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Abstract. – We explain Tits’ structure theory for smooth connected unipotent groups
over general fields of positive characteristic (especially imperfect fields). This builds
on earlier work of Rosenlicht [9] and concerns the structure of smooth connected
unipotent groups as well as torus actions on such groups over an arbitrary ground
field of positive characteristic. We use it to establish a general structure theorem for
solvable smooth connected affine k-groups that replaces (and generalizes) the semi-
direct product structure over perfect k.

Résumé (La structure des groupes résolubles sur des corps généraux). – Nous expliquons la
théorie de structure de Tits des groupes algébriques unipotents connexes et lisses sur
un corps général de caractéristique positive (en particulier imparfait). Ceci s’appuie
sur les travaux antérieurs de Rosenlicht [9] concernant la structure des groupes
unipotents lisses et connexes ainsi que des actions de tores sur ces groupes au-
dessus d’un corps de base de caractéristique positive. Nous l’utilisons pour établir
un théorème de structure plus général pour les k--groupes affines résolubles lisses et
connexes qui remplace (et généralise) la structure de produit semi-direct dans le cas
d’un corps parfait k.

Introduction

Consider a smooth connected solvable affine group G over a field k. If k is alge-
braically closed then G = T nRu(G) for any maximal torus T of G [1, 10.6(4)]. Over
more general k, an analogous such semi-direct product structure can fail to exist.

For example, consider an imperfect field k of characteristic p > 0 and a ∈ k − kp,
so k′ := k(a1/p) is a degree-p purely inseparable extension of k. Note that k′s :=

k′ ⊗k ks = ks(a
1/p) is a separable closure of k′, and k′s

p ⊂ ks. The affine Weil
restriction G = Rk′/k(Gm) is an open subscheme of Rk′/k(A1

k′) = Ap
k, so it is a

smooth connected affine k-group of dimension p > 1. Loosely speaking, G is “k′×

viewed as a k-group”. More precisely, for k-algebras R we have G(R) = (k′ ⊗k R)×

functorially in R. (See Exercise U.4 for a treatment of Weil restriction in the affine
case.) The commutative k-group G contains an evident 1-dimensional torus T ' Gm
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corresponding to the subgroup R× ⊂ (k′ ⊗k R)×, and G/T is unipotent because
(G/T )(ks) = (k′s)

×/(ks)
× is p-torsion. In particular, T is the unique maximal torus

ofG. Since the groupG(ks) = k′s
× has no nontrivial p-torsion,G contains no nontrivial

unipotent smooth connected k-subgroup. Thus, G is a commutative counterexample
over k to the analogue of the semi-direct product structure for connected solvable
smooth affine groups over k.

The appearance of imperfect fields in the preceding counterexample is essential.
To explain this, recall Grothendieck’s theorem that over a general field k, if S is
a maximal k-torus in a smooth affine k-group H then Sk is maximal in Hk. (This
theorem is an application of [5, XIV, Thm. 1.1] to the smooth affine k-group ZH(S),
since a “maximal torus” over k in the sense of [5, XII, Def. 1.3] is defined to be a
k-torus that is maximal after scalar extension to k. For another proof, see [3, A.1.2].)
Thus, by the conjugacy of maximal tori in Gk, G = T n U for a k-torus T and a
unipotent smooth connected normal k-subgroup U ⊂ G if and only if the subgroup
Ru(Gk) ⊂ Gk is defined over k (i.e., descends to a k-subgroup of G). In such cases, the
semi-direct product structure holds for G over k using any maximal k-torus T of G
(and U is unique: it must be a k-descent of Ru(Gk)). If k is perfect then by Galois
descent we may always descend Ru(Gk) to a k-subgroup of G. The main challenge is
the case of imperfect k.

The results we shall discuss for unipotent groups were presented by Tits in a course
at Yale University in 1967, and lecture notes [12] for that course were circulated but
never published. Much of the course was concerned with general results on linear
algebraic groups that are available now in many standard references (such as [1], [7],
and [11]). The original account (with proofs) of Tits’ structure theory of unipotent
groups is his unpublished Yale lecture notes, and a summary of the results is given in
[8, Ch. V].

Our exposition in §1–§4 is an improvement of [4, App.B] via simplifications in
some proofs. In some parts we have simply reproduced arguments from Tits’ lecture
notes. The general solvable case is addressed in §5, where we include applications to
general smooth connected affine k-groups. Throughout the discussion below, k is an
arbitrary field with characteristic p > 0.

Acknowledgements. – This work was supported by NSF grants DMS-0917686 and
DMS-1100784. I am grateful to P. Gille and L. Moret-Bailly for suggestions about the
general solvable case, to the referee for several insightful comments, and to O. Gabber
and G. Prasad for many illuminating discussions related to Tits’ work on unipotent
groups.

1. Subgroups of vector groups

The additive group is denoted Ga and the multiplicative group is denoted Gm,
always with the base ring understood from context.
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Definition 1.1. – A vector group over a field k is a smooth commutative k-group V

that admits an isomorphism to Gn
a for some n > 0. The Gm-scaling action arising

from such an isomorphism is a linear structure on V .

Observe that the Gm-action on V arising from a linear structure induces the
canonical k×-action on Lie(V ) (e.g., if char(k) = p > 0 then the composition of
such a Gm-action on V with the p-power map on Gm does not arise from a linear
structure on V when V 6= 0).

Example 1.2. – If W is a finite-dimensional k-vector space then the associated vector
group W represents the functor R  R ⊗k W on k-algebras and its formation
commutes with any extension of the ground field. Explicitly, W = Spec(Sym(W ∗))

and it has a unique linear structure relative to which the natural identification of
groups W (ks) 'Wks carries the linear structure over to the k×s -action on Wks arising
from the ks-vector space structure; call this the canonical linear structure on W . (We
can use k instead of ks in this characterization when k is infinite, as W (k) is Zariski-
dense in W for infinite k.) For finite-dimensional k-vector spaces W and W ′, the
subset Homk(W,W ′) ⊂ Homk-gp(W,W ′) consists of precisely the k-homomorphisms
respecting the canonical linear structures.

When linear structures are specified on a pair of vector groups, a homomorphism
respecting them is called linear. Over a field of characteristic 0 there is a unique
linear structure and all homomorphisms are linear. Over a field with characteristic
p > 0 the linear structure is not unique in dimension larger than 1 (e.g., a.(x, y) :=

(ax + (a − ap)yp, ay) is a linear structure on G2
a, obtained from the usual one via

the non-linear k-group automorphism (x, y) 7→ (x + yp, y) of G2
a). For a finite-

dimensional k-vector space W , a linear subgroup of W is a smooth closed k-subgroup
that is stable under the Gm-action. By computing with ks-points and using Galois
descent, it is straightforward to verify that the linear subgroups of W are precisely
W ′ for k-subspaces W ′ ⊂W .

Definition 1.3. – A smooth connected solvable k-group G is k-split if it admits a
composition series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1

consisting of smooth closed k-subgroups such that Gi+1 is normal in Gi and the
quotient Gi/Gi+1 is k-isomorphic to Ga or Gm for all 0 6 i < n. (Such Gi must be
connected, so each Gi is also a k-split smooth connected solvable k-group.)

In the case of tori this is a widely-used notion, and it satisfies convenient properties,
such as: (i) every subtorus or quotient torus (over k) of a k-split k-torus is k-split,
(ii) every k-torus is an almost direct product of its maximal k-split subtorus and its
maximal k-anisotropic subtorus. However, in contrast with the case of tori, it is not
true for general smooth connected solvable G that the k-split property is inherited by
smooth connected normal k-subgroups:
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Example 1.4 (Rosenlicht). – Assume k is imperfect and choose a ∈ k−kp. The k-group

U := {yp = x− axp}

is a k-subgroup of the k-split G = G2
a and it becomes isomorphic to Ga over k(a1/p)

but there is no non-constant k-morphism f : A1
k → U, let alone a k-group isomor-

phism Ga ' U. Indeed, the regular compactification U of U has a unique point
∞U ∈ U −U, and the regular compactification of Ga is P1

k via x 7→ [x, 1], so any
non-constant map f extends to a (finite) surjective map P1

k → U that must carry
[1, 0] to ∞U, an absurdity since k(∞U) = k(a1/p) 6= k.

Tits introduced an analogue for unipotent k-groups of the notion of anisotropicity
for tori over a field. This rests on a preliminary understanding of the properties of
subgroups of vector groups, so we take up that study now. The main case of interest
to us will be imperfect ground fields, due to the fact that every unipotent smooth
connected group over a perfect field is split (see Exercises U.9(iii)).

Definition 1.5. – A polynomial f ∈ k[x1, . . . , xn] is a p-polynomial if every monomial
appearing in f has the form cijx

pj

i for some cij ∈ k; that is, f =
∑
fi(xi) with

fi(xi) =
∑
j cijx

pj

i ∈ k[xi]. (In particular, fi(0) = 0 for all i. Together with the
identity f =

∑
fi(xi), this uniquely determines each fi in terms of f . Note that

f(0) = 0.)

Proposition 1.6. – A polynomial f ∈ k[x1, . . . , xn] is a p-polynomial if and only if the
associated map of k-schemes Gn

a → Ga is a k-homomorphism.

Proof. – This is elementary and is left to the reader.

A nonzero polynomial over k is separable if its zero scheme in affine space is
generically k-smooth.

Proposition 1.7. – Let f ∈ k[x1, . . . , xn] be a nonzero polynomial such that f(0) = 0.
Then the subscheme f−1(0) ⊂ Gn

a is a smooth k-subgroup if and only if f is a separable
p-polynomial.

Proof. – The “if” direction is clear. For the converse, we assume that f−1(0) is a
smooth k-subgroup and we denote it as G. The smoothness implies that f is separable.
To prove that f is a p-polynomial, by Proposition 1.6 it suffices to prove that the
associated map of k-schemes Gn

a → Ga is a k-homomorphism. Without loss of
generality, we may assume that k is algebraically closed.

For any α ∈ G(k), f(x + α) and f(x) have the same zero scheme (namely, G)
inside Gn

a . Thus, f(x + α) = c(α)f(x) for a unique c(α) ∈ k×. Consideration of a
highest-degree monomial term appearing in f implies that c = 1. Pick β ∈ kn, so
f(β + α) − f(β) = 0 for all α ∈ G(k). Thus f(β + x) − f(β) vanishes on G, so
f(β + x)− f(β) = g(β)f(x) for a unique g(β) ∈ k. Consideration of a highest-degree
monomial term in f forces g(β) = 1.
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