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Abstract. — We prove the existence of Siegel disks with smooth boundaries in most
families of holomorphic maps fixing the origin. The method can also yield other types
of regularity conditions for the boundary. The family is required to have an indifferent
fixed point at 0, to be parameterized by the rotation number α, to depend on α in a
Lipschitz-continuous way, and to be non-degenerate. A degenerate family is one for
which the set of non-linearizable maps is not dense. We give a characterization of
degenerate families, which proves that they are quite exceptional.

Résumé (De l’ubiquité des disques de Siegel à bord lisse). — Nous démontrons l’existence
de disques de Siegel à bord lisse dans la plupart des familles de fonctions holomorphes
fixant l’origine. La méthode peut également donner d’autres types de régularité
pour le bord. On demande à la famille d’avoir un point fixe indifférent en 0, d’être
paramétrisée par le nombre de rotation α, de dépendre d’α de façon Lipschitz-
continue et d’être non-dégénérée. Une famille est dite dégénérée si l’ensemble de ses
applications non-linéarisables n’est pas dense. Nous donnons une caractérisation des
familles dégénérées, qui prouve qu’elles sont assez exceptionnelles.

Introduction

In [24], Pérez-Marco was the first to prove the existence of univalent maps
f : D→ C having Siegel disks compactly contained in D and with smooth (C∞)
boundaries. The methods in [24] can in fact give any class of regularity below ana-
lytic, in particular quasi-analytic classes, but also maps that are Cα for a prescribed α
but for no bigger α, etc. However the maps produced in [24] do not a priori have an
extension to an entire map, let alone polynomial. In [3], we were able to adapt some
of these techniques and show the existence of quadratic polynomials having Siegel
disks with smooth boundaries (for a simplification of the proof, and an extension to
unisingular meromorphic maps, see [17]). In [11], two authors of the present article
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proved the existence of quadratic polynomials having Siegel disks whose boundaries
have any prescribed regularity between C0 and analytic (excluded).

In this article, we generalize these results to most families of maps having a non
persistent indifferent cycle.

Definition 1 (Non-degenerate families). — Assume I ⊂ R is an open interval. Con-
sider a family of holomorphic maps fα : D→ C parameterized by α ∈ I, with

fα(z) = e2πiαz + O(z2)

and assume that fα depends continously (1) on α. We say that the family is degenerate
if the set {α ∈ I ; fα is not linearizable} is not dense in I. Otherwise it is called non-
degenerate.

This definition is purely local so if we are given a holomorphic dynamical system
on a Riemann surface, we can extend the definition above by working in a chart and
restricting the map to a neighborhood of the fixed point.

For example, if fα is a family of rational maps of the same degree d ≥ 2, then it is
automatically non-degenerate. Indeed, a fixed point of a rational map of degree ≥ 2

whose multiplier is a root of unity is never linearizable. (2)

In Appendix A we characterize degenerate families in the case where the depen-
dence with respect to the parameter α is analytic.

Notation 2. — Assume f : D → C is a holomorphic map having an indifferent fixed
point at 0. We write

— K(f) the set of points in D whose forward orbit remains in D and
— ∆(f) the connected component of the interior of K(f) that contains 0;

∆(f) = ∅ if there is no such component.

Remark (Siegel disks). — If ∆(f) 6= ∅ it is known that ∆(f) is simply connected (3)

and that the restriction f : ∆(f) → ∆(f) is analytically conjugate to a rotation
via a conformal bijection between ∆(f) and D sending 0 to 0, see Section 1.3. The
set ∆(f) is usually called a Siegel disk in the case α /∈ Q and we will use the same
terminology in this article for the case α ∈ Q, though subtleties arise. See Section 1.1

We prove here that the main theorem in [11] holds for a non-degenerate family
under the assumption that the dependence α 7→ fα is Lipschitz. (4) We thus get in
particular (see Appendix B for the general statement):

(1) This means: (α, z) 7→ fα(z) is continuous.
(2) This is a simple and classical fact, that seems difficult to find in written form. If an iterate of f is
conjugate on an open set U to a finite order rotation then a further iterate of f is the identity on U .
Since fn is holomorphic on the Riemann sphere, it is the identity everywhere. This contradicts the
fact that fn has degree dn > 1.
(3) This is another classical fact. See Footnote 8 in Section 1.1.
(4) By this we mean: (∃C > 0) (∀α ∈ I, α′ ∈ I, z ∈ D), |fα′ (z)− fα(z)| ≤ C|α′ − α|.
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Theorem 3. — Under the non-degeneracy assumptions of Definition 1, if moreover
the dependence α 7→ fα is Lipschitz then

— ∃α ∈ I \ Q such that ∆(fα) is compactly contained in D and ∂∆(fα) is a C∞

Jordan curve;
— ∃α ∈ I \Q such that ∆(fα) is compactly contained in D and ∂∆(fα) is a Jordan

curve but is not a quasicircle;
— ∀n ≥ 0, ∃α ∈ I \Q, ∆(fα) is compactly contained in D and ∂∆(fα) is a Jordan

curve which is Cn but not Cn+1.

