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Abstract. – In this note, we present the theorem of extension of birational group laws
in both settings of classical varieties (Weil) and schemes (Artin). We improve slightly
the original proof and result with a more direct construction of the group extension, a
discussion of its separation properties, and the systematic use of algebraic spaces. We
also explain the important application to the construction of Néron models of abelian
varieties. This note grew out of lectures given by Ariane Mézard and the second author
at the Summer School “Schémas en groupes” held in the CIRM (Luminy) from 29
August to 9 September, 2011.

Résumé (Schémas de groupes obtenus à partir de lois de groupe birationnelles, modèles de Néron)
Dans cette note, nous présentons le théorème d’extension d’une loi de groupe

birationnelle en un groupe algébrique, dans le cadre des variétés algébriques classiques
(Weil) et des schémas (Artin). Nous améliorons légèrement le résultat original et
sa preuve en donnant une construction plus directe du groupe, en apportant des
compléments sur ses propriétés de séparation, et en utilisant systématiquement les
espaces algébriques. Nous expliquons aussi l’application importante à la construction
des modèles de Néron des variétés abéliennes. Cette note est issue des cours donnés
par Ariane Mézard et le second auteur à l’École d’été « Schémas en groupes » qui
s’est tenue au CIRM (Luminy) du 29 août au 9 septembre 2011.

1. Introduction

This paper is devoted to an exposition of the generalization to group schemes of
Weil’s theorem in [19] on the construction of a group from a birational group law,
as can be found in Artin’s Exposé XVIII in SGA3 [2]. In addition, we show how this
theorem is used by Néron in order to produce canonical smooth models (the famous
Néron models) of abelian varieties.

The content of Weil’s theorem is to extend a given “birational group law” on a
scheme X to an actual multiplication on a group scheme G birational to X. The
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original motivation of Weil was the algebraic construction of the Jacobian varieties
of curves [18]. This construction was extended by Rosenlicht to generalized Jaco-
bians [15]. Weil’s ideas were later used by Demazure in his thesis in order to show the
existence of split reductive groups over the ring Z of integers [6] and then by Néron
in order to study minimal models of abelian varieties [10]. To our knowledge, these
are the three main applications of the extension theorem.

The construction of split reductive groups by Demazure uses a version of Weil’s
theorem written by Artin, valid for flat (maybe non-smooth) finitely presented group
schemes. There, the set-theoretic arguments of Weil are replaced by sheaf-theoretic
arguments. The main point then is to show that Weil’s procedure gives a sheaf which is
representable; since this sheaf is defined as a quotient by an fppf equivalence relation,
the natural sense in which it is representable is as an algebraic space (i.e., a quotient
of an étale equivalence relation of schemes, see 3.17). However, at the time when Artin
figured out his adaptation of Weil’s result, he had not yet discovered algebraic spaces.
Thus he had to resort at times to ad hoc statements; for example, his main statement
(Theorem 3.7 of [2]) is a bit unsatisfying. Nowadays it is more natural to use the
language of algebraic spaces, and this is what we shall do. As an aside, it is clear that
one may as well start from a birational group law on an algebraic space, but we do
not develop this idea.

Another feature of Artin’s proof is that he constructs G let us say “in the void”, and
that needs a lot of verifications that moreover are not so structured. We give a more
structured proof of Theorem 3.7 of [2]. The idea is to construct the group space G as
a subfunctor of the S-functor in groups R that sends T to the group of T -birational
maps from XT to itself, as in Section 5.2 of Bosch-Lütkebohmert-Raynaud [4]. We
push the construction of [4] a bit further: we show that R is a sheaf and we define
G to be the subsheaf of groups generated by the image of X under a morphism that
sends a in X(T ) to the rational left-translation by a on XT .

One technical detail is that whereas Artin requiresX to be of finite presentation, we
allow it to be only locally so (that is, maybe not quasi-compact and quasi-separated).
This turns out to need no modification of our proofs, and may be interesting for
instance for the treatment of Néron models of semi-abelian varieties, since these fail
to be of finite type.

A significant difference between [2] and Section 5.2 of [4] is that [4] treats descent
only in Chapter 6, after the construction of groups from birational ones. So, Chapter 5
of [4] is more geometric and less sheaf-theoretic than [2]. It is a good thing to compare
the two accounts. Here are some considerations.

1. In [2], S is arbitrary, and X/S is faithfully flat and of finite presentation, with
separated fibres without embedded components. The conclusion is that G/S is
an algebraic space.

2. In Theorem 5.1/5 of [4], the scheme S is the spectrum of a field or of a discrete
valuation ring, andX/S is separated, smooth and quasi-compact, and surjective.
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3. In Theorem 6.1/1 of [4], S is arbitrary, X/S is smooth, separated, quasi-
compact. The conclusion is that G/S is a scheme. For the proof of this theorem,
whose main ideas come from Raynaud [12], Theorem 3.7 of [2] is admitted, al-
though it is also said that if S is normal, then it can be obtained as in Chapter 5
of [4].

4. In [2] the birational group law is “strict”. Proposition 5.2/2 of [4] and [19] reduce,
under certain conditions, the case of a birational group law to a strict one.

Let us now briefly describe what we say on the application to Néron models. While
Néron’s original paper was written in the old language of Weil’s Foundations and
quite hard to read, the book [4] is a modern treatment that provides all details and
more on this topic. It is however quite demanding for someone who wishes to have a
quick overview of the construction. In this text, we tried to show to the reader that
it is in fact quite simple to see not only the skeleton but also almost all the flesh of
the complete construction. Thus we bring out the main ideas of Néron to produce a
model of the abelian variety one started with, endowed with a strict birational group
law. Then Weil’s extension theorem finishes the job. The few things that we do not
prove are:

1. the decreasing of Néron’s measure for the defect of smoothness under blow-up
of suitable singular strata (Lemma 5.5),

2. the theorem of Weil on the extension of morphisms from smooth schemes to
smooth separated group schemes (proof of Proposition 6.4).

In both cases, using these results as black boxes does not interrupt the main line of
the proof, and moreover there was nothing we could add to the proofs of these facts
in [4].

The exposition of Weil’s theorem occupies Sections 2 and 3 of the paper, while the
application to Néron models occupies Sections 4 to 6.

2. A case treated by André Weil

Let k be an algebraically closed field. An algebraic variety over k will mean a
k-scheme that is locally of finite type, separated, and reduced. For such an X, we
denote X(k) by X itself, that is, we forget about the non-closed points. A subvariety
of X is said to be dense if it is topologically dense.

Let, in this paragraph, G be an algebraic variety over k with an algebraic group
structure. Then the graph of the multiplication map from G × G to G is a closed
subvariety Γ of G×G×G; it is the set of (a, b, c) in G×G×G such that c = ab. For
every i and j in {1, 2, 3} with i < j the projection pri,j : Γ→ G×G is an isomorphism,
hence Γ is the graph of a morphism fi,j := prk ◦ pr−1

i,j , where {i, j, k} = {1, 2, 3},
from G × G to G. We have f1,2(a, b) = ab, f1,3(a, c) = a−1c and f2,3(b, c) = cb−1.
For X a dense open subvariety of G and W a dense open subvariety of Γ contained
in X × X × X, the pair (X,W ) is a strict birational group law as in the following
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definition. Theorem 2.11 shows in fact that each strict birational group law is in fact
obtained in this way.

Definition 2.1. – Let X be an algebraic variety over k, not empty. A strict birational
group law on X is a subvariety (locally closed, by definition) W of X ×X ×X, that
satisfies the following conditions.

1. For every i and j in {1, 2, 3} with i < j the projection pri,j : W → X × X is
an open immersion whose image, denoted Ui,j , is dense in X × X. For each
such (i, j), we let fi,j : Ui,j → X be the morphism such that W is its graph. For
every such (i, j) and for every x = (x1, x2, x3) in X3 the condition x ∈ W is
equivalent to: (xi, xj) ∈ Ui,j and xk = fi,j(xi, xj), with {i, j, k} = {1, 2, 3}. We
denote the morphism f1,2 : U1,2 → X by (a, b) 7→ ab. Hence, for (a, b, c) in X3

we have (a, b, c) ∈W if and only if (a, b) ∈ U1,2 and c = ab.
2. For every a in X, and for every i and j in {1, 2, 3} with i < j the inverse images

of Ui,j under the morphisms (a, idX) and (idX , a) : X → X ×X are dense in X
(in other words, Ui,j ∩ ({a} × X) is dense in {a} × X and Ui,j ∩ (X × {a}) is
dense in X × {a}).

3. For all (a, b, c) ∈ X3 such that (a, b), (b, c), (ab, c) and (a, bc) are in U1,2, we
have a(bc) = (ab)c.

From now on, X is an algebraic variety over k with a strict rational group law W .
The idea in what follows is that we can letX act on itself by left and right translations,
which are rational maps. Left translations commute with right translations, and the
group we want to construct can be obtained as the group of birational maps from X

to X that is generated by the left translations, or, equivalently, the group of birational
maps from X to X that commute with the right translations.

Definition 2.2. – We let R be the set of birational maps from X to itself, that is,
the set of equivalence classes of (U, f, V ), where U and V are open and dense in X
and f : U → V is an isomorphism, where (U, f, V ) is equivalent to (U ′, f ′, V ′) if and
only if f and f ′ are equal on U ∩ U ′ (note that X is separated, this is needed for
transitivity of the relation). For each element g of R there is a maximal dense open
subset Dom(g) of X on which it is a morphism.

Remark 2.3. – The elements of R can be composed, they have inverses, and so
R is a group. For (U, f, V ) as above, let g be f−1 : V → U , then f and g

induce inverse morphisms between f−1 Dom(g) and g−1 Dom(f), and therefore
(f−1 Dom(g), f, g−1 Dom(f)) is a maximal representative of the equivalence class
of (U, f, V ) (see the proof of Lemma 3.6 for details).

Lemma 2.4. – For a in X, let Ua := (a, idX)−1U1,2 and Va := (a, idX)−1U1,3. Then
Ua and Va are open and dense in X, and f1,2 ◦ (a, idX) : Ua → X, x 7→ ax, and
f1,3 ◦ (a, idX) : Va → X induce inverse morphisms between Ua and Va.
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