ASTÉRISQUE

415

2020

SOME ASPECTS OF THE THEORY OF DYNAMICAL SYSTEMS: A TRIBUTE TO JEAN-CHRISTOPHE YOCCOZ

Volume I

Fixed points of nilpotent actions on \mathbb{R}^2

Sebastião Firmo & Patrice Le Calvez & Javier Ribón

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Astérisque 415, 2020, p. 113–156 doi:10.24033/ast.1102

FIXED POINTS OF NILPOTENT ACTIONS ON \mathbb{R}^2

by

Sebastião Firmo, Patrice Le Calvez & Javier Ribón

En hommage à Jean-Christophe Yoccoz

Abstract. — We show several results providing global fixed points for nilpotent groups of orientation-preserving C^1 diffeomorphisms of the plane \mathbb{R}^2 . The main cases are namely groups of diffeomorphisms of the sphere such that ∞ is a global fixed point, groups of diffeomorphisms preserving a non-empty compact set and finally groups of diffeomorphisms preserving a probability measure.

Résumé (Points fixes des actions nilpotentes de \mathbb{R}^2). — Nous montrons plusieurs résultats d'existence de points fixes pour des groupes nilpotents de difféomorphismes de classe C^1 du plan \mathbb{R}^2 . Les cas principaux sont ceux de groupes de difféomorphismes de la sphère fixant le point à l'infini, de groupes de difféomorphismes fixant un compact donné du plan, et finalement de groupes de difféomorphismes préservant une mesure de probabilité.

1. Introduction

We present here some results of existence of a global fixed point for a nilpotent group G of orientation preserving plane diffeomorphisms, which means a point fixed by every element of G. We denote $\text{Diff}^1_+(\mathbb{R}^2)$ the group of orientation preserving diffeomorphisms of class C^1 of \mathbb{R}^2 .

Let us state the key result:

Theorem 1. — Let G be a nilpotent subgroup of $\text{Diff}^1_+(\mathbb{R}^2)$ that preserves a non-empty compact set. Then G has a global fixed point.

2010 Mathematics Subject Classification. — 37E30, 57S25.

Key words and phrases. — Fixed point, nilpotent group, linking number, rotation number, Thurston-Nielsen decomposition.

A global fixed point is a common fixed point for all elements of the group G. Theorem 1 was proved by Franks, Handel and Parwani [6] in the particular case of a finitely generated abelian group and extended by the third author [10] to the case of a finitely generated nilpotent group. We will see here that the finiteness condition is not necessary.

The group G being nilpotent, it preserves a Borel probability measure (which means that the measure is invariant by every element of G) if it preserves a non-empty compact set. Does the conclusion of the theorem still holds supposing this weaker condition? We will see that the answer is yes supposing an extra property introduced in [2] that we will explain now. Every orientation preserving homeomorphism ϕ of \mathbb{R}^2 is isotopic to the identity. Fix an isotopy $I = (\phi_t)_{t \in [0,1]}$ from $\phi_0 = \text{Id to } \phi_1 = \phi$ and note $I_z : t \mapsto \phi_t(z)$ the trajectory of a point $z \in \mathbb{R}^2$ along the isotopy. One can define the linking number $\text{Link}_I(z, z') \in \mathbb{R}$ of two different points of ϕ by setting

$$\operatorname{Link}_{I}(z, z') = \int_{I_{z}-I_{z'}} d\theta,$$

where $d\theta = \frac{1}{2\pi} \frac{xdy-ydx}{x^2+y^2}$ is the usual angular form $(x \text{ and } y \text{ being the cartesian coordinates on } \mathbb{R}^2)$ and $I_z - I_{z'}$: $[0,1] \to \mathbb{R}^2 \setminus \{(0,0)\}$ is the path defined by $(I_z - I_{z'})(t) = \phi_t(z) - \phi_t(z')$. If I' is another isotopy from Id to ϕ , there exists an integer $k \in \mathbb{Z}$ such that $\operatorname{Link}_{I'}(z,z') = \operatorname{Link}_I(z,z') + k$ for every pair of distinct points. Note that $\operatorname{Link}_I(z,z') \in \mathbb{Z}$ if z and z' are fixed points of ϕ because $I_z - I_{z'}$ is a closed path in that case. We denote $\Delta = \{(z,z') \in \mathbb{R}^2 \times \mathbb{R}^2 | z = z'\}$ and consider the following condition, that depends only on ϕ :

(P1) the map Link_I is uniformly bounded on $(Fix(\phi) \times Fix(\phi)) \setminus \Delta$.

The notation $Fix(\phi)$ stands for the fixed point set of ϕ . The second theorem is the following:

Theorem 2. — Let G be a nilpotent subgroup of $\text{Diff}^1_+(\mathbb{R}^2)$ that preserves a Borel probability measure μ . Suppose that ϕ satisfies **(P1)** for any $\phi \in G$. Then G has a global fixed point.

