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THE FARGUES-FONTAINE CURVE AND DIAMONDS
[d’après Fargues, Fontaine, and Scholze]

by Matthew MORROW

1. INTRODUCTION

The goal of this text is to overview the Fargues-Fontaine curve, its role in p-adic
Hodge theory, and its relation to Scholze’s theory of perfectoid spaces and diamonds.
On the other hand, we do not touch on the role of the curve in local class field theory
[11, 15] or in the local Langlands correspondence [14].

1.0.1. The literature. — The definitive text on the foundations of the curve is the
book by Fargues and Fontaine [17]. There exist several more introductory articles,
in particular Colmez’s extensive preface [7] to the book, Fargues’ recent ICM text
[13], and Fargues-Fontaine’s Durham survey [16]. In view of these articles, which
were very useful when preparing the current text and which we highly recommend
to readers with a background in p-adic arithmetic geometry, we have attempted to
present the theory here with the non-expert in mind. In particular, Sections 2–3 should
be accessible to any reader with a knowledge of elementary algebraic geometry.

Concerning diamonds, Scholze’s Berkeley lecture notes [32] contain the main con-
cepts, while [31] is the source for the technical foundations, and his ICM text [30]
gives an overview. Section 4 on diamonds is sparse on details but we have attempted
to indicate some of the main ideas of the theory.

1.0.2. What is the curve? — Let us begin by recalling the old analogy between the
integers Z and the ring C[z] of polynomials in one variable over the complex num-
bers. They are both principal ideal domains, even Euclidean domains, with Euclidean
function given respectively by the usual absolute value |·| coming from R and by poly-
nomial degree. Geometrically, C[z] (whose monic prime polynomials identify with the
complex plane via x 7→ z − x) is the set of functions on the Riemann sphere P1

C
whose only pole is at infinity, and the degree of a polynomial is precisely the order of
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this pole. Analogously, arithmetic geometry views Z as functions on the set of prime
numbers, with an extra point at infinity being provided by the real numbers or equiv-
alently by | · |. Motivated by this analogy, it is not uncommon to develop analogues
of geometric tools for the Riemann sphere (e.g., vector bundles, sheaves, cohomol-
ogy,. . . ) when doing arithmetic geometry over Z. This approach, although fruitful,
can only be taken so far, since the point at infinity for Z is no longer algebraic and
so the compactification-at-infinity {primes}∪ {| · |} is no longer an algebro-geometric
object.

The theory of Fargues and Fontaine takes this analogy much further if we focus
on a given prime number p and replace arithmetic geometry over Z by arithmetic
geometry over Zp or Qp. The Euclidean domain Z or C[z] is now replaced by a certain
Qp-algebraBe (coming from p-adic Hodge theory), which is again (almost) a Euclidean
domain with the Euclidean structure arising from a point at infinity. But, whereas
in the case of Z the point at infinity was outside the world of algebraic geometry,
we are now in a situation much closer to that of the Riemann sphere: there exists an
actual curve (in a sense of algebraic geometry) XFF whose functions regular away from
a certain point at infinity are the ring Be and whose geometric and cohomological
properties (which are similar to those of P1

C) encode significant information about
arithmetic geometry over Qp. This is the fundamental curve of p-adic Hodge theory,
or the Fargues-Fontaine curve.

1.0.3. Overview. — We will return to the above point-at-infinity perspective after
Theorem 1.1 but first, given our goal of diamonds, we wish to introduce the Fargues-
Fontaine curve as a space of untilts. Here “untilt” refers to the tilting–untilting cor-
respondence of Scholze through which one passes between geometry over the char-
acteristic zero field Qp and over the characteristic p field Fp [23, 29]. For example,
let Cp be the “p-adic complex numbers,” i.e., the p-adic completion of the algebraic
closure of Qp; then its tilt C[p, whose definition we will recall in Section 2.1, is a
field with similar superficial structure to Cp but it is an extension of Fp rather than
of Qp. A fundamental motivating question for both the curve and for diamonds is the
following:

Putting F = C[p, do there exist fields C ⊇ Qp other than Cp such that C[ = F ?
Informally, do there exist other ways of passing back to characteristic zero from
characteristic p ?

