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COHOMOLOGICAL RANK FUNCTIONS

ON ABELIAN VARIETIES

 Z JIANG  G PARESCHI

A. – Generalizing the continuous rank function of Barja-Pardini-Stoppino, in this paper
we consider cohomological rank functions of Q-twisted (complexes of) coherent sheaves on abelian vari-
eties. They satisfy a natural transformation formula with respect to the Fourier-Mukai-Poincaré trans-
form, which has several consequences. In many concrete geometric contexts these functions provide
useful invariants. We illustrate this with two different applications, the first one to GV-subschemes and
the second one to multiplication maps of global sections of ample line bundles on abelian varieties.

R. – En généralisant la fonction rang continu de Barja-Pardini-Stoppino, nous considérons
dans cet article les fonctions rang cohomologiques des (complexes de) faisceaux cohérents sur les varié-
tés abéliennes. Ils répondent à une formule de transformation naturelle par rapport à la transformée de
Fourier-Mukai-Poincaré, ce qui a plusieurs conséquences. Dans de nombreux contextes géométriques
concrets, ces fonctions fournissent des invariants utiles. Nous illustrons ceci avec deux applications dif-
férentes, la première pour les sous-schémas GV et la seconde pour la multiplication de sections globales
des fibrés en droites amples sur les variétés abéliennes.

Introduction

In their paper [3] M.A. Barja, R. Pardini and L. Stoppino introduce and study the contin-
uous rank function associated to a line bundle M on a variety X equipped with a morphism

X
f
! A to a polarized abelian variety. Motivated by their work, we consider more gener-

ally cohomological rank functions—defined in a similar way—of a bounded complex F of
coherent sheaves on a polarized abelian variety .A; l/ defined over an algebraically closed
field of characteristic zero. As it turns out, these functions often encode interesting geometric

The first author was partially supported by the grant “Recruitment Program of Global Experts”. The second
author was partially supported by Tor Vergata funds E82F16000470005 and Italian MIUR-PRIN funds “Geometry
of Algebraic Varieties”. He also thanks the Shanghai Center for Mathematical Sciences and Fudan University for
support and excellent hospitality.
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816 Z. JIANG AND G. PARESCHI

information. The purpose of this paper is to establish some general structure results about
them and show some examples of application.

Let L be an ample line bundle on an abelian variety A, let l D c1.L/ and let 'l W A ! bA be
the corresponding isogeny. The cohomological rank functions of F 2 Db.A/ with respect
to the polarization l are initially defined (see Definition 2.1 below) as certain continuous
rational-valued functions

hi
F ;l W Q ! Q�0: (1)

The definition of these functions is peculiar to abelian varieties (and more generally to irreg-
ular varieties), as it uses the isogenies �b W A ! A, z 7! bz. For x 2 Z, hi

F ;l
.x/ WD hi

F .xl/

coincides with the generic value of hi .A; F ˝Lx/, for L varying among all line bundles repre-
senting l . This is extended to all x 2 Q using the isogenies �b . In fact the rational numbers
hi

F .xl/ can be interpreted as generic cohomology ranks of the Q-twisted coherent sheaf (or,
more generally, Q-twisted complex of coherent sheaves) F hxli (in the sense of Lazarsfeld
[15, §6.2A]).

The above functions are closely related to the Fourier-Mukai transform
ˆP W Db.A/ ! Db.bA/ associated to the Poincaré line bundle and our first point consists
in exploiting systematically such a relation. We prove the following transformation formula
(Proposition 2.3 below):

hi
F .xl/ D

.�x/g

�.l/
hi

'�
l

ˆ P . F /
.�

1

x
l/ for x 2 Q�;(0.1)

hi
F .xl/ D

xg

�.l/
h

g�i

'�
l

ˆ P_ . F _/
.
1

x
l/ for x 2 QC:(0.2)

This has several consequences, summarized in the following theorem. The proof and
discussion of the various items are found in Sections 2,3 and 4.