This theorem was proved by Béguin, Le Calvez, Firmo and Miernowski [2] under three additional hypotheses, namely:

- -G is abelian,
- G is finitely generated,
- every element of G satisfies the property (P2).

This last property can be stated as follows

(P2) the function $\operatorname{Turn}_I : z \mapsto \int_{I_z} d\theta$ is constant in $W \cap \operatorname{Fix}(\phi)$ for some neighborhood W of ∞ .

Their proof shows the existence of a bounded *G*-orbit if the support of the measure is not contained in the set $\operatorname{Fix}(G) := \bigcap_{\phi \in G} \operatorname{Fix}(\phi)$ of global fixed points of *G*. It remains to apply the version of Theorem 1 proved by Franks, Handel and Parwani in the case of a finitely generated abelian subgroup. Of course, to get Theorem 2 we will benefit from Theorem 1 but we will have to replace (P2) with a weaker condition (P2)' that we use to show that there exists a bounded G-orbit if the support of μ is not contained in Fix(G).

An interesting situation where properties (P1) and (P2) are satisfied is the case where ϕ extends to a diffeomorphism $\overline{\phi}$ of the 2-sphere. Set $\mathbb{S}^2 = \mathbb{R}^2 \sqcup \{\infty\}$ and write $\operatorname{Diff}^1_+(\mathbb{R}^2,\infty)$ for the subgroup of $\operatorname{Diff}^1_+(\mathbb{R}^2)$ that consists of diffeomorphisms whose natural extension to \mathbb{S}^2 is a diffeomorphism of class C^1 . More precisely, ϕ belongs to $\operatorname{Diff}^1_+(\mathbb{R}^2,\infty)$ if the map $z \mapsto 1/\phi(1/z)$, defined if z is close to 0, extends to a diffeomorphism in a neighborhood of 0. One can blow-up ∞ adding to \mathbb{R}^2 the circle S_{∞} of half lines of the tangent plane $T_{\infty}\mathbb{S}^2$ in such a way that every $\phi \in \text{Diff}^1_+(\mathbb{R}^2,\infty)$ extends to the compact space $\mathbb{R}^2 \sqcup \mathbb{S}_\infty$ in a homeomorphism that coincides with the natural action of $D\overline{\phi}(\infty)$ on S_{∞} . If the extension has no fixed point on S_{∞} , the fixed point set of ϕ is a compact subset of \mathbb{R}^2 and (P1) and (P2) are obviously satisfied. If it has a fixed point, every isotopy in $\text{Diff}^1_+(\mathbb{R}^2)$ from Id to ϕ is homotopic (relative to the ends) to an isotopy in $\text{Diff}^1_+(\mathbb{R}^2,\infty)$. One gets a natural isotopy on S_∞ defined by the action of $D\overline{\phi}(\infty)$. Say that I is adapted if the time one map of the lift of this isotopy to the universal covering of S_{∞} has a fixed point (or equivalently if the real rotation number of the time one map is equal to 0). Say that an isotopy in $\text{Diff}^1_{\perp}(\mathbb{R}^2)$ from Id to ϕ is adapted if it is homotopic (relative to the ends) to such an isotopy in \mathcal{D} , where \mathcal{D} is the set of diffeomorphisms $\phi \in \text{Diff}^1_+(\mathbb{S}^2,\infty)$ such that $D\overline{\phi}(\infty)$ has real positive eigenvalues. The function Link_{I} does not depend on the choice of the adapted isotopy I and will be written $\operatorname{Link}_{\phi}$. If z is a fixed point of $\phi \in \operatorname{Diff}_{+}^{1}(\mathbb{R}^{2})$, every isotopy in $\text{Diff}^1_+(\mathbb{R}^2)$ from Id to ϕ is homotopic (relative to the ends) to an isotopy $I = (\phi_t)_{t \in [0,1]}$ in $\operatorname{Diff}^1_+(\mathbb{R}^2,\infty)$ that fixes z. Similarly, one can blow up z adding to \mathbb{R}^2 the circle S_z of half lines of the tangent plane $T_z \mathbb{R}^2$ and look at the natural action of $D\overline{\phi}_t(z)$ on S_z . One denotes $\tau_I(z)$ the real rotation number of the time one map. It depends only on the homotopy class of I in $\text{Diff}^1_+(\mathbb{R}^2)$. If ϕ belongs to \mathcal{D} and $\overline{\phi}$ has a fixed point on S_{∞} we will write $\tau_{\phi}(z) = \tau_I(z)$ if I is adapted. The following result gives more information than Theorem 2 in case we are working in $\operatorname{Diff}^1_+(\mathbb{R}^2,\infty)$. If not stated exactly as below, it was already shown in [2] in the case of a finitely generated abelian group. By definition a fixed point free group is a group with no global fixed points.

