
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 28 2009

DISCRETE-ORDINATES
TRANSPORT METHODS FOR

NON-RELATIVISTIC
RADIATION-HYDRODYNAMICS

Jim E. Morel



Panoramas & Synthèses
28, 2009, p. 35–54

DISCRETE-ORDINATES TRANSPORT METHODS FOR
NON-RELATIVISTIC RADIATION-HYDRODYNAMICS

by

Jim E. Morel

Abstract. – The discrete-ordinates method is a particular angular discretization of
the radiative transfer equation that has become the dominant angular discretization
over the last several decades. The term “discrete-ordinates methods” generally refers
to the discrete-ordinates angular discretization applied in conjunction with various
discretization techniques for the other variables in the transport equation, as well as
solution techniques for the associated discrete equations. In this paper we present
an overview of the application of discrete-ordinates methods to thermal radiation
transport and radiation-hydrodynamics in the non-relativistic regime.

Résumé (Méthodes des ordonnées discrètes pour l’hydrodynamique radiative non relativiste)
La méthode des ordonnées discrètes consiste en une discrétisation angulaire par-

ticulière de l’équation du transfert radiatif. Cette méthode occupe depuis quelques
années une position dominante. En fait, sous le vocable « méthodes des ordonnées
discrètes » on fait référence à la discrétisation angulaire par ordonnées discrètes ap-
pliquée en combinaison avec des techniques de discrétisation variées pour les autres
variables de l’équation de transport, ainsi qu’avec des techniques de résolution des
équations discrètes associées. Dans cet article, nous présenterons une revue des appli-
cations de ces méthodes au transport de radiation et à l’hydrodynamique radiative
en régime non-relativiste.

1. Introduction

The discrete-ordinates method is a particular angular discretization of the ra-
diative transfer equation that has become the dominant angular discretization over
the last several decades. The term “discrete-ordinates methods” generally refers to
the discrete-ordinates angular discretization applied in conjunction with various dis-
cretization techniques for the other variables in the transport equation, as well as
solution techniques for the associated discrete equations. The purpose of this paper is
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to briefly describe the application of discrete-ordinates methods to radiative transfer
in the non-relativistic regime. We consider the non-relativistic regime to be charac-
terized by material velocities less than or equal to one percent of the speed of light. In
most applications, the radiative transfer equations are coupled to the hydrodynamics
equations. We first describe a radiation-hydrodynamics model that consists of the Eu-
ler equations and the radiation transport equation together with approximations for
material-motion effects based upon the assumption of non-relativistic material veloc-
ities. For simplicity, we next focus on a model of radiative transfer in a static medium
that is adequate for the purpose of describing numerical discretization and solution
techniques for the transfer equation that can also be applied in the more general
context of radiation-hydrodynamics. Finally, we discuss operator splitting techniques
intended to yield reliable radiation-hydrodynamics solutions using standard solution
techniques for both the hydrodynamics equations and the radiative transfer equation.

2. An Approximate Radiation-Hydrodynamics Model

The hydrodynamics equations and the radiation moment equations can be ex-
pressed to O(v/c) as follows assuming a grey radiation transport approximation with
the transfer equation cast in the Eulerian frame:

— Conservation of fluid mass:

∂tρ+ ∂i (ρvi) = 0 ,(2.1)

— Conservation of fluid momentum:

∂t (ρvi) + ∂j (ρvivj) + ∂ip =
σt
c
F0,i −

vi
c
σa
(
aT 4 − E0

)
,(2.2)

— Conservation of total fluid energy :

∂t

(
1

2
ρv2 + ρe

)
+ ∂i

[(
1

2
ρv2 + ρe+ p

)
vi

]
=

−cσa
(
aT 4 − E0

)
+
σt
c
viF0,i ,(2.3)

— Conservation of radiation momentum:
1

c2
∂tFi + ∂jPij = −σt

c
F0,i +

vi
c
σa
(
aT 4 − E0

)
,(2.4)

— Conservation of radiation energy :

∂tE + ∂iFi = cσa
(
aT 4 − E0

)
− σt

c
viF0,i ,(2.5)

where ρ is the fluid density, vi is component i of the fluid velocity, c is the speed of
light, p is the fluid pressure, e is the specific internal energy of the fluid, E is the
radiation energy density, Fi is component i of the radiation flux, Pij is element ij of
the radiation pressure tensor, E0 is the comoving-frame radiation energy density:

E0 = E − 2

c2
vi (Fi − viE − vjPij) ,(2.6)
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F0,i is component i of the comoving-frame radiation flux:

F0,i = Fi − viE − vjPij ,(2.7)

σt is the macroscopic total cross section, σa is the macroscopic absorption cross sec-
tion, and a is the radiation constant. The source terms in Eqs. (2.2) through (2.5)
are expressed in terms of comoving-frame radiation variables. These comoving-frame
variables are defined in terms of Eulerian-frame radiation variables by Eqs. (2.6) and
(2.7). When the comoving-frame variables are eliminated from Eqs. (2.2) through
(2.5) using Eqs. (2.6) and (2.7), certain terms of O(v2/c2) will appear. Even though
Eqs. (2.2) through (2.5) are only correct to O(v/c), these terms are not to be neglected
because they eliminate spurious equilibrium solutions [15] and maintain consistency
between the Eulerian-frame and comoving-frame momentum and energy sources. We
consider the nonrelativistic limit to be characterized by v/c ≤ 0.01.

