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by

Wilberd van der Kallen

Abstract. – We reprove the main result of our joint work [19], with the base field
replaced by a commutative Noetherian ring k. This has repercussions for the coho-
mology H∗(G, A) of a reductive group scheme G over k, with coefficients in a finitely
generated commutative k-algebra A. For clarity we follow [19] closely.

Résumé (Faisceaux munis de filtration de Grosshans bonne). – Nous généralisons le résultat
principal de [19], en remplaçant le corps de base par un anneau commutatif noethérien
k. Ainsi on obtient de l’information sur la cohomologie H∗(G, A), où G est un schéma
en groupes réductif sur k et A est une k-algèbre de type fini. Nous suivons les grandes
lignes du texte original [19].

1. Introduction

Let k be a Noetherian ring. Consider a flat linear algebraic group scheme G defined
over k. Recall that G has the cohomological finite generation property (CFG) if the
following holds: Let A be a finitely generated commutative k-algebra on which G

acts rationally by k-algebra automorphisms. (So G acts from the right on Spec(A).)
Then the cohomology ring H∗(G,A) is finitely generated as a k-algebra. Here, as in
[12, I.4], we use the cohomology introduced by Hochschild, also known as ‘rational
cohomology’.

This note is part of the project of studying (CFG) for reductiveG. More specifically,
the intent of this note is to generalize the main result of [19] to the case where the
base ring of GLN is our Noetherian ring k. That will allow to enlarge the scope of
several results in [20], [6]. Let us give an example. Let G be a reductive group scheme
over Spec(k) in the sense of SGA3. Recall this means that G is affine and smooth
over Spec(k) with geometric fibers that are connected reductive. Let G act rationally
by k-algebra automorphisms on a finitely generated commutative k-algebra A. We do
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not know (CFG) in this generality, but now we can state at least that the Hm(G,A)

are Noetherian modules over the ring of invariants AG. And if k contains a finite ring
we do indeed know that H∗(G,A) is a finitely generated k-algebra. See Section 10 for
these results and related material.

To formulate the main result, let N ≥ 1 and let G be the affine algebraic group
GLN or SLN over k. We use notations and terminology as in [19], [6]. Recall in
particular that a G-module V module is said to have good Grosshans filtration if the
embedding grV → hull∇(grV ) of Grosshans is an isomorphism [6, Definition 27]. Such
a module is G-acyclic. It does not need to be flat over k. The module V has a good
Grosshans filtration if and only if it satisfies the following cohomological criterion:
Hi(G,V ⊗k ∇(λ)) vanishes for all i > 0 and all dominant weights λ. Over fields this
is the familiar criterion for having a good filtration. Indeed over a field there is no
difference between ‘good filtration’ and ‘good Grosshans filtration’. But modules with
good filtration are required to be free over k and this is not the right requirement in
our present setting. We wish to allow the filtration of V to have an associated graded
that is a direct sum of modules of the form ∇(λ) ⊗k J(λ) with G acting trivially
on J(λ). The J(λ) do not have to be free over k; they even do not have to be flat
over k.

Let A be a finitely generated commutative k-algebra on which G acts rationally
by k-algebra automorphisms. Let M be a Noetherian A-module on which G acts
compatibly. This means that the structure map A ⊗k M → M is a G-module map.
We also say that M is a (Noetherian) AG-module. (Later our convention will be that
any AG-module is Noetherian.)

Our main theorem is

Theorem 1.1. – If A has a good Grosshans filtration, then there is a finite resolution

0→M → N0 → N1 → · · · → Nd → 0

where the Ni are Noetherian AG-modules with good Grosshans filtration.

Corollary 1.2. – The Hi(G,M) are Noetherian AG-modules and they vanish for i� 0.

Proof. – One may compute H∗(G,M) with the resolution N0 → · · ·Nd → 0. So the
result follows from invariant theory [6, Theorem 12, Theorem 9].

Remark 1.3. – It is natural to ask if the same results hold for other Dynkin types.
For the Corollary the answer is yes, because of Theorem 10.5 below. For Theorem 1.1
we do not know how to keep the Ni Noetherian, but otherwise it goes through by [6,
Proposition 28] and Theorem 10.5 below.

We will actually prove a more technical version of the theorem. This is the key
difference with the proof in [19]. Recall that the fundamental weights $1, . . . , $N

are given by $i =
∑i
j=1 εj . Let ρ be their sum and let Str = ∇(rρ). Let U be the

subgroup of unipotent upper triangular matrices.

Proposition 1.4. – If A has a good Grosshans filtration, then
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– Hi(SLN ,M ⊗k k[SLN /U ]) vanishes for i� 0,
– H1(SLN ,M ⊗k Str ⊗k Str ⊗kk[SLN /U ]) vanishes for r � 0.

Define the ‘Grosshans filtration dimension’ of a nonzero M to be the minimum
d for which Hd+1(SLN ,M ⊗k k[SLN /U ]) vanishes. As (Str ⊗k Str)

G = k, we have
a natural map V → V ⊗k Str ⊗k Str for any G-module V . In the theorem one may
start with N0 := M ⊗k Str ⊗k Str. The cokernel of M → N0 will then have a lower
Grosshans filtration dimension. And Grosshans filtration dimension zero implies good
Grosshans filtration [6, Proposition 28].

Remark 1.5. – In Proposition 1.4 it would suffice to tensor once with Str. Our formu-
lation is adapted to the proof of Theorem 1.1.

