
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 44

Regularized transformation-optics
cloaking in acoustic and

electromagnetic scattering

Hongyu Liu & Gunther Uhlmann

edited by

H. Ammari, J. Garnier



Panoramas & Synthèses
44, 2014, p. 111–136

REGULARIZED TRANSFORMATION-OPTICS CLOAKING
IN ACOUSTIC AND ELECTROMAGNETIC SCATTERING

by

Hongyu Liu & Gunther Uhlmann

Abstract. – We consider transformation-optics based cloaking in acoustic and elec-
tromagnetic scattering. The blueprints for an ideal cloak use singular acoustic and
electromagnetic materials, posing severe difficulties to both theoretical analysis and
practical fabrication. In order to avoid the singular structures, various regularized ap-
proximate cloaking schemes have been developed. We survey these developments in
these lecture notes. We also propose some challenging issues for further investigation.

Résumé. – Nous étudions l’optique de transformation qui rend possible des méthodes
de camouflage vis-à-vis des ondes acoustiques et électromagnétiques. Les dispositifs
pour obtenir un camouflage idéal utilisent des matériaux acoustiques et électromagné-
tiques singuliers, ce qui pose de graves difficultés à la fois pour leur analyse et pour
leur fabrication. Afin d’éviter de telles structures singulières, différentes méthodes
de camouflage approximatif régularisées ont été développées. Nous présentons ces
développements dans le présent document. Nous soulevons aussi quelques questions
ouvertes difficiles pouvant faire l’objet de recherches ultérieures.

1. Introduction

We consider transformation-optics based cloaking in acoustic and electromagnetic
scattering. The blueprints for an ideal cloak use singular acoustic and electromag-
netic materials, posing server difficulties to both theoretical analysis and practical
fabrication. In order to avoid the singular structures, various regularized approximate
cloaking schemes have been developed. We survey these developments in this paper.
We also propose some challenging issues for further investigation.

We shall be concerned with invisibility cloaking for acoustic and electromagnetic
(EM) waves. A region is said to be cloaked if its content together with the cloak is
indistinguishable from the background space with respect to exterior wave measure-
ments. A proposal for cloaking for electrostatics using the invariance properties of
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the conductivity equation was pioneered in [21, 22]. Blueprints for making objects
invisible to electromagnetic (EM) waves were proposed in two articles in Science in
2006 [30, 46]. The article by Pendry et al uses the same transformation used in
[21, 22] while the work of Leonhardt uses a conformal mapping in two dimensions.
The method based on the invariance properties of the equations modeling the wave
phenomenon has been named transformation optics and has received a lot of atten-
tion in the scientific community and the popular press because of the generality of
the method and its simplicity. There have been several other proposals for cloaking.
We mention the works of Milton and Nicorovici [42] and of Alu and Engetha [2].

The method of transformation optics relies on the transformation properties of
optical parameters and the transformation invariance of the governing wave equations.
To obtain an ideal invisibility cloak, one first selects a region Ω in the background
space for constructing the cloaking device. Throughout the paper, we assume that
the background space is uniformly homogeneous in order to facilitate the exposition,
but all of the results discussed in this paper can be straightforwardly extended to
the case with an inhomogeneous background space. Let P ∈ Ω be a single point and
let F be a diffeomorphism which blows up P to a region D within Ω. The ambient
homogeneous medium around P is then ‘compressed’ via the push-forward of the
transformation to form the cloaking medium in Ω\D, whereas the ‘hole’ D is the
cloaked region within which one can place the target object. The cloaking region Ω\D
and the cloaked region D form the cloaking device in the physical space, whereas the
homogeneous background space containing the singular point P is referred to as the
virtual space (see Figure 3). Due to the transformation invariance of the corresponding
wave equations, the acoustic/EM scattering in the physical space with respect to the
cloaking device is the same as that in the virtual space. Heuristically speaking, the
scattering information of the cloaking device is then ‘hidden’ in the singular point P .
In a similar fashion cloaking devices based on blowing up a crack (namely, a curve
in R3) or a screen (namely, a flat surface in R3) were, respectively, considered in [16]
and [34], resulting in the so-called EM wormholes and carpet-cloak respectively.

The blow-up-a-point (respectively, -crack or -screen) construction yields singular
cloaking materials, namely, the material parameters violate the regular conditions.
The singular media present a great challenge for both theoretical analysis and practical
fabrications. In order to tackle the acoustic and electromagnetic wave equations with
singular coefficients underlying the ideal invisibility cloaks, finite energy solutions on
Sobolev spaces with singular weights were introduced and studied in [14, 16, 23, 40].
On the other hand,several regularized constructions have been developed in the liter-
ature in order to avoid the singular structures. In [15, 17, 47], a truncation of sin-
gularities has been introduced. In [26, 27, 35], the blow-up-a-point transformation
in [22, 30, 46] has been regularized to become the ‘blow-up-a-small-region’ trans-
formation. Nevertheless, it is pointed out in [25] that the truncation-of-singularities
construction and the blow-up-a-small-region construction are equivalent to each other.
Instead of ideal/perfect invisibility, one would consider approximate/near invisibility
for a regularized construction; that is, one intends to make the corresponding wave
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scattering effect due to a regularized cloaking device as small as possible depending
on an asymptotically small regularization parameter ρ ∈ R+.

