
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 27 2009

REALIZABILITY IN CLASSICAL
LOGIC

Jean-Louis Krivine

Panoramas & Synthèses
27, 2009, p. 199–231

REALIZABILITY IN CLASSICAL LOGIC

by

Jean-Louis Krivine

Abstract. – We build a framework, now called “classical realizability”, to explore the
Curry-Howard (proof-program) correspondence.

The “programming” side of the correspondence is an imperative low level language,
based on a call-by-name lambda-calculus abstract machine. The “proof” side is usual
formalization of Analysis in second order logic.

In this way, we can get programs for all classical proofs of theorems in Analysis.
For some of them, we solve the “specification problem”: find the common behavior of
all these programs, for a given theorem.

We show that the axiom of dependent choice (essential for Analysis) corresponds
to very simple programming instructions: clock and signature.

Résumé (Réalisabilité en logique classique). – On construit un cadre, appelé maintenant
« réalisabilité classique », pour explorer la correspondance de Curry-Howard (preuves-
programmes).

Le côté « programmation » de la correspondance est un langage impératif de bas
niveau, basé sur une machine lambda-calcul en appel par nom. Le côté « preuve » est
la formalisation habituelle de l’Analyse en logique du second ordre.

On obtient ainsi des programmes pour toutes les preuves classiques de theorèmes
d’Analyse. Pour certains d’entre eux, on résout le problème de la « spécification » :
trouver le comportement commun de tous ces programmes, pour un théorème donné.

On montre que l’axiome du choix dépendant (qui est essentiel pour l’Analyse) cor-
respond, en programmation, à des instructions très simples : l’horloge et la signature.

Introduction

The essential aim is to explore the Curry-Howard correspondence: we want to as-
sociate a program with each mathematical proof and to consider each theorem as a

2010 Mathematics Subject Classification. – 03B40, 68N18.
Key words and phrases. – Lambda-calculus, Curry-Howard isomorphism, proof-program correspon-
dence, dependent choice axiom.

Lessons in Marseille-Luminy, may 2004 (last revision: june 27, 2005).

© Panoramas et Synthèses 27, SMF 2009

200 J.-L. KRIVINE

specification, i.e. to find the common behavior of the programs associated with every
proof of this theorem. It is a very difficult and very interesting problem, which I call
the “specification problem” in what follows.

In the first place, we must give the programming language in which we write
these programs, and also explain in which way they are executed. This is done in
the first section, it is the “program side” of the correspondence. As we shall see, this
programming frame is very similar to usual imperative programming. As the theory
develops, many usual and important notions of imperative and system programming
will naturally appear, such as: storage and call-by-value for datas, pointers, signature
of files, system clock, boot, . . .

Then we must give a computational content to each logical rule and each axiom.
We do this by means of elementary instructions. The instructions for the rules of in-
tuitionistic propositional logic have been found long time ago, at the very discovery of
the Curry-Howard correspondence; the programming language was Church’s lambda-
calculus. Then the instructions for intuitionistic second order logic were obtained and
the programming language was still the same.

But mathematical proofs are not done in intuitionistic logic, not even in pure
classical logic. We need axioms and the usual axiom systems are:

1. Second order classical Peano arithmetic with the axiom of dependent choice;
this system is also called “Analysis”.

2. Zermelo-Frænkel set theory with the axiom of choice.
In this paper, we consider the first case. We shall give new elementary instructions

for the lacking axioms, which are: the excluded middle, the axiom of recurrence and
the axiom of dependent choice. It is necessary, for that, to define an extension of
lambda-calculus. We notice that some of these instructions are incompatible with β-
reduction. Therefore the execution strategy is deterministic and is given in the form
of a weak head reduction machine.

The same machine is used for Zermelo-Frænkel set theory. The instructions as-
sociated with the axioms of ZF are given in [4]. The full axiom of choice remained
an open problem until recently (may 2005). The new instructions necessary for this
axiom and also for the continuum hypothesis will be given in a forthcoming paper.

Terms, stacks, processes, execution

We denote by QP the set of closed λ-terms built with some set of constants which
are called instructions; one of these instructions is denoted by cc. We shall denote
the application of t to u by (t)u or tu; the application of t to n arguments u1,. . . ,un
is denoted by (t)u1 . . . un or tu1 . . . un. Therefore, we have tuv = (t)uv = (tu)v with
this notation.

Elements of QP are called proof-like terms.
Let L ⊃ QP be the set of closed λ-terms built with a new constant k and a set

Π0 6= ∅ of new constants called stack constants.

PANORAMAS & SYNTHÈSES 27

REALIZABILITY IN CLASSICAL LOGIC 201

A closed λ-term of L of the form kt1 . . . tnπ0 with n ∈ N, t1, . . . , tn ∈ L and π0 ∈ Π0

is called a continuation.
A λc-term is, by definition, a closed λ-term τ ∈ L with the following properties:
– each occurrence of k in τ appears at the beginning of a subterm of τ which is a

continuation;
– each occurrence of a stack constant in τ appears at the end of a subterm of τ

which is a continuation.

Remark. – Proof-like terms are therefore λc-terms which do not contain the symbol k
or, which amounts to the same thing, which do not contain any stack constant.

The set of λc-terms is denoted by Λc. In what follows, we almost always consider
only λc-terms; so, they will be called simply “terms” or “closed terms”.

