ASTÉRISQUE

415

2020

SOME ASPECTS OF THE THEORY OF DYNAMICAL SYSTEMS: A TRIBUTE TO JEAN-CHRISTOPHE YOCCOZ Volume I

Projective cocycles over $SL(2, \mathbb{R})$ actions: measures invariant under the upper triangular group

Christian Bonatti & Alex Eskin & Amie Wilkinson

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Astérisque 415, 2020, p. 157–180 doi:10.24033/ast.1103

PROJECTIVE COCYCLES OVER $SL(2, \mathbb{R})$ ACTIONS: MEASURES INVARIANT UNDER THE UPPER TRIANGULAR GROUP

by

Christian Bonatti, Alex Eskin & Amie Wilkinson

To the memory of Jean-Christophe

Abstract. — We consider the action of $SL(2, \mathbb{R})$ on a vector bundle **H** preserving an ergodic probability measure ν on the base X. Under an irreducibility assumption on this action, we prove that if $\hat{\nu}$ is any lift of ν to a probability measure on the projectivized bunde $\mathbb{P}(\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\hat{\nu}$ is supported in the projectivization $\mathbb{P}(\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [57]. Second, if $\mathbb{P}(\mathbb{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface Σ , with hyperbolic foliation \mathcal{F} tangent to the flat connection, then the foliated horocycle flow on $T^1\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [13] to arbitrary dimension.

Résumé (Cocycles projectifs au-dessus d'actions de $SL(2, \mathbb{R})$: mesures invariantes au-dessus du groupe triangulaire supérieur)

Nous considérons l'action de $SL(2, \mathbb{R})$ sur un fibré vectoriel H, préservant une mesure de probabilité ergodique ν sur la base X. Soit $\hat{\nu}$ un relevé quelconque de ν qui est une mesure de probabilité sur le fibré projectivisé $\mathbb{P}(H)$, invariante sous l'action du sous-groupe triangulaire supérieur. Sous une hypothèse d'irréductibilité de l'action, nous prouvons que toute mesure $\hat{\nu}$ comme ci-dessus est supportée par le projectivisé $\mathbb{P}(E_1)$ de l'espace de Lyapunov associé à l'exposant de Lyapunov le plus grand pour l'action du semi-groupe diagonal positif. Nous en déduisons deux applications : Premièrement, les exposants du cocycle de Kontsevich-Zorich dépendent continûment des mesures affines, ce qui répond à une question de [57]. Deuxièmement, soit $\mathbb{P}(V)$ un fibré projectif irréducible, plat, au dessus d'une surface fermée hyperbolique Σ , et soit \mathcal{F} le feuilletage à feuilles hyperboliques, tangent à la connection plate ; alors le flot horocyclique sur $T^1(\mathcal{F})$ est uniquement ergodique sous l'hypothèse que le plus grand exposant de Lyapunov du flot géodésique est simple. Ceci généralise le résultat principal de [13] en dimension arbitraire.

2010 Mathematics Subject Classification. - 34D08, 37C40, 37C85.

Key words and phrases. — Invariant measures, projective cocycles, parabolic group actions, Lyapunov exponents.

1. Introduction

Let G denote the group $SL(2,\mathbb{R})$, and for $t \in \mathbb{R}$, let

$$a^{t} = \begin{pmatrix} e^{t} & 0\\ 0 & e^{-t} \end{pmatrix}, \quad u^{t}_{+} = \begin{pmatrix} 1 & t\\ 0 & 1 \end{pmatrix}, \text{ and } u^{t}_{-} = \begin{pmatrix} 1 & 0\\ t & 1 \end{pmatrix}.$$

Let $A = \{a^t : t \in \mathbb{R}\}, U_+ = \{u_+^t : t \in \mathbb{R}\}, \text{ and } U_- = \{u_-^t : t \in \mathbb{R}\}.$ The group G is generated by A, U_+ and U_- . We denote by $P = AU_+$ the group of upper triangular matrices, and we recall that the group P is solvable and hence *amenable*: any action of P on a compact metric space admits an invariant probability measure (see, e.g., [22, Section 8.4]). Recall that $PSL(2, \mathbb{R})$ admits a natural identification with the unit tangent bundle $T^1\mathbb{H}^2$ where \mathbb{H}^2 is the upper half plane endowed with the hyperbolic metric. Through this identification, the left action of $SL(2, \mathbb{R})$ on itself induces an identification of $A = \{a^t\}$ with the geodesic flow, and U_+ (resp. U_-) with the unstable (resp. stable) horocycle flow of \mathbb{H}^2 .

