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ON THE MONGE-AMPÈRE EQUATION

by Alessio FIGALLI

1. INTRODUCTION

The Monge-Ampère equation is a nonlinear partial differential equation arising
in several problems from analysis and geometry, such as the prescribed Gaussian
curvature equation, affine geometry, optimal transportation, etc.

In its classical form, this equation is given by

(1) detD2u = f(x, u,∇u) in Ω,

where Ω ⊂ Rn is some open set, u : Ω → R is a convex function, and the function
f : Ω× R× Rn → R+ is given. In other words, the Monge-Ampère equation prescribes
the product of the eigenvalues of the Hessian of u, in contrast with the “model” elliptic
equation ∆u = f which prescribes their sum. As we shall explain later, the convexity
of the solution u is a necessary condition to make the equation degenerate elliptic,
and therefore to hope for regularity results.

The goal of this note is to give first a general overview of the classical theory, and
then discuss some recent important developments on this beautiful topic. For our
presentation of the classical theory, we follow the survey paper [25].

2. HISTORICAL BACKGROUND

The Monge-Ampère equation draws its name from its initial formulation in two
dimensions by the French mathematicians Monge [53] and Ampère [9].

The first notable results on the existence and regularity for the Monge-Ampère
equation are due to Minkowski [51, 52]: by approximating a general bounded con-
vex set with convex polyhedra with given faces areas, he proved the existence of a
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weak solution to the “prescribed Gaussian curvature equation” (now called “Minkowski
problem”). Later on, using convex polyhedra with given generalized curvatures at the
vertices, Alexandrov also proved the existence of a weak solution in all dimensions,
as well as the C1 smoothness of solutions in two dimensions [4, 5, 6].

In higher dimension, based on his earlier works, Alexandrov [2] (and also Bakelman
[10] in two dimensions) introduced a notion of generalized solution to the Monge-
Ampère equation and proved the existence and uniqueness of solutions to the Dirichlet
problem (see Section 3.2). The notion of weak solutions introduced by Alexandrov
(now called “Alexandrov solutions”) has continued to be frequently used in recent
years, and a lot of attention has been drawn to prove smoothness of Alexandrov
solutions under suitable assumptions on the right hand side and the boundary data.

The regularity of weak solutions in high dimensions is a very delicate problem.
For n ≥ 3, Pogorelov found a convex function in Rn which is not of class C2 but
satisfies the Monge-Ampère equation in a neighborhood of the origin with positive
analytic right hand side (see (15) below). It became soon clear that the main issue
in the lack of regularity was the presence of a line segment in the graph of u. Indeed,
Calabi [20] and Pogorelov [58] were able to prove a priori interior second and third
derivative estimate for strictly convex solutions, or for solutions which do not contain
a line segment with both endpoints on the boundary. However, in order to perform the
computations needed to deduce these a priori estimates, C4 regularity of the solution
had to be assumed. Hence, a natural way to prove existence of smooth solutions was to
approximate the Dirichlet problem with nicer problems for which C4 solutions exist,
apply Pogorelov and Calabi’s estimates to get C2/C3 a priori bounds, and then take
the limit in the approximating problems. This argument was successfully implemented
by Cheng and Yau [21] and Lions [48] to obtain the interior smoothness of solutions.

Concerning boundary regularity, thanks to the regularity theory developed by
Ivochkina [40], Krylov [45], and Caffarelli-Nirenberg-Spruck [19], one may use the
continuity method and Evans-Krylov’s estimates [29, 44] to obtain globally smooth
solutions to the Dirichlet problem (see Section 3.3). In particular, Alexandrov solu-
tions are smooth up to the boundary provided all given data are smooth.

In all the situations mentioned above, one assumes that f is positive and sufficiently
smooth. When f is merely bounded away from zero and infinity, Caffarelli proved the
C1,α regularity of strictly convex solutions [14]. Furthermore, when f is continuous
(resp. C0,α), using perturbation arguments Caffarelli proved interior W 2,p estimate
for any p > 1 (resp. interior C2,α estimates) [12].

As explained in Section 3.5, these results can be applied to obtain both the regular-
ity in the Minkowski problem and in the optimal transportation problem. Of course,
these are just some examples of possible applications of the regularity theory for
Monge-Ampère. For instance, as described in the survey paper [65, Sections 5 and 6],
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Monge-Ampère equations play a crucial role in affine geometry, for example in the
study of affine spheres and affine maximal surfaces.

3. CLASSICAL THEORY

In this section we give a brief overview of some relevant results on the Monge-
Ampère equation. Before entering into the concept of weak solutions and their regular-
ity, we first discuss convexity of solutions and the terminology “degenerate ellipticity”
associated to this equation.

3.1. On the degenerate ellipticity of the Monge-Ampère equation

Let u : Ω → R be a smooth solution of (1) with f = f(x) > 0 smooth. A
standard technique to prove regularity of solutions to nonlinear PDEs consists in
differentiating the equation solved by u to obtain a linear second-order equation for
its first derivatives. More precisely, let us fix a direction e ∈ Sn−1 and differentiate (1)
in the direction e. Then, using the formula

d

dε

∣∣∣
ε=0

det(A+ εB) = det(A) tr(A−1B) ∀A,B ∈ Rn×n with A invertible,

we obtain the equation

(2) det(D2u)uij∂ijue = fe in Ω.

