
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 44

Layer potential approaches to
interface problems

Hyeonbae Kang

edited by

H. Ammari, J. Garnier



Panoramas & Synthèses
44, 2014, p. 63–110

LAYER POTENTIAL APPROACHES
TO INTERFACE PROBLEMS

by

Hyeonbae Kang

Abstract. – We review recent progress on imaging by generalized polarization ten-
sors (GPTs), enhancement of near-cloaking by GPT-vanishing structures, cloaking
by anomalous localized resonance, and analysis of stress concentration. These seem-
ingly unrelated problems are all interface problems, and an integral operator called
the Neumann-Poincaré operator naturally arises from them. We discuss about bound-
edness and invertibility properties, and spectral property of this operator, and then
relate these properties with above mentioned problems.

Résumé. – Nous passons en revue les progrès récents de l’imagerie par tenseurs de
polarisation généralisés (GPTs), la quasi-invisibilité pour des structures à GPTs éva-
nescents, le camouflage (cloaking) par résonance localisée anormale, et l’analyse de
la concentration de contraintes. Ces problèmes apparemment sans rapport sont tous
des problèmes d’interface, et un opérateur intégral appelé opérateur de Neumann-
Poincaré apparaît naturellement dans leur formulation. Nous discutons des bornes,
des propriétés d’inversibilité, et des propriétés spectrales de cet opérateur, et nous
établissons des liens entre ces propriétés et les problèmes mentionnés ci-dessus.

1. Introduction

This paper reviews recent progress on imaging by generalized polarization ten-
sors (GPTs), enhancement of near-cloaking by GPT-vanishing structures, cloaking by
anomalous localized resonance, and analysis of stress concentration. These seemingly
unrelated problems are all interface problems, and an integral operator called the
Neumann-Poincaré operator arises naturally from them. We discuss about bound-
edness and invertibility properties, and spectral property of this operator, and then
relate these properties with above mentioned problems.

2010 Mathematics Subject Classification. – 35J47, 35R30, 35B30.
Key words and phrases. – Inverse problems, conductivity, cloaking.

© Panoramas et Synthèses 44, SMF 2014



64 HYEONBAE KANG

2. Neumann-Poincaré operator

We begin our investigation by looking into the classical Neumann boundary value
problem. Let Ω be a bounded domain in Rd (smoothness of the boundary ∂Ω will be
specified later) and consider for a given Neumann data g the boundary value problem

(1)

 ∆u = 0 in Ω,

∂u
∂ν = g on ∂Ω.

Here and throughout this paper ν denotes the unit outward normal vector to ∂Ω. We
emphasize that g satisfies

∫
∂Ω
g = 0 for compatibility and the solution u is assumed

to satisfy
∫
∂Ω
u = 0 to guarantee uniqueness of the solution.

A classical way of solving (1) is to use layer potentials. Let Γ(x) be the fundamental
solution to the Laplacian, i.e.,

(2) Γ(x) =


1

2π ln |x| , d = 2 ,

1
(2−d)ωd

|x|2−d , d ≥ 3 ,

where ωd denotes the area of the unit sphere in Rd. The single layer potential S∂Ω[ϕ]

of a density function ϕ ∈ L2(∂Ω) is defined by

(3) S∂Ω[ϕ](x) :=

∫
∂Ω

Γ(x− y)ϕ(y) dσ(y) , x ∈ Rd.

If we set u(x) = S∂Ω[ϕ](x) for some function ϕ, then u is harmonic in Ω. So in order
for u to be the solution to (1), it suffices to choose ϕ so that the boundary condition
is fulfilled.

The single layer potential S∂Ω[ϕ] satisfies the jump relation

(4)
∂

∂ν
S∂Ω[ϕ]

∣∣
±(x) =

Å
±1

2
I + K ∗∂Ω

ã
[ϕ](x), x ∈ ∂Ω ,

where the operator K ∂Ω is defined by

(5) K ∂Ω[ϕ](x) =
1

ωd

∫
∂Ω

〈y − x, νy〉
|x− y|d

ϕ(y) dσ(y) , x ∈ ∂Ω,

and K ∗∂Ω is its L2-adjoint, i.e.,

(6) K ∗∂Ω[ϕ](x) =
1

ωd

∫
∂Ω

〈x− y, νx〉
|x− y|d

ϕ(y) dσ(y) .

Here ± indicates the limits (to ∂Ω) from outside and inside of Ω, respectively. So in
order to fulfill the boundary condition in (1), we need to solve the integral equation

(7)
Å
−1

2
I + K ∗∂Ω

ã
[ϕ] = g on Ω.

The operator K ∂Ω (or K ∗∂Ω) is called the Neumann-Poincaré (NP) operator asso-
ciated with the domain Ω. It is well known (see for example [21, 53, 78]) that if ∂Ω

is smooth ( C1,α for some α > 0), then
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(i) K ∗∂Ω is a compact operator on L2(∂Ω),
(ii) the spectrum of K ∗∂Ω lies in (− 1

2 ,
1
2 ],

(iii) 1
2I + K ∗∂Ω is invertible on L2(∂Ω) and − 1

2I + K ∗∂Ω is invertible on L2
0(∂Ω).

