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THE GENERALIZED FERMAT EQUATION

by

Frits Beukers

Abstract. — This article will be devoted to generalisations of Fermat’s equation x
n +

y
n = z

n. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it
was wondered what would happen if the exponents in the three term equation would
be chosen differently. Or if coefficients other than 1 would be chosen. We discuss the
reduction of the resolution of such equations to the determination of rational points
on finite sets of algebraic curves (over Q if possible) and explain the full resolution of
the particular equation with exponents 2, 3, 5.

Résumé(L’équation de Fermat généralisée). —Cet article étudie les généralisations de
l’équation de Fermat x

n + y
n = z

n. Dès la démonstration du « grand théorème de
Fermat » par Wiles et Taylor, on s’est démandé ce qu’il adviendrait si les exposants
dans l’équation à trois termes étaient choisis différemment. Ou si l’on plaçait d’autres
coefficients que 1 devant les monômes. Nous discutons la réduction de la résolution de
telles équations à la détermination des points rationnels d’un ensemble fini de courbes
algébriques (définies sur Q si possible), puis résolvons complètement l’équation d’ex-
posants 2, 3, 5.

1. Introduction

Let A,B,C ∈ Z be non-zero and p, q, r ∈ Z≥2. Consider the diophantine equation

Axp +Byq = Czr, gcd(x, y, z) = 1

in the unknown integers x, y, z. The gcd-condition is really there to avoid trivialities.
For example, from a+ b = c it would follow, after multiplication by a21b14c6, that

(a11b7c3)2 + (a7b5c2)3 = (a3b2c)7

thus providing us with infinitely many trivial solutions of x2 + y3 = z7. There are
three cases to be distinguished.
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1. The hyperbolic case
1

p
+

1

q
+

1

r
< 1.

In this case the number of solutions is at most finite, as shown in [DG, Theo-
rem 2].

2. The euclidean case
1

p
+

1

q
+

1

r
= 1.

A simple calculation shows that the set {p, q, r} equals one of {3, 3, 3}, {2, 4, 4},
{2, 3, 6}. In this case the solution of the equation comes down to the determi-
nation of rational points on twists of genus 1 curves over Q with j = 0, 1728.

3. The spherical case
1

p
+

1

q
+

1

r
> 1.

A simple calculation shows that the set {p, q, r} equals one of the following:
{2, 2, k} with k ≥ 2 or {2, 3,m} with m = 3, 4, 5. In this case there are either
no solution or infinitely many. In the latter case the solutions are given by a
finite set of polynomial parametrisations of the equation, see [Beu].

A special case of interest is when A = B = C = 1. In many such cases the solution
set has been found. Below we list the exponent triples (p, q, r) of solved equations
together with the non-trivial solutions (xyz 6= 0). We exclude the generic solution
1k + 23 = 32 from our listing. If no solution are mentioned it is proven that no other
solutions exist. The notation {p, q, r} implies that all permutations of the ordered
triple (p, q, r) are taken into account. This is important in the case of two even
exponents.

We start with the hyperbolic cases. The first case {n, n, n} is of course Wiles’s proof
of Fermat’s Last Theorem. As is well-known this proof is based on the proof of the
Shimura-Taniyama-Weil conjecture for stable elliptic curves. Later Breuil, Conrad,
Diamond and Taylor proved the full conjecture for any elliptic curve in [BCDT].
In the following list the cases with variable n are all solved using Wiles’s modular
form approach, with possibly a few exceptions which are resolved using Chabauty’s
method. The isolated cases in this table are all solved using a Chabauty approach.

– {n, n, n} and n ≥ 4. Wiles and Taylor [W, TW] (formerly Fermat’s Last The-
orem).

– {n, n, 2} Darmon and Merel [DM] (for n prime ≥ 7), and Poonen for n = 5, 6, 9.
– {n, n, 3} Darmon and Merel [DM] (for n prime ≥ 7), Lucas (19th century) for
n = 4 and Poonen for n = 5.

– {3, 3, n} Kraus [Kr1] (for 17 ≤ n ≤ 10000) and Bruin [Br2, Br3] for n = 4, 5.
Later, 17 ≤ n ≤ 109 in Chen, Siksek [ChS] and n = 7, 11, 13 by Dahmen [Da1].

– (2, n, 4) Application of [BS], includes (4, n, 4) by Darmon [D].
– (2, 4, n) Ellenberg [El] (for prime n ≥ 211) and Ghioca for n = 7 (email,
see [PSS]).

