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Abstract. This article is a report summarizing recent progress in the geometry of negative

Ricci and scalar curvature. It describes the range of general existence results of such metrics

on manifolds of dimension ≥ 3. Moreover it explains flexibility and approximation theorems

for these curvature conditions leading to unexpected effects. For instance, we find that

“modulo homotopy” (in a specified sense) these curvatures do not have any of the typical

geometric impacts.

Résumé. Cet article est un résumé des progrès récents dans la géométrie des variétés

riemanniennes à courbure de Ricci ou scalaire négative. Il décrit le domaine de validité

des résultats généraux d’existence pour de telles métriques sur les variétés de dimension

≥ 3. De plus, il explique les théorèmes de flexibilité et d’approximation pour ces conditions

de courbure, ce qui conduit à des résultats inattendus. Par exemple, nous montrons que

“modulo homotopie” (dans un sens précis), ces conditions de courbure n’impliquent aucune

des conditions géométriques usuelles.
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INTRODUCTION

This paper reports on recent progress in understanding negative Ricci and scalar

curvature. We mainly intended to write a guide summarizing and tabulating the main

results. We also alluded to some technical (or rather philosophical) background while

this is just enough to give some orientation.

As will become clear, Ric < 0-metrics can be met quite frequently in geometry,

in a way unexpected before.

One of the insights is concerned with the contrast between positive and negative

curvatures. In the case of sectional curvature the implied topological conditions ex-

clude each others, while Ricci and scalar curvature behave quite differently. Here, one

may think of a certain maximal amount of positive curvature which could be carried

by a given manifold. Now, starting from any metric one can deform it into more

and more strongly negatively curved ones. In other words, on each manifold there

is an (individual) upper but definitely no lower bound for the spectrum of such an

“amount” of Ricci or scalar curvature.

Beside other features there is an amazing resemblance to some existence the-

ories in completely different contexts, for instance, Smale-Hirsch immersion theory.

Namely, one may say that these geometric problems can be understood “modulo ho-

motopy” from the algebraic structure of the differential relation which formalizes the

geometric condition (e.g. Ric < 0 as partial differential inequality of second order).

We will discuss these things in more details in a later chapter.

Now, in order to start our Ric < 0-story, we may notice that it was not even

known whether each manifold could admit a Ric < 0-metric. As this paper intends

to lead beyond this first order question we start with a short sketch of how to prove

that each closed manifold Mn of dimension n ≥ 3 admits a metric with Ric < 0.

First of all, we mention that it is an easier matter to get a Ric < 0-metric on

open manifolds, and thus it does not hurt to use this here. Secondly, we start only in
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dimension n ≥ 4. The case n = 3, omitted here, can be handled similarly, but needs

an extra argument.

Now, if B ⊂Mn is a ball, then B contains a closed submanifold Nn−2 admitting

a metric with Ric < 0 and whose normal bundle is trivial. This is easily done in case

n = 4 using the embedding of a hyperbolic surface in R
3 ⊂ R

4.

In higher dimensions we can use induction : Sn−2, n ≥ 5, admits a metric with

Ric < 0 and we take the usual embedding Sn−2 ↪→ R
n−1 ⊂ R

n. (Of course these

metrics are not the induced metrics coming from the embedding.)

As mentioned above, we have a metric with Ric < 0 on the open manifoldM \N ,

and, in addition, we can get a warped product metric on a tubular neighborhood U of

N such that U \N may be identified with ]0, r[×S1×N equipped with gR+f2 ·gS1+gN

for some strongly increasing f ∈ C∞(R,R>0). The manifold (]0, r[×S1, gR + f2 · gS1)

looks like the spreading open end of the pseudosphere, and we would be done if it

was possible to “close” this with a metric with Gaussian curvature K < 0. But this

is impossible by the Gauß-Bonnet theorem.

On the other hand, we can use the additional factor (N, gN ). We can take

a singular metric gsing . with K < 0 on the disk D such that the metric near the

boundary looks like (]0, r[×S1, gR + f2 gS1) with {0} × S1 = ∂D(!). Now, we can use

Ric(gN ) < 0 to smooth the singularities of gsing . getting a warped product metric

with Ric < 0 on D×N and glue it to M \U . Thus, we have closed M again and it is

equipped with a metric with Ric < 0. Details and extensions are described in [L4].

We hope that including this rough existence argument already in the introduction

motivates the search for refinements (in various directions) as treated in this paper.

In the course of describing such results we will meet some important features of how

Ric < 0-metrics are “assembled” in general.
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I. COLLECTION OF RESULTS

One of the main features of Ric < 0-geometry is that many problems can be

condensed into a local one and that, on the other hand, the local solution can be

globalized.

In this chapter we start to describe the results available using this method of

attack. It turns out that this particular interplay yields insights into the behaviour

of Ric < 0-metrics in a natural way.

I.1. General Existence Theorems.

I.1.1. Theorem. — Each manifold Mn, n ≥ 3, admits a complete metric gM with

−a(n) < r(gM) < −b(n) ,

for some constants a(n) > b(n) > 0 depending only on the dimension n.

We also have another result motivated partly by the existence of complete, finite

area metrics with K < −1 on open surfaces, partly by S.T. Yau’s theorem that each

complete non-compact manifold with Ric > 0 has infinite volume.

I.1.2. Theorem. — Each manifold Mn, n ≥ 3, admits a complete metric g′M with

r(g′M) < −1 and Vol(Mn, g′M) < +∞.

I.1.1 - I.1.2 are proved in [L2].
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