T A. – Let F 2 Db.A/ and i 2 Z. Let g D dim A.
(1) (Corollaries 2.4, 2.6, 2.7.) For each x0 2 Q there are ��; �C > 0 and two (explicit,
see below) polynomials P C

i; F ; x0
; P �

i; F ; x0
2 QŒx� of degree � g such that P C

i; F ; x0
.x0/ D

P �
i; F ; x0

.x0/ and

hi
F .xl/ D P �

i; F ; x0
.x/ for x 2 .x0 � ��; x0� \ Q;

hi
F .xl/ D P C

i; F ; x0
.x/ for x 2 Œx0; x0 C �C/ \ Q:

(2) (Proposition 4.4) Let k < g and x0 2 Q. If the function hi
F ;l

is strictly of class C k at x0

then the jump locus J iC. F hx0i/ (see §4 for the definition) has codimension � k C 1.

(3) (Theorem 3.2) The function hi
F ;l

extends to a continuous function hi
F ;l

W R ! R�0. (2)

(1) In the present context the above-mentioned continuous rank function of Barja-Pardini-Stoppino is recovered
as h0

f�M; l
(see the notation above).

(2) This theorem provides partial answers to some questions raised, in the specific case of the above mentioned
continuous rank functions h0

f�M; l
, in [3], e.g., Question 8.11. We also point out that for such functions item (3)

of the present theorem, as well as some additional properties, were already proved in loc. cit. via different methods.
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COHOMOLOGICAL RANK FUNCTIONS ON ABELIAN VARIETIES 817

It follows from (1) that for x0 2 Q the function hi
F ;l

is smooth at x0 if and only if the two

polynomials P �
i; F ; x0

and P C
i; F ; x0

coincide. If this is not the case x0 is called a critical point.

It turns out (Corollary 2.4) that for x0 2 Z the two polynomials P �
i; F x0

.x/ and

P C
i; F ; x0

.x/ are obtained from the Hilbert polynomials (with respect to the polarization l)

of the two coherent sheaves G i;C
x0

WD '�
l
Ri ˆP . F ˝ Lx0/ and G i;�

x0
WD '�

l
Rg�i ˆP_. F _

˝

L�x0/ in the following way:

P �
i; x0; F .x/ D

.�x/g

�.l/
� G i;C

x0

.�
1

x
l/;(0.3)

P C
i; x0; F .x/ D

xg

�.l/
� G i;�

x0

.
1

x
l/:(0.4)

For non-integer x0 2 Q the two polynomials P �
i; F x0

.x/ and P C
i; F ; x0

.x/ have a similar
description after reducing to the integer case (Corollary 2.6). Thus item (2) of Theorem A
tells that, for x0 2 Q, the first k coefficients of the polynomials P �

i; x0; F .x/ and P C
i; x0; F .x/

coincide as soon as the rank function Pic0A ! Z�0 defined by ˛ 7! hi . F ˝ Lx0 ˝ P˛/

has jump locus of codimension � k C 1. In this last formulation we are implicitly assuming
that x0 is integer but for rational x0 the situation is completely similar. However there
might be irrational critical points (see e.g., Example 4.1), and at present we lack any similar
interpretation for them.

In Section 5 we relate cohomological rank functions with the notions of GV, M-regular
and IT(0)-sheaves, which are extended here to theQ-twisted setting. We provide formulations
of Hacon’s results ([9]), and some related ones, which are simpler and more convenient even
for usual sheaves. Finally, in Section 6 we point out some integral properties of cohomolog-
ical rank functions.

It seems that the critical points of the function and the polynomials P �
i; F ; x0

and P C
i; F ;x0

are interesting and sometimes novel invariants in many concrete geometric situations. We
exemplify this in the following two applications.

Application to GV-subschemes. – Our first example concerns GV-subschemes of principally
polarized abelian varieties (here we will assume that the ground field is C). This notion
(we refer to Section 7 below for the definition and basic properties) was introduced in [24]
in the attempt of providing a Fourier-Mukai approach to the minimal class conjecture
([6]), predicting that the only effective algebraic cycles representing the minimal classes
�g�d

.g�d/Š
2 H 2.g�d/.A;Z/ are (translates of) the subvarieties ˙Wd .C / of Jacobians J.C /, and

˙F , the Fano surface in the intermediate Jacobian of a cubic threefold.

