschrift in German – a neologism trans-
lated today as ideography or concept script. In his introduction, Frege compares this
ideography to a microscope which translates vernacular proofs exchanged between
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mathematicians into formal proofs which may be studied like any other mathematical
object.

In this formal language invented by Frege, proofs are written in two stages. First,
a formula is represented as 2-dimensional graphical structures: for instance, the syn-
tactic tree

F a F(a)

F(a)

is a graphical notation for the formula written

∀F. ∀a. F(a)⇒ F(a)

in our contemporary notation – where the first-order variable a and the second-order
variable F are quantified universally. Then, a proof is represented as a sequence of
such formulas, constructed incrementally according to a series of derivation rules, or
logical principles. It is remarkable that Frege introduced this language of proofs, and
formulated in it the first theory of quantification.

Looking for Foundations: David Hilbert. – Despite his extraordinary insight and formal
creativity, Gottlob Frege remained largely unnoticed by the mathematical community
of his time. Much to Frege’s sorrow, most of his articles were rejected by mainstream
mathematical journals. In fact, the few contemporary logicians who read the ideogra-
phy generally confused his work with George Boole’s algebraic account of logic. In a
typical review, a prominent German logician of the time describes the 2-dimensional
notation as “a monstrous waste of space” which “indulges in the Japanese custom
of writing vertically”. Confronted to negative reactions of that kind, Frege generally
ended up rewriting his mathematical articles in a condensed and non technical form,
for publication in local philosophical journals.

Fortunately, the ideography was saved from oblivion at the turn of the century,
thanks to Bertrand Russell – whose curiosity in Frege’s work was initially aroused
by a review by Giuseppe Peano, written in Italian [77]. At about the same time,
David Hilbert, who was already famous for his work in algebra, got also interested in
Gottlob Frege’s ideography. On that point, it is significant that David Hilbert raised
a purely proof-theoretic problem in his famous communication of twenty-three open
problems at the International Congress of Mathematicians in Paris, exposed as early
as 1900. The second problem of the list consists indeed of showing that arithmetic is
consistent, that is, without contradiction.

David Hilbert further develops this idea in his monograph on the Infinite, writ-
ten 25 years later [47]. He explains there that he hopes to establish, by purely finite
combinatorial arguments on formal proofs, that there exists no contradiction in math-
ematics — in particular no contradiction in arguments involving infinite objects in
arithmetic and analysis. This finitist program was certainly influenced by his success-
ful work in algebraic geometry, which is also based on the finitist principle of reducing
the infinite to the finite. This idea may also have been influenced by discussions with
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Frege. However, Kurt Gödel established a few years later, with his incompleteness the-
orem (1931) that Hilbert’s program was a hopeless dream: consistency of arithmetics
cannot be established by purely arithmetical arguments.

Consistency of Arithmetics: Gerhard Gentzen. – Hilbert’s dream was fruitful nonethe-
less: Gerhard Gentzen (who was originally a student of Hermann Weyl) established
the consistency of arithmetics in 1936, by a purely combinatorial argument on the
structure of arithmetic proofs. This result seems to contradict the fact just mentioned
about Gödel’s incompleteness theorem, that no proof of consistency of arithmetic can
be performed inside arithmetic. The point is that Gentzen used in his argument a
transfinite induction up to Cantor’s ordinal ε0 – and this part of the reasoning lies
outside arithmetics. Recall that the ordinal ε0 is the first ordinal in Cantor’s epsilon
hierarchy: it is defined as the smallest ordinal which cannot be described starting from
zero, and using addition, multiplication and exponentiation of ordinals to the base ω.

Like many mathematicians and philosophers of his time, Gerhard Gentzen was
fascinated by the idea of providing safe foundations (Grundlagen in German) for
science and knowledge. By proving consistency of arithmetic, Gentzen hoped to secure
this part of mathematics from the kind of antinomies or paradoxes discovered around
1900 in Set Theory by Cesare Burali-Forti, Georg Cantor, and Bertrand Russell.
Today, this purely foundational motivation does not seem as relevant as it was in
the early 1930s. Most mathematicians believe that reasoning by finite induction on
natural numbers is fine, and does not lead to contradiction in arithmetics. Besides, it
seems extravagant to convince the remaining skeptics that finite induction is safe, by
exhibiting Gentzen’s argument based on transfinite induction...

The sequent calculus. – For that reason, Gentzen’s work on consistency could have
been forgotten along the years, and reduced in the end to a dusty trinket displayed
in a cabinet of mathematical curiosity. Quite fortunately, the contrary happened.
Gentzen’s work is regarded today as one of the most important and influential contri-
butions ever made to logic and proof theory. However, this contemporary evaluation
of his work requires to reverse the traditional perspective: what matters today is not
the consistency result in itself, but rather the method invented by Gerhard Gentzen
in order to establish this result.

This methodology is based on a formal innovation: the sequent calculus and a fun-
damental discovery: the cut-elimination theorem. Together, this calculus and theorem
offer an elegant and flexible framework to formalize proofs — either in classical or
in intuitionistic logic, as Gentzen advocates in his original work, or in more recent
logical systems, unknown at the time, like linear logic. The framework improves in
many ways the formal proof systems designed previously by Gottlob Frege, Bertrand
Russell, and David Hilbert. Since the whole survey is based on this particular formu-
lation of logic, we find it useful to explain below the cardinal principles underlying
the sequent calculus and its cut-elimination procedure.
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