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1. Introduction

In 1985 D. Sullivan [24] had introduced a dictionary between two domains of
complex dynamics: iterations of rational functions and Kleinian groups (both acting
on the Riemann sphere). This dictionary motivated many remarkable results in both
domains, starting from the famous Sullivan’s no wandering domain theorem in the
theory of rational iterations.

One of the principal objects used in the study of Kleinian groups is the hyperbolic
3- manifold associated to a Kleinian group, which is the quotient of its isometric action
on the hyperbolic 3-space. M. Lyubich and Y. Minsky [22] have suggested to extend
Sullivan’s dictionary by providing an analogous construction for iterations of rational
functions: hyperbolic laminations (with singularities). They are constructed from the
natural homeomorphic extension of the dynamics: the backward orbit space (or natu-
ral extension). The latter space contains an infinite disjoint union of embedded copies
of C. Taking the latter union, strengthening its topology and completion yields what
is called the Lyubich-Minsky affine orbifold lamination. Each its leaf carries an affine
structure that is equivalent to either C, or a quotient of C by a discrete group of affine
Euclidean isometries. The lifted dynamics on the laminated space is leafwise-affine.
Pasting a copy of the hyperbolic 3-space to every copy of C in the natural extension
and applying similar strengthening and completion yields the Lyubich-Minsky hyper-
bolic orbifold lamination. Each its leaf is a complete hyperbolic 3-manifold (orbifold)
that is isomorphic to either the hyperbolic 3-space H3, or its quotient by a discrete
group of isometries fixing the infinity. Thus, the covering hyperbolic space H3 of each
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leaf has a canonical marked point “infinity” at its boundary. A horizontal plane (i.e.,
a plane parallel to the boundary) in the half-space model of H3 is called a horosphere.
The isometries fixing the infinity transform the horospheres to the horospheres. This
induces the horospheric lamination of the laminated space and its quotient by the
lifted dynamics.

Recent studies of the hyperbolic 3-manifolds associated to Kleinian groups resulted
in solutions of all big problems in the theory, first of all the Ahlfors’ Measure Conjec-
ture and Marden’s Tameness Conjecture (see [1, 6] and references therein). There is a
hope that studying the hyperbolic laminations associated to rational functions would
shed a new light to the underlying dynamics. This is a completely open research area
with few results.

We recall the background material and recent achievements in the theory of
Kleinian groups and rational dynamics and present the state of art in the laminations
associated to rational functions.

The arrangement of the horospheres in the above hyperbolic laminations is related
to the behavior of the modules of the derivatives of the iterations of the rational
function.

The vertical geodesic flow acts on H3 by translating points along the geodesics
issued from the infinity. This induces the leafwise vertical geodesic flows acting on
the hyperbolic orbifold lamination and its quotient. The horospheric laminations are
the unstable laminations of the vertical geodesic flows. There is a hope that studying
the vertical geodesic flow and the horospheric lamination would have applications
in understanding the underlying dynamics. An application to the No Invariant Line
Field Conjecture in a particular case will be presented in Section 5.

The classical results concerning the geodesic flows on compact hyperbolic surfaces
say that the horocyclic lamination is minimal [16] and uniquely ergodic [4, 10, 23].
Their generalizations have found important applications in different domains of math-
ematics, including number theory. In Sections 5 and 6 we present their versions, proved
in [12, 13, 14], for the quotient horospheric laminations (in the complement to the
isolated 3-dimensional hyperbolic leaves) associated to appropriate rational functions.
The latter include the hyperbolic functions and the postcritically-finite ones that do
not belong to the following list of exceptions: powers z±d, Chebyshev polynomials,
Lattès examples. The latter list consists exactly of those rational functions for which
the affine laminations are Euclidean: admit a continuous family of Euclidean metrics
on the leaves [19]. One of the main results of [12, 13] (stated here as Theorem 5.14)
says that for every rational function either the corresponding quotient horospheric
lamination (in the complement to the isolated 3-dimensional hyperbolic leaves) is
topologically transitive, or the affine lamination is Euclidean. One of the topological
transitivity results stated here (Theorem 5.19) is new. Its proof, which is omitted here,
is a minor modification of the argument from [13]. The main unique ergodicity results
from [14] concern a class of minimal laminations that includes the minimal unstable
laminations of Anosov diffeomorphisms and flows and also the quotient horospheric
laminations associated to appropriate functions. The original proofs of the classical
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results on unique ergodicity use Markov partitions, K-property or harmonic analysis.
The proof from [14] is an elementary geometrical argument that does not use them.
We give its sketch in Section 6.

In Section 2 we recall the basic material about Kleinian groups and hyperbolic
geometry. We present a brief historical survey of the Ahlfors’ Measure Conjecture and
the main idea of its proof: studying associated harmonic functions on the hyperbolic
quotients. This idea is due to Ahflors and Thurston.

