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Abstract. — We show several results providing global fixed points for nilpotent groups
of orientation-preserving C1 diffeomorphisms of the plane R2. The main cases are
namely groups of diffeomorphisms of the sphere such that ∞ is a global fixed point,
groups of diffeomorphisms preserving a non-empty compact set and finally groups of
diffeomorphisms preserving a probability measure.

Résumé (Points fixes des actions nilpotentes de R2). — Nous montrons plusieurs résultats
d’existence de points fixes pour des groupes nilpotents de difféomorphismes de
classe C1 du plan R2. Les cas principaux sont ceux de groupes de dfféomorphismes
de la sphère fixant le point à l’infini, de groupes de difféomorphismes fixant un
compact donné du plan, et finalement de groupes de difféomorphismes préservant
une mesure de probabilité.

1. Introduction

We present here some results of existence of a global fixed point for a nilpotent
group G of orientation preserving plane diffeomorphisms, which means a point fixed
by every element of G. We denote Diff1

+(R2) the group of orientation preserving
diffeomorphisms of class C1 of R2.

Let us state the key result:

Theorem 1. — Let G be a nilpotent subgroup of Diff1
+(R2) that preserves a non-empty

compact set. Then G has a global fixed point.
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A global fixed point is a common fixed point for all elements of the group G.
Theorem 1 was proved by Franks, Handel and Parwani [6] in the particular case of a
finitely generated abelian group and extended by the third author [10] to the case of
a finitely generated nilpotent group. We will see here that the finiteness condition is
not necessary.

The groupG being nilpotent, it preserves a Borel probability measure (which means
that the measure is invariant by every element of G) if it preserves a non-empty
compact set. Does the conclusion of the theorem still holds supposing this weaker
condition? We will see that the answer is yes supposing an extra property introduced
in [2] that we will explain now. Every orientation preserving homeomorphism φ of R2 is
isotopic to the identity. Fix an isotopy I = (φt)t∈[0,1] from φ0 = Id to φ1 = φ and
note Iz : t 7→ φt(z) the trajectory of a point z ∈ R2 along the isotopy. One can define
the linking number LinkI(z, z

′) ∈ R of two different points of φ by setting

LinkI(z, z
′) =

∫
Iz−Iz′

dθ,

where dθ = 1
2π

xdy−ydx
x2+y2 is the usual angular form (x and y being the cartesian

coordinates on R2) and Iz − Iz′ : [0, 1] → R2 \ {(0, 0)} is the path defined by
(Iz − Iz′)(t) = φt(z)− φt(z′). If I ′ is another isotopy from Id to φ, there exists an
integer k ∈ Z such that LinkI′(z, z

′) = LinkI(z, z
′) + k for every pair of distinct

points. Note that LinkI(z, z
′) ∈ Z if z and z′ are fixed points of φ because Iz − Iz′ is

a closed path in that case. We denote ∆ = {(z, z′) ∈ R2 × R2 | z = z′} and consider
the following condition, that depends only on φ:

(P1) the map LinkI is uniformly bounded on (Fix(φ)× Fix(φ)) \∆.

The notation Fix(φ) stands for the fixed point set of φ. The second theorem is the
following:

Theorem 2. — Let G be a nilpotent subgroup of Diff1
+(R2) that preserves a Borel prob-

ability measure µ. Suppose that φ satisfies (P1) for any φ ∈ G. Then G has a global
fixed point.

This theorem was proved by Béguin, Le Calvez, Firmo and Miernowski [2] under
three additional hypotheses, namely:

— G is abelian,
— G is finitely generated,
— every element of G satisfies the property (P2).

This last property can be stated as follows

(P2) the function TurnI : z 7→
∫
Iz
dθ is constant in W ∩ Fix(φ) for some neighbor-

hood W of ∞.

Their proof shows the existence of a bounded G-orbit if the support of the measure
is not contained in the set Fix(G) :=

⋂
φ∈G Fix(φ) of global fixed points of G. It

remains to apply the version of Theorem 1 proved by Franks, Handel and Parwani in
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the case of a finitely generated abelian subgroup. Of course, to get Theorem 2 we will
benefit from Theorem 1 but we will have to replace (P2) with a weaker condition (P2)′

that we use to show that there exists a bounded G-orbit if the support of µ is not
contained in Fix(G).

An interesting situation where properties (P1) and (P2) are satified is the case
where φ extends to a diffeomorphism φ of the 2-sphere. Set S2 = R2 t{∞} and write
Diff1

+(R2,∞) for the subgroup of Diff1
+(R2) that consists of diffeomorphisms whose

natural extension to S2 is a diffeomorphism of class C1. More precisely, φ belongs
to Diff1

+(R2,∞) if the map z 7→ 1/φ(1/z), defined if z is close to 0, extends to a
diffeomorphism in a neighborhood of 0. One can blow-up∞ adding to R2 the circle S∞
of half lines of the tangent plane T∞S2 in such a way that every φ ∈ Diff1

+(R2,∞)

extends to the compact space R2 t S∞ in a homeomorphism that coincides with the
natural action of Dφ(∞) on S∞. If the extension has no fixed point on S∞, the fixed
point set of φ is a compact subset of R2 and (P1) and (P2) are obviously satisfied. If
it has a fixed point, every isotopy in Diff1