Theorem 3. — Let $G \subset \text{Diff}^1_+(\mathbb{R}^2, \infty)$ be a fixed point free nilpotent group and \overline{G} the group of extensions to $\mathbb{R}^2 \sqcup \mathbb{S}_{\infty}$. Then:

- 1. \overline{G} has a fixed point on S_{∞} ;
- 2. if $\phi \in G$, then $Fix(\phi)$ is either empty or unbounded;
- 3. every finite invariant measure of $\phi \in G$ is supported on $Fix(\phi)$ and consequently every periodic point of ϕ is fixed;
- 4. for every $\phi \in G$ and every $z \in Fix(\phi)$, one has $\tau_{\phi}(z) = 0$;
- 5. every $\phi \in G$ is isotopic to the identity relative to $Fix(\phi)$;

6. for every $\phi \in G$, the function $\frac{1}{n} \sum_{k=0}^{n-1} \operatorname{Link}_{\phi} \circ (\phi^k \times \phi^k)$ converges uniformly to 0 on $(\mathbb{R}^2 \times \mathbb{R}^2) \setminus \Delta$.

Let us explain now the plan of the article. We will prove Theorem 3 in Section 2 assuming Theorem 1. Among the three theorems, this is the less technical one. Up to a slight modification of the developed mathematical objects, the arguments used in [2] for the abelian case have a natural extension to the nilpotent case.

Theorem 1 will be proved in Sections 3 and 4. As said before, it was proved for finitely generated groups [10], as the following simple corollary using the finite intersection property for compact sets, where the hypothesis on the finite generation of G is replaced by a compactness property. This result will be used very often in the article and we recall the proof.

Theorem 4 ([10]). — Let G be a nilpotent subgroup of $\text{Diff}_+^1(\mathbb{R}^2)$. Suppose there exists $\phi \in G$ such that $\text{Fix}(\phi)$ is a non-empty compact set. Then G has a global fixed point.

Proof. — Let us begin by proving the theorem in case G is finitely generated. Write

$$Z^{(0)}(G) = {\mathrm{Id}} \triangleleft Z^{(1)}(G) \triangleleft \dots \triangleleft Z^{(r-1)}(G) \triangleleft Z^{(r)}(G) = G$$

for the ascending central series, defined inductively by the property that $Z^{(k+1)}(G)/Z^{(k)}(G)$ is the center of $G/Z^{(k)}(G)$, the integer r being the nilpotency class of G. Consider the following subnormal series

$$\langle \phi \rangle = \langle \phi, Z^{(0)}(G) \rangle \lhd \langle \phi, Z^{(1)}(G) \rangle \lhd \cdots \lhd \langle \phi, Z^{(r-1)}(G) \rangle \lhd \langle \phi, Z^{(r)}(G) \rangle = G.$$

To get the result, let us prove inductively on $s \in \{0, \ldots, r\}$ that $\operatorname{Fix}\langle \phi, Z^{(s)}(G) \rangle \neq \emptyset$. By assumption the property is true for s = 0. Let us suppose that it is true for s < r. The set $\operatorname{Fix}\langle \phi, Z^{(s)}(G) \rangle$ is invariant by $\langle \phi, Z^{(s+1)}(G) \rangle$ because $\langle \phi, Z^{(s)}(G) \rangle$ is a normal subgroup of $\langle \phi, Z^{(s+1)}(G) \rangle$. Moreover $\operatorname{Fix}\langle \phi, Z^{(s)}(G) \rangle$ is non-empty by hypothesis, and compact because is included in $\operatorname{Fix}(\phi)$. Since every subgroup of a finitely generated nilpotent group is finitely generated (cf. [11, 5.2.17]), it follows that the group $\langle \phi, Z^{(s+1)}(G) \rangle$ is finitely generated. Since $\langle \phi, Z^{(s+1)}(G) \rangle$ is also nilpotent and preserves a non-empty compact set, it has a global fixed point by Theorem 1 for the finitely generated case [10].

In the general case the first part of the proof implies that $\operatorname{Fix}(\Gamma)$ is a non-empty compact set for any finitely generated subgroup Γ of G containing ϕ . Given finitely generated subgroups $\Gamma_1, \ldots, \Gamma_m$ of G containing ϕ , the intersection $\bigcap_{i=1}^n \operatorname{Fix}(\Gamma_i)$ is the fixed point set of the finitely generated group $\langle \bigcup_{i=1}^n \Gamma_i \rangle$ and hence non-empty. Since $\operatorname{Fix}(\phi)$ is compact and the family $\{\operatorname{Fix}\langle\phi,f\rangle\}_{f\in G}$ has the finite intersection property, it follows that $\operatorname{Fix}(G) = \bigcap_{f\in G} \operatorname{Fix}\langle\phi,f\rangle$ is a non-empty compact subset of $\operatorname{Fix}(\phi)$. \Box

We will see later that we can replace the hypothesis on $Fix(\phi)$ in Theorem 4 by a weaker compactness property. More precisely, in order to prove Theorem 1 it suffices to show the following theorem: