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Abstract. – We study the following phenomenon: some non-split connected semisim-
ple Q-groups G admit flat affine Z-group models G with “everywhere good reduction”
(i.e., GFp is a connected semisimple Fp-group for every prime p). Moreover, consid-
ering such G up to Z-group isomorphism, there can be more than one such G for a
given G. This is seen classically for types B and D by using positive-definite quadratic
lattices.

The study of such Z-groups provides concrete applications of many facets of the
theory of reductive groups over rings (scheme of Borel subgroups, automorphism
scheme, relative non-abelian cohomology, etc.), and it highlights the role of number
theory (class field theory, mass formulas, strong approximation, point-counting over
finite fields, etc.) in analyzing the possibilities. In part, this is an expository account
of [26].

Résumé (Groups réductifs non-déployés sur Z). – Nous étudions le phénomène suivant:
certains Q-groupes G semi-simples connexes non déployés admettent comme modèles
des Z-groupes G affines et plats avec “partout bonne réduction” (c’est à dire, GFp est
un Fp-groupe semi-simple pour chaque premier p). En outre, considérant de tels G

à Z-groupe isomorphisme près, il y a au plus un tel G pour un G donné. Ceci est
vu classiquement pour les types B et D en utilisant des réseaux quadratiques définis
positifs.

L’étude de ces Z-groupes donne lieu à des applications concrètes d’aspects mul-
tiples, de la théorie des groupes réductifs sur des anneaux (schémas de sous-groupes
de Borel, schémas d’automorphismes, cohomologie relative non abélienne, etc.), et
met en évidence le rôle de la théorie des nombres (théorie du corps de classes, for-
mules de masse, approximation forte, comptage de points sur les corps finis, etc.)
dans l’analyse des possibilités. En partie, ceci est un article d’exposition sur [26].

1. Chevalley groups and Z-models

A Chevalley group is a reductive Z-group scheme (i.e., a smooth affine group scheme
G → Spec(Z) with connected reductive fibers) that admits a fiberwise maximal
Z-torus T ⊂ G. For example, the classical groups SLn, GLn, PGLn, Sp2n, and SOn

over Z are all Chevalley groups. (The characteristic-free definition of SOn requires
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some care when n is even; see [14, C.2.10].) Many authors require Chevalley groups
to have semisimple fibers, but this is a matter of convention.

A more traditional viewpoint on Chevalley groups is obtained via the notion of
Z-model of a connected reductive Q-group. In general, if K is the fraction field
of a domain R then an R-model of a connected reductive K-group G is a pair
(G , θ) consisting of a reductive R-group scheme G and an isomorphism of K-groups
θ : GK ' G. The notion of isomorphism between models of G is defined in an evident
manner. (Our notion of “model” is more restrictive than in other circumstances, where
one allows any flat and finitely presented – or perhaps even smooth – affine group
with a specified generic fiber.)

Lemma 1.1. – The generic fiber of any Chevalley group is split.

Proof. – It suffices to show that any Z-torus is necessarily split. By [20, X, 1.2, 5.16]
(or [14, Cor. B.3.6]), the category of tori over a connected normal noetherian scheme S
is anti-equivalent to the category of finite free Z-modules equipped with a continuous
action of π1(S). (When S = Spec(k) for a field k, this recovers the familiar “character
lattice” construction for k-tori.) An S-torus is split when the associated π1(S)-action
is trivial.

For any Dedekind domain A, the connected finite étale covers of Spec(A) corre-
spond to the finite extensions of Dedekind domains A ↪→ A′ with unit discriminant.
Thus, by Minkowski’s theorem that every number field K 6= Q has a ramified prime,
Spec(Z) has no nontrivial connected finite étale covers. Hence, π1(Spec(Z)) = 1, so
all Z-tori are split.

Every Chevalley group G is a Z-model of its split connected reductive generic fiber
over Q, and the Existence and Isomorphisms Theorems over Z provide a converse
that is one of the main theorems of [20]:

Theorem 1.2 (Chevalley, Demazure). – Let R be a domain with fraction field K. Every
split connected reductive K-group G admits an R-model of the form GR for a Cheval-
ley group G over Z, and G is uniquely determined up to Z-group isomorphism.

The existence of G for each G was first proved for K = Q as the main result
in [10], though the language of reductive group schemes over Z was not available
at that time. The approach used by Demazure in [20, XXV] is to abstractly build
a “split” Z-group G whose associated root datum may be specified in advance. The
Isomorphism Theorem for split connected reductive groups over K then ensures that
one gets all suchK-groups as generic fibers of the GR’s by varying over all possibilities
for the root datum. Chevalley groups are the only Z-models in the split case over Q,
so we get a characterization of Chevalley groups without any mention of maximal tori
over rings. More generally:

Proposition 1.3. – If R is a principal ideal domain and G is a split connected reductive
group over K = Frac(R) then any R-model of G is GR for a Chevalley group G

over Z.
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The hypothesis on R is optimal: if R is Dedekind with fraction field K and I

is a nonzero ideal in R whose class in Pic(R) is not a square then SL(R ⊕ I) is a
non-trivial Zariski-form of SL2,R (see [14, Exer. 7.3.10]). We postpone the proof of
Proposition 1.3 until §3, as it requires cohomological notions introduced there.

