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Abstract. – The radiative transfer equations are considered in the present work to
simulate the radiative fields and their interactions with the matter. The expected nu-
merical simulations imply to couple radiative transfer and hydrodynamic. To perform
such experiments, a radiative kinetic model is too expensive and moment models must
be privileged. The M1 model is thus considered and its main mathematical proper-
ties are established. A particular attention is paid on the asymptotic behavior of the
model as soon as the opacities are large. Relevant numerical methods are then studied
and proved to be robust and asymptotic preserving. Numerical experiments illustrate
the interest of the M1 model.

Résumé (Approximation numérique du modèle M1). – On s’intéresse ici à la simulation les
interactions entre la matière et le transfert radiatif. Certaines applications nécessitent
un couplage fort entre rayonnement et hydrodynamique complexe. Dans ce cas, il est
très coûteux numériquement d’utiliser un modèle cinétique. Notre choix se porte alors
sur un modèle aux moments: le modèle M1. Ses principales propriétés mathématiques
sont établies, en particulier le comportement asymptotique du modèle lorsque les
opacités deviennent grandes. Des méthodes numériques sont ensuite étudiées et leur
robustesse ainsi que leur comportement asymptotique sont alors établis. Enfin, on
illustre l’intérêt du modèle M1 par des simulations numériques.

1. Introduction

Radiative transfer may have a huge impact on the hydrodynamic flow in applica-
tions such as superorbital atmospheric re-entry, fires or astrophysics. In such regimes,
full coupling between material and radiation is mandatory. However, the use of a
model that solves the full Radiative Transfer Equation (RTE) for these kind of fully
coupled multidimensional simulations also involving other complex phenomena such
as chemical reactions or turbulence is way beyond computer limits. Therefore, it is
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important to develop cheaper radiative models that are accurate, robust and preserve
the important physical behaviors.

In this context, the M1 model is an interesting choice. It is a moments model ie
integrated over all directions and frequencies (or frequency intervals for multigroup
versions) and hence has a relatively low computational cost. It also has several very
interesting properties as we will see below. The M1 model was first introduced in [10]
and the multigroup version in [25].

In this paper, we introduce the M1 model and derive several appropriate solvers.
The robustness of the numerical approximation will be one of the main focus as well as
the conservation of the important physical properties. Particular attention will be paid
to preserve the energy positiveness, the flux limitation, the total energy conservation.
Moreover, we carefully check that the scheme is asymptotic preserving in order to
ensure the relevance of the numerical approximations.

To access such an issue, finite volume techniques are considered. In the framework
of the M1 model for the radiative transfer, recent numerical developments based on
HLL’s [15] scheme and Suliciu’s relaxation scheme [5] are presented.

The paper is organized as follows: the M1 model is introduced in the next section
along with its main properties. Three schemes are developed and analyzed in sections
3 to 5. To conclude, two numerical experiments are given to illustrate the interest of
the M1 model and its associated numerical schemes.

2. The M1 model

This section is dedicated to the construction of the M1 model and its most impor-
tant properties.

We start by considering the time-dependent Radiative Transfer Equation in local
thermal equilibrium:

(1)
1

c
∂tIν(Ω)+Ω.∇xIν(Ω) = σνBν(T )−(σdν+σν)Iν(Ω)+

σdν
4π

∫
S2

pν(Ω′.Ω)Iν(Ω′)dΩ′dν,

where c is the speed of light, T the material temperature, Ω the photons direction of
propagation, ν the frequency and σd, σ are respectively the scattering and absorption
opacities. Moreover, Bν(T ) is Plank’s blackbody function Bν(T ) as:

(2) Bν(T ) =
2hν3

c2

[
exp
( hν
kT

)
− 1
]−1

.

The radiative intensity Iν(Ω) = I(t, x,Ω, ν) is linked with the photons’ distribution
function. It is a function of seven variables in 3D [18], [20].

Finally, pν/4π is the scattering probability density. Several choices of probabilities
may be considered depending on the application. For instance, a classical choice in
plasmas physics is expressed by the Thomson kernel:

pν(Ω.Ω′) = p(Ω.Ω′) = C(1 + (Ω.Ω′)2), C ∈ R.
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Moments models are constructed through integrations of the RTE over frequencies
and directions. While these integrations are usually performed together, we will use
two steps in this paper to show the respective role of integrations over directions and
frequencies.

