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Abstract. — Here we extend the notion of target-local Gromov convergence of pseu-
doholomorphic curves to the case in which the target manifold is not compact, but
rather is exhausted by compact neighborhoods. Under the assumption that the curves
in question have uniformly bounded area and genus on each of the compact regions
(but not necessarily global bounds), we prove a subsequence converges in an exhaus-
tive Gromov sense.

Résumé (Compacité de Gromov pour courbes pseudoholomorphes au sens exhaustif)
Considérant la convergence de courbes pseudoholomorphiques vers une variété

dans un sens « local » de Gromov, nous étendons cette notion de convergence au cas
où la variété ciblée n’est pas nécessairement compacte, mais recouvrable par une suite
de voisinages compacts. Sous l’hypothèse que les courbes en question ont une aire et
un genre borné sur chacun des compacts (mais pas forcément globalement), nous
prouvons l’existence d’une sous-suite convergente au sens « exhaustif » de Gromov.

1. Introduction

In his celebrated 1985 paper, [10], Gromov introduced the notion of a pseudo-
holomorphic curve, and provided an accompanying compactness theorem. His idea
was to generalize the notion of an algebraic curve in, say, a complex projective vari-
ety to that of a pseudoholomorphic curve in a symplectically tamed almost complex
manifold, and he showed that families of such curves are analogously compact. In
the decades since, pseudoholomorphic curves have played a fundamental role in the
development of symplectic geometry and topology as well as Hamiltonian dynamics,
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and a variety generalizing compactness theorems have been established. These tend
to proceed along two general paths.

The first approach is exemplified by Rugang Ye [20], Floer [9], Hofer [12], and the
SFT compactness paper [2], in that each of these treat closed or punctured curves
from a global perspective. Besides additional ingredients dealing with the analysis near
punctures and the necks, see for example [13], the analysis proceeds rather analogously
to that for families of harmonic maps, which we outline as follows.

1. Obtain convergence of underlying Riemann surfaces.
2. With respect to a constant curvature metric guaranteed by the Uniformization

Theorem, show that gradient bounds imply C∞ bounds.
3. Employ bubbling analysis at points of gradient blow-up, and show that only

finitely many bubbles appear due to energy bounds and an energy threshold.
4. Use C∞ bounds and Arzelà-Ascoli to pass to a further subsequence which con-

verges in C∞.
5. Verify that bubbles connect via, say, a monotonicity lemma.

This approach is most applicable when one has genus bounds, energy bounds, some
global control over the entirety of each curve in the family, and when one already has
a good idea of what types of curves should arise in the limits of such families. For
completeness, we also mention Hummel [14], and for a more classical viewpoint, [1].

The second approach, typified by Taubes via Proposition 3.3 in [19], treats curves
as sets and integral currents, and proves compactness from a more measure theoretic
perspective. Roughly speaking, area bounds, a monotonicity lemma, and some mea-
sure theory yield a compactness theorem, however some additional work is necessary
to show the limit is rectifiable, or rather that the measure theoretic limit has the
structure of a weighted union of images of pseudoholomorphic curves. This approach
is quite natural from the perspective of Seiberg-Witten theory, particularly when em-
ploying a Taubes-like degeneration to obtain pseudoholomorphic curves. The result
has also been used extensively in Embedded Contact Homology, introduced by Hutch-
ings in [15]; see also [17] and [16]. More generally, the technique is applicable when
one has little more than area bounds – indeed, one does not need genus bounds on
the sequence of curves. However, this can also be a weakness, in that genus cannot
be detected a priori by these techniques. For example, one can construct degree-two
holomorphic branched coverings of the unit disk with arbitrarily large genus, but from
the integral current perspective, all such objects are indistinguishable.

The purpose of this manuscript is to further develop a less used third approach,
introduced by the first author in [3] and streamlined in [4] and [5]. This is the so-called
target-local Gromov compactness result; for a restatement, see Theorem 2 below. The
basic idea was to follow the Taubes approach to studying curves locally in the target
and allowing a free boundary (including arbitrarily many boundary components), but
also demanding a genus bound, and then extracting a subsequence which converges
in the Gromov-topology, rather than the substantially weaker topology of integral-
currents. In some sense, the target-local compactness theorem says that if W is a
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smooth compact manifold with boundary, and uk : (Sk, ∂Sk)→ (W,∂W ) is a sequence
of pseudoholomorphic maps with genus bounds and area bounds, then after trimming
the curves near ∂W a subsequence converges in a Gromov sense. Our main result,
stated below as Theorem 1, extends this to the case that W is no longer compact,
but instead is exhausted by compact manifolds with smooth boundary:

W1 ⊂W2 ⊂W3 ⊂ · · ·
⋃
`∈N

W` = W.

Here the key assumptions on the curves are that

Area(u−1
k (W`)) ≤ C` and Genus(u−1

k (W`)) ≤ C`.

In other words, this means that the curves in question may have infinite area and
genus, however on each compact W` (the union of which exhaust W ) one has area
and genus bounds for the portions of curves in that region.

It is important to mention that our main result here, stated as Theorem 1 below, is
not a needless extension of Theorem 2, proved in [5], but rather it plays a foundational
role in two forthcoming papers. The first was announced in [7] and will appear in [8]
in which we prove that no regular energy level of a proper Hamiltonian function on
(R4, ωstd) has a minimal Hamiltonian flow, which answers a question for the case
n = 2 raised by Herman in his 1998 ICM address; see [11]. The idea is to use neck-
stretching techniques to study pseudoholomorphic curves in the symplectization of
framed Hamiltonian manifolds. The tremendous difficulty is that such curves will
lack a priori energy bounds like those that appear in Symplectic Field Theory, and
thus the global techniques employed in [2] fail quickly and completely. Moreover,
the Taubes approach of [19] also fails, precisely because the topology used to obtain
compactness is simply too coarse. Indeed, the genus bounds and curvature properties
that follow from the Gromov topology (but not the integral current topology) which
are guaranteed by Theorem 1 play crucial roles in the proofs of the main results in
[8]. In essence, our main result here strikes the perfect balance between the flexibility
of the integral-current approach with the strength of the Gromov topology, and this
balance is then heavily exploited in [8] to first find a limit curve (which might be
wildly complicated), and then to use the Gromov topology and a posteriori analysis
on the limit curve to show that it has a surprising number of unexpected properties,
which are necessary to establish the non-minimality of the hypersurfaces.

The second result relying on Theorem 1 is the so called sideways stretching com-
pactness results developed by the first author; see [6]. Here the idea is that Symplectic
Field Theory is something akin to a TQFT for symplectic manifolds, and an extended
TQFT would be akin to an extended Symplectic Field Theory in which one could in-
dependently stretch the neck along two transverse contact hypersurfaces. This has
been carried out by the first author in certain sub-critical cases, and will appear in a
forthcoming paper. Again though, the idea is similar: use a sequence of expanding do-
mains in the target manifold, on which one has successively increasing area bounds to

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020



90 J.W. FISH & H. HOFER

obtain a preliminary compactness result from Theorem 1; then use a posteriori anal-
ysis and the Gromov topology to improve properties of both the limit and precision
of the convergence; then iterate this procedure to develop a full extended Symplectic
Field Theory style compactness theorem.

More generally still, it is not difficult to imagine a wide range of applications
of Theorem 1. Indeed, consider any symplectic manifold W , and any compact set
K ⊂ W which has empty interior. Then consider any sequence of almost complex
structures which are tame, but degenerate along K. That is, the Jk converge in
C∞loc(W \K) to an almost complex structure on W \K, which is uniformly tame on
each W \O(K), but not uniformly tame on W \K. Then consider a sequence of closed
pseudoholomorphic curves in a fixed homology class in W which have bounded genus
(e.g., only spheres). Theorem 1 immediately guarantees that a subsequence converges,
in an exhaustive Gromov sense (see Definition 2.21), to a pseudoholomorphic curve
in W \K. Such a curve may have wildly complicated behavior – and yet a posteriori
analysis can be employed which exploits the particular features of the K and Jk in
question. Considering the ubiquitous use of pseudoholomorphic curves in symplectic
geometry, topology, and Hamiltonian dynamics, such a result would seem potentially
quite useful.

Acknowledgements. — The authors would like to thank the referee for helpful com-
ments and suggestions, particularly in regards to clarifying the exposition and helping
to remove certain unnecessary assumptions.

2. Preliminaries

This section is devoted to presenting some preliminary concepts and small support-
ing results. In Section 2.1 we introduce the notion of an embedding diagram and direct
limit manifolds. This is meant to generalize the notion of an exhausting sequence of
regions:

W1 ⊂W2 ⊂W3 ⊂ · · · ⊂
⋃
k∈N

Wk =: W,

and is necessary for constructing the domain of the limit curve we must later pro-
duce. In Section 2.2 we review the basic definitions of Riemann surfaces, as well as
additional structures like marked points, nodal points, decorations, arithmetic genus,
etc. In Section 2.3, we recall the definition of pseudoholomorphic curves and some
related concepts, like stability, boundary-immersed maps, generally immersed maps,
and area. Finally, in Section 2.4 we provide a number of definitions of convergence
for pseudoholomorphic curves. We note that the key notion of Section 2 is given in
Definition 2.21, which is the novel definition of convergence of pseudoholomorphic
curves in an exhaustive Gromov sense. Finally we note that here and throughout, in
the case that a domain is non-compact, C∞ convergence will mean C∞loc convergence.
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