Here, L2
0(∂Ω) is the collection of all L2 functions with the mean zero. If g ∈ L2

0(∂Ω)

(to satisfy the compatibility condition), the solution to (7) is given by

ϕ =

Å
−1

2
I + K ∗∂Ω

ã−1

[g],

and the solution to (1) by

u(x) = S∂Ω

Å
−1

2
I + K ∗∂Ω

ã−1

[g](x), x ∈ Ω.

A few remarks on the above-mentioned properties of K ∗∂Ω are in order. If ∂Ω is
C1,α, then because of orthogonality of the normal vector and the tangential vector,
we have

(8)
|〈x− y, νx〉|
|x− y|d

≤ C

|x− y|d−1−α , x, y ∈ ∂Ω,

which makes K ∗∂Ω compact. Property (iii) can be proved using the Fredholm alterna-
tive. We emphasize that property (ii) holds not only for smooth domains but also for
domains with Lipschitz boundaries. Even if we restrict our investigation here mostly
to the domains with smooth boundaries, it is worth while to review two important re-
sults on the properties of the NP operators associated with Lipschitz domains. If ∂Ω is
Lipschitz, then K ∗∂Ω is a singular integral operator, and L2-boundedness of K ∗∂Ω was
proved by Calderón [44] when the Lipschitz constant of ∂Ω is small, and by Coifman,
McIntosh, and Meyer [50] for the general case. In this regards, it is worth mentioning
T [1] Theorem of David and Journé [52] which states that a singular integral operator
T is bounded on L2 if and only if T [1] is a function of bounded mean oscillation.
Invertibility as stated in (iii) for Lipschitz domains was proved by Verchota [111].

To motivate our discussion on the spectrum of the NP operator, we consider another
problem: a transmission problem. Suppose that an inclusion Ω is immersed in the free
space Rd. Suppose that the conductivity (or the dielectric constant) of Ω is εc and
that of the background is εm (εc 6= εm). So, the distribution of the conductivity is
given by

σΩ = εcχ(Ω) + εmχ(Rd \ Ω),

where χ denotes the indicator function. The problem we consider is

(9)

{
∇ · σΩ∇u = 0 in Rd,
u(x)− h(x) = O(|x|1−d) as |x| → ∞,

for a given harmonic function h in Rd. Note that without the inclusion Ω the solution
to (9) is nothing but u(x) = h(x). In the presence of the inclusion, the solution takes
the form u = h + something, and this something is generated by the discontinuity
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of the conductivity along ∂Ω. It turns out (see for example [21, 76]) that there is a
potential ϕ on ∂Ω such that the solution is given by

(10) u(x) = h(x) + S∂Ω[ϕ](x), x ∈ Rd.

Since u satisfies the transmission conditions, u|− = u|+ (continuity of potential) and
εc
∂u
∂ν |− = εm

∂u
∂ν |+ (continuity of flux), one can see from the jump relation (4) that the

following relation holds:

(11)
Å

εc + εm
2(εc − εm)

I − K ∗∂Ω

ã
[ϕ] =

∂h

∂ν
on ∂Ω.

We emphasize that the problem (9) is elliptic if (and only if) εc and εm are posi-
tive, and in this case the number εc+εm

2(εc−εm) does not belong to [−1/2, 1/2], where the
spectrum of K ∗∂Ω lies. So, as long as we are interested in elliptic problems, there is no
need to look into the spectrum of K ∗∂Ω. The spectrum of the NP operator is a classical
subject of research since Poincaré. See a recent paper [107] and references therein for
a brief history of this. Recently there has been renewed interest in the spectrum of
the NP operator in relation to the plasmonic structures consisting of inclusions with
negative dielectric constants, i.e., with εc < 0 (while εm stays positive). In this case,
εc+εm

2(εc−εm) may lie in the spectrum of K ∗∂Ω. As we will see in the next section, if ∂Ω is
C1,α (so that K ∗∂Ω is compact), then the spectrum of K ∗∂Ω is discrete and accumu-
lating to 0. The number εc

εm
such that εc+εm

2(εc−εm) is an eigenvalue of K ∗∂Ω is called a
plasmonic eigenvalue and the single layer potential of the corresponding eigenfunction
is called a localized plasmon [59].

2.1. Spectrum of the NP operator. – We first emphasize that K ∗∂Ω is not self-adjoint
on the usual L2-space. In fact, it is self-adjoint on L2(∂Ω) only if Ω is a disk or a
ball [91]. However, we may realize K ∗∂Ω as a self-adjoint operator by using a different
inner product.

Let 〈 , 〉 be the usual inner product on L2(∂Ω). It is easy to see that S∂Ω is self-
adjoint on L2(∂Ω), which is nothing but saying Γ(x− y) = Γ(y− x). Let ϕ ∈ L2

0(∂Ω)

and define

(12) u(x) = S∂Ω[ϕ](x), x ∈ Rd.

Then u(x) = O(|x|1−d) as |x| → ∞, and we have∫
Ω

|∇u|2dx =

∫
∂Ω

u
(
− 1

2
ϕ+ K ∗∂Ω[ϕ]

)
dσ,∫

Rd\Ω
|∇u|2dx = −

∫
∂Ω

u
(1

2
ϕ+ K ∗∂Ω[ϕ]

)
dσ.

Summing up these two identities we find

(13)
∫
Rd
|∇u|2dx = −〈ϕ, S∂Ω[ϕ]〉.
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