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c© Séminaires & Congrès 1, SMF 1996



TABLE OF CONTENTS

INTRODUCTION 95

1. HOLONOMY AND G-STRUCTURES 99

2. THE METRIC CASES 120

3. THE NON-METRIC CASES 129

4. SOME EXOTIC CASES 158

BIBLIOGRAPHY 163

SÉMINAIRES & CONGRÈS 1



INTRODUCTION

0.1. Overview. The goal of this report is to present, in a unified way, what is known

about the problem of prescribed holonomy of torsion-free affine connections smooth

manifolds.

In §1, I give the fundamental definitions and develop the algebra needed to for-

mulate Berger’s criteria which a subgroup of GL(TxM) must satisfy if it is to be the

holonomy of a torsion-free affine connection on M which is not locally symmetric. I

also develop the closely related notion of a torsion-free H-structure. The fundamen-

tal strategy is to ‘classify’ the torsion-free connections with a given holonomy H by

first ‘classifying’ the torsion-free H-structures and then examining the problem of de-

termining for any given torsion-free H-structure, its space of compatible torsion-free

connections. In nearly all cases, there is a unique compatible torsion-free connec-

tion, but there are important exceptions that are closely related to the second-order

homogeneous spaces.

I formulate the classification problem for general torsion-free H-structures as a

problem treatable by the methods of Cartan-Kähler theory. Finally, I conclude this

section with an appendix containing definitions of the various Spencer constructions

that will be needed and a discussion of the history of the classification of the irreducible

second-order homogeneous spaces. This classification turns out to be important in

the classification of the affine torsion-free holonomies in §3.

In §2, I review Berger’s list of the possible irreducible holonomies for pseudo-

Riemannian metrics which are not locally symmetric. In the course of the review, I

analyze each of the possibilities and determine the degree of generality of each one.

Among the notable results are, first, that the group SO(n,H), which appeared on

Berger’s original list turns out not to be possible as the holonomy of a torsion-free

connection, and, second, that there are two extra cases left off the usual lists (see

§2.7-8). These can be viewed as alternate real forms of a group whose compact form
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is Sp(p)·Sp(1), the holonomy group of the so-called ‘quaternionic-Kähler’ metrics.

In §3, I turn to Berger’s list of the possible irreducible holonomies for affine con-

nections which are not locally symmetric and do not preserve any non-zero quadratic

form. This list turns out to be quite interesting and the examples display a wide

variety of phenomena. Actually, one has to remember that Berger’s original list was

only meant to cover all but a finite number of the possibilities, leaving open the pos-

sibility of a finite number of ‘exotic’ examples. Moreover, in Berger’s original list,

there was no attempt to deal with the different possibilities for the holonomy of the

central part of the group; Berger’s classification deals mainly with the classification

of the semi-simple part of the irreducible holonomies. It turns out that the center of

the group plays a very important role and gives rise to a wealth of examples that had

heretofore not been anticipated.

Finally, in §4, I discuss what is known about the exotic examples so far (see

Table 4). Perhaps the most interesting of these examples, aside from the examples in

dimension 4 first discussed in [Br2], are the ones associated to the ‘exceptional’ second-

order homogeneous spaces of dimension 16 and 27. For example, a consequence of this

is that EC
6 ⊂ SL(27,C) can occur as the holonomy of a torsion-free (but not locally

symmetric) connection on a complex manifold of dimension 27! Unfortunately, as of

this writing, the full classification of the possible exotic examples is far from complete.

0.2. Notation. In this report, I have adopted a slightly non-standard nomenclature

for the various groups that are to be discussed. This subsection will serve to fix this

notation, which is closely related to that used in [KoNa].

I will need to work with vector spaces over R, C, and the quaternions H. Con-

jugation has its standard meaning in C and H; in each case, the fixed subalgebra

is R. The symbol F will be used to denote any one of these division algebras. The

elements of the standard n-space F
n are to be thought of as columns of elements of F

of height n. It is convenient to take all vector spaces over H to be right vector spaces.

For any vector space V over F , the group of invertible F-linear endomorphisms

of V will be denoted GL(V,F) or just GL(V ) when there is no danger of confusion.

The algebra of n-by-n matrices with entries in F will be denoted by Mn(F). This

algebra acts on the left of Fn by the obvious matrix multiplication, representing the

algebra EndF(Fn). As usual, let GL(n,F) ⊂ Mn(F) denote the Lie group consisting
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of the invertible matrices in Mn(F), i.e., GL(n,F) = GL(Fn). When F = R, the

group GL(V ) has two components and it is occasionally useful to use the notation

GL+(V ) for the identity component. For any A ∈ Mn(F), define A∗ ∈ Mn(F) to be

the conjugate transpose of A, so that (AB)∗ = B∗A∗ for all A,B ∈Mn(F).

For a vector space V over R or C, the notation SL(V ) has its standard mean-

ing. There is no good notion of a quaternionic determinant; however, the obvious

identification Hn � R4n induces an embedding GL(n,H) ↪→ GL(4n,R) and the sub-

group SL(n,H) ⊂ GL(n,H) is then defined by SL(n,H) = GL(n,H) ∩ SL(4n,R).

Note that SL(n,H) has codimension 1 (not 4) in GL(n,H). In Chevalley’s nomen-

clature, SL(n,H), which is a real form of SL(2n,C), is denoted SU∗(2n). My no-

tation for the other real forms of SL(n,C) are the standard ones: SL(n,R) and

SU(p, q) = {A ∈ SL(n,C) A∗ Ip,q A = Ip,q }. For simplicity, SU(n) denotes SU(n, 0).

When F is R or C and Q is a non-degenerate quadratic form on a vector space V

over F, the slightly non-standard usage SO(V,Q) (respectively, CO(V,Q)) will refer

to the identity component of the subgroup of GL(V ) that fixes Q (respectively, that

fixes Q up to a multiple). The notations SO(p, q) (= SO(p) when q = 0) and CO(p, q)

(= CO(p) when q = 0) denote the identity components of the standard subgroups of

GL(p+q,R), while SO(n,C) and CO(n,C) denote the standard subgroups of GL(n,C).

Finally, SO(n,H) stands for the subgroup consisting of those A ∈ GL(n,H) that

satisfy A∗ iIn A = iIn. In Chevalley’s nomenclature, SO(n,H), which is a real form

of SO(2n,C), is denoted SO∗(2n).

Finally, when F is R or C and Ω is a non-degenerate skew-symmetric bilinear

form on a vector space V over F, the notation Sp(V,Ω) (respectively, CSp(V,Ω))

will stand for the subgroup of GL(V ) that fixes Ω (respectively, that fixes Ω up to a

multiple.) The notations Sp(n,R) and CSp(n,R) denote the standard subgroups of

GL(2n,R) while Sp(n,C) and CSp(n,C) denote the standard subgroups of GL(2n,C).

(In Chevalley’s notation, Sp(n,R) is denoted by Sp∗(n).) As for the other real forms

of Sp(n,C), I use the usual Sp(p, q) to denote the subgroup of GL(p+q,H) consisting

of those matrices A ∈Mp+q(H) that satisfy A∗ Ip,q A = Ip,q, with Sp(n, 0) abbreviated

to Sp(n).

Now define the following subspaces

Sn(R) = { A ∈Mn(R) A = tA }
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