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UPPER BOUNDS FOR COURANT-SHARP NEUMANN AND ROBIN
EIGENVALUES

by Katie Gittins & Corentin Léna

Abstract. — We consider the eigenvalues of the Laplacian, with a Neumann or Robin
boundary condition, on an open, bounded, connected set in Rn with a C2 boundary.
We obtain upper bounds for the eigenvalues that have a corresponding eigenfunction
that achieves equality in Courant’s Nodal Domain theorem. In the case where the set
is also assumed to be convex, we obtain explicit upper bounds in terms of some of the
geometric quantities of the set.

Résumé (Majoration des valeurs propres Courant strictes de Neumann et Robin). —
Nous considérons les valeurs propres du laplacien sur un ouvert borné connexe de Rn

à bord C2, avec condition au bord de Neumann ou de Robin. Nous majorons celles
qui ont une fonction propre dont le nombre de domaines nodaux atteint la borne de
Courant (dites Courant strictes). Lorsque l’ouvert est convexe, nous présentons une
majoration explicite en fonction de grandeurs géométriques.

1. Introduction

1.1. Statement of the problem. — Let Ω be an open, bounded, connected set
in Rn, n ≥ 2, with a Lipschitz boundary ∂Ω. Consider the Neumann Laplacian
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100 K. GITTINS & C. LÉNA

acting on L2(Ω) and note that it has discrete spectrum since Ω is bounded. The
Neumann eigenvalues of Ω can hence be written in a non-decreasing sequence,
counted with multiplicity,

0 = µ1(Ω) < µ2(Ω) ≤ · · · ≤ µk(Ω) ≤ . . . ,

where the only accumulation point is +∞.
By Courant’s Nodal Domain theorem, any eigenfunction corresponding to

µk(Ω) has at most k nodal domains. If uk is an eigenfunction corresponding
to µk(Ω) with k nodal domains, then we call it a Courant-sharp eigenfunction.
In this case, we also call µk(Ω) a Courant-sharp eigenvalue of Ω.

The Courant-sharp property was first considered by Pleijel [15] in 1956 for
the Dirichlet Laplacian. In particular, Pleijel proved that there are only finitely
many Courant-sharp Dirichlet eigenvalues of a bounded, planar domain with a
sufficiently regular boundary. See [6, 14] for generalisations of Pleijel’s theorem
to higher dimensions and other geometric settings. Following from Pleijel’s
result, for a given domain, natural questions are, how many such eigenvalues
are there and how large are they?

The recent articles [5, 2] consider these questions and give upper bounds for
the largest Courant-sharp Dirichlet eigenvalue and the number of such eigen-
values in terms of some of the geometric quantities of the underlying domain.
In Theorem 1.3 of [5], the authors bound this number using the area, perimeter,
maximal curvature and minimal cut-distance to the boundary, for a set in R2

which is sufficiently regular but not necessarily convex (the cut-distance will
be defined in Section 3). In [2], such geometric upper bounds are obtained for
an open set in Rn with finite Lebesgue measure. In the case where the domain
is convex, the upper bound given in Example 1 of [2] could be expressed in
terms of the isoperimetric ratio of the domain. From this, one can deduce that
if the domain has a large number of Courant-sharp Dirichlet eigenvalues then
its isoperimetric ratio is also large.

It was shown recently in [10] that if Ω is an open, bounded, connected set
in Rn with a C1,1 boundary, then the Neumann Laplacian acting on L2(Ω)
has finitely many Courant-sharp eigenvalues (we refer to [10] for a description
of prior results). As mentioned in [5], the aforementioned questions are also
interesting for the Courant-sharp eigenvalues of the Neumann Laplacian.