In Section 3 we recall the basic material on holomorphic dynamics and Sullivan’s
dictionary. Afterwards we introduce the natural extension (backward orbit space)
and construct the Lyubich-Minsky affine and hyperbolic laminations associated to
the hyperbolic rational functions and quadratic Chebyshev polynomial.

In Section 4 we construct the affine and hyperbolic laminations in the general case
and discuss their basic topological properties. The total space of those laminations is
not locally compact in general.

In Section 7 we present some open problems concerning Lyubich-Minsky lamina-
tions. Earlier lists of open problems may be found in [22], p. 80-83 and [19], Sec-
tion 4.7.

2. Background material on Kleinian groups and hyperbolic geometry

2.1. Kleinian groups. – Recall that the Möbius group is the group PSL2(C) of the
conformal automorphisms of the Riemann sphere.

Definition 2.1. – A nontrivial Möbius transformation C → C is parabolic, if it has a
unique fixed point. Otherwise, it has exactly two fixed points. In the latter case there
are two possible subcases:

- hyperbolic transformation: the fixed points are attractor and repeller, the dynamics
is north pole – south pole; or equivalently, the eigenvalues of the corresponding matrix
from SL2(C) have distinct moduli;

- elliptic transformation: conformally-conjugated to a sphere rotation; or equiva-
lently, the corresponding matrix has distinct eigenvalues with equal moduli.

Remark 2.2. – Each parabolic transformation is conformally conjugated to a transla-
tion of C. Each hyperbolic (elliptic) transformation is conformally conjugated to a
linear transformation C→ C: z 7→ λz, |λ| 6= 1 (respectively, |λ| = 1).

Definition 2.3. – A Kleinian group is a finitely-generated discrete subgroup in
PSL2(C). In addition, for simplicity we assume that all the Kleinian groups
under question are torsion-free.

Example 2.4. – A cyclic group Γhyp generated by a hyperbolic transformation. A cyclic
group Γpar generated by a parabolic transformation. A group ΓT of translations of C
by vectors of a two-dimensional lattice.
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Example 2.5. – A Fuchsian group: a discrete group of transformations in PSL2(C)

preserving a circle (line) in C. A quasi-Fuchsian group: a discrete subgroup in
PSL2(C) preserving a Jordan curve in C. In both cases the group preserves two
complementary disks (simply-connected domains separated by the invariant Jordan
curve). A (quasi-) Fuchsian group is called a surface group, if the quotient of each
latter invariant domain is a compact Riemann surface.

Example 2.6. – A Schottky group. Fix four disjoint closed disks B1, . . . , B4 in C.
Let S1, . . . , S4 denote their boundary circles. Consider two transformations A,B ∈
PSL2(C) acting as follows:

- A sends S1 to S2, the exterior of B1 to B2;
- B sends S3 to S4, the exterior of B3 to B4.
It is well-known that the group Γ =< A,B > (Schottky group with two genera-

tors) is free and discrete. Similar construction with arbitrary even number 2n of disks
B1, . . . , B2n yields a Schottky group with n generators.

Definition 2.7. – The discontinuity set of a Kleinian group Γ is the maximal open sub-
set DΓ ⊂ C with the following property: for every x ∈ DΓ there exists a neighborhood
U = U(x) ⊂ C such that γU∩U = ∅ for every γ ∈ Γ\1. The complement LΓ = C\DΓ

is called the limit set of Γ.

Remark 2.8. – The sets DΓ and LΓ are Γ-invariant.

Lemma 2.9. – The limit set of every Kleinian group is the closure of the set of the
fixed points of all its elements. Given arbitrary point x ∈ C, the limit set is the set of
all the limit points of the orbit of x.

Theorem 2.10 (Ahlfors’ finiteness theorem [2]). – The action Γ : DΓ → DΓ is proper
discontinuous, and its quotient is a finite disjoint union of connected Riemann sur-
faces. Each of the latter is a finitely punctured compact Riemann surface.

Example 2.11. – The limit set of every cyclic group from Example 2.4 coincides with
the set of fixed points of generator. The quotients DΓ/Γ corresponding to the groups
Γhyp, Γpar and ΓT are respectively a complex torus, the cylinder C∗ = C\0 ' C/Z and
a complex torus. The limit set of a (quasi-) Fuchsian surface group is the corresponding
invariant circle (Jordan curve). The corresponding quotient of the discontinuity set is
a union of two compact Riemann surfaces, which have “complex-conjugate” conformal
types in the Fuchsian case. The limit set of a Schottky group is a Cantor set. The
corresponding quotient of the discontinuity set is a compact Riemann surface, whose
genus equals n: the number of the generators, i.e., the half of the number of the disks.

Definition 2.12. – A fundamental domain of a Kleinian group is an open subset U ⊂
DΓ (not necessarily connected) that is a fundamental domain for its action on DΓ in
the usual sense:

- γU ∩ U = ∅ for every γ ∈ Γ \ 1;
- the union of the closures in DΓ of the images γU is all of DΓ.
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