As in [19] the method of proof of Theorem 1.1 is based on the functorial resolution
[16] of the ideal of the diagonal in Z × Z when Z is a Grassmannian of subspaces
of kN . This is used inductively to study equivariant sheaves on a product X of
such Grassmannians. That leads to a special case of the theorems, with A equal
to the Cox ring of X, multigraded by the Picard group Pic(X), and M compatibly
multigraded. Next one treats cases when on the same A the multigrading is replaced
with a ‘collapsed’ grading with smaller value group and M is only required to be
multigraded compatibly with this new grading. Here the trick is that an associated
graded ofM has a multigrading that is collapsed a little less. The suitably multigraded
Cox rings are then used as in [19] to cover the general case 1.1.

Recall that Section 10 gives some consequences for earlier work.

2. Recollections and conventions

Some unexplained notations, terminology, properties, . . . can be found in [12]. Until
Section 8 the group G is either GLN or SLN . Some things are best told with GLN ,
but the conclusion of Proposition 1.4 refers only to the SLN -module structure.

First let G = GLN , with B+ its subgroup of upper triangular matrices, B− the
opposite Borel subgroup, T = B+∩B− the diagonal subgroup, U = U+ the unipotent
radical ofB+. The roots of U are positive, contrary to the Århus convention followed in
[6]. The character group X(T ) has a basis ε1 . . . , εN with εi(diag(t1, . . . , tN )) = ti. An
element λ =

∑
i λiεi of X(T ) is often denoted (λ1, . . . , λN ). It is called a polynomial

weight if the λi are nonnegative. It is called a dominant weight if λ1 ≥ · · · ≥ λN . It
is called anti-dominant if λ1 ≤ · · · ≤ λN . The fundamental weights $1, . . . , $N are
given by $i =

∑i
j=1 εj . If λ ∈ X(T ) is dominant, then indGB−(λ) is the dual Weyl

module or costandard module ∇G(λ), or simply ∇(λ), with highest weight λ. The
Grosshans height of λ is ht(λ) =

∑
i(N − 2i + 1)λi. It extends to a homomorphism

ht : X(T ) ⊗ Q → Q. The determinant representation has weight $N and one has
ht($N ) = 0. Each positive root β has ht(β) > 0. If λ is a dominant polynomial weight,
then ∇G(λ) is called a Schur module. If α is a partition with at most N parts then we
may view it as a dominant polynomial weight and the Schur functor Sα maps∇G($1)
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to ∇G(α). (This is the convention followed in [16]. In [1] the same Schur functor is
labeled with the conjugate partition α̃.) The formula ∇(λ) = indGB−(λ) just means
that ∇(λ) is obtained from the Borel-Weil construction: ∇(λ) equals H0(G/B−, Lλ)

for a certain line bundle Lλ on the flag variety G/B−.
Now consider the case G = SLN . There are similar conventions for SLN -modules.

For instance, the costandard modules for SLN are the restrictions of those for GLN .
The Grosshans height on X(T ) induces one on X(T ∩ SLN ) ⊗ Q. The multicone
k[SLN /U ] consists of the f in the coordinate ring k[SLN ] that satisfy f(xu) = f(x)

for u ∈ U . As an SLN -module it is the direct sum of all costandard modules. It
is also a finitely generated algebra [15], [8], [6, Lemma 23]. Note that k[SLN /U ] is
SLN -equivariantly isomorphic to k[SLN /U

−], so that here it does not matter whether
one follows the Århus convention or not.

Definition 2.1. – A good filtration of a G-module V is a filtration 0 = V≤−1 ⊆ V≤0 ⊆
V≤1 ⊆ · · · by G-submodules V≤i with V =

⋃
i V≤i, so that its associated graded grV

is a direct sum of costandard modules.
A Schur filtration of a polynomial GLN -module V is a filtration 0 = V≤−1 ⊆

V≤0 ⊆ V≤1 ⊆ · · · by GLN -submodules with V =
⋃
i V≤i, so that its associated

graded grV is a direct sum of Schur modules. The Grosshans filtration of V is the
filtration with V≤i the largest G-submodule of V whose weights λ all satisfy ht(λ) ≤ i.
Good filtrations and Grosshans filtrations for SLN -modules are defined similarly. The
literature contains more restrictive definitions of good/Schur filtrations. Ours are
the right ones when dealing with representations that need not be finitely generated
over k.

Let M be a G-module provided with the Grosshans filtration. Recall from [6]
that M has good Grosshans filtration if the embedding of grM into hull∇(grM) =

indGB−M
U is an isomorphism. Then grM is a direct sum of modules of the form

∇(λ)⊗k J(λ) with G acting trivially on J(λ). The J(λ) need not be flat. If they are
all free then we are back at the case of a good filtration.

A G-module M has good Grosshans filtration if and only if H1(SLN ,M ⊗k

k[SLN /U ]) vanishes [6, Proposition 28]. And H1(SLN ,M ⊗k k[SLN /U ]) vanishes
if and only if H1(SLN ,M ⊗k V ) vanishes for every module V with good filtration.
A module with good filtration has good Grosshans filtration and is flat as a k-mod-
ule. The tensor product of two modules with good filtration has good filtration [12,
Lemma B.9, II Proposition 4.21]. The tensor product of a module with good filtration
and one with good Grosshans filtration thus has good Grosshans filtration. If M is
a G-module, then M ⊗ k[G] has a good Grosshans filtration by [12, I Lemma 4.7a].
This may be used in dimension shift arguments. If Hi(SLN ,M ⊗k k[SLN /U ]) van-
ishes, then so does Hi+1(SLN ,M⊗kk[SLN /U ]). This follows from [6, Proposition 28]
and dimension shift. The following Lemma is also proved by dimension shift.

Lemma 2.2. – If M has finite Grosshans filtration dimension d and V has good filtra-
tion, then M ⊗ V has finite Grosshans filtration dimension ≤ d.
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