
RAMIFICATIONS OF

THE CLASSICAL SPHERE THEOREM

Karsten GROVE

Department of Mathematics

University of Maryland

College Park, MD 20742 (USA)

Abstract. The paper describes old and new developments, within as well as outside of

Riemannian geometry, originating from the classical sphere theorem.
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c© Séminaires & Congrès 1, SMF 1996



TABLE OF CONTENTS

1. DEVELOPMENTS FROM WITHIN 365

2. DEVELOPMENTS TO AND FROM THE OUTSIDE 368

BIBLIOGRAPHY 373
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INTRODUCTION

Although Comparison Geometry can be traced back to the previous century, it

did not really take root as a discipline until the 1930’s through the work of Morse,

[M1,2], Schoenberg [S], Myers [My] and Synge [Sy]. The real breakthrough came

in the 1950’s with the pioneering work of Rauch [R] and the foundational work of

Alexandrov and Toponogov [T]. Since then, the simple idea of comparing the geometry

of an arbitrary Riemannian manifold with the geometries of constant curvature spaces

has witnessed a tremendous evolution.

Sphere Theorems have often played a pivotal role in this evolution. In fact many

of the powerful ideas and techniques known today were first conceived in connection

with investigations around potential sphere theorems (cf. also [Sh]). Their significance

is also measured by their implications for the local structure of general Riemannian

manifolds and other related, but more singular spaces.

Our aim here is to trace out paths of developments, still under construction,

originating from the classical sphere theorem [R,K2] and the associated rigidity the-

orem by Berger [B1]. In doing so, it is our hope to reveal that there is an abundance

of challenging open problems in this area whose solutions will yet again involve the

conception of new ideas and tools.

1. DEVELOPMENTS FROM WITHIN

In this section we describe evolutions associated with constructions on a fixed

Riemannian manifold.

It all began with Rauch’s comparison theorem for the length of Jacobi fields [R]

and subsequently with the global Alexandrov-Toponogov triangle comparison theorem

[T]. And it culminated in the now classical theorem.
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Theorem 1.1 (Rauch-Berger-Klingenberg). — Let M be a closed simply connected

Riemannian manifold whose sectional curvature satisfies 1 ≤ secM ≤ 4. Then, either

(i) M is a twisted sphere, or

(ii) M is isometric to a rank one symmetric space.

Under the assumptions stated in the theorem, one of the key ingredients is the

injectivity radius estimate, injM ≥ π
2 . In the original approach, this was achieved

via Morse theory of geodesics [K1,2], [CG] and [KS] (cf. also [E]). Before moving on

to the natural generalization suggested by this estimate, let us point out that so far,

no positively curved exotic spheres are known!

Quite recently, it was shown by M. Weiss that some exotic spheres do not admit

1/4-pinched metrics [W]. His method is based on the observation that a 1/4-pinched

sphere M has maximal so called Morse perfection, i.e., there is a dimM -dimensional

(Z2 -equivariant) spherical family of Morse functions on M . On the other hand, so-

phisticated methods from algebraic K-theory reveal that some exotic spheres have

smaller Morse perfection. It is interesting to note that this is also related to the so

called Gromoll-filtrations of homotopy spheres, an idea which arose in the first proof

that there are no exotic δn-pinched n-dimensional spheres when δn is sufficiently close

to 1 [G]. Another completely different method to prove the same result was conceived

independently by Shikata [S2]. He constructed a distance between differentiable struc-

tures [S1], an idea which has since been expanded tremendously (cf. [Gr]). The best

estimate for δn = δ is due to Suyama [Su]. His method combines the earlier meth-

ods for achieving a dimension independent constant, the first due to Shiohama [SS]

and the second to Ruh [R1,2]. Here, Ruh’s method of approximating an almost flat

connection with a flat connection has evolved quite far and has had many subsequent

applications (cf. [R3]).

Another natural question related to the classical sphere theorem is: what happens

if M is not simply connected ? So far, all known (strictly) 1/4-pinched manifolds are

diffeomorphic to space forms. Moreover, at least these are the only manifolds which

admit a δ-pinched riemannian metric, with δ sufficiently close to 1 [GKR1,2], [IR].

The general nonlinear “Riemannian center of mass” was developed in connection with

the first proof of this result [GK].
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Recall that the radius radM and diameter diamM are given by radM =

minp maxq dist(p, q) ≤ maxp,q dist(p, q) = diamM . Since injM ≥ π
2 for 1-connected

Riemannian manifolds M with 1 ≤ secM ≤ 4, we also have diamM ≥ radM ≥ π
2

for such manifolds. In particular,

{M | 1 ≤ secM ≤ 4, π1(M) = {1}} ⊂ {M | 1 ≤ secM, radM ≥ π

2
}

⊂ {M | 1 ≤ secM, diamM ≥ π

2
} .

For the largest of these classes we have the following diameter sphere Theorem [GS] a

homotopy version of which was first proved in [B2] and its associated rigidity theorem

[GG1,2].

Theorem 1.2. (Gromoll-Grove-Shiohama) — Let M be a closed Riemannian mani-

fold with secM ≥ 1 and diamM ≥ π
2
. Then, either

(i) M is a twisted sphere, with the possible exception thatH∗(M) � H∗(CaP 2),

(ii) M is isometric to one of

(a) a rank 1 symmetric space,

(b) CP odd/Z2,

(c) Sn/Γ,Γ ⊂ O(n+ 1) acts reducibly on R
n+1.

The principal new tool discovered in the proof of this sphere theorem was a

“critical point theory” for nonsmooth distance functions. This signaled the beginning

of intense investigations of manifolds with a lower curvature bound only (for surveys,

cf. [C], [Gro]).

Aside from trying to deal with the exceptional case of the Cayley plane in the

above result, the most obvious questions related to the theorem are

Problem 1.3.

(i) Are there any exotic spheres M with secM ≥ 1 and diamM ≥ π
2 ?

(ii) Are there “new” manifolds M with secM ≥ 1 and diamM ≥ π
2 − ε, which are

not on the list of the above theorem ?

At this moment it appears to be too ambitious to answer these questions at the

level of generality at which they were posed (cf. the discussion in the next section).
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