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Abstract. — Quasi-invariant curves are the fundamental tool for the study of hedge-
hog’s dynamics. The Denjoy-Yoccoz lemma is the preliminary step for Yoccoz’s com-
plex renormalization techniques for the study of linearization of analytic circle dif-
feomorphisms. We give a new geometric interpretation of the Denjoy-Yoccoz lemma
using the hyperbolic metric that gives a new direct construction of quasi-invariant
curves without renormalization theory as in the original construction.

Résumé (Sur les courbes quasi-invariantes). — Les courbes quasi-invariantes sont
un outil fondamental dans l’étude de la dynamique des hérissons. Le lemme de
Denjoy-Yoccoz est le premier pas dans la théorie de renormalisation de Yoccoz des
difféomorphismes analytiques du cercle et l’étude de sa linéarisation. On donne une
nouvelle version du lemme de Denjoy-Yoccoz en termes de métrique hyperbolique,
ce qui fournit une nouvelle construction directe des courbes quasi-invariantes sans
utiliser la renormalisation comme dans la construction originelle.

1. Introduction

Quasi-invariant curves and their properties were announced in 1995 in a Note to
the Comptes Rendus of the Académie des Sciences [6] presented by J.-Ch. Yoccoz.
Their construction using renormalization techniques was carried out in the unpub-
lished manuscript [8]. The goal of the present article is to present a short and direct
construction of quasi-invariant curves without renormalization theory. In particular,
this is the first complete published construction of quasi-invariant curves.

Theorem 1 (Quasi-invariant curves). — Let g be an analytic circle diffeomorphism
with irrational rotation number α. Let (pn/qn)n≥0 be the sequence of convergents of
α given by the continued fraction algorithm.
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Given C0 > 0 there is n0 ≥ 0 large enough such that there is a sequence of Jordan
curves (γn)n≥n0

, homotopic to S1 and exterior to D, such that all the iterates gj,
0 ≤ j ≤ qn, are defined on a neighborhood of the closure of the annulus Un bounded
by S1 and γn, and we have

DP (gj(γn), γn) ≤ C0,

where DP is the Hausdorff distance between compact sets associated to dP , the
Poincaré distance in C−D. We also have for any z ∈ γn, dP (gqn(z), z) ≤ C0, that is,

||gqn − id||C0
P (γn) ≤ C0.

The curves γn are called quasi-invariant curves for g.

The delicate, and useful, part of the construction of quasi-invariant curves is to
obtain the estimates for the Poincaré metric, which is much harder and stronger
than the estimates for the euclidean metric since the curves γn are close to S1. This
is also what is needed for the application to hedgehog’s dynamics. Hedgehogs are
totally invariant continua associated to indifferent irrational non-linearizable fixed
points discovered by the author in [7]. The dynamics in a neighborhood outside a
hedgehog K is conjugated to the dynamics of an analytic circle diffeomorphism by
the dictionary construction presented in [7]. Quasi-invariant curves with their Poincaré
metric estimates can then be transported to osculating curves around the hedgehog
and provide the tool to analyze the dynamics on the hedgehog. This is only possible
thanks to the Poincaré estimates.

f
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S1

h

g = h−1 ◦ f ◦ h

Figure 1. Dictionary of fixed points and circle maps using hedgehog K.

The new construction of quasi-invariant curves without renormalization is based
on the key observation that the Denjoy-Yoccoz Lemma from [13] (Proposition 4.4
in Section 4.4) has a natural hyperbolic interpretation. First we carry out the con-
struction in the situation where we assume that the non-linearity of g is small, that is
||D logDg||C0 small. This case is enough for most of the applications, in particular for
the solution in [9] of Briot and Bouquet problem from 1856 (see [1]). The general case
reduces to this situation by the same arguments as in Section 3.6 of [13] that reduces
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by a sectorial return map the dynamics of a general analytic circle diffeomorphism
to the dynamics of one with arbitrarily small non-linearity. The proof of the Denjoy-
Yoccoz Lemma relies on real estimates for the iterates of circle diffeomorphisms that
follow from classical work by M. Herman ([4]) and J.-Ch. Yoccoz ([11]).

2. Analytic circle diffeomorphisms

2.1. Notations. — We refer to the Thesis of M. Herman [4] for the classical theory and
background on circle diffeomorphisms. We denote by T = R/Z the abstract circle, and
S1 = E(T) its embedding in the complex plane C given by the exponential mapping
E(x) = e2πix.