We next describe a very simple approximate model for radiation-hydrodynamics
with multifrequency radiative transfer in the nonrelativistic limit. The goal of this
approximation is to maintain accuracy in an integral sense while avoiding the com-
plexities of the equations that are correct to O(v/c). Since v/c is very small in the
nonrelativistic limit, one might be tempted to neglect material motion corrections
to the radiative transfer equation entirely. However, over the course of a calculation,
this can result in a significant loss of energy conservation because the kinetic en-
ergy change in the fluid due to radiation momentum deposition is not removed from
the radiation energy field. Thus we use a simple approximation for nonrelativistic
radiation-hydrodynamics that has the following properties:

— Total energy and momentum are conserved.
— Equilibrium solutions are preserved to O( vc ).
— The equilibrium diffusion limit is preserved to O( vc ).

In the nonrelativistic case, there is little difference between E and E0, but the relative
difference between F0,i and Fi can be arbitrarily large. This relative difference is
essentially infinite in the equilibrium state because F0,i = 0 while Fi = 4

3viE to
O(v/c). Since the system is locally equilibrated in the equilibrium diffusion limit, it
follows that one can expect a significant relative difference between F0,i and Fi in this
limit. Hence it is generally considered important to preserve the equilibrium diffusion
limit in any approximate treatment of nonrelativistic radiation-hydrodynamics. See
[15] for a formal asymptotic derivation of the non-relativistic equilibrium diffusion
limit.

The first step in the derivation of our approximate model is modify the hydrody-
namics equations and the grey radiation moment equations. Specifically, we make the
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following substitutions:

σt
c
F0,i −

vi
c
σa
(
aT 4 − E0

)
⇒ σt

c
F0,i ,(2.8a)

cσa
(
aT 4 − E0

)
− σt

c
viF0,i ⇒ cσa

(
aT 4 − E

)
− σt

c
viF0,i ,(2.8b)

F0,i = Fi − viE − vjPij ⇒ Fi −
4

3
viE ,(2.8c)

The term neglected in (2.8a) is a purely relativistic term. Although the radiative trans-
fer equation is always relativistic, the hydrodynamics equations are purely classical to
O(v/c). Furthermore, this term is zero in the equilibrium diffusion limit. Thus it is rea-
sonable to eliminate this term. In (2.8b) we replace E0 with E in the radiation energy
source term. It can be seen from Eq. (2.6) that this should be a good approximation
when v/c ≤ 0.01. Furthermore, E0 = E in the equilibrium diffusion limit. Finally, we
substitute (E/3) δi,j for Pi,j in (2.8c). This approximation is made simply to avoid
calculating the radiation pressure tensor. This tensor plays a small role in a small
term, and the substitution is exact in the equilibrium diffusion limit. The next step in
the derivation is to replace the modified grey expressions with frequency-dependent
expressions that are equivalent under the grey approximation. In particular,

σt
c
F0,i ⇒

∫ ∞
0

∫
4π

σt(ν)

c
I(
−→
Ω , ν)

(
Ωi −

4

3

vi
c

)
dΩ dν ,(2.9a)

cσa
(
aT 4 − E

)
⇒
∫ ∞

0

∫
4π

σa(ν)
[
B(ν)− I

(−→
Ω , ν

)]
dΩ dν ,(2.9b)

F0,i ⇒
∫ ∞

0

∫
4π

I
(−→

Ω , ν
)(

Ωi −
4

3

vi
c

)
dΩ dν ,(2.9c)

where
−→
Ω is the photon direction vector, ν is the photon frequency, I

(−→
Ω , ν

)
is the

angular intensity, B = 2hν3

c2

[
exp

(
hν
kT

)
− 1
]−1

is the Planck function and k is the
Boltzmann constant. Expression (2.9b) represents an exact substitution, and (2.9c)
represents a substitution that is exact to O(v/c). Equation (2.9a) is formally incorrect
unless σt is independent of frequency. The transformations between the Eulerian and
comoving frames being used here are only correct for angle-energy-integrated quan-
tities [16]. We nonetheless apply them to angle-energy-dependent quantities because
this results in a significant simplification while retaining accuracy in an angle-energy-
integrated sense. For instance, the transformation relating the comoving frame flux
and the Eulerian frame flux is effectively being used for frequency-dependent fluxes
in (Eq. (2.9a)).

Accounting for all of these substitutions, our approximate hydrodynamic equations
and multifrequency radiation moment equations can be expressed as follows:

∂tρ+ ∂i (ρvi) = 0 ,(2.10)
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