Lemma 1. – i) QP ⊂ Λc;
ii) If tu ∈ Λc and u /∈ Π0, then t ∈ Λc and u ∈ Λc;
iii) If tu ∈ Λc and u ∈ Π0, then tu is a continuation;
iv) If λx t, u ∈ Λc, then t[u/x] ∈ Λc;
v) If t1, . . . , tn ∈ Λc (n ∈ N) and π0 ∈ Π0, then (k t1 . . . tn)π0 ∈ Λc.

Proof. – i) Trivial.
ii) Consider an occurrence of k (resp. of a stack constant π0) in t or u; it is therefore

in tu. Since tu ∈ Λc, this occurrence is at the beginning (resp. at the end) of a
continuation kt1 . . . tnπ0 = (kt1 . . . tn)π0 which is a subterm of tu. Now u 6= π0, so
that this subterm is not tu itself; thus, kt1 . . . tnπ0 is a subterm of t or u.

iii) We have u = π0 ∈ Π0 and this occurrence of π0 is at the end of a subterm of
tπ0 which is a continuation (kt1 . . . tn)π0. Therefore, this subterm is tπ0 itself.

iv) Consider an occurrence of k (resp. π0) in t[u/x]; thus, it is in λx t or u. But
λx t, u ∈ Λc, so that this occurrence is at the beginning (resp. at the end) of a
continuation kt1 . . . tnπ0 which is a subterm of λx t or u. If this continuation is a
subterm of u, it is also a subterm of t[u/x]. If it is a subterm of λx t, then this
occurrence of k (resp. π0) in t[u/x] is at the beginning (resp. at the end) of the
subterm kt1[u/x] . . . tn[u/x]π0, which is a continuation.

v) Trivial.

If t1, . . . , tn ∈ Λc (n ∈ N) and π0 ∈ Π0, the sequence π = (t1, . . . , tn, π0) is
called a stack and is denoted by t1.t2 . . . tn.π0; the set of stacks is denoted by Π.
The continuation kt1 . . . tnπ0 is denoted by kπ. If t ∈ Λc and π = t1.t2 . . . tn.π0 ∈ Π,
then the stack t.t1.t2 . . . tn.π0 is denoted by t.π. Thus, the dot is an application of
Λc×Π in Π.

Every term τ ∈ Λc is either an application, or an abstraction, or a constant which is
an instruction (indeed, this term can be neither k, nor a stack constant, by definition
of λc-terms). From lemma 1, it follows that, for every τ ∈ Λc, we are in one and only
one of the following cases:

i) τ is an application tu with u /∈ Π0 (and therefore t, u ∈ Λc);

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

202 J.-L. KRIVINE

ii) τ is an abstraction λx t;
iii) τ is an instruction (particular case: τ = cc);
iv) τ is an application tu with u ∈ Π0, i.e. τ = kπ for some stack π.

A process is an ordered pair (τ, π) with τ ∈ Λc, π ∈ Π. It is denoted by τ ? π; τ
is called the head or the active part of the process. The set of all processes will be
denoted by Λc ?Π.

We describe now the execution of processes, which is denoted by �. We give the
rule to perform one execution step of the process τ ? π. It depends on the form (i),
. . . , (iv) of τ given above. In the four rules that follow, t, u, λx v denote elements of
Λc; π, ρ denote stacks.

i) tu ? π � t ? u.π (push);
ii) λx v ? u.π � v[u/x] ? π (pop);
iii) cc ? t.π � t ? kπ.π (store the stack);

the rule for other instructions will be given in due time;
iv) kπ ? t.ρ � t ? π (restore the stack).

We say that the process t ? π reduce to t′ ? π′ (notation t ? π � t′ ? π′) if we get
t′ ? π′ from t ? π by means of a finite (possibly null) number of execution steps.

Remark. – By lemma 1, we can check that the four execution rules give processes
when applied to processes.

Truth values and types. – Consider an arbitrary set of processes, which is denoted by
⊥⊥ and which we suppose cc-saturated; it means that:

t ? π ∈ ⊥⊥, t′ ? π′ � t ? π ⇒ t′ ? π′ ∈ ⊥⊥.

P(Π) is called the set of truth values. If U ⊂ Π is a truth value and t ∈ Λc, we say
that t realizes U (notation t ||−U) if (∀π ∈ U) t ? π ∈ ⊥⊥. The set {t ∈ Λc; t ||−U} will
be denoted by |U |. Thus, we have |

⋃
i∈I Ui| =

⋂
i∈I |Ui|.

The truth value ∅ (resp. Π) is called true (resp. false) and denoted by > (resp. ⊥).
Thus, we have |>| = Λc; t ∈ |⊥| ⇔ t ? π ∈ ⊥⊥ for every stack π ∈ Π.

Whenever U, V are truth values, we define the truth value:

(U → V) = {t.π; t ||−U, π ∈ V }; we put ¬U = (U → ⊥).

We shall sometimes use the following notation, when V is a truth value and A ⊂ Λc:

(A→ V) = {t.π; t ∈ A, π ∈ V }.

For example, {t} → V is the truth value {t.π; π ∈ V } if t ∈ Λc and V ⊂ Π.

With this notation, U → V is the same as |U | → V , for U, V ⊂ Π.

PANORAMAS & SYNTHÈSES 27

