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Abstract. – We explain the role of the boundary motive in the construction of certain
Chow motives, and of extensions of Chow motives. Our two main examples concern
proper, singular surfaces and fibre products of a universal elliptic curve.

0. Introduction

This article contains largely extended notes of a short series of lectures delivered
during the École d’été franco-asiatique “Autour des motifs”, which took place at the
IHÉS in July 2006. The task which I was assigned was to explain the role of the
boundary motive, and I hope that the present article will make a modest contribution
to this effect.

By definition [21], the boundary motive ∂M(X) of a variety X over a perfect field
k fits into a canonical exact triangle

(∗) ∂M(X) −→M(X) −→M c(X) −→ ∂M(X)[1]

in the category DMeff
gm(k) of effective geometrical motives. This triangle establishes

the relation of the boundary motive to M(X) and M c(X), the motive of X and its
motive with compact support, respectively [19].

One way to explain its interest is to start with the notion of extensions. Indeed, most
of the existing attempts to prove the Beilinson or Bloch–Kato conjectures on special
values of L-functions necessitate the construction of extensions of (Chow) motives,
and the explicit control of their realizations (Betti, de Rham, étale. . . ). Often, the
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source of these extensions is localization, which expresses the motive with compact
support of a non-compact varietyX as an extension of the motive of a compactification
X∗ by the motive of the complement X∗ − X. The realizations of these extensions
then correspond to cohomology with compact support of X. This approach is clearly
present e.g. in Harder’s work on special values [12].

Thus, given two Chow motives, one may try to use localization to construct an
extension of one by the other. Here, we base ourselves on the principle that the given
Chow motives are “basic”, and that the extension is “difficult” to obtain. But one
may also invert the logic: given a “mixed” motive, try to use localization to construct
the Chow motives used to build it up; let us refer to this problem as “resolution of
extensions”.

The purpose of this article is to establish that the boundary motive plays a role both
for the construction and for the resolution of extensions via localization. In Section 1,
we start by making precise the relation between localization and the boundary motive.
In fact, the triangle (∗) turns out to be obtained by “splicing” the localization triangle
and its dual. We chose to discuss this relation first in the Hodge theoretic realization,
and in the special case of a complement X of two points in an elliptic curve over C
(Examples 1.1, 1.3 and 1.5), and deduce from that discussion the general picture in
Hodge theory (Theorems 1.6 and 1.7), concerning compactifications of a fixed variety
X over C. We observe in particular (Corollary 1.8) that when X is smooth, then any
smooth compactification induces a weight filtration on the boundary cohomology of
X, i.e., on the Hodge realization of the boundary motive.

In order to formulate the motivic analogues of these results, we need the right
notion of weights for motives. It turns out that this notion is given by weight struc-
tures, as recently introduced and studied by Bondarko [4]. We review the definition,
and the basic properties of weight structures, including their application to motives
(Theorem 1.11): according to Bondarko, there is a canonical such structure on the
triangulated category DMeff

gm(k), and its heart equals the category CHMeff(k) of effec-
tive Chow motives. The motivic analogue of Corollary 1.8 holds: according to Corol-
lary 1.16, any smooth compactification of a fixed variety X which is smooth over k
induces a weight filtration on ∂M(X).

Then we try to invert this process (hoping for this inversion to allow us to re-
solve extensions). The precise statement is given in Theorem 1.18, which states that
for fixed X, there is a canonical bijective correspondence (discussed at length in
Construction 1.17) between isomorphism classes of two types of objects: (1) weight
filtrations on ∂M(X), and (2) certain effective Chow motives M0 through which the
morphism M(X)→M c(X) factors. An analogous statement (Variant 1.23) holds for
direct factors of ∂M(X), M(X), and M c(X), provided that they are images of an
idempotent endomorphism of the whole exact triangle (∗). In this correspondence, the
passage to isomorphism classes cannot be avoided because of the necessity to choose
cones of certain morphisms in the triangulated category DMeff

gm(k). This causes (at
least) one important problem, namely the lack of functoriality of the representatives
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of the isomorphism classes. In order to obtain functoriality, Construction 1.17 thus
needs to be rigidified.

In the rest of Section 1, we describe the approach from [23] to rigidification, hence
functoriality. It is based on the notion of motives avoiding certain weights. If a direct
factor ∂M(X)e of ∂M(X) is without weights −1 and 0, then an effective Chow motive
M0 is canonically and functorially defined (Complement 1.24). Given the nature of
the realizations of M0, it is natural to call it the e-part of the interior motive of X.
Its main properties are established in [23, Sect. 4]. Note however (Problem 1.22) that
the above condition on absence of weights is never satisfied for the whole of ∂M(X)—
unless ∂M(X) = 0. In order to make this approach work, we thus need an idempotent
endomorphism e of the exact triangle (∗), giving rise to a direct factor

∂M(X)e −→M(X)e −→M c(X)e −→ ∂M(X)e[1] .