More precisely, since equality is clearly not the right notion, let |YF | denote the
set of untilts (C, ι), where C is a suitable extension of Qp and ι : F

'→ C[ is a
specified isomorphism; such pairs are taken up to an obvious notion of equivalence.
A coarser notion of equivalence is obtained by taking the Frobenius automorphism
ϕ : F

'→ F , x 7→ xp, into account, thereby leading to the set of untilts up to Frobenius
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equivalence |YF |/ϕZ. The remarkable theorem of Fargues and Fontaine states that this
set of untilts admits the structure of a “smooth, complete curve” (see Definition 2.6),
now known as the Fargues-Fontaine curve XFF

F of F .

Theorem 1.1 (Fargues-Fontaine). — The set |YF |/ϕZ is the underlying set of points
of a complete curve XFF

F .

We can now make more precise Paragraph 1.0.2 about points at infinity; see Sec-
tions 2.2–2.3 for details. The original field Cp is itself an untilt of F , thereby giving
us a preferred point ∞ ∈ XFF

F . The ring of functions on XFF
F which are regular away

from ∞ turns out to equal the Frobenius-fixed subring Be := Bϕ=1
crys of the classical

crystalline period ring of Fontaine [21]; meanwhile, the completed germs of meromor-
phic functions at ∞ equals his classical de Rham period ring BdR. The classical (and
subtle) so-called fundamental exact sequence of p-adic Hodge theory

0 −→ Qp −→ Be −→ BdR/B
+
dR −→ 0

then translates into a simple cohomological vanishing statement about the curve XFF
F .

In this way the Fargues-Fontaine curve may be viewed as subtly gluing together Be
(which is almost a Euclidean domain) and BdR (which is a complete discrete valuation
field), in the same way as the Riemann sphere P1

C glues together C[z] (= functions
on P1

C regular away from infinity) and C(( 1
z )) (= completed germs of meromorphic

functions at infinity). Moreover, just as for P1
C, the sum of the orders of zeros/poles

of any meromorphic function on XFF
F is zero, which is precisely what it means for XFF

F

to be “complete”.
Another similarity between the Fargues-Fontaine curve and the Riemann sphere

is their vector bundles. On the Riemann sphere, a theorem of Grothendieck states
that any vector bundle is isomorphic to

⊕m
i=1 OP1

C
(λi) for some unique sequence of

integers λ1 ≥ · · · ≥ λm, where OP1
C
(λ) is the usual twisted line bundle of degree λ.

On the Fargues-Fontaine curve the situation is more complicated, as there exist non-
decomposable “rational twists” OXFF

F
(λ), for λ ∈ Q (this is only a line bundle if λ ∈ Z;

in general its rank is given by the denominator of λ), but then Fargues and Fontaine
establish the following analog of Grothendieck’s theorem:

Theorem 1.2 (Fargues-Fontaine). — Let E be a vector bundle on XFF
F . Then there

exists a unique sequence of rational numbers λ1 ≥ · · · ≥ λm such that E is isomorphic
to
⊕m

i=1 OXFF
F

(λi).

The proof of Theorem 1.2, which we discuss in Section 3.2 but which is beyond
the scope of this survey, requires a range of deep techniques including p-divisible
groups and p-adic period mappings. Conversely, it encodes enough information to have
important applications to classical questions in p-adic Hodge theory. For example, we
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use it in Section 3.3 to explain a short proof of Fontaine’s “weakly admissible implies
admissible” conjecture about Galois representations from 1988 [22] (resolved first by
Colmez-Fontaine in 2000 [8]). The key idea is that many linear algebraic objects
of p-adic Hodge theory (modules with filtration, with Frobenius,. . . ) may be used to
build vector bundles on XFF

F , which may then be analyzed through Theorem 1.2. An
important technique in such analyses is the general rank-degree formalism of Harder
and Narasimhan [25], which applies to vector bundles on any curve; we review their
theory in Section 3.1.