– (2n, 2n, 5) Bennett [Ben] (for n ≥ 7 and n = 2) Bruin [Br3] for n = 3 and n = 5
follows from Fermat’s last theorem.
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– (2, 2n, 3) Chen [Ch1] (for n prime and 7 < n < 1000 and n 6= 31) The case
n = 31 and n ≡ −1(mod 6) is dealt with in Dahmen, see [Da2].

– (2, 2n, 5) Chen [Ch2] (for n > 17 prime and n ≡ 1(mod 4))
– {2, 4, 6} Bruin [Br1].
– {2, 4, 5} 25 + 72 = 34, 35 + 114 = 1222, Bruin [Br2].
– {2, 3, 9} 132 + 73 = 29, Bruin [Br4]
– {2, 3, 8} 18+23 = 32, 438+962223 = 300429072, 338+15490342 = 156133, Bruin
[Br1, Br2].

– {2, 3, 7} 17 + 23 = 32, 27 + 173 = 712, 177 + 762713 = 210639282, 92623 +
153122832 = 1137, Poonen, Schaefer, Stoll [PSS].

Presumably the solutions listed above are the only solutions in the hyperbolic case.
Note that in all cases one of the exponents equals 2. This led Tijdeman and Zagier
(in 1994) to the following conjecture.

Conjecture 1.1. — The diophantine equation

xp + yq = zr

in x, y, z ∈ Z with gcd(x, y, z) = 1, xyz 6= 0 and p, q, r ∈ Z≥3 has no solution.

Nowadays this conjecture is also known as Beal’s conjecture or the Fermat-Catalan
conjecture.

In the euclidean case it is well-known that the only non-trivial solutions arise from
the equality 16 + 23 = 22, as the elliptic curves x3 + y3 = 1, y2 = x4 + 1, y2 = x3 ± 1
contain only finitely many obvious rational points.

In the spherical cases the solution set is infinite. In the case {2, 2, k} this is an
exercise in number theory. The case {2, 3, 3} was solved by Mordell, {2, 3, 4} by
Zagier and {2, 3, 5} by J. Edwards [Ed] in 2004. The families of solutions are listed in
Appendix A (please read the explanation in the beginning of Appendix A). In [Co,
Chapter 14] we find a very extensive treatment of spherical and euclidean cases. The
explanation of the solution of the case {2, 3, 5} is the topic of the present notes starting
from Section 7.

2. A sample solution

To illustrate the phenomena we encounter when solving the generalized Fermat
equation, we give a partial solution of x2 + y8 = z3. This equation lends itself very
well to a stepwise descent method.

First we solve x2 +u2 = z3. By factorisation on both sides over Z[i] we quickly see
that x+ iu should be the cube of a gaussian integer, (a+ bi)3. By comparison of real
and imaginary parts we get x = a3 − 3ab2, u = b(3a2 − b2). Note that a, b should be
relatively prime in order to ensure gcd(x, u, z) = 1.

Next we partly solve x2+v4 = z3. This can be done by requiring that u, as found in
the previous equation should be a square, e.g., v2 = b(3a2−b2). The two factors on the
right should be squares up to some factors ±1,±3, since their product is a square and
a, b are relatively prime. We should explore all possibilities, but in this partial solution
we only continue with the possibility b = −v21 , 3a2 − b2 = −v22 . The latter equation
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can be rewritten as 3a2 = b2 − v22 . The right hand side factors as (b− v2)(b+ v2) and
hence each factor is a square up to a finite number of factors. Here several possibilities
present themselves again and we choose one, namely b − v2 = −6a21, b + v2 = −2a22
(and of course a = 2a1a2). Summation of the two equalities and use of b = −v21
gives us v21 − a22 = 3a21. Now the left hand side factors and we choose the possibility
v1 − a2 = 6t2, v1 + a2 = 2s2 (and of course a1 = 2st). Solving for v1 and a2 gives
v1 = s2 + 3t2 and a2 = s2 − 3t2. Hence a = 4st(s2 − 3t2) and b = −(s2 + 3t2)2.
Further straightforward computation gives us

v = (s2 + 3t2)(s4 − 18s2t2 + 9t4)

x = 4st(s2 − 3t2)(3s4 + 2s2t2 + 3t4)(s4 + 6s2t2 + 81t4)

z = (s4 − 2s2t2 + 9t4)(s4 + 30s2t2 + 9t4)

As might be clear now, this gives us an infinite set of integer solutions to the equation
x2+v4 = z3. Had we followed all possibilities we would have found more parametrised
solutions to recover the full solution set in integers. For a full list see Appendix A, or
Henri Cohen’s recent book [Co, Chapter 14.4], where one finds a complete derivation
of the above type.