1.2. Goal of the article. — The aim of the present article is to obtain upper
bounds for the Courant-sharp Neumann eigenvalues in the case where Ω ⊂ Rn
is open, bounded, and connected with a C2 boundary. In the case where Ω is
also convex, we obtain explicit upper bounds for the Courant-sharp Neumann
eigenvalues of Ω, and for the number of such eigenvalues, in terms of some
of the geometric quantities of Ω. These results correspond to some of those
mentioned above for the Dirichlet case, with some additional hypotheses due
to the difficulties in handling the Neumann boundary condition.
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We follow the same strategy that was used in [10]. This involves distinguish-
ing between the nodal domains of a Courant-sharp eigenfunction u for which
the majority of the L2 norm of u comes from the interior (bulk domains) and
those for which the majority of the L2 norm of u comes from near the bound-
ary (boundary domains), and then obtaining upper bounds for the number of
each type of nodal domain. In the first case, the argument used by Pleijel [15],
which rests upon the Faber-Krahn inequality, can be used as the eigenfunc-
tion in a bulk domain almost satisfies a Dirichlet boundary condition. For the
boundary domains, it is not possible to employ the same argument as Pleijel
as these nodal domains have mixed Dirichlet-Neumann boundary conditions so
the Faber-Krahn inequality cannot be employed. The strategy of [10] to deal
with the boundary domains is to locally straighten the boundary of the domain
Ω and then to reflect the nodal domain in order to obtain a new domain that
almost satisfies a Dirichlet boundary condition. One then has to compare the
L2 norm of the gradient of an eigenfunction corresponding to a Courant-sharp
eigenvalue on the boundary domain to the L2 norm of the gradient of the
reflected eigenfunction on the reflected domain. See Section 5.

We restrict our attention to Euclidean domains with a C2 boundary. We
can then make use of tubular coordinates in order to set up and describe the
reflection procedure explicitly. This allows us to keep explicit control of the
constants appearing in the aforementioned estimates in order to obtain esti-
mates for the Courant-sharp Neumann eigenvalues.

In Proposition 7.1, we obtain an upper bound for the Courant-sharp Neu-
mann eigenvalues of Ω in terms of some of its geometric quantities. More
specifically, it depends on |Ω| the area of Ω, ρ(Ω) the square-root of the isoperi-
metric ratio, t+(Ω) the smallest radius of curvature of the boundary, and the
cut distance to the boundary (see Section 3 for precise definitions of the latter
quantities).

A simpler presentation of this upper bound is possible in the case where
Ω is convex, since one of the additional conditions in the general case is no
longer required (see Section 8). In addition, we obtain an upper bound for
the number of such eigenvalues by using the upper bound for the Neumann
counting function which is proved in Appendix A. In particular, we have the
following proposition.

Proposition 1.1. — Let Ω be an open, bounded, convex set in R2 with a C2

boundary. There exist constants C > 0 and C ′ > 0, that do not depend on Ω,
such that for any Courant-sharp eigenvalue µk(Ω),

µk(Ω) ≤ C
(
|Ω|

t+(Ω)4 + ρ(Ω)8

|Ω|

)
(1)

and

k ≤ C ′
(
|Ω|2

t+(Ω)4 + ρ(Ω)8
)
.(2)
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We note that the left-hand side and right-hand side of Inequality (1) have
the same homogeneity with respect to scaling, and that Inequality (2) is scaling
invariant. In addition, in Section 8, we obtain an upper bound for the Courant-
sharp Neumann eigenvalues which also depends upon the diameter of Ω.

By Proposition 1.1, we then observe that if Ω is a sufficiently regular convex
set with a large number of Courant-sharp eigenvalues, it has a large isoperi-
metric ratio or a large curvature at some point of its boundary (or both). If
we additionally assume that µk(Ω) is large compared with |Ω|t+(Ω)−4, we can
conclude that the isoperimetric ratio is large. We note that a large isoperi-
metric ratio is enough to generate a large number of Courant-sharp Neumann
eigenvalues. Indeed, this is the case for a rectangle (0, 1)× (0, L) with large L.
By contrast, to the best of the authors’ knowledge, it is not known whether a
boundary point with large curvature alone can generate many Courant-sharp
eigenvalues. It could be interesting to investigate this further.