Section 2 shows how the theory of smooth relative Chow motives can be employed
to construct endomorphisms of the exact triangle (∗). Fix a base scheme S, which is
smooth over k. Theorem 2.2 establishes the existence of a functor from the category of
smooth relative Chow motives over S to the category of exact triangles in DMeff

gm(k).
On objects, it is given by mapping a proper, smooth S-scheme X to the exact triangle

∂M(X) −→M(X) −→M c(X) −→ ∂M(X)[1] .

We should mention that as far as the M(X)-component is concerned, the functori-
ality statement from Theorem 2.2 is just a special feature of results by Déglise [9],
Cisinski–Déglise [7] and Levine [13] (see Remarks 2.3 and 2.13 for details). However,
the application of the results from [loc. cit.] to the functor ∂M is not obvious. This is
one of the reasons why we follow an alternative approach. It is based on a relative ver-
sion of moving cycles [21, Thm. 6.14]. This also explains why we are forced to suppose
the base field k to admit a strict version of resolution of singularities. Theorem 2.5
and Corollary 2.15 then analyze the behaviour of the functor from Theorem 2.2 under
change of the base S. Another reason for us to choose a cycle theoretic approach was
that it becomes then easier to keep track of the correspondences on X ×k X com-
muting with our constructions. Our main application (Example 2.16) thus concerns
correspondences “of Hecke type” yielding endomorphisms of the exact triangle (∗).

In Section 3, we apply these principles to Abelian schemes. More precisely, the
main result of [10] on the Chow–Künneth decomposition of the relative motive of
an Abelian scheme A over S (recalled in Theorem 3.1) yields canonical projectors in
the relative Chow group. Given our analysis from Section 2, it follows that they act
idempotently on the exact triangle

∂M(A) −→M(A) −→M c(A) −→ ∂M(A)[1] .

In Sections 4 and 5, we discuss two examples. Section 4 concerns normal, proper
surfaces X∗. We first recall the basic construction of the intersection motive M !∗(X∗)

of X∗, following previous work of Cataldo and Migliorini [6], and review some of
the material from [25]. In particular (Proposition 4.3), we recall that M !∗(X∗) is
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co- and contravariantly functorial under finite morphisms of proper surfaces. We then
analyze the precise relation to the weight filtration of the boundary motive of a dense,
open sub-scheme X ⊂ X∗, which is smooth over k (Theorem 4.4), following the lines
of Construction 1.17. We finish the section with a discussion of the case of Baily–
Borel compactifications of Hilbert surfaces. We recall, following [25, Sect. 6 and 7],
that localization allows to construct non-trivial extensions of a certain Artin motive
by a direct factor of M !∗(X∗). Using Proposition 4.3, we then establish stability of
M !∗(X∗) under the correspondences “of Hecke type” constructed in Example 2.16.

In Section 5, we discuss fibre products of the universal elliptic curve over the
modular curve of level n ≥ 3. We review some of the material from [16] and [23,
Sect. 3 and 4]. Notably (Proposition 5.3), we recall that in this geometrical setting, the
condition from Complement 1.24 on the absence of weights −1 and 0 in the boundary
motive is satisfied. Thus, the interior motive can be defined. The new ingredient
is Example 5.4, where we use rigidity of our construction to give a proof “avoiding
compactifications” of equivariance of the interior motive under the correspondences
“of Hecke type”.

As mentioned above, this article is primarily intended to be a general introduction
to the construction and to the applications of boundary motives. For many details
of the proofs, we shall refer to our earlier articles [21] and [23]. Let us however
indicate that various parts of this paper discuss original constructions. This is true in
particular for Section 2 (on relative motives and functoriality), including our study of
Hecke equivariance. We expect these constructions to be of interest in other contexts
than those discussed in Sections 4 and 5.

For further developments of the theory of boundary motives and their applications
to special classes of algebraic varieties and to their associated motives, in particular
to the motives of Shimura varieties, we refer also to [22, 24].

Part of this work was done while I was enjoying a modulation de service pour les
porteurs de projets de recherche, granted by the Université Paris 13, and during a
stay at the Universität Zürich. I am grateful to both institutions. I wish to thank the
organizers of Autour des motifs for the invitation to Bures-sur-Yvette, and J. Ayoub,
F. Déglise, D. Hébert, B. Kahn, F. Lecomte and M. Levine for useful discussions and
comments. Special thanks go to J.-B. Bost for insisting on this article to be written,
and for his helpful suggestions to improve an earlier version.

Notation and conventions. – k denotes a fixed perfect base field, Sch/k the category
of separated schemes of finite type over k, and Sm/k ⊂ Sch/k the full sub-category
of objects which are smooth over k. When we assume k to admit resolution of sin-
gularities, then it will be in the sense of [11, Def. 3.4]: (i) for any X ∈ Sch/k, there
exists an abstract blow-up Y → X [11, Def. 3.1] whose source Y is in Sm/k, (ii) for
any X,Y ∈ Sm/k, and any abstract blow-up q : Y → X, there exists a sequence of
blow-ups p : Xn → . . . → X1 = X with smooth centers, such that p factors through
q. We say that k admits strict resolution of singularities, if in (i), for any given dense
open subset U of the smooth locus of X, the blow-up q : Y → X can be chosen to
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