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LECTURES ON THE COHOMOLOGY
OF FINITE GROUP SCHEMES

by

Eric M. Friedlander

Abstract. — We provide an introduction to the cohomology of finite group schemes,
a class of objects which includes finite groups and p-restricted Lie algebras. Various
qualitative results, known earlier for finite groups by work of Quillen and others, are
extended to this general context. Various computational techniques which arise from
classical homological algebra are recalled. We then proceed to discuss the essential
role of strict polynomial functors in the proof of the fundamental theorem which
asserts that the cohomology of a finite group scheme is finitely generated.

Résumé (Cohomologie des schémas en groupes finis). — Ce texte est une introduction à
la cohomologie des schémas en groupes finis. Cette classe d’objets contient les groupes
finis et les algèbres de Lie restreintes. Plusieurs résultats qualitatifs, établis pour les
groupes finis par Quillen et d’autres, leurs sont généralisés. On rappelle les méthodes
de calcul de l’algèbre homologique, puis on explique l’intervention déterminante des
foncteurs polynomiaux stricts dans la démonstration qui établit que la cohomologie
d’un schéma en groupes fini est de type fini.

0. Introduction

The goal of these lectures (which were presented in a preliminary form at the Nantes
meeting) is to provide an introduction to some of the techniques and computations
of cohomology of finite group schemes over a field k of characteristic p > 0 which
have been developed since the publication of J. Jantzen’s book [13] and to explain
the important role played by the cohomology of (strict polynomial) functors. The
focal point of these lectures is a theorem of E.Friedlander and A.Suslin asserting that
the cohomology of finite group schemes is finitely generated (see Theorem 4.7 below).
The somewhat innovative proof of this theorem has led to numerous further results; in
these lectures we have restricted attention to those results bearing on the qualitative
description of the cohomology algebra of a finite group scheme.
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28 E.M. FRIEDLANDER

The reader can obtain a quick guide to these edited lectures by glancing at the
table of contents. In the first lecture, we introduce the concepts and terminology
which underline our subject. In particular, we recall the definition of the Frobenius
kernels of an algebraic group and the Frobenius twists of a module. The second
lecture summarizes some of the techniques which one can find for example in [13]
which are used to compute cohomology. The relationship of this subject with the
theme of the Nantes meeting, cohomology in categories of functors, is explained in
the third lecture. Strict polynomial functors are introduced and their relationship
with polynomial representations is explained. The fourth lecture is dedicated to an
outline of the proof of finite generation of the cohomology of finite group schemes.
Here, computations of cohomology in the category of strict polynomial functors plays a
central role in the construction of certain universal classes; these computations follow
closely the computations of V.Franjou, J.Lannes, and L.Schwartz [8] of ordinary
functor cohomology. Finally, in Lecture 5 we describe how the techniques introduced
to prove finite generation lead to a qualitative description of the cohomology algebra
H∗(G, k) of a finite group scheme. This follows work of D. Quillen [15] who determined
the maximal ideal spectrum of the cohomology of a finite group.

1. Affine group schemes

Let k be a field of characteristic p > 0, fixed throughout this paper. We begin our
discussion by defining an affine group scheme (implicitly assumed to be over k) and
considering a few interesting examples.

Definition 1.1. — An affine group scheme is a representable functor

G : (fin.gen.comm.k-alg) −→ (grps)

We denote by k[G] the representing finitely generated commutative k-algebra (the
coordinate algebra) of G. To give such a representable functor is equivalent to giving
a finitely generated commutative Hopf algebra (over k).

Example 1.2. — G = Ga, the additive group. This is the functor which takes a com-
mutative k-algebra A to the underlying abelian group (which we might denote A+).
The coordinate algebra of Ga is k[Ga] = k[t], with coproduct ∆(t) = t ⊗ 1 + 1 ⊗ t.

