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EQUATIONS
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Samir Siksek

Abstract. — The aim of these notes is to communicate Ribet’s Level–Lowering Theo-
rem and related ideas in an explicit and simplified (but hopefully still precise) way,
and to explain how these ideas are used to derive information about solutions to
Diophantine equations.

Résumé(L’approche modulaire des équations diophantiennes). —Le but de cette note est
de présenter le théorème de rabaissement du niveau de Ribet et autres idées relatives
d’une façon explicite et simplifiée (que nous espérons être toujours aussi précise), et
ensuite d’expliquer comment ces idées sont utilisées pour dériver des informations
utiles sur les solutions aux équations diophantiennes.

1. Introduction

These notes are intended as a self-contained tutorial for those who would like
to solve Diophantine equations using the modular approach. They were originally
written to accompany a short course I gave during the trimester on Explicit Methods
in Number Theory, held at the Institut Henri Poincaré (September–December 2004).
I have since given similar short courses at the Max Planck Institute in Bonn (February
2007) and at the Lorentz Centre in Leiden (May 2007), and these have given me the
opportunity to test and revise the notes.

The reader is asked to take some deep results on trust. We do not assume familiarity
with modular forms. We do assume familiarity with elliptic curves, but no more than
what is contained in, for example, Silverman’s book [34], or any undergraduate course
on elliptic curves.

To be able to verify the proofs, and to solve his/her own equations, the reader will
need the computer package MAGMA [5] though this is not essential for understanding
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the notes. The reader wishing to try MAGMA but who does not have access to a machine
having MAGMA can try using the online MAGMA calculator:

http://magma.maths.usyd.edu.au/calc/.

The package MAGMA is needed to compute newforms. An alternative is to use the
William Stein’s Modular Forms Database [36], and do the programming in any avail-
able computer package (GP [1] is highly recommended). It is also possible to use the
computer package SAGE [37] for the computation of newforms.

I am grateful to Henri Cohen, Tom Fisher and Maurice Mignotte for many correc-
tions to these notes, and to William Stein for useful conversations. I would like to
thank the referee for many helpful suggestions. I am indebted to Karim Belabas and
the organisers of the trimester on Explicit Methods in Number Theory for inviting me
to give these lectures, to CNRS/Paris XI for financial support, and the Institut Henri
Poincaré for its hospitality.

2. Facts about newforms

Think about newforms (1) in terms of their q-expansions

(1) f = q +
∑

n≥2

cnq
n.

Here are some facts about newforms:

(a) Associated to our newforms will be two integers: a weight k and a level N
(positive integer). If we fix k and N then there are only finitely many newforms
of weight k and level N . In these notes the weight k will always be 2.

(b) If f is a newform with coefficients ci as in (1) and K = Q(c2, c3, . . . ) then K is
a totally real finite extension of Q.

(c) The coefficients ci in fact belong to the ring of integers OK of the number field
K.

(d) If l is a prime then

|cσl | ≤ 2
√
l for all embeddings σ : K →֒ R.

We shall only be concerned about newforms up to Galois conjugacy. The number
of newforms (up to Galois conjugacy) at a particular level depends in a very erratic
way on the level N .

Theorem 1. — There are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

1. For those familiar with modular forms, by a newform of level N we mean a normalized cusp form
of weight 2 for the full modular group, belonging to the new space at level N , that is a simultaneous
eigenfunction for the Hecke operators.
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Example 2.1. — The newforms at a fixed level N can be computed using the modular
symbols algorithm [38, 12]. Thankfully, this has been implemented in MAGMA [5] by
William Stein. To compute in MAGMA the newforms at level N , use the command
Newforms(CuspForms(N)). For example, the newforms at level 110 are

f1 = q − q2 + q3 + q4 − q5 − q6 + 5q7 + · · · ,
f2 = q + q2 + q3 + q4 − q5 + q6 − q7 + · · · ,
f3 = q + q2 − q3 + q4 + q5 − q6 + 3q7 + · · · ,
f4 = q − q2 + θq3 + q4 + q5 − θq6 − θq7 + · · · ,

where the first three have coefficients in Z and the last one has coefficients in Z[θ]

where θ = (−1 +
√
33)/2. Note that there is a fifth newform at level 110 which is

the conjugate of f4. As stated above, in these notes we will only need to worry about
newforms up to Galois conjugacy.

3. Correspondence between rational newforms and elliptic curves

We call a newform rational if its coefficients are all in Q, otherwise we call it
irrational.

