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1. PRELIMINARIES

The notion of the k-dimensional systole of a Riemannian manifold was introduced

by Marcel Berger in 1972 following earlier work by Loewner (around 1949, unpub-

lished), Pu (1952), Accola (1960) and Blatter (1961). Recall that according to Berger

the k-dimensional systole of a Riemannian manifold V is defined as the infimum of

the k-dimensional volumes of the k-dimensional cycles (subvarieties) in V which are

not homologous to zero in V .

In fact, the idea of the 1-dimensional systole can be traced back to the classical

geometry of numbers as one considers minima of quadratic forms on lattices in Rn.

The fundamental result here is an upper bound on such a minimum in terms of the

discriminant of the form in question. This can be formulated in geometric language

as follows.

1.A. Bound on the 1-systole of a flat torus. — Let V be a flat Riemannian

torus of dimension n. Then, the 1-systole of V can be bounded in terms of the volume

of V by

systole ≤ constn (Volume)
1
n ,

where constn = C
√
n for some universal constant C (which is not far from one).

Reformulation and proof. The torus V can be isometrically covered by Rn and so

V = Rn/Γ for some lattice Γ, that is a discrete group of parallel translations of Rn.

(This group is isomorphic to Zn but is not, in general, equal to the standard lattice

Zn ⊂ Rn consisting of integral points in Rn.) If a point x ∈ Rn is moved by some

γ ∈ Γ to γ(x), then the segment [x, γ(x)] joining x with γ(x) in Rn projects to a

closed curve S in V = Rn/Γ whose length equals dist
(
x, γ(x)

)
. Furthermore, if γ is a

non-identity element in Γ (i.e., x �= γ(x)), then S is non-homologous to zero in V . In

fact, S is non-homotopic to zero by the elementary theory of covering spaces which
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implies “non-homologous to zero” since the group Γ = π1(V ) = Z
n is Abelian. Thus,

the bound on the 1-systole of V is equivalent to the following estimate.

1.A.1. Displacement estimate. — For the above lattice Γ acting on Rn by parallel

translations, there exists a point x ∈ Rn and a non-identity element γ ∈ Γ, such that

dist
(
x, γ(x)

)
≤ constnVol(Rn/Γ) .

Proof. Take a closed ball B of radius R in Rn such that the volume of B is greater

than or equal to that of V = Rn/Γ. Then, the projection p : B → V is not one-to-one

and we have distinct points x and x′ in B with p(x) = p(x′). This equality means

that x′ = γ(x) for some γ ∈ Γ (by the definition of the quotient space Rn/Γ) and,

since the diameter of B is 2R, the distance between x and γ(x) = x′ is at most 2R.

Now, we recall that the volume of B = B(R) equals

VolB = σnR
n ,

where σn is given by the familiar formula involving the Γ-function (here, Γ has nothing

to do with the lattice Γ),

σn = πn/2
/
Γ
(n
2

+ 1
)
.

Then, a pair of points x and x′ with p(x′) = p(x) necessarily appears for

R = (σn)−
1
n (VolV )

1
n .

So we obtain the required displacement bound

dist
(
x, γ(x)

)
≤ constnVolV

for

constn = 2
(
Γ
(n
2

+ 1
)) 1

n

/√
π ,

and the number constn is bounded by C
√
n according to Stirling’s formula Γ(n) ≈ nn.

Remarks. (a) The above argument is classical, going back to Gauss (to Diophan-

tus ?), Hermite and Minkowski. We dissected the proof in order to make visible the

anatomy of our more general systolic inequalities discussed later on.
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(b) Since Γ acts by parallel translations, the displacement dist
(
x, γ(x)

)
does

not depend on x, and we may take the origin 0 ∈ R
n for x. Then, our displacement

estimate bounds the Euclidean norm on the lattice Γ embedded into Rn as the Γ-orbit

of the origin by

inf ‖γ‖
R

n ≤ constn(VolRn/Γ)
1
n , (∗)

where inf is taken over γ ∈ Γ − {0}. (The squared Euclidean norm serves as the

quadratic form referred to at the beginning of this discussion.)

The above (∗) is called the Minkowski convex body theorem. It remains valid (by

the proof we gave) for an arbitrary Banach (Minkowski) norm on Rn. In traditional

language, every convex centrally symmetric body B in Rn contains a non-zero point

γ ∈ Γ, provided VolB ≥ 2nVol(Rn/Γ).

(c) The value of const2 and the extremal lattice Γ ⊂ R2 are known since An-

tiquity. Namely, const2 = (2/
√
3)

1
2 , and the extremal lattice has a regular hexagon

as fundamental domain. (Such an hexagon of unit width has area
√
3
/
2.) Thus, for

every flat 2-torus one has

systole ≤ (2/
√
3)

1
2 (Area)

1
2 , (+)

where equality holds if and only if the corresponding lattice Γ ⊂ R2 is hexagonal.

1.B. Loewner made an amazing discovery around 1949

Loewner torus theorem. — Let V be the topological 2-torus with an arbitrary

Riemannian metric. Then, the 1-systole of V satisfies the same inequality as in the

flat case,

systole ≤ (2/
√

3)
1
2 (Area)

1
2 ,

and equality holds if and only if the metric on V is flat and the corresponding lattice

is hexagonal.

Proof. The key argument is the following

The uniformization theorem for tori. — For every V there exists a flat torus V0

(which can be normalized by the condition AreaV0 = AreaV ) admitting a conformal

diffeomorphism ϕ : V0 → V .
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