Example 1.3. — G = GLn, the general linear group, sends a commutative k-algebra A
to the group of n×n invertible matrices {ai,j} with coefficients in A. The coordinate
algebra of GLn is given by

k[GLn] = k[xi,j , t]1!i,j!n

/
det(xi,j)t − 1

with coproduct
∆(xi,j) = Σxi,k ⊗ xk,j .
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COHOMOLOGY OF FINITE GROUP SCHEMES 29

Example 1.4. — Let π be a (discrete) group. We view π as an affine group scheme by
letting π also denote “the constant functor with value π.” In other words, this functor
sends a commutative k-algebra A to the group π|π0(A)|, where π0(A) is the set of
indecomposable non-trivial idempotents in A and |π0(A)| denotes the cardinality of
π0(A).

Example 1.5. — For any positive integer r, we consider the “r-th Frobenius kernel”
of GLn which is denoted GLn(r). This is the functor which sends a commutative
k-algeba A to the group of n×n invertible matrices (ai,j) with coefficients in A which
satisfy the property that apr

i,j = δi.j (i.e., equal to 1 if i = j and 0 otherwise). The
coordinate algebra k[GLn(r)] is the quotient of k[GLn] by the (Hopf) ideal generated
by xpr

i,j − δi,j . More explicitly, we can write k[GLn(r)] = k[xi,j ]/(xpr

i.j − δi,j).
Similarly, the r-th Frobenius kernel of Ga sends A to the group of elements of A

whose pr-th power is 0. The coordinate algebra of Ga(r) is given by k[Ga(r)] = k[t]/tp
r
,

whereas the dual algebra is given by kGa(r) = k[X1, . . . , Xr]/(Xp
i ) where one can view

the dual generator Xi as the operator
1

pi−1!
dpi−1

dtpi−1 on k[t].

Example 1.6. — Let g be a finite dimensional p-restricted Lie algebra of k and let
V (g) denote its restricted enveloping algebra, the quotient of the universal enveloping
algebra U(g) of g by the ideal generated by {Xp −X [p], X ∈ g} (where (−)[p] : g → g
is the p-th power operation of g), Then the k-linear dual of V (g), which we denote by
V (g)#, is a finite dimensional commutative Hopf algebra over k and thus corresponds
to an affine group scheme over k.

Remark 1.7. — An affine group scheme G is said to be finite if k[G] is finite dimen-
sional. For example, if G corresponds to a finite group π as in Example 1.4 or if G is a
group scheme as in Example 1.5 or G is associated to a finite dimensional p-restricted
Lie algebra as in Example 1.6, then G is a finite group scheme. The linear dual is
called the group algebra of G, denoted kG, consistent with the usual terminology of
the group algebra of a discrete group π. In Example 1.6, the group algebra kG of the
group scheme G associated to the p-restricted Lie algebra g is V (g), the restricted
enveloping algebra of g.

One usually refers to an affine group scheme G whose coordinate algebra is integral
(i.e., reduced and irreducible) as an (affine) algebraic group. For example, both Ga

of Example 1.2 and GLn of Example 1.3 are algebraic groups.

Remark 1.8. — A finite group scheme G is said to be infinitesimal if the coordinate
algebra k[G] is local. An infinitesimal group G is said to be of height ! r if G
admits a closed embedding G ↪→ GLn(r) (i.e., if apr

= 0 for every element a in the
augmentation ideal of k[G]). For any infinitesimal group scheme G of height 1 we
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have an isomorphism of algebras:

kG ≃ V (LieG).

Conversely, if g is a finite dimensional p-restricted Lie algebra, then V (g)# is the
coordinate algebra of an infinitesimal group scheme G of height 1. This establishes
an equivalence of categories between finite dimensional p-restricted Lie algebras and
infinitesimal group schemes of height 1.

We next introduce the concept of a G-module for an affine group scheme (sometimes
called a rational G-module).

Definition 1.9. — Let G be an affine group scheme over k. Then a G-module M is a
k-vector space provided with an A-linear group action

(1.10) G(A) × (M ⊗ A) −→ M ⊗ A

for all finitely generated commutative k-algebras A, functorial with respect to A.
(Here, and below, the tensor product is over k.)