Theorem 2(The Modularity Theorem for Elliptic Curves) . — Associated to any ra-
tional newform f of level N is an elliptic curve Ef/Q of conductor N so that for all
primes l ∤ N

cl = al(Ef )

where cl is the l-th coefficient in the q-expansion of f and al(Ef ) = l+ 1−#Ef (Fl).
For any given positive integer N , the association f 7→ Ef is a bijection between
rational newforms of level N and isogeny classes of elliptic curves of conductor N .

The association f 7→ Ef is due to Shimura. The fact that this association is
surjective was previously known as the Modularity Conjecture, and first proved for
squarefree N (the semi-stable case) by Wiles [40, 39]. The proof was completed in
a series of papers by Diamond [15], Conrad, Diamond and Taylor [11], and finally
Breuil, Conrad, Diamond and Taylor [6].

4. Some Useful MAGMA Commands

This section is a short MAGMA tutorial for those who would like to carry out some of
the computations described in these notes, or would like to try some of the exercises.

Example 4.1. — We choose an elliptic curve at random and calculate its minimal
model and discriminant.

> E:=EllipticCurve([0,8,0,48,0]);

> E;

Elliptic Curve defined by y^2 = x^3 + 8*x^2 + 48*x over Rational Field

> F:=MinimalModel(E);
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> F;

Elliptic Curve defined by y^2 = x^3 - x^2 + 2*x - 2 over Rational Field

> D:=Discriminant(F);

> D;

-1152

> Factorisation(D);

>> Factorisation(D);

^

Runtime error in ’Factorisation’: Bad argument types

We want to factorise the minimal discriminant D. The problem here is that
MAGMA is thinking about D as a rational number (because it is the discriminant of
an elliptic curve F defined over the rationals). MAGMA factorises integers but not
rationals.

> D:=Integers()!D;

> Factorisation(D);

[ <2, 7>, <3, 2> ]

The first line tells MAGMA to think of D as an integer. Now MAGMA is happy
to factor D and we know that D = 27 × 32. Let us also compute the conductor and
its factorisation.

> N:=Conductor(E);

> Factorisation(N);

[ <2, 7>, <3, 1> ]

Example 4.2. — In example 2.1 we looked at the newforms at level 110. Let us return
to these and reexamine them with a view towards the Modularity Theorem (Theorem
2).

> NFs:=Newforms(CuspForms(110));

> NFs;

[* [*

q - q^2 + q^3 + q^4 - q^5 - q^6 + 5*q^7 + O(q^8)

*], [*

q + q^2 + q^3 + q^4 - q^5 + q^6 - q^7 + O(q^8)

*], [*

q + q^2 - q^3 + q^4 + q^5 - q^6 + 3*q^7 + O(q^8)

*], [*

q - q^2 + a*q^3 + q^4 + q^5 - a*q^6 - a*q^7 + O(q^8),

q - q^2 + b*q^3 + q^4 + q^5 - b*q^6 - b*q^7 + O(q^8)

*]*]

MAGMA returns the newforms in Galois conjugacy classes. The first three classes
contain one newform each. Thus each of the first three newforms is rational and so
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corresponds to an elliptic curve. Let us take the third one, for example, and see which
elliptic curve it corresponds to.

> f:=NFs[3,1];

The [3, 1] tells MAGMA to pick out the first element of the third conjugacy class.

> f;

q + q^2 - q^3 + q^4 + q^5 - q^6 + 3*q^7 + O(q^8)

> E:=EllipticCurve(f);

> E;

Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + 10*x - 45

over Rational Field

> Conductor(E);

110

Notice that the elliptic curve corresponding to f has conductor 110 which is equal
to the level of f .

We can even get the reference of E in Cremona’s tables [12];

> CremonaReference(E);

110A1

Now let us look instead at the fourth newform.

> g:=NFs[4,1];

> g;

q - q^2 + a*q^3 + q^4 + q^5 - a*q^6 - a*q^7 + O(q^8)

MAGMA displays only a few coefficients of g, but we can ask for any coefficient
we like.

> Coefficient(g,17);

-a - 2

But what is a? The coefficients of g must live in some totally real field. We know
that this field is quadratic since g has only one other conjugate in its conjugacy class.

> N<a>:=Parent(Coefficient(g,1));

> N;

Number Field with defining polynomial x^2 + x - 8

over the Rational Field

N is the number field generated by the coefficients of g, and a is a root of x2+x−8.
In other words a = (−1 +

√
33)/2 (up to conjugacy).
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