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In a remarkable series of articles, published between 1957 and 1960, K. Kodaira and
D.C. Spencer developed the theory of deformations of compact complex manifolds of
arbitrary dimension.

This theory has important differences with respect to Teichmiiller’s theory.
Whereas in complex dimension one almost complex structures are always integrable
(as it is said by the theorem of existence of isothermal coordinates), in higher
dimension the integrability condition is described by a first-order partial differential
equation which is non-linear. By this reason the results in higher dimension are not
so complete as in the case of Riemann surfaces.

The main differences are the following. On the one hand, the theory of deformations
of a compact complex manifold M initiated by Kodaira and Spencer is a local theory.
More precisely, it parametrizes up to isomorphism all the complex structures, on the
underlying differentiable manifold, that are close enough to the given one by means
of a (germ of) finite dimensional parameter space. On the other hand, this parameter
space can be singular in contrast with Teichmiiller’s space which is always smooth.

In their approach, Kodaira and Spencer used power-series methods as well as the
theory of elliptic differential operators. When one linearizes the problem of classifying
complex structures close to a given one up to isomorphism, the space of solutions is
naturally identified to the cohomology group H'(M,©y;), where © ), is the sheaf of
holomorphic vector fields on M. One can try to construct the solution of the non-
linear problem as a certain function on H(M,©),) given by a power series. At each
step, the obstruction to add one more term to the series lies in H?(M, © ;). If all the
obstructions vanish, then one has to prove the convergence of the series so constructed.

By that method, Kodaira and Spencer proved the following two results:
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Rigidity theorem. — If H'(M,©);) = 0 then the complex manifold M is rigid; that is,
each complex structure M’ close enough to M is isomorphic to M.

Completeness theorem. — If H?>(M,©0,;) = 0 then a neighborhood of the origin in
HY(M,©)) parametrizes, up to isomorphism, all the complex structures which are
close enough to M.

In 1962 M. Kuranishi was able to remove the hypothesis H?(M,©,,) = 0 in the
above theorem but allowing the parameter space to be a (singular) analytic space,
although still keeping H'(M,©),) as its Zariski tangent space at the origin [25].
Here, we have to point out the talk on Kuranishi’s theorem given by A. Douady at
the Séminaire Bourbaki (cf. [9]). Using the theory of Banach analytic spaces Douady
improved Kuranishi’s result allowing the parameter spaces to be non-reduced and
obtaining the most powerful version of the theorem.

Since then, Kodaira-Spencer’s approach to deformation theory has been used to
deal with different types of geometric structures on compact manifolds. Among them,
holomorphic and transversely holomorphic foliations.

In [10] T. Duchamp and M. Kalka proved that the fundamental sheaf ©% of a
transversely holomorphic foliation & on a compact manifold has finite dimensional
cohomology. (This result was also proved by X. Gémez-Mont by different methods
in [18]). Moreover, these authors constructed an elliptic resolution of ©%, which mixes
the de Rham with the Dolbeault complex, and used it to construct a Kuranishi space of
deformations for transversely holomorphic foliations. However, their construction can
only be carried out under a quite restrictive technical hypothesis. The general theorem
on the existence of a Kuranishi space of deformations for an arbitrary transversely
holomorphic foliation was obtained by J. Girbau, A. Haefliger and D. Sundararaman
in [15]. These authors used a different resolution of the fundamental sheaf which is
inspired in a previous paper by Kodaira and Spencer [24]. That article also develops
the deformation theory of (non-singular) holomorphic foliations and discusses some
important examples of holomorphic and transversely holomorphic foliations.

From a general point of view, the local theory of deformations of compact complex
manifolds or of holomorphic or transversely holomorphic foliations on compact mani-
folds is already quite complete, although the computation of the Kuranishi spaces for
concrete examples continues to be an active field of research. Nevertheless, there are
important questions on the theory that remain largely open and that are receiving
a renewed interest, like the study of deformations in the large or the deformations
of complex foliations, as it is explained by L. Meersseman in other chapter of this
monograph.

In these notes we try to explain the basic ideas of the deformation theory of compact
complex manifolds as it was developed by Kodaira, Spencer and Kuranishi and then
we show how this approach can be adapted to the deformation theory of holomorphic
and transversely holomorphic foliations following the work of Girbau, Haefliger and
Sundararaman. Our aim is to explain the philosophy of those theories, skipping the
more technical results but emphasizing the main difficulties and the central ideas.
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In the last Section we illustrate the theory with the discussion of some examples,
showing different strategies to compute the Kuranishi space of some concrete complex
manifolds or foliations. We end the notes with the statement of some open questions.