We now turn to Scholze’s theory of diamonds. Recall that our motivating goal is
to classify untilts of the characteristic p field F . In the world of diamonds, such an
untilt corresponds to a “morphism” from Qp to F : of course, algebraically there exist
no homomorphisms between fields of different characteristic, but diamonds provide a
theory of p-adic geometry in which everything is of characteristic p in some sense. Even
more interestingly, the choice of two untilts of F (i.e., two points of |YF |) corresponds
to a morphism from Qp⊗Qp to F , where −⊗− refers to an absolute tensor product for
diamonds. (To avoid misleading the reader, we caution that there is no set-theoretic
object Qp⊗Qp, nor set-theoretic map Qp → F , only the associated diamond.) Weil’s
simple proof [34] of the Riemann hypothesis for a curve C over a finite field Fq crucially
depends on the geometry of the surface C ×Fq

C , and a well-known philosophy predicts
that there should exist a similar object “Z⊗F1

Z” in arithmetic geometry. Diamonds
appear to provide this object p-adically. (We emphasize that this is not an empty
philosophy: the “shtukas” of Drinfeld [9] which are central in the geometric Langlands
correspondence for C also involve C ×Fq

C , and Fargues and Scholze’s ongoing work on
arithmetic local Langlands uses diamonds to develop an analogous theory over Qp [18,
32].)

In Section 4 we attempt to explain these ideas more precisely by defining the
category of diamonds. Scholze associates to any reasonable adic space X (e.g., the
analytification of a variety over a non-archimedean field such as Qp, Cp, or F ) a
diamond which classifies certain untilts of perfectoid spaces. For example, Qp and
F themselves give rise to diamonds Spd(Qp) and Spd(F ) and, as we suggested in
the previous paragraph, morphisms of diamonds Spd(F )→ Spd(Qp) are exactly the
untilts of F (the morphism has changed direction, as usual when passing from algebra
to geometry). From the point of view of diamonds, the Fargues-Fontaine curve gains
the following beautiful interpretation:

Theorem 1.3 (Scholze). — The diamond associated to the Fargues-Fontaine
curve XFF

F is naturally isomorphic to the product

Spd(F )/ϕZ × Spd(Qp).
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Finally, in Section 5 we give a detailed sketch of the construction of the Fargues-
Fontaine curve; this is necessarily slightly technical (though, in principal, it only
requires some elementary algebraic geometry and some comfort manipulating large
p-adic algebras) and may be safely ignored by readers uninterested in the ac-
tual construction. It begins by observing that Fontaine’s infinitesimal period ring
Ainf,F := W (OF ) (i.e., Witt vectors of the ring of integers of F ) may be naturally
viewed as a ring of functions on the set |YF |. Fargues and Fontaine substantially
develop this point of view by introducing a topological structure on |YF | and re-
placing Ainf,F by a larger ring of functions BF ; this is the largest reasonable ring of
continuous functions on |YF | in the sense that y 7→ {f ∈ BF : f(y) = 0} identifies
|YF | with the closed maximal ideals of BF (see Prop. 5.4). Moreover, each of these
ideals is principal, generated by a so-called primitive element of degree one, indicating
that |YF | is one-dimensional in some sense.

The Frobenius action on |YF | from before Theorem 1.1 turns out to be properly
discontinuous, whence |YF |/ϕZ inherits a topology making it locally homeomorphic
to |YF |. The next step is to construct functions on |YF |/ϕZ. Unfortunately, the only
ϕ-invariant functions on |YF | are constant. Instead, Fargues and Fontaine develop
a theory of Weierstrass products to construct, for each point y ∈ |YF |, a func-
tion ty ∈ BF satisfying ϕ(ty) = pty and with a simple zero at each point of the
discrete set ϕZ(y) ⊆ |YF | and no other zeros or poles. So, given any other function
g ∈ BF satisfying ϕ(g) = pg, we obtain a meromorphic function g/ty on |YF |/ϕZ

which is regular away from the image of y. Fargues and Fontaine prove that this pro-
cess generates all functions on |YF |/ϕZ or rather, in more precise algebro-geometric
language:

Theorem 1.4 (Fargues-Fontaine). — 1. The graded ring
⊕

k≥0B
ϕ=pk

F is graded
factorial, with irreducible elements of degree one.

2. The closed points of the scheme Proj(
⊕

k≥0B
ϕ=pk

F ) canonically identify with the
set |YF |/ϕZ.

Part (1) of Theorem 1.4 is a central result in the entire theory; in particular, it
more or less formally implies that the Fargues-Fontaine curve, which we may now
define, really is a curve:

Definition 1.5. — The Fargues-Fontaine curve is

XFF
F := Proj(

⊕
k≥0

Bϕ=pk

F ).

We will see earlier in Section 2.3 a similar (and ultimately equivalent) definition
of XFF

F in terms of the crystalline period ring.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2019