The first step is dedicated to the construction of an intermediate model integrated
over directions from which we perform the second step. The full M1 model and its
multigroup version are the result of this second step.

First, integrations of (1) over all the directions lead to the following intermediate
model:

∂tE(ν) +∇x.F (ν) = cσν

(
4πBν(T )− E(ν)

)
(3)

∂tF (ν) + c2∇x.P (ν) = −c(σν + σdν(1− ǧν))F (ν)(4)

The first three angular moments of the radiative intensity I are E(ν), F (ν) and
P (ν). Moreover, ǧν is the first moment of the scattering operator (for Thomson scat-
tering ǧν = 0).
Since there are more unknowns than equations, one needs an additional hypothesis to
solve this system. Indeed P (ν) is taken as a function of E(ν) and F (ν) and the choice
of this closure function determines the model. The classical P1 choice of closure is to
set P (ν) = E(ν)/3. This choice is perfectly valid close to the radiative equilibrium but
leads to unphysical results far from it. Various other closure functions were introduced
in the literature, e.g. [19].

The M1 closure function is given by a minimum entropy principle. This technique
was introduced by D. Levermore for fluid mechanics [17]. It leads to the following

closure function: I (Ω, ν) =
2hν3

c2
[exp(

hν

k
m.α(ν)) − 1]−1 where α(ν) is a Lagrange

multiplier and m = (1,Ω)>. This closure function I is the underlying radiative in-
tensity predicted by the model instead of the real solution I of the RTE. The system
is closed by enforcing the radiative pressure P (ν) to be the second moment of the
closure function I :

P (ν) =
1

c

∫
S2

Ω⊗ Ω I (Ω, ν)dΩ.

It is possible to write the resulting radiative pressure in Eddington form: P (ν) =

D(ν)E(ν). Eddington’s tensor D(ν) is then given by:

(5) D(ν) =
1− χ(ν)

2
Id +

3χ(ν)− 1

2
f̌(ν)⊗ f̌(ν)

where: f̌(ν) =
F (ν)

‖F (ν)‖
and χ(ν) is the eigenvalue of D(ν) associated with f̌(ν).

The intermediate model (3)-(4) closed thanks to the minimum entropy principle
and coupled to a relevant material temperature equation is a symetrizable hyperbolic
system which locally decreases the total entropy and conserves the energy. Moreover,
α(ν) exists and is unique as soon as (E(ν), F (ν)) is physically relevant.
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Of course, for computing purposes, we have to go one step further in the modeling.
Considering a finite number of frequency groups and integrating inside each group
the intermediate model, we get the following system:

∂tEq +∇x.Fq = c[σeqaθ
4
q(T )− σaqEq], 1 ≤ q ≤ Q(6)

1

c
∂tFq + c∇x.Pq = (−σfq − σdq (1− ǧq))Fq, 1 ≤ q ≤ Q(7)

Definition 1. – For the sake of simplicity, the following notation will be used:

<.>q =
1

c

∫
S2

∫ ν
q+ 1

2

ν
q− 1

2

.dνdΩ

With the previous definition, we have θq(T ) =
1

a
<B>

1/4
q .

Usually, a group is a “large” frequency interval. A typical multigroup computation
would consider up to a few dozen groups.

The first three moments of the radiative intensity I are:

Eq = <I>q(8)

Fq = <cΩI>q(9)

Pq = <Ω⊗ ΩI>q.(10)

In the system (6)-(7), σaq , σeq , σfq and σdq are the opacities’ mean values inside the
qth group. To complete the definition of (6)-(7) we have:

σeqaθ
4
q(T ) = <σB(T )>q,

σaqEq = <σI>q,

σfqFq = <cσΩI>q.

The computation of these mean values may be very difficult for realistic computations
and is critical for the precision of the solutions. We will see later (see section 2.3) how
they can be handled by the M1 model but in this section only constant per group
opacities are considered for the sake of simplicity.

Definition 2. – The radiative entropy density of the considered system is:

(11) ȟ(I) =
2kν2

c3

[
nI lnnI − (nI + 1) ln(nI + 1)

]
,

where nI is the occupation number given by: nI =
c2

2hν3
I and the entropy is given by:

(12) H(I) = <ȟ(I)> =
∑
q

<ȟ(I)>q.

It is to note that Planck’s function is the minimum of the radiative entropy:

Bν(T ) = argmin{H(I), <I> = aT 4}.
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