ABSTRACT MACHINES FOR
DIALOGUE GAMES

Pierre-Louis Curien & Hugo Herbelin

Panoramas et Syntheses

Numero 27 2009

SOCIETE MATHEMATIQUE DE FRANCE

Publi¢ avec le concours du Centre national de la recherche scientifique

Panoramas & Synthéses
27, 2009, p. 233-277

ABSTRACT MACHINES FOR DIALOGUE GAMES

by

Pierre-Louis Curien & Hugo Herbelin

Abstract. — The notion of abstract Bohm tree has arisen as an operationally-oriented
distillation of works on game semantics, and has been investigated in two previous
papers. This paper revisits the notion, providing more syntactic support and more
examples (like call-by-value evaluation) illustrating the generality of the underlying
computing device. Precise correspondences between various formulations of the eval-
uation mechanism of abstract Bohm trees are established.

Résumé (Machines abstraites pour jeux de dialogue). — La notion d’arbre de B6hm abstrait,
introduite et étudiée dans deux articles précédents, est une distillation de travaux en
sémantique des jeux, issue d’une volonté d’en expliciter la nature calculatoire. Cet
article réexamine cette notion, en fournissant un support syntaxique plus conséquent
ainsi que des exemples plus nombreux (comme ’évaluation en appel par valeur), et
illustre ainsi la généralité du dispositif de calcul sous-jacent.

1. Introduction

This paper is a contribution to the paradigm of computation as interaction, by
which we mean that a computation is described in terms of a game between two play-
ers, one representing the expression to be computed, the other its context, containing
information such as the values of its free variables, or where the result should be
returned to. This line of work has been pursued in different, but related perspectives,
giving rise to rich theories and applications.

— The theory of sequential algorithms of Berry and Curien [4, 5] arose in the in-
vestigation of the full abstraction problem for PCF, a famous problem in the se-
mantics of programming languages. PCF is a core pure functional programming
language [33], and a fully abstract model is a model capturing the observable
differences between programs exactly. Sequential algorithms are mathematical

2010 Mathematics Subject Classification. — 03B40, 68N18, 68N20.
Key words and phrases. — Abstract machines, game semantics, programming languages, lambda-
calculus.

© Panoramas et Synthéses 27, SMF 2009

234 P.-L. CURIEN & H. HERBELIN

objects that in addition to input-output behavior record some information about
the order of computation. They turned out to provide a fully abstract model,
not of PCF, but of a natural extension of PCF with a non-local control operator
[8].

— Linear logic, and one of its models in particular — the geometry of interaction
— originated in a fine-grained analysis of the cut-elimination process in proof
theory, and has brought a wealth of new insights, such as formulas as resources,
or proof nets [18, 19]. (See Melliés’ article in this volume.)

— Game semantics [9, 25, 1] was triggered by these previous works, and has
allowed to give a neat account of a variety of programming features, such as
control, non-determinism, references...

In this paper, we adopt a type-free, operationally-oriented view. Our work takes
inspiration mostly from the works of Coquand [9] and of the second author [22,
23], and from those of Hyland, Ong, and Nickau [25, 30]. Our key object is the
notion of abstract Bohm tree, which is a generalization of that of B6hm tree (see the
introduction to this volume). Bshm trees are (potentially infinite) normal forms, and
play an important role in the theory of the A-calculus [3]. The main benefit of the
generalization is that it offers the right level of generality for explaining the mechanism
of computation at hand in the A-calculus and similar sequential languages. Abstract
Bohm trees have been defined and studied in the two articles [10, 14]. Here, we revisit
the notion: we provide more syntactic support and more examples (like call-by-value
evaluation) illustrating the generality of the underlying computing device. Precise
statements on the correspondences between various formulations of the evaluation
mechanism of abstract Bohm trees are established.

The paper is meant as rather self-contained, and is organized as follows. Abstract
Bohm trees are defined in section 2, where we also introduce our computational engine,
called the Geometric Abstract Machine (GAM). A concrete term notation with bound
variables, in the style of the A-calculus, is introduced at the end of this section. Section
3 is devoted to examples, that cover A-calculus (both normal and non-normal forms),
and extensions: PCF and classical PCF; call-by-value evaluation is also treated, and
we show finally how Girard’s ludics [20] fits in our framework. A remarkable feature
of our framework is that the computing device need not be extended or adjusted:
only the compilation of the different source languages varies, and the machinery of
abstract Bohm trees works as a “universal" device.

Sections 4 and 5 propose equivalent formulations of the GAM: the View Abstract
Machine (VAM) highlights the important notion of view (basic to the works of Co-
quand [9], and of Hyland and Ong [25]), while the Environment Abstract Machine is
a straightforward generalization of (a stack-free version) of Krivine Abstract Machine
[27]. In the appendix, we establish precise correspondences between these machines.

