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DESCENT ON ELLIPTIC CURVES

by

Michael Stoll

Abstract. — Let E be an elliptic curve over Q (or, more generally, a number field).
Then on the one hand, we have the finitely generated abelian group E(Q), on the other
hand, there is the Shafarevich-Tate group X(Q, E). Descent is a general method of
getting information on both of these objects – ideally complete information on the
Mordell-Weil group E(Q), and usually partial information on X(Q, E).

What descent does is to compute (for a given n > 1) the n-Selmer group

Sel(n)(Q, E); it sits in an exact sequence

0 −→ E(Q)/nE(Q) −→ Sel(n)(Q, E) −→X(Q, E)[n] −→ 0

and thus contains combined information on E(Q) and X(Q, E).
The main problem I want to discuss in this “short course” is how to actually do

this explicitly, with some emphasis on obtaining representations of the elements of the
Selmer group as explicit covering spaces of E. These explicit representations are useful
in two respects – they allow a search for rational points (if successful, this proves that
the element is in the image of the left hand map above), and they provide the starting
point for performing “higher” descents (e.g., extending a p-descent computation to a
p2-descent computation).

Prerequisites. — Basic knowledge of elliptic curves (e.g., Silverman’s book [10]), some
Galois cohomology and algebraic number theory (e.g., Cassels-Fröhlich [1]).
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52 M. STOLL

Résumé(Descente sur les courbes elliptiques). —Soit E une courbe elliptique sur Q (ou,
plus généralement, sur un corps de nombres quelconque). On lui associe, d’une part,
le groupe abélien de type fini E(Q), et d’autre part, le groupe de Shafarevich-TateX(Q, E).

La descente est une méthode générale pour obtenir des informations sur ces deux
objets – idéalement des informations complètes sur le groupe de Mordell-Weil E(Q),
et typiquement des informations partielles surX(Q, E).

Une descente calcule (pour un n > 1 donné) le n-groupe de Selmer Sel(n)(Q, E),
qui se trouve dans une suite exacte

0 −→ E(Q)/nE(Q) −→ Sel(n)(Q, E) −→X(Q, E)[n] −→ 0

et qui contient donc des informations combinées sur E(Q) et surX(Q, E).
Le sujet principal que de ce mini-cours est de rendre explicite cette descente, et

en particulier, de représenter les éléments du groupe de Selmer comme des courbes
couvrant E. Ces représentations explicites sont utiles à deux égards : elles permettent
de chercher des points rationnels (en cas de succès, l’élément est dans l’image de
E(Q)/nE(Q)) ; et elles fournissent un point de départ pour effectuer des descentes
d’ordre plus élevé (par exemple, une p2-descente suivant une p-descente).

Prérequis. — Notions sur la théorie des courbes elliptiques (par exemple,
Silverman [10]), notions de théorie algébrique des nombres et en cohomologie
galoisienne (par exemple, Cassels-Fröhlich [1]).

This chapter contains the notes (with little changes) I wrote for the “short course”
with the same title I gave at the Institut Henri Poincaré in the fall of 2004. The
purpose of the course was to give an introduction to the topic and at the same time
discuss some (then) recent results. Owing to the introductory nature of the text,
we give proofs of most theorems, even though some can be found in the literature.
Also, in some cases such a proof may be less elegant, but more elementary, than
necessary.

The results described in these notes (if not “classical”, i.e., to be found in, e.g., Sil-
verman’s book [10]) were obtained in collaboration with John Cremona, Tom Fisher,
Cathy O’Neil, Ed Schaefer and Denis Simon. In some respect, the present text is
by now fairly obsolete, since everything that is in it can be found in [7, 3, 4, 2].
However, we think that these notes may still be of some use, since they give a
good overview over the ideas, without going too much into technical details. If you
want to know more about these, you are welcome to consult the papers mentioned
above.