We study analytic diffeomorphisms of the circle, but we prefer to work at the level
of the universal covering, the real line, with its standard embedding R ⊂ C. We
denote by Dω(T) the space of increasing analytic diffeomorphisms g of the real line
such that, for any x ∈ R, g(x + 1) = g(x) + 1, i.e g commutes with T (x) = x + 1,
the generator of the group of deck transformations of the universal covering. Thanks
to H. Poincaré [10], we know that an element of the space Dω(T) has a well defined
rotation number ρ(g) ∈ R which is the constant uniform limit of 1

n (gn − id) when
n→ +∞. Thanks to A. Denjoy [2], we know that the order preserving diffeomorphism
g is indeed conjugated to the rigid translation Tρ(g) : x 7→ x+ ρ(g), by an orientation
preserving homeomorphism h : R→ R, such that h(x+ 1) = h(x) + 1.

For ∆ > 0, we note B∆ = {z ∈ C; |=z| < ∆}, and A∆ = E(B∆). The subspace
Dω(T,∆) ⊂ Dω(T) is composed by the elements of Dω(T) which extend analytically
to a holomorphic diffeomorphism, denoted again by g, such that g and g−1 are defined
on B∆.

2.2. Real estimates. — We refer to J.-Ch. Yoccoz article [13] for the results on this
section. We assume that the orientation preserving circle diffeomorphism g is C3

and that the rotation number α = ρ(g) is irrational. We consider the convergents
(pn/qn)n≥0 of α obtained by the continued fraction algorithm (see [3] for notations
and basic properties of continued fractions).

For n ≥ 0, we define the map gn(x) = gqn(x) − pn and the intervals In(x) =

[x, gn(x)], Jn(x) = In(x)∪In(g−1
n (x)) = [g−1

n (x), gn(x)]. Letmn(x) = gqn(x)−x−pn =

±|In(x)|,Mn = supR |mn(x)|, andmn = minR |mn(x)|. Topological linearization obvi-
ously implies limn→+∞Mn = 0, since this holds for a rigid rotation, and is equivalent
to this condition since then any orbit is dense modulo 1 and determines uniquely h
modulo 1. This is always true for analytic diffeomorphisms by Denjoy’s Theorem, that
also holds for C1 diffeomorphisms such that logDg has bounded variation.

Since g is topologically linearizable, the combinatorics of the irrational translation,
or the continued fraction algorithm, shows (see Lemma 3.7 [13]):

Lemma 2. — Let x ∈ R, 0 ≤ j < qn+1 and k ∈ Z. The intervals gj ◦ T k(In(x)) have
disjoint interiors, and the intervals gj ◦ T k(Jn(x)) cover R at most twice.
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We have the following fundamental estimate (see [4], [11] and, more precisely, Corol-
lary 3.16 in [13]) on the Schwarzian derivatives of the iterates of f , for 0 ≤ j ≤ qn+1,∣∣Sgj(x)

∣∣ ≤ Mne
2V S

|In(x)|2
,

with S = ||Sg||C0(R) and V = Var logDg.
These estimates imply a control of the non-linearity of the iterates (see Corol-

lary 3.18 in [13]):

Proposition 3. — For 0 ≤ j ≤ 2qn+1, c =
√

2SeV , we have

||D logDgj ||C0(R) ≤ c
M

1/2
n

mn
.

These estmates on the iterates of g give estimates on gn. More precisely, we have
(Corollary 3.20 in [13]):

Proposition 4. — For some constant C > 0, we have

|| logDgn||C0(R) ≤ CM1/2
n .

Corollary 5. — For any ε > 0, there exists n0 ≥ 1 such that for n ≥ n0, we have

||Dgn − 1||C0(R) ≤ ε.

Proof. — Take n0 ≥ 1 large enough so that for n ≥ n0, CM
1/2
n < min( 2

3ε,
1
2 ), then

use Proposition 4 and the estimate

|ew − 1| ≤ 3

2
|w|

for |w| < 1/2.

Corollary 6. — For any ε > 0, there exists n0 ≥ 1 such that for n ≥ n0, for any x ∈ R
and y ∈ In(x) we have

1− ε ≤ mn(y)

mn(x)
≤ 1 + ε.

Proof. — We have Dmn(x) = Dgn(x)− 1, and

|mn(y)−mn(x)| ≤ ||Dmn||C0(R)|y − x| ≤ ||Dgn − 1||C0(R)|mn(x)|.

We conclude using Corollary 5.

ASTÉRISQUE 416