In section 6, we show how to formalize a lazy, stream-like computational loop
calling the GAM again and again in order to produce the full result of a composition;
each call of the GAM gets us to the (abstract Bohm tree version of the) next head

PANORAMAS & SYNTHESES 27

ABSTRACT MACHINES FOR DIALOGUE GAMES 235

variable of the composition along a given exploration path. In section 7, we show how
to extend the formalism of abstract B6hm trees and the GAM to “non-normal forms".
In section 8, we discuss n-expansion, which is needed to evaluate (the compila-
tion of) untyped A-terms. In this section, we also discuss the property of separation,
which is the ability of observing differences through execution against a fixed counter-
strategy.
Finally, in section 9, we discuss some perspectives of further work.

2. The Geometric Abstract Machine

In this section, we present the ingredients of our theory, starting with moves, po-
sitions, strategies and counter-strategies (section 2.1), and continuing with our com-
puting device governing the interaction strategy / counter-strategy: the Geometrical
Abstract Machine (section 2.3). To this effect, we introduce the notions of multiplexed
position, multiplexed strategy, multiplexed counter-strategy (section 2.2), which ac-
commodate the process of duplication in the course of computation (when a function
calls its argument several times). The termination cases of the machine are spelled
out (section 2.4). A new contribution of this paper is section 2.5, where we provide a
term notation for abstract Béhm trees.

We recommend to the reader to freely jump between this section and the next one,
where many illustrations of the technical definitions are given.

2.1. Positions and strategies. — We suppose given an alphabet A of move names, con-
taining a special symbol e, which is the initial move. A position p is a sequence of
moves with backward pointers for Player’s moves (that is, moves occurring at even
places in the position). We choose to represent pointers by numbers which count the
number of Opponent’s moves between the pointing Player’s move and the pointed
Opponent’s move. These pointers may be used to relate the bound occurrences to
their binders, or to relate values to their return address — i.e., to the root of the
subexpression of which they are a (possible) value. Both of these kinds of pointing
structure are present in the language PCF (see section 3.2). Pointers always go from
a Player’s move in the sequence to an earlier Opponent’s move in the sequence. Also,
the sequence of moves is alternating between Player and Opponent (e is considered
Opponent).
An even position, or response, i.e., a position of even length, is a sequence of the
form: ' _
11 in
0,1[(127 <—’] . agn_l[agn, <—’]
where a; € A for all j < 2n and ¢ € wU {_} for all I < n. An odd position, or
query, is defined in the same way, but ends with an Opponent’s move as,_1. In a

position p [a, L’], with ¢ € w, the intention is that the move [a, L’] points to the move
b of p which is at distance 2i + 1 from [a,é]. For instance, if « = 0 and p = p1b,

then [a, <] points to b. The number i has to be small enough to guarantee that the

SOCIETE MATHEMATIQUE DE FRANCE

236 P.-L. CURIEN & H. HERBELIN

corresponding b exists. We will always assume this, and it will be an (easy) invariant
of all the abstract machines presented in this paper that these pointers never become
dangling while execution progresses. We use _ to designate free occurrences of Player’s
moves. (For readers familiar with de Bruijn notation in the A-calculus, this amounts
to use de Bruijn indices for bound variables, but names for free variables.)

We shall let ¢ and r range over queries and responses, respectively. We shall use
[a, <] to designate either [a, <] or [a, <].

A strategy is a set ¢ of positions sucht that:

— all positions of ¢ are of even length, and of the form ep, where e does not occur
in p,

— ¢ is closed under prefix,

~ if gla, <], glaz, <] € ¢, then [a;, <] = [az, <].
The last property ensures that a “query”, that is, a position of odd length, is uniquely
answered in a strategy. Another presentation of a strategy is as a partial function,
also written ¢, from queries (whose Player’s moves are irrelevant) to Player’s moves.
We write dom(¢) to denote the domain of definition of this partial function. We shall
freely use either of the two presentations.

A counter-strategy is a forest of strategies, where the roots are renamed so as to
hook-up with the free moves of the strategy against which they are placed to play
with. The renaming is defined as follows:

[a — ¢] = {ar [or € ¢}
Hence [a < ¢]’s root is labelled by a. A counter-strategy 1 is a union of renamed
strategies [a1 «— ¢1],...,[an — ¢,] (with all the a;’s distinct and # o). We write ¢
as:
Y=lag «— P1,...,an — Pp]

Note that by the first condition in the definition of strategy, e does not occur in .
(This convention about e applies everywhere in the paper except in section 3.4, where
e will be a “real" move expressing the convergence of a function in the weak sense,
i.e. the presence of a head \.)

Nothing prevents us from having infinite horizontal branching after Player’s moves,
although in most examples branching will only be finite. Nothing prevents us either
from having infinite positions and infinite depth strategies.

2.2. Multiplexing. — Next we introduce multiplexed strategies, which will serve to
trace dialogues between strategies and counter-strategies. The idea is that during the
course of evaluation, nodes may be visited several times, whence the idea of “opening
new copies”. A multiplezed even position is a sequence p of the form:

(a1,31)[az, <=, .. ., (a2n—1,jn)[a2n, <]
where the a’s and the i’s are as for positions, and where ji,...,jn € w encode the

multiplexing of Opponent’s moves. In [14], we used the terminology “dynamic" for

PANORAMAS & SYNTHESES 27