I would like to particularly advertise Theorems 2.4 and 2.7. While it has been
known for a long time that n-Selmer groups of elliptic curves can be computed in
principle, these results give a rather precise statement on what is required if one
really wants to perform such a computation. As it turns out, this is usually less
demanding when n is a prime number, but even so, it is rarely feasible (with current
technology regarding the computational theory of algebraic number fields) to perform
the computation when n ≥ 5.
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1. The Selmer Group

In the following, K will be a number field, and E will be an elliptic curve defined
over K. E is an algebraic group over K, and so its set of rational points, E(K),
forms a group, the so-called Mordell-Weil group. By the Mordell-Weil theorem, it is
a finitely generated abelian group, and one of the big questions is how to determine
it (in the sense of, say, giving generators as points in E(K) and relations). Descent is
the main tool used for that, both in theory and in practice. Doing an n-descent on E

means to compute the n-Selmer group Sel(n)(K,E), which we will introduce in this
section.

Note that saying that E(K) is a finitely generated abelian group amounts to as-
serting the existence of an exact sequence

0 −→ E(K)tors −→ E(K) −→ Zr −→ 0

with r ≥ 0 an integer and E(K)tors a finite abelian group; it consists of all elements
of E(K) of finite order. Less canonical, but sometimes more convenient, we also have

E(K) ∼= E(K)tors ⊕ Zr .

For any concrete curve E, it is fairly straightforward to find E(K)tors, and we will
not be concerned with how to do that in these lectures. The hard part is to determine
the rank r. This is where descent helps.

1.1. Definition and first properties

We first set some (fairly standard) notation. If v is a place of K, we write Kv for
the completion of K at v and Kunr

v for the maximal unramified extension of Kv. If
v is a finite place, then kv denotes the residue class field of Kv. If k is any field, k̄
denotes an algebraic closure of k.

Let n > 1 be an integer. The usual definition of the n-Selmer group makes use of
Galois cohomology. We follow the usual convention in writing Hj(k,M) for the Galois
cohomology group Hj(Gal(k),M), where k is a field, Gal(k) is the absolute Galois
group of k, and M is a Gal(k)-module (with continuous action; the group cohomology
also is defined in terms of continuous cocycles).

Consider the short exact sequence of GK = Gal(K̄/K)-modules

0 −→ E[n](K̄) −→ E(K̄)
n−→ E(K̄) −→ 0

(which is usually just written

0 −→ E[n] −→ E
n−→ E −→ 0 ).

Then we have the long exact sequence of cohomology groups

0 −→ E[n](K) −→ E(K)
n−→ E(K)

δ−→ H1(K,E[n]) −→ H1(K,E)
n−→ H1(K,E) .

We deduce from it another short exact sequence:

0 −→ E(K)/nE(K)
δ−→ H1(K,E[n]) −→ H1(K,E)[n] −→ 0
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It turns out that knowing E(K) is essentially equivalent to knowing its free abelian
rank r = rankE(K). (Once we know r, we can look for points until we have found
r independent ones. Then we only need to find the K-rational torsion points and
“saturate” the subgroup generated by the independent points. All of this can be done
effectively.) Now the idea is to use the above exact sequence to at least get an upper
bound on r: r can be read off from the size of the group E(K)/nE(K) on the left,
and so any bound on that group will provide us with a bound on r. From the exact
sequence, we see that E(K)/nE(K) sits inside H1(K,E[n]); however, this group is
infinite, and so it does not give a bound.

But we can use some additional information. We know (trivially) that any K-
rational point on E is also a Kv-rational point, for all places v of K. Now it is
possible to compute the image of the local map

E(Kv)/nE(Kv)
δv−→ H1(Kv, E[n])

for any given v explicitly; and for all but a finite explicitly determinable set of places S,
the image just consists of the “unramified part” of H1(Kv, E[n]). This means that in
some sense, we can compute all the necessary “local” conditions and use this informa-
tion in bounding the “global” group E(K)/nE(K). Formally, we define the n-Selmer

group of E, Sel(n)(K,E), to be the subgroup of H1(K,E[n]) of elements that under
all restriction maps resv are in the image of δv in the following diagram.

