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STABLE K-THEORY IS BIFUNCTOR HOMOLOGY
(AFTER A. SCORICHENKO)

by

Vincent Franjou & Teimuraz Pirashvili

Abstract. — For many rings R, the homology with coefficients of the infinite general
linear group GL(R) is the tensor product of its homology with trivial coefficients
with another term, which has been identified as the stable K-theory of the ring.
Scorichenko’s theorem states that stable K-theory is functor homology.

Résumé (La K-théorie stable est l’homologie des foncteurs (d’après A. Scorichenko))
Pour beaucoup d’anneaux R, l’homologie du groupe linéaire infini avec coefficients

s’obtient en effectuant le produit tensoriel de son homologie avec coefficients triviaux
par un autre terme, qui n’est autre que la K-théorie stable de l’anneau. Le théorème
de Scorichenko exprime la K-théorie stable comme homologie des foncteurs.

0. Introduction

The purpose of this chapter is to present A.Scorichenko’s work for his dissertation
at Northwestern.

Theorem 0.1 ([20]). — For a ring R, let P(R) be the category of finitely generated
projective left R-modules, and let D : P(R)op × P(R) → Ab be a bifunctor. If D
has finite degree with respect to both variables, then there is an isomorphism between
Waldhausen’s stable K-theory and the homology of P:

Kst
∗ (R, D) −→ H∗(P(R), D).

This proves a conjecture stated in [4]. The conjecture first appeared in [15] for
biadditive bifunctors, a case proved in [6] (see also [19] for the outline of another
approach). In the case of finite fields, the conjecture was proved for general bifunctor
coefficients in [3] and in [8, Appendix]. This special case can be reformulated in terms
of functor cohomology, whose computation is a main topic in this book. Indeed, the
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conjecture has been a motivation for developing computation tools in categories of
functors. The homology H∗(P(R), D) can be expressed purely in terms of homological
algebra in categories of functors, which is well understood in many cases (see [9, 10,
8] or the article Introduction to functor homology in this volume). For example,
when D(X, Y ) = HomR(X, P ⊗R Y ), H∗(P(R), D) is isomorphic to the topological
Hochschild homology [16] and to the MacLane homology [11] of R with coefficients
in the bimodule P . When D(X, Y ) = HomR(A(X), B(Y )) for polynomial functors
A and B in F(R), and if R is a field, then H∗(P(R), D) is dual to Ext∗F(R)(A, B) as
studied in this book.

Stable K-theory is precisely related to homology of invertible matrices: Waldhausen
explained [21, Section 6] that stable K-theory gives access to homology of the general
linear group, with twisted coefficients, through the spectral sequence discussed in
sections 1 and 5. One point of the theorem is that although stable K-theory is defined
in terms of invertible matrices, it is naturally isomorphic to a more manageable theory,
expressed in terms of all matrices. The isomorphism of Theorem 0.1 is induced by
the inclusion of invertible matrices in all matrices. There are variations on this, as
will be seen with Scorichenko’s use of the category of epimorphisms.

1. Homology of general linear groups and stable K-theory

Let R be a ring and GLn(R) be the group of invertible matrices over R. For a
bimodule P over R, the R-bimodule of n × n-matrices gln(P ) is a GLn(R)-module
for the conjugation action: X ∗ M := X−1MX . We embed GLn(R) as a subgroup
in GLn+1(R) by: X &→

(
X 0
0 1

)
, and define the direct limit GL(R) =

⋃
n GLn(R).

We embed gln(P ) in gln+1(P ) by: M &→
(

M 0
0 0

)
, and define the direct limit gl(P ) =⋃

n gln(P ). This yields the conjugation action of GL(R) on gl(P ).
The homology groups with twisted coefficients H∗(GL(R); gl(P )) appear as the

E2
n1-terms of the following change of rings spectral sequence. Let:

0 −→ P −→ S −→ R −→ 0

be a singular extension of rings. Thus S is a ring and P is a two-sided ideal of S such
that P2= 0 and R = S/P . There is a short exact sequence of groups

0 −→ gl(P ) −→ GL(S) −→ GL(R) −→ 1,

where the inclusion is by the exponential map x &→ 1+x. It yields a Hochschild-Serre
spectral sequence

E2
pq = Hp(GL(R), Hq(gl(P ))) =⇒ Hp+q(GL(S)).

