
GEOMETRY OF TOTAL CURVATURE

Takashi SHIOYA

Graduate School of Mathematics

Kyushu University

Fukuoka 812-81 (Japan)

Abstract. This is a survey article on geometry of total curvature of complete open 2-
dimensional Riemannian manifolds, which was first studied by Cohn-Vossen ([Col, Co2])

and on which after that much progress was made. The article consists of three topics : the

ideal boundary, the mass of rays, and the behaviour of distant maximal geodesics.

Résumé. Cet article présente une synthèse sur la géométrie de la courbure totale des

surfaces riemanniennes ouvertes, qui fut d’abord étudiée par Cohn-Vossen ([Co1, Co2]), et

à propos de laquelle de grands progrès ont été faits ensuite. L’article couvre trois sujets : le

bord idéal, la masse des rayons, et le comportement des géodésiques maximales à l’infini.
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INTRODUCTION

The total curvature of a closed Riemannian 2-manifold is determined only by the

topology of the manifold. On the other hand, that of a complete open Riemannian

2-manifold is not a topological invariant but depends on the metric. The geometric

meaning of the total curvature is an interesting subject. In this article, we survey

some of our own results concerning the relations between the total curvature c(M) of

M and various geometric properties of M when M is a finitely connected, complete,

open and oriented Riemannian 2-manifold.

Gromov [BGS] first defined the ideal boundary and its Tits metric for an n-

dimensional Hadamard manifold as the set of equivalence classes of rays with respect

to the asymptotic relation and investigated its geometric properties. This turns out to

be useful in studying nonpositively curved n-manifolds. Here, the nonpositiveness of

the sectional curvature implies that the asymptotic relation, which is originally due to

Busemann [Bu], becomes an equivalence relation. However this is not true in general.

The emphasis of the present article is that the ideal boundary together with the Tits

metric can be constructed for M by a new equivalence relation between rays by using

the total curvature. In particular, our construction is a natural generalization of that

of Gromov, because both coincide on every Hadamard 2-manifold. It is natural to ask

the influence of our Tits metric on the ideal boundary upon the geometric properties

of M . The Tits metric defined here can be precisely described in terms of the total

curvature of M , which plays an essential role throughout this article.

In Chapter 1, we construct the ideal boundary of M and its generalized Tits

metric. For the Euclidean plane, the Tits distance between two points represented

by two rays emanating from a common point is just the angle between the initial

vectors of these rays. In the general case, we have various geometric properties on

the analogy with the Euclidean case. All these properties are connected with the

asymptotic behaviour. We apply these to the study of the detailed behaviour of
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Busemann functions.

In Chapter 2, we investigate on the mass of rays in M . We view this as the

Lebesgue measure M(Ap) of the set Ap of all unit vectors which are initial vectors

of rays emanating from a point p in M . A pioneering work of Maeda ([Md1], [Md2])

states that the infimum of M(Ap) for all p ∈ M is equal to 2π − c(M) provided M

is a nonnegatively curved Riemannian plane (i.e., a complete nonnegatively curved

manifold homeomorphic to R
2). We investigate the asymptotic behaviour of the

measure M(Ap) for a general M with total curvature as p tends to infinity and the

mean of M(Ap) with respect to the volume of M .

In Chapter 3, we study the behaviour of maximal geodesics close enough to

infinity (i.e., outside a large compact set) in a complete 2-manifold homeomorphic to

R
2 with total curvature less than 2π. Such manifolds will be called strict Riemannian

planes. Any such maximal geodesic becomes proper as a map of R into M and has

almost the same shape as that of a maximal geodesic in a flat cone. Moreover, we

give an estimate for its rotation number and show that it is close to π/(2π − c(M)).

Here, we have extended the notion of the rotation number of a closed curve due to

Whitney [Wh] to that of a proper curve.

Basic concepts

The total curvature c(M) of an oriented Riemannian 2-manifold M is defined

to be the possibly improper integral
∫
M
GdM of the Gaussian curvature G of M

with respect to the volume element dM of M . We define the total positive curvature

c+(M) and the total negative curvature c−(M) by c±(M) :=
∫
M
G± dM , where

G−+(p) := max{G(p), 0} and G−−(p) := max{−G(p), 0} for p ∈ M . Then, the total

curvature c(M) exists if and only if at least one of c+(M) or c−(M) is finite. A well-

known theorem due to Cohn-Vossen [Co1] states that if M is finitely connected and

admits total curvature, then c(M) ≤ 2πχ(M), where χ(M) is the Euler characteristic

of M . When M is infinitely connected and admits total curvature, Huber’s theorem

[Hu] (cf. [Ba1]) states that c(M) = −∞. Therefore, the total curvature exists if and

only if the total positive curvature is finite.

Throughout this article, assume that M is a finitely connected, complete, open

and oriented Riemannian 2-manifold admitting total curvature and that all geodesics

of M are normal. The finite connectivity of M implies that there exists a homeo-

morphism ϕ : M → N − E, where N is a closed and oriented 2-manifold and E is a
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finite subset of N . We call each point in E an endpoint of M . For instance, if M is

a Riemannian plane (i.e., a complete Riemannian 2-manifold homeomorphic to R
2),

then N is homeomorphic to S2 and E consists of a single point in N . A subset U of

M is called a neighbourhood of an endpoint e ∈ E if ϕ(U)∪{e} is a neighbourhood of

e in N . For each endpoint e of M , we denote by U(e) the set of all neighbourhoods of

e which are diffeomorphic to closed half-cylinders with smooth boundary. Following

Busemann [Bu], we call an element of U(e) a tube of M .

For any region D of M with piecewise smooth boundary ∂D parameterized pos-

itively relative to D, we define the total geodesic curvature κ(D) by the sum of the

integrals of the geodesic curvature of ∂D together with the exterior angles of D at

all vertices. Here, we allow κ(D) to be infinite. When ∂D = φ (i.e., D = M), we

set κ(D) := 0. The Gauss-Bonnet theorem states that if a region D has piecewise

smooth boundary and is compact and finitely connected, then

κ(D) + c(D) = 2πχ(D) .

For any region D of M admitting κ(D) + c(D) (i.e., so that κ(D) and c(D) exist and

if both κ(D) and c(D) are infinite, they have the same sign), we define

κ∞(D) := 2πχ(D)− κ(D)− c(D) .

A slight generalization of Cohn-Vossen’s theorem (cf. [Co2], [Sy5]) states that

κ∞(D) ≥ πχ(∂D) ,

where χ(∂D) is the Euler characteristic of ∂D, namely the number of connected

components of ∂D which is homeomorphic to R.

Geometrically, κ∞(D) may be thought of as the total geodesic curvature of the

boundary at infinity of D. This is seen as follows. Let {Dj} be a monotone increasing

sequence of compact regions with piecewise smooth boundary such that ∪Dj = D and

that the inclusion map from each Dj into D is a strong deformation retraction. Since

χ(Dj) = χ(D) for all j and lim
j→∞

c(Dj) = c(D), the Gauss-Bonnet theorem implies

that

κ∞(D) = 2πχ(D)− κ(D)− lim
j→∞

c(Dj) = lim
j→∞

κ(Dj)− κ(D) .
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