By −∆β
Ω, we denote the Laplacian on Ω with the following Robin boundary

condition
∂u

∂ν
+ βu = 0 on ∂Ω,

where ∂u
∂ν is the exterior normal derivative and β : ∂Ω → R is a non-negative,

Lipschitz continuous function. We denote the corresponding eigenvalues by
(µk(Ω, β))k≥1. It was shown in [10] that there are finitely many Courant-sharp
eigenvalues of −∆β

Ω. By monotonicity of the Robin eigenvalues with respect
to β, we obtain the same results for the Courant-sharp Robin eigenvalues (see
Subsection 2.2).

In addition, we obtain analogous results to those mentioned above for any
dimension n ≥ 3, namely Propositions 9.2, 9.3 and 9.4 in Section 9.

1.3. Organisation of the article. — In Section 2, we show that in order to ob-
tain upper bounds for the largest Courant-sharp eigenvalue µ, it is sufficient
to obtain upper bounds for the number of nodal domains and the remainder of
the Dirichlet counting function. Estimates for the latter are obtained in Sec-
tion 6. To deal with the former, we first consider the 2-dimensional case and
set up tubular coordinates in Section 3. Following [10], we then define cut-off
functions in Section 4 that allow us to distinguish between bulk and bound-
ary domains. In Subsection 5.1 we perform the straightening of the boundary
procedure and obtain the desired estimates. We then use these estimates in
Subsection 5.2 to obtain an explicit upper bound for the number of nodal do-
mains. In Subsection 5.3 and Subsection 5.4, by taking the geometry of the
domain into account, we improve the estimates from Subsection 5.1 in special
cases. We then combine all of the preceding results in Section 7 to obtain an
upper bound for the largest Courant-sharp eigenvalue. In Section 8, we obtain
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explicit upper bounds for the largest Courant-sharp eigenvalue and the num-
ber of Courant-sharp eigenvalues of an open and convex planar domain with a
C2 boundary that involve some of its geometric quantities. In particular, we
prove Proposition 1.1. In Section 9, we obtain analogous results in arbitrary
dimension n ≥ 3. In Appendix A, we prove an upper bound for the Neumann
counting function of a convex set, which is used in the two preceding sections
to control the number of Courant-sharp eigenvalues.

2. Preliminaries

2.1. Strategy for Courant-sharp Neumann eigenvalues. — For µ > 0, we define
the Neumann counting function as follows:

NN
Ω (µ) := ]{k ∈ N∗ : µk(Ω) < µ}.

Let (λk(Ω))k≥1 denote the Dirichlet eigenvalues of the Laplacian on Ω. By
the min-max characterisations of the Neumann and Dirichlet eigenvalues, we
have, for k ∈ N∗, that

µk(Ω) ≤ λk(Ω).(3)
For µ > 0, we define the Dirichlet counting function:

ND
Ω (µ) := ]{k ∈ N∗ : λk(Ω) < µ},

and the corresponding remainder RDΩ (µ) such that

ND
Ω (µ) = ωn|Ω|

(2π)nµ
n/2 −RDΩ (µ),(4)

where ωn denotes the Lebesgue measure of a ball of radius 1 in Rn, and the
first term in the right-hand side of Equation (4) corresponds to Weyl’s law. By
(3), we have

NN
Ω (µ) ≥ ND

Ω (µ),
and therefore

NN
Ω (µ) ≥ ωn|Ω|

(2π)nµ
n/2 −RDΩ (µ).

Consider an eigenpair (µ, u) for the Neumann Laplacian, and denote by
ν(u) the number of its nodal domains. If u is a Courant-sharp eigenfunction
associated with µ > 0, µ = µk(Ω) with ν(u) = k. On the other hand, Courant’s
Nodal Domain theorem implies that µk−1(Ω) < µk(Ω), so that NN

Ω (µ) = k−1.
We therefore have

NN
Ω (µ)− ν(u) < 0.(5)

Hence, in order to obtain upper bounds for µ, we require upper bounds for
ν(u) and RDΩ (µ). These will be obtained in Sections 5, 6 respectively.
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