Since gl(P ) is an abelian group, its homology H∗(gl(P )) is known [18, Section 8].
Here is a way to put these groups in a more general framework.

Let P(R), or simply P, be the category of finitely generated projective left R-
modules. The category P is equivalent to a small category and therefore we can
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do homological algebra in Func(P, Ab). For a bifunctor D : Pop × P → Ab the
abelian group D(Rn, Rn) has a natural GLn(R)-module structure, with action on
both variable. Define pn : Rn+1 → Rn and in : Rn → Rn+1 by: pn(x1, . . . , xn+1) =
(x1, . . . , xn) and in(x1 . . . , xn) = (x1, . . . , xn, 0). They yield an homomorphism

D(pn, in) : D(Rn, Rn) −→ D(Rn+1, Rn+1)

which is compatible with the inclusions GLn(R) ⊂ GLn+1(R). At the limit, one
gets a GL(R)-module D∞ := colimn D(Rn, Rn). For example, when D(X, Y ) =
HomR(X, P ⊗R Y ) for a given bimodule P , then D∞ = gl(P ). Considering the
bifunctor defined by D(X, Y ) = Hq(HomR(X, P ⊗R Y )) recovers D∞ = Hq(gl(P )).

We are left with the general problem of understanding the groups H∗(GL(R), D∞).
This is achieved by comparing it with an appropriate notion of homology of a small
category for the category P (see Section 2.5). The group GLn(R) appears as the
subcategory of P consisting of the automorphisms of Rn, and this inclusion induces
an homomorphism

ψ∗ : H∗(GL(R), D∞) −→ H∗(P(R), D).

Unfortunately the homomorphism ψ∗ is very far from being an isomorphism in
general. Indeed, if D is a constant bifunctor, then H∗(P, D) vanishes in positive
dimensions, because P has a zero object, while the homology of the general linear
group is highly nontrivial in general. There is a trick due to Waldhausen [21, p. 387–
388], which simplifies the situation. Define the stable K-theory Kst

∗ (R, D) of R with
coefficients in D as the homology of the homotopy fiber of B GL(R) → B GL(R)+,
with twisted coefficients in D∞. In the resulting Serre spectral sequence

(1) E2
pq = H∗(GL(R), Kst

∗ (R, D)) =⇒ H∗(GL(R), D∞)

the action of GL(R) on Kst
∗ (R, D) is trivial (see [12]). The spectral sequence (1)

degenerates at E2 in many cases (see [4], or Section 5 in this paper). Moreover there
is a natural transformation

ν∗ : Kst
∗ (R, D) −→ H∗(P(R), D)

because H∗(P,−) is a universal sequence of functors defined on Func(Pop×P, Ab) (see
Lemma 2.1).

Scorichenko’s theorem 0.1 states that ν∗ is an isomorphism, if D has finite degree
with respect to both variables. For the definition of functors of finite degree we refer
the reader to Section 3. Symmetric, exterior or divided powers all have finite degree,
as does indeed the bifunctor defined by D(X, Y ) = Hq(HomR(X, P ⊗R Y )), which is
relevant to the above change of rings spectral sequence.
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2. Preliminaries from homological algebra

2.1. Universal sequences of functors. — We assume the reader to be familiar
with the basics of homological algebra and category theory, as in [5]. We recall the
following axiomatic characterization of derived functors, to be used several times in
this paper. Let A and B be abelian categories. A connected sequence of functors is a
sequence of additive functors (Tn : A → B)n!0 together with homomorphisms

∂n : Tn+1(C) −→ Tn(A)

for each exact sequence in A

0 −→ A
i−−→ B

s−−→ C −→ 0

which are natural in respect of maps of short exact sequences. A connected sequence
is exact if for each exact sequence 0 → A

i−→ B
s−→ C → 0 in A, the long sequence

in B

· · · −→ Tn+1(C) ∂−−→ Tn(A) i∗−−−→ Tn(B) s∗−−−→ Tn(C) −→ · · · −→ T0(C) −→ 0

is exact. Assume A has enough projective objects. A universal sequence of functors
is an exact connected sequence of functors such that Tn(P ) = 0 for all positive n and
all projective P . The following is a particular case of [5, Proposition III.5.2].

Proposition 2.1. — Let T : A → B be an additive covariant functor. Its left derived
functors (LnT : A → B)n!0 form a universal sequence of functors. Conversely,
if (Tn : A → B)n!0 is an exact connected sequence of functors, then there is a
unique morphism of connected sequence of functors (ξn : Tn → Ln(T0))n!0 such that
ξ0 : T0 → L0T0 is the canonical isomorphism. Furthermore ξn is an isomorphism for
all n ! 0 provided (Tn : A → B)n!0 is a universal sequence of functors.

2.2. A lemma on collapsing spectral sequences. — We now extend these no-
tions to spectral sequences of functors. A ∂-spectral sequence is for each A ∈ A a
upper-half-plane spectral sequence (Er

pq(A), dr)r!2 in B, which is natural in A ∈ A,
together with homomorphisms

∂r : Er
pq(C) −→ Er

p,q−1(A)

for each short exact sequence 0 → A
i−→ B

s−→ C → 0 in A, which are natural in
respect of maps of short exact sequences, and such that:

(i) for each r ! 2, ∂r+1 is the map induced in homology by ∂r

(ii) the diagrams

Er
pq(C) dr

!!

∂
""

Er
p−r,q+r−1(C)

∂
""

Er
p,q−1(A) dr

!! Er
p−r,q+r−2(A)

commute for all integers p, q, and r ! 2.
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Lemma 2.2. — Let A be an abelian category and let (Er
pq)r!2be a ∂-spectral sequence.

Assume that the following condition holds: For any C in A, there is a short exact
sequence 0 → A → B → C → 0 in A such that the maps ∂2: E2

pq(C) → E2
p,q−1(A) are

monomorphisms. Then the spectral sequence (Er
pq(C), dr)r!2 stops at E2 for any C

in A.

Proof. — We need to show that dr = 0 for each r. Let C be in A, and let 0 → A →
B → C → 0 be a short exact sequence as in the statement. Starting at the E2-level,
let us consider the commutative diagram:

E2
pq(C) d2

!!

∂
""

E2
p−2,q+1(C)

∂
""

E2
p,q−1(A) d2

!! E2
p−2,q(A)

By hypothesis, the right vertical map is mono. When q = 0, the left bottom term is 0:
hence d2

p0 = 0. We then proceed by induction on q, applying the induction hypothesis
to A to show that the bottom map is 0.

At the next stage, we have E3 = E2 and ∂3 = ∂2, by the first condition of a
∂-spectral sequence. Hence the conditions on the E2-term carry over to the E3-term,
and we repeat the argument ad lib.

2.3. Categories of functors. — For a small category C and a category A we let
Func(C,A) be the category of all functors from C to A and natural transformations
between them. The category Func(C,A) carries lots of the properties of A. It has
limits (resp. colimits) provided A has limits (resp. colimits). The limits and colimits
in Func(C,A) are computed pointwise. In particular, if A is an abelian category, then
Func(C,A) is also an abelian category: A sequence

0 −→ F −→ G −→ H −→ 0

is an exact sequence in Func(C,A) if

0 −→ F (X) −→ G(X) −→ H(X) −→ 0

is exact for all X ∈ C.
We are especially interested in the case when A is the category R-Mod of left

modules over a ring R. We restrict to this case for the rest of the section. To describe
projective generators in the category Func(C,A), we recall the Yoneda lemma.

Lemma 2.3 ([13]). — Let X be an object in C. For any functor

T : C −→ Sets

to the category of sets, there is a natural (in X) bijection

HomFunc(C,Sets)(HomC(X,−), T ) ∼= T (X),
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