In this paper, we consider the following situation. Suppose G acts on a separable metric space X, preserving an ergodic Borel probability measure ν . By the Mautner phenomenon (see e.g., [64]), ν is ergodic with respect to the action of the diagonal group A. Let $\mathbf{H} \to X$ be a continuous vector bundle over X with fiber a finite dimensional vector space H, and write $\mathbf{H}(x)$ for the fiber of \mathbf{H} over $x \in X$. Suppose that G acts on \mathbf{H} by linear automorphisms on the fibers and the given action on the base. We denote the action of $g \in G$ on \mathbf{H} by g_* , so for $\mathbf{v} \in \mathbf{H}(x)$, we have $g_*\mathbf{v} \in \mathbf{H}(gx)$.

Assume that **H** is equipped with a Finsler structure (that is, a continuous choice of norm $\{ \| \cdot \|_x : x \in X \}$ on the fibers of **H**), and that with respect to this Finsler, the action of G on **H** satisfies the following integrability condition:

(1)
$$\int_X \sup_{t \in [-1,1]} \left(\log \|a_*^t\|_x \right) \, d\nu(x) < +\infty,$$

where, for $g \in G$, $||g_*||_x$ denotes the operator norm of the linear action of g_* on the fiber over x with respect to the Finsler structure:

$$\|g_*\|_x := \sup_{\{\mathbf{v}\in H: \|\mathbf{v}\|_x=1\}} \|g_*\mathbf{v}\|_{gx}.$$

Since the A-action on X is ergodic with respect to ν , the Oseledets multiplicative ergodic theorem implies that there exists an a^t -equivariant splitting

(2)
$$\mathbf{H}(x) = \bigoplus_{j=1}^{m} \mathbf{E}_{j}(x).$$

defined for ν -almost every $x \in X$, and real numbers $\lambda_1 > \cdots > \lambda_m$ (called the Lyapunov exponents of the A-action) such that for ν -a.e. $x \in X$ and all $\mathbf{v} \in \mathbf{E}_j(x)$,

$$\lim_{|t|\to\infty}\frac{1}{t}\log\frac{\|a_*^t\mathbf{v}\|_{a^tx}}{\|\mathbf{v}\|_x}=\lambda_j.$$

ASTÉRISQUE 415

Definition 1.1 (ν -measurable invariant subbundle). — A ν -measurable invariant subbundle for the G action on \mathbf{H} is a measurable linear subbundle \mathbf{W} of \mathbf{H} with the property that $g_*(\mathbf{W}(x)) = \mathbf{W}(gx)$, for ν -a.e. $x \in X$ and every $g \in G$.

Definition 1.2 (Irreducible). — We say that the G action on **H** is *irreducible with respect to the G-invariant measure* ν on X if it does not admit ν -measurable invariant subbundles: that is, if **W** is a ν -measurable invariant subbundle, then either $\mathbf{W}(x) = \{0\}, \nu$ -a.e. or $\mathbf{W}(x) = \mathbf{H}(x), \nu$ -a.e.

We note that the bundles \mathbf{E}_{j} in the splitting (2) are not invariant in the sense of Definition 1.1, since they are (in general) equivariant only under the subgroup A and not under all of G.

Let $\mathbb{P}(H)$ be the projective space of H (i.e., the space of lines in H), and let $\mathbb{P}(\mathbf{H})$ be the projective bundle associated to \mathbf{H} with fiber $\mathbb{P}(H)$. Then G also acts on $\mathbb{P}(\mathbf{H})$ via the induced projective action on the fibers. The space $\mathbb{P}(\mathbf{H})$ may not support a G-invariant measure, but since P is amenable and $\mathbb{P}(H)$ is compact, it will always support a P-invariant measure. In particular, for any P-invariant measure μ on X, there will be a P-invariant measure $\hat{\mu}$ on $\mathbb{P}(\mathbf{H})$ that projects to μ under the natural map $\mathbb{P}(\mathbf{H}) \to X$. For such a μ , denote by $\mathcal{O}_P^{-1}(\mu)$ the (nonempty) set of all P-invariant Borel probability measures on $\mathbb{P}(\mathbf{H})$ projecting to μ on X.

We can now state our main theorem.

