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Abstract. – In the paper [2], Borel and De Siebenthal study the structure of subgroups
of maximal rank of compact Lie groups. In this note, we show how the methods of [6]
allow an extension of their results to reductive group schemes over general bases. We
discuss in particular the exceptional subgroups that occur in characteristics 2 and 3.

Résumé (Sous-groupes de groupes réductifs de rang maximal). – Dans l’article [2], Borel et
De Siebenthal étudient la structure des sous-groupes de rang maximal des groupes
de Lie compacts. Dans cette note, nous montrons comment les méthodes de [6] per-
mettent d’étendre leurs résultats aux schémas en groupes réductifs sur une base gé-
nerale. Nous discutons en particulier les sous-groupes exceptionnels qui apparaissent
en charactéristiques 2 et 3.

All the references of the form Exp. are to [6] (in the new edition).

Introduction

In Les sous-groupes fermés des groupes de Lie clos [2], Borel and De Siebenthal
prove the following

Theorem 0.1 ([2], Théorème 5). – Let G be a compact Lie group, H a closed connected
subgroup of G.
Assume that H has maximal rank, i.e., that it contains a maximal (compact) torus
of G. Then

H = CentrG(Centr(H))◦.

2010 Mathematics Subject Classification. – 14L15, 14L30.
Key words and phrases. – Reductive group schemes, root systems.

© Panoramas et Synthèses 47, SMF 2015



148 SIMON PEPIN LEHALLEUR

In particular, H is determined by its center. The discreteness of groups of auto-
morphisms of tori implies that one can replace the centralizer by the normalizer in
this equality.

Let S be a base scheme, and G a reductive S-group scheme. We make the following
definition (which is the special case of Exp. XXII, Définition 5.2.1 with G reductive):

Definition 0.2. – A sub-S-group scheme H of G is a subgroup of maximal rank if:
(i) H is smooth of finite presentation with connected fibers.
(ii) For all s̄→ S geometric point of S, Hs̄ contains a maximal torus of Gs̄.

From Exp. XII Théorème 1.7 b) and the fact that the reductive rank of H is locally
constant (because it is equal to the one of G) we know that H admits maximal tori
locally for the étale topology, and such maximal tori are also maximal tori of G. Hence
G and H share a maximal torus locally for the étale topology.

Note that we did not suppose H closed. This is the case when H is reductive (as
any reductive subgroup of a separated group scheme of finite presentation is closed,
see [4], Theorem 5.3.5). We will give a proof that H is closed in general, see the end
of Section 3.

Examples of subgroups of maximal rank in reductive S-groups include maximal
tori, Borel subgroups, more general parabolic subgroups and their Levi subgroups.
The more interesting cases of the Borel-De Siebenthal theorem are the semi-simple
subgroups of maximal rank. In classical groups, those are well known: a typical
example in type Dn is, for (V, q) a quadratic space of even dimension 2n and W

a non-degenerate subspace of even dimension 2k, the closed immersion SO(W ) ×
SO(W⊥) ↪→ SO(V ) (Notice that rank(SOn) = bn2 c for all n ≥ 2, so that the
rank of SO(W ) × SO(W bot) is equal to the rank of SO(V ) if and only if W is odd
dimensional). So the main interest of the theorem lies in exceptional groups.

One can derive from Theorem 0.1 and consideration on Cartan involutions in
reductive algebraic groups over C the following

Proposition 0.3. – Let G be an reductive algebraic group over an algebraically closed
field of characteristic zero. Let H be a reductive subgroup of G of maximal rank. Then:

H = CentrG(Centr(H))◦.

We do not detail the argument since we will prove a generalization of this result
later.

Let us call H a (reductive) subsystem subgroup if it satisfies the conclusion of
the previous proposition. Our primary goal is to characterize those subgroups. It
turns out there are reductive subgroups of maximal rank which are not subsystem
subgroups and which provide counterexamples to the direct generalization of the
previous proposition: more precisely, there are exotic counterexamples over fields of
characteristic 2 and 3 (and more generally bases where 2 or 3 are locally 0) for each
non simply-laced type. See 2.2 and 3.1 for a precise statement.

Let us now describe the contents of this article.
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In Section 1 and 2, we study the Lie algebras of subgroups of maximal rank and
relate them to certain subsets of root systems.

In Section 3, we prove (following closely a method of Demazure) that in the split
case (with both G and H split), the subsystem subgroups (resp. the exotic subgroups)
do exist in the Chevalley groups over Spec(Z) (resp. Spec(F2) and Spec(F3)).

In Section 4, we explain how to describe subgroups of maximal rank in general
reductive group schemes in terms of those in semi-simple simply connected group
schemes with absolutely simple fibers.

In Section 5, we explain how certain exotic subgroups can be related to the sub-
system case by very special isogenies in characteristics 2 and 3.