The preceding discussion is summarized by:

Theorem 1.4. – Passage to the Q-fiber defines a bijection from the set of Z-isomor-
phism classes of Chevalley groups onto the set of isomorphism classes of split con-
nected reductive Q-groups, with each set classified by root data (up to isomorphism).
Moreover, the only Z-models of such Q-groups are those provided by Chevalley groups.

Work of Chevalley ([12], [10]) and Demazure–Grothendieck [20] provides a satisfac-
tory understanding of this remarkable theorem. (For any scheme S 6= ∅, [20, XXII,
1.13] provides a definition of Chevalley S-group avoiding the crutch of the theory
over Z. This involves additional conditions that are automatic for S = Spec(Z).)

Informally, the connected semisimple Q-groups arising as generic fibers of non-
Chevalley semisimple Z-groups are those with “good reduction” at all primes but non-
split over R (see Propositions 3.12 and 4.10). The theory surrounding such Z-groups
was the topic of [26], where the possibilities for the Q-fiber were classified (under an
absolutely simple hypothesis) and some explicit Z-models were given for exceptional
types, generalizing examples arising from quadratic lattices.

Overview. In §2 we discuss special orthogonal groups in the scheme-theoretic
framework, highlighting the base scheme Spec(Z) and some classical examples of
semisimple Z-groups with non-split generic fiber arising from quadratic lattices. In
§3 we discuss general cohomological formalism for working with smooth (or more
generally, fppf) affine groups over rings, extending the more widely-known formalism
over fields as in [45, III].

In §4 we describe the possibilities for the generic fibers of reductive Z-groups, with
an emphasis on the case of semisimple Z-groups whose fibers are absolutely simple
and simply connected, and we show that this case accounts for the rest via direct
products and central isogenies. In §5 we introduce Coxeter’s order in Cayley’s definite
octonion algebra over Q, and we use it in §6 to describe some non-split examples
over Z. In §7 we explain (following [26]) how to use mass formulas to prove in some
cases that the list of Z-models found in §6 for certain Q-groups is exhaustive.

In Appendix A we use the cohomological formalism of semisimple Z-groups to
prove that an indefinite non-degenerate quadratic lattice over Z is determined up to
isomorphism by its signature (in odd rank these are not unimodular lattices), and in
Appendix B we discuss generalities concerning octonion algebras over commutative
rings, with an emphasis on the special case of Dedekind domains. Finally, in Ap-
pendix C we discuss an explicit construction of the simply connected Chevalley group
of type E6.

Justification of the construction of simply connected Chevalley groups over Z of
types F4 and E6 via Jordan algebras (in §6 and Appendix C) uses concrete linear
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algebra and Lie algebra computations over Z via Mathematica code written by Jiu-
Kang Yu (see [51]); for E6 this is only needed with local problems at p = 2, 3.
Reliance on the computer can probably be replaced with theoretical arguments by
justifying the applicability of results in [47, Ch. 14], [36, §6], [2, §5], and [3, §3] to
our circumstances, but it seems less time-consuming to use the computer.

Terminology. A connected semisimple group G over a field k is absolutely simple
if G 6= 1 and Gk has no nontrivial smooth connected proper normal subgroup. This
is equivalent to irreducibility of the root system of Gk. In the literature there is a
plethora of terminology for this concept: absolutely almost simple, absolutely quasi-
simple, etc. (see [26, §1, p. 264]).
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2. Quadratic spaces and quadratic lattices

A quadratic space over a ring R is a pair (M, q) consisting of a locally free R-module
M of finite rank n > 0 equipped with an R-valued quadratic form on M : a map

q : M → R

such that (i) q(cx) = c2q(x) for all x ∈M , c ∈ R and (ii) the symmetric pairing

Bq : M ×M → R

defined by (x, y) 7→ q(x+y)−q(x)−q(y) is R-bilinear. (For our purposes, the quadratic
spaces of most interest will be over fields and Dedekind domains.)

For a quadratic space (M, q) over R such that M admits an R-basis {e1, . . . , en},

(2.1) disc(q) := det(Bq(ei, ej)) ∈ R

changes by (R×)2-scaling when we change the basis. For R = Z, this is a well-
defined element of Z called the discriminant of (M, q). (For general R, the ideal
disc(q) generates in R is independent of {ei} and thus globalizes to a locally principal
ideal of R when M is not assumed to be free. If R = Z then this ideal provides less
information than the discriminant in Z.)

A quadratic lattice is a quadratic space (M, q) over Z such that disc(q) 6= 0. For such
pairs, (MR, qR) is a non-degenerate quadratic space over R and so has a signature
(r, s) with s = n− r.
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