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Abstract. – This is a survey of joint work with A. J. de Jong and Xuhua He proving
Serre’s “Conjecture II” for a function field K of a surface over an algebraically closed
field k in the split case: for every simply connected, semisimple algebraic group G over
k, every G-torsor over K has a K-point. This follows from a theorem, in characteristic
0, saying that a smooth, projective variety X over K has a K-point if the elemen-
tary obstruction of Colliot-Thélène and Sansuc vanishes, and if certain additional
hypotheses hold—most importantly the geometric generic fiber must be rationally
simply connected and must have a very twisting surface.

Résumé (Points rationnels des variétés rationnellement simplement connexes). – Nous présen-
tons un rapport détaillé sur un travail commun avec A. J. de Jong et Xuhua He,
travail qui établit, dans le cas déployé, la « conjecture II » de Serre sur un corps K

de fonctions de deux variables sur un corps k algébriquement clos : pour tout groupe
algébrique G semisimple simplement connexe sur k, tout G-torseur sur K a un K-
point. C’est une conséquence d’un théorème (en caractéristique nulle) selon lequel
une variété X projective et lisse sur K possède un K-point si d’une part il n’y a pas
d’obstruction élémentaire (comme définie par Colliot-Thélène et Sansuc) et si d’autre
part certaines hypothèses géométriques sont satisfaites – les plus importantes étant
que la fibre générique géométrique est rationnellement simplement connexe, et qu’elle
possède une surface très tordante.

1. Introduction

The goal of these notes is to present some new results proved jointly with A. J.
de Jong and Xuhua He. First, an algebraic fibration over a surface has a rational
section if the fiber is “rationally simply connected” and if the elementary obstruction
of Colliot-Thélène and Sansuc vanishes. Second, this implies the split, geometric case
of a conjecture of Serre, “Conjecture II” in [27, p. 137].
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Theorem 1.1. – For a connected, simply connected, semisimple algebraic group G over
an algebraically closed field k, every principal G-bundle over a k-surface has a rational
section.

Many others have worked towards the resolution of Serre’s “Conjecture II” in the
geometric case and in the general case: Merkurjev and Suslin; E. Bayer and R. Pari-
mala; Chernousov; and P. Gille. These results are summarized in [5, Theorem 1.2(v)].
Because of these many results, the full “Conjecture II” in the geometric case reduces
to the split, geometric case, so that “Conjecture II” is now settled in the geometric
case.

These notes closely follow our article [20]. But the arguments here are a bit simpler,
and the hypotheses are considerably stronger (yet still verified in the application to
Serre’s conjecture).

These notes accompany lectures delivered at the conference Variétés rationnelle-
ment connexes: aspects géométriques et arithmétiques of the Société Mathématique
de France held in Strasbourg, France in May 2008. In addition to the new results,
the lectures also presented the proof of the Kollár-Miyaoka-Mori conjecture proved by
Tom Graber, Joe Harris and the author in characteristic 0 and by A. J. de Jong and
the author in arbitrary characteristic. But as there are already several expositions of
that work, I will only review the main statement.

Theorem 1.2. – [11], [18] Let k be an algebraically closed field. Let C be a smooth,
projective k-curve. Let π : X → C be a projective, flat morphism. Assume that the
geometric generic fiber Y of π is irreducible and normal and that the smooth locus
of Y is separably rationally connected, i.e., there exists a morphism from P1 into
the smooth locus such that the pullback of TY is ample on P1. Then there exists a
k-morphism σ : C → X such that π ◦ σ = IdC , i.e., σ is a section of π.

Here is the formulation of the split, geometric case of Serre’s Conjecture II which
we prove here.

Corollary 1.3. – Let κ be an algebraically closed field of characteristic 0. Let S be a
smooth, integral, projective surface over κ. Let f : X → S be a proper, surjective
morphism. Assume there exists a Zariski open subset U of S and an invertible sheaf
L on f−1(U) such that
(i) S − U is a finite collection of κ-points of S,
(ii) the restriction

f |f−1(U) : f−1(U)→ U

is smooth,
(iii) L is f -ample, and
(iv) the fiber of f over every geometric point of U is a homogeneous space for a

linear algebraic group, and the restriction of L to this fiber is a generator of the
Picard group.

Then there exists a rational section of f .
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The more traditional formulation of Serre’s Conjecture II is in terms of a non-
algebraically closed field K, which here is the function field k(S) of the surface S.

Theorem 1.4. – Let k be an algebraically closed field and let K/k be the function field
of a surface. Let G be a connected, simply connected, semisimple algebraic group over
k. Every G-torsor over K is trivial.

In particular if GK is a simple algebraic group over K of type E8 then GK is itself
split. Thus every GK-torsor over K is trivial. So Serre’s Conjecture II holds over
function fields K for groups of type E8.