0 // E(K)/nE(K)

��

δ // H1(K,E[n])

∏
v resv

��

α

##G
GG

GG
GG

GG
GG

GG
GG

GG
GG
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// H1(K,E)[n]

∏
v resv

��

// 0

0 //
∏
v
E(Kv)/nE(Kv)

∏
v δv // ∏

v
H1(Kv, E[n]) //

∏
v
H1(Kv, E)[n] // 0

Equivalently, Sel(n)(K,E) is the kernel of the map α. The image of Sel(n)(K,E)
in H1(K,E)[n] is the kernel of the rightmost vertical map in the diagram. More
generally, one defines the Shafarevich-Tate group of E,X(K,E) to beX(K,E) = ker

(
H1(K,E) −→

∏

v

H1(Kv, E)
)
.

Then we get another short exact sequence:

0 −→ E(K)/nE(K)
δ−→ Sel(n)(K,E) −→ X(K,E)[n] −→ 0 .

This time, one can (and we will) prove that the middle group is finite. And
at least in principle, it is computable. In this way, we can compute the product
(#E(K)/nE(K))(#X(K,E)[n]), and in particular, we obtain a bound on the rank r.
The obstruction against this bound being sharp lies in X(K,E), which is therefore
also an interesting object. Of course, its size (conjectured, but not generally proved
to be finite) also shows up in the famous Birch and Swinnerton-Dyer conjecture, and
there are other reasons to study X(K,E) for its own sake.

PANORAMAS & SYNTHÈSES 36
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We need some more notions and notation. The unramified part of H1(Kv, E[n]) is
the kernel of the restriction map H1(Kv, E[n]) −→ H1(Kunr

v , E[n]). For any finite set
of places S of K containing the infinite places, we define H1(K,E[n];S) to be the sub-
group of H1(K,E[n]) of elements that map into the unramified part of H1(Kv, E[n])
for all places v /∈ S.

The finiteness of the Selmer group then follows from the two observations that

Sel(n)(K,E) ⊂ H1(K,E[n];S) for a suitable finite set S, and that H1(K,E[n];S) is
finite for all finite sets S of places of K.

The latter is a standard fact; in the end it reduces to the two basic finiteness results
of algebraic number theory: finiteness of the class group and finite generation of the
unit group.

Theorem 1.1. — If S is a finite set of places of K containing the infinite places, then
H1(K,E[n];S) is finite.

Proof. — This is a standard result, see for example [9, II.6.2] for a more general
version. We give a proof tailored to the situation at hand, since it also gives some
insight into the computational issues.

There is a finite extension L = K(E[n]) of K (the n-division field of E) such
that E[n] becomes a trivial L-Galois module. We have the inflation-restriction exact
sequence

0 −→ H1(L/K,E[n](L)) −→ H1(K,E[n]) −→ H1(L,E[n]) ,

and the group on the left is finite. Taking into account the ramification conditions,
we see that H1(K,E[n];S) maps into H1(L,E[n];SL) with finite kernel, where SL is
the set of places of L above some place of K in S. Therefore it suffices to show that
H1(L,E[n];SL) is finite. Now

H1(L,E[n]) = H1(L, (Z/nZ)2) = Hom(GL, (Z/nZ)
2) ,

and the ramification condition means that the fixed field of the kernel of a homomor-
phism coming from H1(L,E[n];SL) is unramified outside SL. On the other hand, this
fixed field is an abelian extension of exponent dividing n; it is therefore contained in
the maximal abelian extension M of exponent n that is unramified outside SL.

By Kummer theory (L contains the nth roots of unity because of the n-Weil pair-

ing), M = L( n
√
U) for some subgroup U ⊂ L×/(L×)n. Enlarging SL by including the

primes dividing n, the ramification condition translates into

U = L(SL, n) = {α ∈ L× : n | v(α) for all v /∈ SL}/(L×)n

(the “n-Selmer group of OL,SL
”). Applying the Snake Lemma to the diagram below

then provides us with the exact sequence

0 −→ O×
L,SL

/(O×
L,SL

)n −→ L(SL, n) −→ ClSL
(L)[n] −→ 0 .

Since the SL-unit group O×
L,SL

is finitely generated and the SL-class group ClSL
(L)

is finite, U = L(SL, n) is finite, and hence so is the extension M . We see that
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