Finally we consider x2 + y8 = z3. Continuing with our choices we must solve

y2 = (s2 + 3t2)(s4 − 18s2t2 + 9t4).

After division by t6 and putting ξ = s/t, η = y/t3 we get

η2 = (ξ2 + 3)(ξ4 − 18ξ2 + 9),

i.e., we must determine the rational points on a genus two curve. To solve the equation
completely we must determine the rational points on several genus two curves, namely
those arising from the different parametrising solutions above. To cut things short
now, we can easily calculate that

z3

y8
=

(ξ4 − 2ξ2 + 9)3(ξ4 + 30ξ2 + 9)3

η8
.

Thus, any point z3/y8 coming from a solution of x2 + y8 = z3 is the image of a
rational point (ξ, η) on our genus two curve under the map just given. This map is
an example of a Galois cover map.

Had we followed all possibilities of the above argument, we would have obtained
a number of covering maps from a genus 2 curve to P1 which would have covered
the full set of values z3/y8 corresponding to all solutions of x2 + y8 = z3 in co-prime
integers x, y, z.

In this example the curves arose naturally as a result of a descent procedure. In
many cases, like x3 + y5 = z7, this descent is not so obvious any more and we have
to start by constructing covers of P1 by curves which have a suitable ramification
behaviour.
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3. Galois covers of P1

In all approaches to the solution of the (generalised) Fermat equations one uses
Galois covers in one form or another.

First we recall a few facts from the theory of algebraic curves and their function
fields. For a more complete introduction we recommend Chapter II of Silverman’s
book [Si]. Let K be a field of characteristic zero and X a complete, smooth and
geometrically irreducible curve X defined over K. In the function field K(X) we
consider a non-constant element which we denote by φ. Note that K(X) is now a
finite extension of the field K(φ). The degree of this extension is also called the
degree of the map φ. Let P ∈ X(K) (by X(L) we denote the L-rational points of X ,
where L is a field extension of K). Assuming for the moment φ(P ) 6= ∞ we call the
vanishing order of φ− φ(P ) at P the ramification index of φ at P . Notation: eP . In
case φ(P ) = ∞ we take for eP the vanishing order of 1/φ at P . If eP > 1 we call P
a ramification point of φ. The image φ(P ) under φ of a ramification point P is called
branch point. The set of branch points is called the branch set or branch locus. We
now recall the Riemann-Hurwitz formula

Theorem 3.1. — With the notation above let N be the degree of the map φ and g(X)
the geometric genus of X. Then,

2g(X)− 2 = −2N +
∑

P∈X(K)

(eP − 1).

As we have eP = 1 for all points of X except finitely many, the sum on the right
is in fact a finite sum.

We call the map given by φ a geometric Galois cover if the extension K(X)/K(φ)
is a Galois extension of fields. The Galois group G is a subgroup of the automor-
phism group (over K) of X and is called the covering group. Note that the extension
K(X)/K(φ) need not be Galois. If it is we call the cover simply a Galois cover. For a
geometric Galois cover the ramification indices of all points above a given branch point
are the same. In particular we shall be interested in geometric Galois covers whose
branch locus is 0, 1,∞. These are examples of so-called Belyi maps. An immediate
consequence of the Riemann-Hurwitz theorem is the following.

Corollary 3.2. — . Let X → P1 be a geometric Galois cover whose branch locus is
contained in the set {0, 1,∞}. Suppose that above these points the ramification indices
are p, q, r. Suppose the degree of the cover is N . Then

2g(X)− 2 = N
(

1− 1

p
− 1

q
− 1

r

)

.

In particular we see that if 1/p+ 1/q + 1/r > 1, then g(X) = 0 and when 1/p+
1/q + 1/r < 1 we have g(X) ≥ 2.

Here we list a series of geometric Galois covers that will occur in the sequel. We
start with X = P1. The finite subgroups of AutQ(P

1) have been classified by Felix
Klein. Up to conjugation they are given by

1. The cyclic group of order N
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