Overview. – Given a smooth, projective surface S over an algebraically closed field
k, there always exists a Lefschetz pencil of divisors on S. The generic fiber C of this
pencil is a smooth, projective, geometrically integral curve over the function field
κ = k(t). Given a projective, flat morphism f : X → S whose geometric generic fiber
is integral and rationally connected, the fiber product Xκ := C ×S X is a projective
κ-scheme together with a projective, flat morphism of κ-schemes π : Xκ → C whose
geometric generic fiber is integral and rationally connected. Since the generic fiber of
π equals the generic fiber of f , rational sections of f are really the same as rational
sections of π. So it suffices to prove that π has a section.

And the morphism π has one advantage over f : the base change morphism

π ⊗ Id : Xκ ⊗κ κ→ C ⊗κ κ

does have a section by Theorem 1.2. By Grothendieck’s work on the Hilbert scheme
there exists a κ-scheme Sections(X/C/κ) parameterizing families of sections of π.
The goal is to prove Sections(X/C/κ) has a κ-point. But we at least know it has
a κ-point. As with all Hilbert schemes, this is really a countable union of quasi-
projective κ-schemes, teSectionse(X/C/κ), where Sectionse(X/C/κ) is the open and
closed subscheme parameterizing sections which have degree e with respect to some
π-relatively ample invertible sheaf L.

The basic idea is to try to prove that Sectionse(X/C/κ) has some naturally de-
fined closed κ-subscheme which is geometrically integral and geometrically rationally
connected. Then we can apply Theorem 1.2 to this closed subscheme to produce a
κ-point of Sectionse(X/C/κ), which is the same as a section of π.

Of course there is an obstruction to rational connectedness of Sectionse(X/C/κ):
the Abel map

α : Sectionse(X/C/κ)→ PiceC/κ

sending each section of π to the pullback of L by this section. Since there are no
rational curves in the Abelian variety PiceC/κ, every rationally connected subvariety
of Sectionse(X/C/κ) is contained in a fiber of α. So the idea is to prove that for e
sufficiently positive, some irreducible component of the generic fiber of α is geomet-
rically integral and geometrically rationally connected. Of course this is the same as
proving that there exists an irreducible component Ze of Sectionse(X/C/κ) such that

α|Ze : Ze → PiceC/κ
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is dominant with integral and rationally connected geometric generic fiber. Observe
that this would be enough to conclude the existence of a section of π: there are κ-
points of PiceC/κ, e.g., coming from the basepoints of the Lefschetz pencil, and the fiber
of α|Ze over these κ-points is then a geometrically integral and rationally connected
variety defined over κ = k(t). Such a variety has a κ-point by Theorem 1.2.

There are some issues. First of all if we change L then the Abel map α changes.
For instance, if we replace L by L⊗n with n > 1, then the original Abel map is
composed with the “multiplication by n” morphism on the Picard scheme. Because
this is a finite map of degree > 1, the geometric generic fiber of the new Abel map
will not be integral. So it is crucial to work with the correct invertible sheaf L. If the
geometric generic fiber of f has Picard group isomorphic to Z (rationally connected
varieties always have discrete Picard group), then this obstruction is equivalent to
the well known elementary obstruction of Colliot-Thélène and Sansuc, cf. [6]. We
impose vanishing of the elementary obstruction in a somewhat hidden manner through
existence properties for “lines” in the generic fiber, i.e., curves of L-degree 1. Observe
that there are no curves of L⊗n-degree 1, which indicates the connection with the
elementary obstruction.

A second, weightier issue is that Sectionse(X/C/κ) typically is not proper. So it is
extremely unlikely any interesting subvarieties are rationally connected. Fortunately it
suffices to prove there is a component Ze as above for a compactification Σe(X/C/κ)

of Sectionse(X/C/κ). The compactification we use here comes from Kontsevich’s mod-
uli space of stable maps. But there is a third problem: this space will usually have
more than one irreducible component. Some of these components have bad proper-
ties because the generic point parameterizes an obstructed section. So we restrict
attention to those irreducible components which parameterize unobstructed sections,
specifically what we call “(g)-free sections” where g is the genus of C. Still there may
be more than one irreducible component Z parameterizing (g)-free sections.

We cannot fix this for any particular L-degree, say ε: for any particular integer ε
there may well be more than one irreducible component Z of Σε(X/C/κ) parame-
terizing (g)-free sections. However the problem gets better as the L-degree becomes
more positive. There is a standard way of producing new sections from old: attach
vertical rational curves to the section curve and deform this reducible curve to get an
irreducible curve which is again a section. If the original section curve and vertical
curves are sufficiently free, then the reducible curve does deform and the deformations
are again unobstructed. In particular the new section is parameterized by a smooth
point of Σe(X/C/κ) for some e > ε. Of course there are many ways of attaching
and deforming, so we choose the simplest possible: attach vertical “lines”, i.e., curves
whose L-degree equals 1. We use the somewhat colorful name “porcupine” to denote
a reducible curve obtained from a (g)-free section by attaching free lines in fiber of π.
Using these porcupines, we produce a sequence (Ze)e≥ε of irreducible components Ze
of Σe(X/C/κ). Of course this presupposes the existence of many free lines to attach
to our original section, and that leads to our first technical hypothesis: every point of
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