1. Complex structures and holomorphic foliations

All along these notes M will denote a smooth manifold of dimension m. We will
be specially interested in the case in which M is closed, i.e. compact and without
boundary. The word smooth has always to be understood in the sense of being of
class C*°.

If m = 2n, a complex structure 7 on M is given by an atlas {U;, ¢;} of M with the
following two properties: (1) ¢;(U;) is an open subset of C™ and (2) the corresponding
cocycle {g;;}, which is defined by the condition ¢; = g;; o ¢; where the identity has
a sense, is given by holomorphic transformations. The manifold M, endowed with a
complex structure 7, is called a complex manifold.

Let f be a smooth diffeomorphism of M and 7 a complex structure defined by an
atlas {U;, ¢;}. Clearly {f~1(U;),%; = ¢; o f} defines a new complex structure f*r
on M that we call the pull-back of 7 by f. This new complex structure f*r is just a
“coordinate change" of 7 and the two structures will be thought as being equivalent.
Hence a central question is the description of the quotient space

Z(M) = G(M)/ Diff (M),

where (M) is the set of complex structures on M and Diff (M) denotes the group
of smooth diffeomorphisms of M.

Examples 1.1. — (a) The complex affine space C™ and the complex projective space
CP™ are complex manifolds.

(b) (Complex submanifolds) A smooth submanifold NV of a complex manifold M
is a complex manifold if NV is locally defined by holomorphic submersions.

Notice that compact complex submanifolds of C™ are just finite sets. A theorem
by Chow states that each complex submanifold N of CP™ is an algebraic projective
variety, i.e. N is defined by a finite family of homogeneous polynomial equations
P;(zo,...,2n) =0, where (zo,...,2,) are the homogeneous coordinates of CP™.

(¢) (Holomorphic quotients) Under certain conditions, if G is a group acting holo-
morphically on a complex manifold M, the quotient space M /G has a natural complex
structure.

If G is a discrete group acting properly discontinuously on M then the quotient
mapping 7: M — M/G is a covering map and there is a unique complex structure
on M/G for which 7 is holomorphic. Complex tori T® = C™ /A, where A is a lattice
of C", are examples of quotient complex manifolds. Another class of examples is that
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of Hopf manifolds W; = C™ — {0}/(f), where f is an automorphism of C™ with the
origin 0 as an attractive fixed point. Notice that W is diffeomorphic to §2n—1 xS,
Let us consider the vector field ¢ of C? given by

0 0
(1) 5_z187z1+>\z287z2
where ) is a complex number fulfilling Im A > 0. For ¢ = 1,2 denote L; = {z; = 0}
and set V = C% — (L; U Ly). Then V is saturated by the holomorphic C-action on
C? defined by the vector field £ and it is easy to see that the quotient Ey = V/C is
naturally identified to an elliptic curve. Moreover, each elliptic curve can be obtained

in that way by an appropriate choice of the parameter A.

The above definition of a complex structure is essentially non-linear. Alternatively,
the notion of complex structure can be defined as a linear object on M (a vector
bundle) fulfilling an integrability condition. In this approach, it is the integrability
condition which is non-linear.

A complex structure 7 on M induces a decomposition

TME = Tl,O ey TO,I

of the complexified tangent bundle TM¢ = TM ® C of M as a direct sum of the
complex subbundles T™° and 79! that, in terms of local coordinates z1, ..., z,, are
defined as

0 0 0 0
o a—zl,...,a)c.
Note that T7%' = T1.0 and that 71° and T%! are involutive subbundles of TM¢. This
facts motivate the following definition.

T = Yo and T%'=(

Definition 1.2. — An almost complex structure on an even dimensional manifold M
is given by a complex subbundle T of TM¢ fulfilling TM® = T @ T. The almost
complex structure is called integrable if the subbundle T is involutive, i.e. [T, T] C T
(or, equivalently, [T, T] C T).

In an alternative way, an almost complex structure can be defined as an endo-
morphism J: TM — TM fulfilling J? = —Id: the subbundle T corresponds to the
eigenspace of eigenvalue ¢ of the extension of J to T'M°.

An almost complex structure on M induces a complex structure on the (real) vector
bundle T'M in the following way. The composition of (real) vector bundles morphisms

TM — TM¢ — T,

where the first arrow is the natural inclusion and the second one is the natural pro-
jection with kernel T%!, is an isomorphism and the induced identification TM = T1:0
provides T'M with a complex structure.

We have seen that each complex structure induces an integrable almost complex
structure. The following remarkable theorem states the equivalence mentioned above.
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