It is known that the subvarieties Wd .C / of Jacobians, as well as the Fano surface ([10]) are
GV-subschemes and that, on the other hand, geometrically non-degenerate GV-subschemes
have minimal classes ([24]). Therefore it was conjectured in loc. cit. that geometrically non-
degenerate GV-subschemes are either (translates of) ˙Wd .C / or ˙F as above. Denoting
g the dimension of the p.p.a.v. and d the dimension of the subscheme, this is known only
in a few cases: (i) for d D 1 and d D g � 2 (loc. cit.); (ii) for g D 5, settled in the
recent work [5], (iii) for Jacobians and intermediate Jacobians of generic cubic threefolds,
as consequences of the main results of respectively [6] and [11]. In the recent work [28] it is

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



818 Z. JIANG AND G. PARESCHI

proved that geometrically non-degenerate GV-subschemes are reduced and irreducible and
that the geometric genus of their desingularizations is the expected one, namely

�
g
d

�
.

As an application of cohomological rank functions we prove that the Hilbert polynomial
as well as all hi . OX /’s are the expected ones:

T B. – Let X be geometrically non-degenerate GV-subvariety of dimension d of a
principally polarized complex abelian variety .A; �/. Then:

(1) (Theorem 7.5) � OX
.x�/ D

Pd
iD0

�
g
i

�
.x � 1/i .

(2) (Theorem 7.7) hi . OX / D
�

g
i

�
for all i D 1; : : : ; d .

The proof of (1) is based on the study of the function h0
OX

.x�/ at the highest critical point
(which turns out to be x D 1). (2) follows from (1) via another argument involving the
Fourier-Mukai transform.

As a corollary of .2/, combining with the results of [28] and [5], we have

P C (Corollary 7.9). – A 2-dimensional geometrically non-degenerate
GV-subscheme is normal with rational singularities.

Application to multiplication maps of global sections of line bundles and normal generation
of abelian varieties. – Finally we illustrate the interest of cohomological rank functions in
another example: the ideal sheaf of one (closed) point p 2 A. The functions hi

Ip
.xl/ seem

to be highly interesting ones, especially in the perspective of basepoint-freeness criteria for
primitive line bundles on abelian varieties. While we defer this to a subsequent paper, here we
content ourselves to point out an elementary—but surprising—relation with multiplication
maps of global sections of powers of line bundles. We consider the critical point

ˇ.l/ D inffx 2 Qjh1
Ip

.xl/ D 0g

(as the notation suggests, such notion does not depend on p 2 A). A standard argument
shows that in any case ˇ.l/ � 1 and ˇ.l/ D 1 if and only if the polarization l has base points,
i.e., a line bundle L representing l (or, equivalently, all of them) has base points. Therefore,
given a rational number x D a

b
, it is suggestive to think that the inequality ˇ.l/ < x

holds if and only if “the rational polarization xl is basepoint-free”. Explicitly, this means the
following: let �b W A ! A be the multiplication-by-b isogeny. Then, as it follows from the
definition of cohomological rank functions, ˇ.l/ < a

b
means that the finite scheme ��1

b
.p/

imposes independent conditions to all translates of a given line bundle Lab with c1.L/ D l .
In turn a

b
D ˇ.l/ means that ��1

b
.p/ imposes dependent conditions to a proper closed subset

of translates of the line bundle Lab as above. (3) At present we don’t know how to compute, or
at least bound efficiently, the invariant ˇ.l/ of a primitive polarization l (except for principal
polarizations of course).

Here is one of the reasons why one is led to consider the number ˇ.l/. Let n be another
polarization on A. We assume that n is basepoint-free. Let N be a line bundle representing
n and let MN be the kernel of the evaluation map of global sections of N . We consider the
critical point

s.n/ D inffx 2 Qjh1
MN

.xn/ D 0g

(3) Writing 1 D b
b

one recovers the usual notions of basepoint-freeness and base locus.
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COHOMOLOGICAL RANK FUNCTIONS ON ABELIAN VARIETIES 819

(again this invariant does not depend on the line bundle N representing n). Well known
facts about the vector bundles MN yield that, given x 2 ZC, s.n/ � x if and only if the
multiplication maps of global sections