+(R2) from Id to φ is homotopic (relative to
the ends) to an isotopy in Diff1

+(R2,∞). One gets a natural isotopy on S∞ defined
by the action of Dφ(∞). Say that I is adapted if the time one map of the lift of this
isotopy to the universal covering of S∞ has a fixed point (or equivalently if the real
rotation number of the time one map is equal to 0). Say that an isotopy in Diff1

+(R2)

from Id to φ is adapted if it is homotopic (relative to the ends) to such an isotopy
in D, where D is the set of diffeomorphisms φ ∈ Diff1

+(S2,∞) such that Dφ(∞) has
real positive eigenvalues. The function LinkI does not depend on the choice of the
adapted isotopy I and will be written Linkφ. If z is a fixed point of φ ∈ Diff1

+(R2),
every isotopy in Diff1

+(R2) from Id to φ is homotopic (relative to the ends) to an
isotopy I = (φt)t∈[0,1] in Diff1

+(R2,∞) that fixes z. Similarly, one can blow up z

adding to R2 the circle Sz of half lines of the tangent plane TzR2 and look at the
natural action of Dφt(z) on Sz. One denotes τI(z) the real rotation number of the
time one map. It depends only on the homotopy class of I in Diff1

+(R2). If φ belongs
to D and φ has a fixed point on S∞ we will write τφ(z) = τI(z) if I is adapted.
The following result gives more information than Theorem 2 in case we are working
in Diff1

+(R2,∞). If not stated exactly as below, it was already shown in [2] in the case
of a finitely generated abelian group. By definition a fixed point free group is a group
with no global fixed points.

Theorem 3. — Let G ⊂ Diff1
+(R2,∞) be a fixed point free nilpotent group and G the

group of extensions to R2 t S∞. Then:
1. G has a fixed point on S∞;
2. if φ ∈ G, then Fix(φ) is either empty or unbounded;
3. every finite invariant measure of φ ∈ G is supported on Fix(φ) and consequently

every periodic point of φ is fixed;
4. for every φ ∈ G and every z ∈ Fix(φ), one has τφ(z) = 0;
5. every φ ∈ G is isotopic to the identity relative to Fix(φ);
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6. for every φ ∈ G, the function 1
n

∑n−1
k=0 Linkφ ◦ (φk × φk) converges uniformly

to 0 on (R2 × R2) \∆.

Let us explain now the plan of the article. We will prove Theorem 3 in Section 2
assuming Theorem 1. Among the three theorems, this is the less technical one. Up to
a slight modification of the developed mathematical objects, the arguments used in
[2] for the abelian case have a natural extension to the nilpotent case.

Theorem 1 will be proved in Sections 3 and 4. As said before, it was proved for
finitely generated groups [10], as the following simple corollary using the finite in-
tersection property for compact sets, where the hypothesis on the finite generation
of G is replaced by a compactness property. This result will be used very often in the
article and we recall the proof.

Theorem 4 ([10]). — Let G be a nilpotent subgroup of Diff1
+(R2). Suppose there exists

φ ∈ G such that Fix(φ) is a non-empty compact set. Then G has a global fixed point.

Proof. — Let us begin by proving the theorem in case G is finitely generated. Write

Z(0)(G) = {Id}C Z(1)(G) C · · ·C Z(r−1)(G) C Z(r)(G) = G

for the ascending central series, defined inductively by the property that
Z(k+1)(G)/Z(k)(G) is the center of G/Z(k)(G), the integer r being the nilpotency
class of G. Consider the following subnormal series

〈φ〉 = 〈φ,Z(0)(G)〉C 〈φ,Z(1)(G)〉C · · ·C 〈φ,Z(r−1)(G)〉C 〈φ,Z(r)(G)〉 = G.

To get the result, let us prove inductively on s ∈ {0, . . . , r} that Fix〈φ,Z(s)(G)〉 6= ∅.
By assumption the property is true for s = 0. Let us suppose that it is true for s < r.
The set Fix〈φ,Z(s)(G)〉 is invariant by 〈φ,Z(s+1)(G)〉 because 〈φ,Z(s)(G)〉 is a nor-
mal subgroup of 〈φ,Z(s+1)(G)〉. Moreover Fix〈φ,Z(s)(G)〉 is non-empty by hypoth-
esis, and compact because is included in Fix(φ). Since every subgroup of a finitely
generated nilpotent group is finitely generated (cf. [11, 5.2.17]), it follows that the
group 〈φ,Z(s+1)(G)〉 is finitely generated. Since 〈φ,Z(s+1)(G)〉 is also nilpotent and
preserves a non-empty compact set, it has a global fixed point by Theorem 1 for the
finitely generated case [10].

In the general case the first part of the proof implies that Fix(Γ) is a non-empty
compact set for any finitely generated subgroup Γ of G containing φ. Given finitely
generated subgroups Γ1, . . . ,Γm of G containing φ, the intersection

⋂n
i=1 Fix(Γi) is the

fixed point set of the finitely generated group 〈
⋃n
i=1 Γi〉 and hence non-empty. Since

Fix(φ) is compact and the family {Fix〈φ, f〉}f∈G has the finite intersection property,
it follows that Fix(G) =

⋂
f∈G Fix〈φ, f〉 is a non-empty compact subset of Fix(φ).

We will see later that we can replace the hypothesis on Fix(φ) in Theorem 4 by a
weaker compactness property. More precisely, in order to prove Theorem 1 it suffices
to show the following theorem:
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