Theorem 1.3. — Suppose that the G-action on $\pi: \mathbf{H} \to X$ is irreducible with respect to the G-invariant (and therefore P-invariant) measure ν on X, and let $\hat{\nu} \in \mathcal{M}_P^1(\nu)$. Disintegrating $\hat{\nu}$ along the fibers of $\mathbb{P}(\mathbf{H})$, write

$$d\hat{\nu}([\mathbf{v}]) = d\eta_{\pi(\mathbf{v})}([\mathbf{v}]) \, d\nu(\pi(\mathbf{v})),$$

where $[\mathbf{v}] \in \mathbb{P}(\mathbf{H})$ denotes the line determined by $\{0\} \neq \mathbf{v} \in \mathbf{H}$. Then for ν -a.e. $x \in X$, the measure η_x on $\mathbb{P}(\mathbf{H})(x)$ is supported on $\mathbb{P}(\mathbf{E}_1(x))$, where as in (2), $\mathbf{E}_1(x)$ is the Lyapunov subspace corresponding to the top Lyapunov exponent of the A-action.

In particular, if \mathbf{E}_1 is one-dimensional, then $\#_{\mathcal{M}_P}^1(\nu) = 1$.

The same conclusions of Theorem 1.3 hold when $G = SL(2, \mathbb{R})$ is replaced by any rank 1 semisimple Lie group, and P denotes the minimal parabolic subgroup of G (i.e., the normalizer of the unipotent radical of G).

P-invariant measures are a natural object of study, as they are closely related to stationary measures of a *G*-action. Suppose that *G* acts on a space Ω , and let *m* be a Borel probability measure on *G*. Recall that a probability measure ρ on Ω is *m*-stationary if $m * \rho = \rho$, where for $A \subset \Omega$ measurable, we define

$$m*
ho(A) = \int_G
ho(gA) \, dm(g).$$

A compactly supported Borel probability measure m on G is *admissible* if the following two conditions hold: first, there exists a $k \ge 1$ such that the k-fold convolution $m^{\star k}$ is absolutely continuous with respect to Haar measure; second, $\sup(m)$ generates G

as a semigroup. Furstenberg ([43], [42], restated as [66, Theorem 1.4]), proved that there is a 1–1 correspondence between *P*-invariant measures on Ω and *m*-stationary measures for admissible *m*. In fact any *m*-stationary measure on Ω is of the form $\lambda * \hat{\nu}$ where λ is the unique *m*-stationary measure on the Furstenberg boundary of *G* (which is in our case the circle G/P) and $\hat{\nu}$ is a *P*-invariant measure on Ω .

Remark. — In light of the discussion above, for any admissible measure m on G, Theorem 1.3 also gives a classification of the m-stationary measures on **H** projecting to ν .

In the context where $X = SL(2, \mathbb{R})/\Gamma$, with Γ cocompact (or of finite covolume), **H** a flat *H*-bundle over *X*, and $H = \mathbb{R}^2$, \mathbb{C}^2 or \mathbb{C}^3 , Theorem 1.3 was proved by Bonatti and Gomez-Mont [13], where irreducibility is replaced with the equivalent hypothesis that $\rho(\Gamma)$ is Zariski dense, where ρ is the monodromy representation.

Some constructions used in the proof of Theorem 1.3 are also used in [29] in their classification of $SL(2, \mathbb{R})$ invariant probability measures on moduli spaces.

2. Applications and the irreducibility criterion

The irreducibility hypothesis in Theorem 1.3 is not innocuous. Checking for the non-existence of invariant *measurable* subbundles is in general an impossible task, but there are two restricted contexts where it is feasible, on which we focus here:

- Suppose that X = G/Γ, for some discrete subgroup Γ ⊂ G, and H is a flat bundle over X = G/Γ with monodromy representation ρ: Γ → GL(H). Then G acts transitively on X, the P-invariant measures on X are all algebraic by [64] (which uses Ratner's Theorem), and irreducibility is then equivalent to the condition that there are no invariant algebraic subbundles of H. In the case where ν is Haar measure, irreducibility of the associated G-action reduces to the condition that ρ is an irreducible representation. In Subsection 2.1 we derive some consequences of Theorem 1.3 in this context.
- If the bundle **H** admits a Hodge structure (not necessarily *G*-invariant) then checking irreducibility can sometimes be reduced to showing that there are no invariant subbundles that are compatible with the Hodge structure, a much simpler task (since such subbundles must be real-analytic). In particular, the condition that *G* acts transitively on the base in the previous setting can be relaxed. This has been established rigorously by Simion Filip for the Kontsevich-Zorich action, and we use Theorem 1.3 in Subsection 2.2 to deduce further results in that context.

The mantra here is that for such Hodge bundles whose base supports a G-invariant measure, any measurable G-invariant subbundle must come from algebraic geometry. For the Kontsevich-Zorich action, this has been established in [23].

We now describe the applications in more detail.