A family satisfying the assumptions on the interval I also satisfies them on every
sub-interval. It follows that the parameters α in the theorem above are in fact dense
in I.

Remark. — If fα is a restriction of another map gα and ∆(fα) b D, then
∆(fα) = ∆(gα), see Section 1.1. So the result gives information on the Siegel
disks not only of maps from D to C but in fact of any kind of analytic maps, for
instance polynomials C→ C, rational maps S→ S, entire maps C→ C, . . .

Remark. — The main tool for Theorem 3 is Yoccoz’s sector renormalization as in
several of our previous works (except [2] who uses Risler’s work instead [27]). In [2],
[3] and [11] it was crucial to have a family for which it is known that fα is linearizable if
and only if α is a Brjuno number. The progress here is to get rid of this assumption. (5)

1. Conformal radius, wild combs and the general construction.

The method that Buff and Chéritat first developped to get smooth Siegel disks
is one of the offsprings of a fine control, initiated in [14], on the periodic cycles
that arise when one perturbs parabolic fixed points. Still today we can only make
it work in specific contexts, which includes quadratic polynomials for instance. With
the smooth Siegel disk objective in mind, Avila was able in [2] to identify essential
sufficient properties so as to allow for a partial generalization, and also pointed to
the bottleneck for a complete generalization. In this section, we essentially follow the
presentation in [2]. We also mention a connection with continuum theory.

In this whole section, except Section 1.1, we consider a non-empty open interval
I ⊂ R and a continuous family of analytic maps fα : D→ C parameterized by α ∈ I
with fα(z) = e2πiαz + O(z2).

1.1. Siegel disks and restrictions. — Given a one dimensional complex manifold S and
a holomorphic map

f : U → S

(5) Note that in [17], optimality of Brjuno’s condition was not required. However, it is assumed that
f has a meromorphic extension to C that has only one non-zero critical or asymptotic value.
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defined on an open subset U of S, assume there is a neutral fixed point a ∈ U of
multiplier e2πiα with α ∈ R. Call rotation domain any open set containing a on
which the map is analytically conjugate to a rotation on a Euclidean disk or on the
plane or on the Riemann sphere. (6) If α /∈ Q then the rotation domains are totally
ordered by inclusion. This is never the case if α ∈ Q. If α /∈ Q there is a maximal
element for inclusion, called the Siegel disk (7) of f at point a. If α ∈ Q existence of a
maximal element may also fail, depending on the situation. If α /∈ Q the Siegel disk
of a restriction is automatically a subset of the original Siegel disk. If α ∈ Q this may
fail.

Remark. — The right approach in the general case is probably to use the Fatou set.
Here is not the place for such a treatment, so we only give results specific to our
situation

In the sequel we assume S = C and U is bounded and simply connected.

Following [32], Section 2.4, we let K be the set of points whose orbit is defined
for all times. The set K ⊂ U is not necessarily closed in U . We let ∆(f) = ∆ ⊂ U

where ∆ is the connected component containing a of the interior K◦, or ∆ = ∅ if
a /∈ K◦. Then ∆ is necessarily simply connected: this is one classical application of
the maximum principle. (8) Any rotation domain for a is necessarily contained in K.
It follows that any rotation domain for a is in fact contained in ∆. Moreover, let us
prove that ∆ itself is a rotation domain:

Proof. — First note that we have f(∆) ⊂ ∆. The set ∆ is conformally equivalent to
the unit disk D. Conjugate f by a conformal map from ∆ to D sending a to 0. We
get a holomorphic self-map of D with a neutral fixed point at its center. By the case
of equality in Schwarz’s lemma this self-map is a rotation.

Corollary 4. — (We do not make an assumption on α.) Let U ′ be an open subset of C.
Let g : U ′ → C be holomorphic with a neutral fixed point a. Assume U is an open
subset of U ′ containing a and let f be the restriction of g to U . Then ∆(f) ⊂ ∆(g).
If moreover U and U ′ are simply connected and if ∆(f) is compactly contained in the
domain of definition of f then ∆(g) = ∆(f).

Proof. — The first claim is immediate. For the second claim when ∆(f) is compactly
contained in U , consider the image of ∆(f) by the uniformization (∆(g), 0)→ (D, 0):
we get a simply connected subset A of D, invariant by the rotation. In the case α /∈ Q

(6) The last case is extremely specific, for we must have U = S isomorphic to the Riemann sphere
and f is a rotation.
(7) In the case of a rotation on the Riemann sphere this name is not appropriate since the disk is a
sphere. . .
(8) If ∆ would not be simply connected then there would exist a bounded closed set C 6= ∅ (not
necessarily connected) such that ∆ ∩ C = ∅ and such that ∆′ := ∆(f) ∪ C is open and connected
(this is a theorem in planar topology). By the maximum principle, fk(∆′) ⊂ D for all k. Hence
∆′ would be an open subset of K(f), contradicting the definition of ∆.
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