Equivalently, such a G-module M is a k-vector space provided with the structure
of a comodule for k[G]; namely, a k-linear map

(1.11) ∆M : M −→ M ⊗ k[G].

To verify this equivalence, observe that the pairing (1.10) in the special case A =
k[G] is written

Homk-alg(k[G], k[G]) × (M ⊗ k[G]) −→ M ⊗ k[G].

This determines a comodule structure of the form (1.11) by restricting to Idk[G] ∈
Homk-alg(k[G], k[G]). Conversely, given a comodule structure ∆M , we get a pairing of
the form (1.10) as the following composition

Homk-alg(k[G], A) × (M ⊗ A) −→ Homk-alg(k[G], A) × (M ⊗ k[G] ⊗ A)

−→ M ⊗ A ⊗ A −→ M ⊗ A

where the first map is given by ∆M , the second by the natural pairing, and the third
by the ring structure on A.

If M is a G-module, then the G-invariant submodule of M is the G-submodule
with trivial G-action given by

MG = {m ∈ M | g · (m ⊗ 1) = m ⊗ 1, ∀A, g ∈ G(A)}

which is readily seen to be equal

MG = {m ∈ M | ∆M (m) = m ⊗ 1}.

If M, N are two G-modules, then the tensor product (over k) M ⊗ N has a natural
structure of a G-module given by embedding G diagonally in G × G; this is written
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succinctly in terms of ∆M , ∆N as the following composition involving the product
structure of the ring k[G]:

· ◦ (∆M ⊗ ∆N ) : M ⊗ N −→ (M ⊗ k[G]) ⊗ (N ⊗ k[G]) −→ M ⊗ N ⊗ k[G].

If the G-module M is finite dimensional (as a k vector space), we may give an-
other useful formulation of the concept of a G-module. Namely, suppose that M is
n-dimensional and identify the affine group scheme of k-automorphisms of M with
GLn. Then to give M the structure of a G-module is equivalent to giving a homo-
morphism ρM : G → GLn of affine group schemes.

An important example of a G-module is the coordinate algebra itself. We readily
check that the coproduct on k[G], ∆ : k[G] → k[G] ⊗ k[G], corresponds to the right
regular representation of G on the functions of G: (g ∈ G, f(−) ∈ k[G]) )→ f(− · g) ∈
k[G].

Suppose that H ⊂ G is a closed subgroup scheme of the affine group scheme G
(i.e., k[G] → k[H ] is surjective). Then for any H-module N , we consider the H-fixed
points of k[G] ⊗ N , where H acts on k[G] via the right regular representation. We
use the notation

IndG
H N = (k[G] ⊗ N)H

to denote the G-module with G action given by the left regular representation of G
on k[G].

One very useful aspect of this induction functor is given by the following theorem
which is often called Frobenius reciprocity.

Theorem 1.12 (cf. [13, 3.4]). — If H ⊂ G is a closed subgroup of the affine group
scheme G, then IndG

H(−) is right adjoint to the restriction functor. In other words,
for every H-module N and every G-module M , there is a natural isomorphism

HomH(M, N) ≃ HomG(M, IndG
H N).

In particular, if N is an injective H-module, then IndG
H N is an injective G-module.

For example, k[G] = IndG
e k is an injective G-module.

Observe that sending m ∈ M to m ⊗ ε ∈ M ⊗ k[G] determines a homomorphism
M → M ⊗ k[G] of G-modules, where ε : G → k is evaluation at the identity (i.e.,
the co-unit of the Hopf algebra k[G]). A direct calculation shows that the map
M ⊗ k[G] → Mtr ⊗ k[G] defined by m ⊗ f )→ (1 ⊗ f)∆M (m) is an isomorphism of
G-modules, where Mtr is a trivial G-module isomorphic to M as a k-vector space.
Since k[G] is an injective G-module, this verifies that any G-module can be embedded
into an injective module.

Consequently, the category of G-modules is an abelian category with enough in-
jectives, so that we may use standard homological algebra to define

Exti
G(M, N) = Ri HomG(M,−)(N)
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