Due to its practical importance, the approximate cloaking has recently been ex-
tensively studied. In [6, 27], approximate cloaking schemes were developed for elec-
trostatics. In [5, 4, 26, 32, 33, 35, 36, 38, 44, 45], various near-cloaking schemes
were presented for scalar waves governed by the Helmholtz equation. In [7, 8, 9, 39],
near-cloaking schemes were developed and investigated for the vector waves governed
by the Maxwell system. Generally speaking, a regularized near-cloak consist of three
layers: the innermost core is the cloaked region, the outermost layer is the cloaking
region, and a compatible lossy layer right between the cloaked and cloaking regions.
In the cloaking layer, the cloaking parameters are obtained by the push-forward con-
struction mentioned earlier. Inside the cloaked region, from a practical viewpoint, one
can place an arbitrary content, which could be both passive and active. The special
lossy layer employed right between the cloaked and cloaking regions has shown to
be necessary [26, 39], since otherwise there exist cloak-busting inclusions which defy
any attempt for cloaking at particular resonant frequencies. In the extreme case when
the lossy parameters go to infinity, the lossy layer become an impenetrable obstacle
layer, and this is the one considered in [5, 4, 7, 35]. In the rest of this paper, we shall
survey these developments and at certain places, we shall also point out challenges for
further investigation. In addition to the present survey, we also refer to the survey pa-
pers [10, 19, 18, 51, 52] and the references therein for discussions of the theoretical
and experimental progress on invisibility cloaking. In this paper we make emphasis
on remote observations via the scattering amplitude or scattering operator. The same
considerations are valid for the “near-field” which corresponds to the Cauchy data
or the Dirichlet-to-Neumann map [49]. In Section 2, we review perfect cloaking for
the case of electrostatics using Cauchy data. In Section 3 we define precisely what
we mean by perfect cloaking for scattering. In Section 4 we review the push-forward
construction. In Section 5 we consider regularized or approximate cloaks for acous-
tics, including the case of partial cloaks. In Section 6 we discuss regularized cloaks in
electromagnetics.

2. Invisibility for electrostatics

We discuss here only perfect cloaking for electrostatics. For similar results for elec-
tromagnetic waves, acoustic waves, quantum waves, etc., see the review papers [16],
[19] and the references given there. The fact that the boundary measurements do not
change, when a conductivity is pushed forward by a smooth diffeomorphism leaving
the boundary fixed can already be considered as a weak form of invisibility. Differ-
ent media appear to be the same, and the apparent location of objects can change.
However, this does not yet constitute real invisibility, as nothing has been hidden
from view. In invisibility cloaking the aim is to hide an object inside a domain by
surrounding it with a material so that even the presence of this object can not be
detected by measurements on the domain’s boundary. This means that all boundary
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measurements for the domain with this cloaked object included would be the same
as if the domain were filled with a homogeneous, isotropic material. Theoretical mod-
els for this have been found by applying diffeomorphisms having singularities. These
were first introduced in the framework of electrostatics, yielding counterexamples to
the anisotropic Calderón problem (see [50] for a review) in the form of singular,
anisotropic conductivities in Rn, n ≥ 3, indistinguishable from a constant isotropic
conductivity in that they have the same Dirichlet-to-Neumann map [21, 22]. The
same construction was rediscovered for electromagnetism in [46], with the intention
of actually building such a device with appropriately designed metamaterials; a mod-
ified version of this was then experimentally demonstrated in [48]. (See also [30] for
a somewhat different approach to cloaking in the high frequency limit.) The first con-
structions in this direction were based on blowing up the metric around a point [28].
In this construction, let (M, g) be a compact 2-dimensional manifold with non-empty
boundary, let x0 ∈M and consider the manifold

M̃ = M \ {x0}

with the metric

g̃ij(x) =
1

dM (x, x0)2
gij(x),

where dM (x, x0) is the distance between x and x0 on (M, g). Then (M̃, g̃) is a complete,
non-compact 2-dimensional Riemannian manifold with the boundary ∂M̃ = ∂M .
Essentially, the point x0 has been “pulled to infinity”. On the manifolds M and M̃ we
consider the boundary value problems{

∆gu = 0 in M ,
u = f on ∂M ,

and


∆
g̃
ũ = 0 in M̃ ,

ũ = f on ∂M̃ ,
ũ ∈ L∞(M̃).

Here ∆g denotes the Laplace-Beltrami operator associated to the metric g. Note that
in dimension n ≥ 3 metrics and conductivities are equivalent. These boundary value
problems are uniquely solvable and define the DN maps

ΛM,gf = ∂νu|∂M , Λ‹M,̃g
f = ∂ν ũ|∂‹M

where ∂ν denotes the corresponding conormal derivatives. Since, in the two dimen-
sional case, functions which are harmonic with respect to the metric g stay harmonic
with respect to any metric which is conformal to g, one can see that ΛM,g = Λ‹M,̃g

.
This can be seen using e.g., Brownian motion or capacity arguments. Thus, the bound-
ary measurements for (M, g) and (M̃, g̃) coincide. This gives a counterexample for the
inverse electrostatic problem on Riemannian surfaces – even the topology of possibly
non-compact Riemannian surfaces can not be determined using boundary measure-
ments (see Fig. 1). The above example can be thought as a “hole” in a Riemann surface
that does not change the boundary measurements. Roughly speaking, mapping the
manifold M̃ smoothly to the setM \BM (x0, ρ), where BM (x0, ρ) is a metric ball ofM ,
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