Here uij denotes the inverse matrix of uij := (D2u)ij , lower indices denotes par-
tial derivatives (thus ue := ∂eu), and we are summing over repeated indices. Since
detD2u = f > 0, the above equation can be rewritten as

(3) aij∂ijue =
fe
f

in Ω, where aij := uij .

Thus, to obtain some regularity estimates on ue, we would like the matrix aij to be
positive definite in order to apply elliptic regularity theory for linear equations. But
for the matrix aij = uij to be positive definite we need D2u to be positive definite,
which is exactly the convexity assumption on u. (1)

We also observe that, without any a priori bound on D2u, the matrix aij may have
arbitrarily small eigenvalues and this is why one says that (1) is “degenerate elliptic”.

(1) Of course the theory would be similar if one assumes u to be concave. The real difference arises
if the Hessian of u is indefinite, since (3) becomes hyperbolic (and the equation is then called
“hyperbolic Monge-Ampère”). This is still a very interesting problem, but the theory for such equation
is completely different from the one of the classical Monge-Ampère equation and it would go beyond
the scope of this note.
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Notice that if one can show that

(4) c0Id ≤ D2u ≤ C0Id inside Ω

for some positive constants c0, C0 > 0, then C−1
0 Id ≤ (aij)1≤i,j≤n ≤ c−1

0 Id and the
linearized Equation (3) becomes uniformly elliptic. For this reason, proving (4) is one
of the key steps for the regularity of solutions to (1).

In this regard we observe that, under the assumption f(x) ≥ λ > 0, the product of
the eigenvalues of D2u (which are positive) is bounded from below. Thus, if one can
prove that |D2u| ≤ C, one easily concludes that (4) holds (see [32, Remark 1.1] for
more details).

In conclusion, the key step towards the smoothness of solutions consists in proving
that D2u is bounded.

3.2. Alexandrov solutions

In his study of the Minkowski problem, Alexandrov introduced a notion of weak
solution to the Monge-Ampère equation that allowed him to give a meaning to the
Gaussian curvature of non-smooth convex sets. We now introduce this fundamental
concept.

Given an open convex domain Ω, the subdifferential of a convex function u : Ω→ R
is given by

∂u(x) := {p ∈ Rn : u(y) ≥ u(x) + p · (y − x) ∀ y ∈ Ω}.

One then defines the Monge-Ampère measure of u as follows:

µu(E) := |∂u(E)| for every Borel set E ⊂ Ω,

where

∂u(E) :=
⋃
x∈E

∂u(x)

and | · | denotes the Lebesgue measure. It is possible to show that µu is a Borel
measure (see [32, Theorem 2.3]). Note that, in the case u ∈ C2(Ω), the change of
variable formula gives

|∂u(E)| = |∇u(E)| =
∫
E

detD2u(x) dx for every Borel set E ⊂ Ω,

therefore

µu = detD2u(x) dx

(see [32, Example 2.2]).
This discussion motivates the following definition:
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Definition 3.1 (Alexandrov solutions). — Given an open convex set Ω and a func-
tion f : Ω × R × Rn → R+, a convex function u : Ω → R is called an Alexandrov
solution to the Monge-Ampère equation

detD2u = f(x, u,∇u) in Ω

if µu = f(x, u,∇u) dx as Borel measures, namely

µu(A) =

∫
A

f(x, u,∇u) dx ∀A ⊂ Ω Borel.

Note that because convex functions are locally Lipschitz, they are differentiable a.e.
Thus f(x, u,∇u) is defined a.e. and the above definition makes sense.

To simplify the presentation, we shall discuss only the case f = f(x), although all
the arguments can be extended to the case f = f(x, u,∇u) under the assumption
that ∂uf ≥ 0 (this is needed to ensure that the maximum principle holds, see [36,
Chapter 17]).

Actually, even if one is interested in solving the Monge-Ampère equation with
a smooth right hand side, in order to prove existence of solutions it will be useful
to consider also Borel measures as right hand sides. So, given a nonnegative Borel
measure ν inside Ω, we shall say that u is an Alexandrov solution of detD2u = ν

if µu = ν.

A fundamental property of the Monge-Ampère measure is that it is stable under
uniform convergence (see [32, Proposition 2.6]):

Proposition 3.2. — Let uk : Ω → R be a sequence of convex functions converg-
ing locally uniformly to u. Then the associated Monge-Ampère measures µuk weakly∗

converge to µu, i.e., ∫
Ω

ϕdµuk →
∫

Ω

ϕdµu ∀ϕ ∈ Cc(Ω).

Another crucial property of this definition is the validity of a comparison principle
(see [32, Theorem 2.10]):

Proposition 3.3. — Let U ⊂ Ω be an open bounded set, and let u, v : Ω → R be
two convex functions satisfying {

µu ≤ µv in U

u ≥ v on ∂U .

Then
u ≥ v in U .

A direct consequence of this result is the uniqueness and stability of solutions (see
[32, Corollaries 2.11 and 2.12]):
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