In Section 6, we extend the Borel-De Siebenthal algorithm to subsystem subgroups
in arbitrary charateristics. The original paper [2] uses Theorem 0.1 to deduce a clas-
sification algorithm for the subgroups of maximal rank. Indeed, the theorem implies
that the maximal (closed connected) subgroups of maximal rank are centralizers of
elements of finite order. Conjugacy classes of these were classified by Cartan leading
to a type by type description in terms of extended Dynkin diagrams. The general
subgroup of maximal rank is then obtained recursively. To extend this to arbitrary
characteristics, the key idea, due to Serre [14], is that the correct analogue of an
element of finite order is a closed immersion of µn into G. With this notion, many
standard results on centralizers of semi-simple elements extend without restrictions
on the characteristics.

The appendix consists of a list of the irreducible extended Dynkin diagrams with
some additional data relevant to the results in Section 6.

We do not consider here the applications of the Borel-De Siebenthal theorem. Let
us just give references to a sample of these for the curious reader. A reformulation
of the theorem in terms of reductive Lie groups allows one to classify the so-called
equirank semi-simple Lie groups (those which share a maximal compact torus with
their maximal compact subgroups), which play a fondamental role in harmonic anal-
ysis on symmetric spaces and in Harish Chandra’s approach to representation theory:
see [13], [15]. The subgroups of maximal rank (including the exotic ones) play a small
role in the classification of all maximal subgroups of positive dimension of simple
groups over algebraically closed fields in arbitrary characteristic, which was recently
completed by Liebeck and Seitz: see [12] and the references there. Finally, the subsys-
tem subgroups have been used to study the Galois cohomology of exceptional groups:
see [7], [8].

Part of what we present could be done for subgroups of maximal rank in S-groups
of type (RR), as in Exp. XXII. We stick to the reductive case for simplicity.

Acknowledgements. – I wish to thank Philippe Gille for asking me to review [2] in the
light of SGA3 and for many discussions around the subject. During the conference,
I have greatly benefited from discussions with Olivier Benoist, Brian Conrad, Cyril
Demarche, Patrick Polo and Gopal Prasad.
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1. Lie algebras of subgroups of maximal rank

Let H be a subgroup of maximal rank of a reductive S-group G. Let us assume
that there exists a split maximal torus T ⊂ H ⊂ G, that G is split over S, and let us
choose a splitting G = (G,T,M,R)/S (cf. Exp. XXII, Définition 1.13). This applies
étale-locally on S, or after base change to a geometric point. Then h = Lie(H) is
a T -invariant (hence locally a direct factor) sub-bundle of g = Lie(G), containing
g0 = Lie(T ), and thus takes the form

(1) h = g0 ⊕
⊕
α∈R′

gα

where R′ is a Zariski locally constant subset of R. When H is itself reductive, it
is clear from this equality that Zariski locally on S, (H,T,M,R′) is a splitting
of H. This certainly implies that R′ is symmetric, i.e., R′ = −R′. In Exp. XXII,
Proposition 5.10.1, it is proved conversely that if R′ is symmetric, H is reductive.

It can happen thatH is not determined by its Lie algebra. For example, all maximal
tori in SL2 over a field of characteristic 2 have the same Lie algebra. We will see
however in the proof of the main theorem in Section 3 that in most cases (in particular
if 2 is everywhere non zero on S or if G is adjoint) one can reconstruct H from its
Lie algebra.

Assume for the rest of this Section that H is reductive. By Exp. XXII, Corollaire
4.17, Centr(H) is representable by a closed subgroup of H of multiplicative type (it is
also the reductive center of H, i.e., the “intersection of its maximal tori”). By Exp. XI,
Corollaire 5.3, the centralizer of the subgroup of multiplicative type Centr(H) in G
is representable by a closed smooth sub-S-group CentrG(Centr(H)) of G. Finally,
by Exp. VIB , Corollaire 4.4, the collection of connected components of the fibers of
this smooth subgroup is represented by a smooth sub-S-group with connected fibers
CentrG(Centr(H))◦. Hence the right-hand side of the Borel-De Siebenthal theorem is
well defined in our context. It certainly contains H (using the connexity of H), and
the question is whether there is equality.

Proposition 1.1. – Let G,H be as above. The two following conditions are equivalent:

1. H = CentrG(Centr(H))◦.
2. For all s̄ → S geometric point and for a maximal torus T ⊂ Hs̄, write the

decomposition (1). Then R′ = ZR′ ∩R ⊂M .

Proof. – We have to test whether the map i : H ⊂ CentrG(Centr(H))◦ between
smooth S-groups is an isomorphism. By the fibral criterion of isomorphism ([9] IV4,
17.9.5 or [4] Lemma B.3.1) and fppf descent, this can be tested on geometric fibers
of S. We can thus assume that there is a maximal split torus T inside H and fix
splittings G = (G,T,M,R) and H = (H,T,M,R′) as above. Since we are over a field,
i is automatically closed, and we are reduced to check whether it is an open immersion,
or equivalently (since i is a monomorphism) that i is étale. By homogeneity, it is
enough to check this at the neutral element, i.e., to check that Lie(i) is an isomorphism.
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