(0.5) H 0.N / ˝ H 0.N x ˝ P˛/ ! H 0.N xC1 ˝ P˛/

are surjective for general ˛ 2 bA and, furthermore, s.n/ < x if and only if the surjectivity
holds for all ˛ 2 bA. Now the cohomological rank function leads to consider a “fractional”
version of the maps (0.5). Writing x D a

b
, these are the multiplication maps of global sections

(0.6) H 0.N / ˝ H 0.N ab ˝ P˛/ ! H 0.��
b.N / ˝ N ab ˝ P˛/

obtained by composing with the natural inclusion H 0.N / ,! H 0.��
b
N /. It follows

that s.n/ � a
b

if and only if the maps (0.6) are surjective for general ˛ 2 bA. The strict

inequality holds if the surjectivity holds for all ˛ 2 bA. (4) As a simple consequence of the
formula (0.1) applied to n D hl we have

T D. – Let h be an integer such that the polarization hl is basepoint-free (hence
h � 1 if l is basepoint-free, h � 2 otherwise). Then

(0.7) s.hl/ D
ˇ.l/

h � ˇ.l/
:

Since ˇ.l/ � 1 it follows that

s.hl/ �
1

h � 1

and equality holds if and only if ˇ.l/ D 1, i.e., l has base points.

Surprisingly, this apparently unexpressive result summarizes, generalizes and improves
what is known about the surjectivity of multiplication maps of global sections and projective
normality of line bundles on abelian varieties. For example, the case h D 2 alone tells
that s.2l/ � 1, with equality if and only if ˇ.l/ D 1, i.e., l has base points. In view of the
above, this means that the multiplication maps (0.5) for a second power N D L2 and x D 1

are in any case surjective for general ˛ 2 bA, and in fact for all ˛ 2 bA as soon as l is basepoint
free. This is a classical result which implies all classical results on projective normality of
abelian varieties proven via theta-groups by Mumford, Koizumi, Sekiguchi, Kempf, Ohbuchi
and others (see [13] §6.1-2, [4] §7.1-2 and references therein, see also [20] and [23] for a theta-
group-free treatment). We refer to Section 8 below for more on this.

Finally if l is basepoint-free and h D 1 the above theorem tells that ˇ.l/ < 1
2

if and only

if the multiplication maps (0.5) for N D L and x D 1 are surjective for all ˛ 2 bA. Using a
well known argument, this implies

C E. – Assume that l is basepoint-free and ˇ.l/ < 1
2

. Then l is projectively
normal (this means that all line bundles L ˝ P˛ are projective normal).

(4) Again a simple computation shows that when x is an integer, writing x D xb
b

one recovers the usual notions of

surjectivity of the maps (0.5) for every (resp. for general) ˛ 2 bA.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



820 Z. JIANG AND G. PARESCHI

This is at the same time an explanation and a generalization of Ohbuchi’s theorem ([19])
asserting that, given a polarization n, 2n is projectively normal as soon as n is basepoint-free.

Finally, we remark that, although the applications presented in this paper concern abelian
varieties and their subvarieties, the study of cohomological rank functions can be applied to
the wider context of irregular varieties, namely varieties having non-constant morphisms to
abelian varieties, say f W X ! A (as mentioned above this is indeed the point of view of the
paper [3]). Given an element F 2 Db.X/, this can be done by considering the cohomological
rank functions of the complex Rf� F .

Acknowledgements

We thank Federico Caucci, Rob Lazarsfeld, Luigi Lombardi and Stefan Schreieder for
useful comments and suggestions. We are especially grateful to Schreieder for pointing out
a gap in Section 7 of a previous version of this paper.

1. Notation and background material

We work on an algebraically closed ground field of characteristic zero.

A polarization l on an abelian variety is the class of an ample line bundle L in PicA=Pic0A.
The corresponding isogeny is denoted

'l W A ! bA

where bA WD Pic0A. For b 2 Z

�b W A ! A z 7! bz

denotes the multiplication-by-b homomorphism.

Let A be a g-dimensional abelian variety. We denote P the Poincaré line bundle on A� bA.
For ˛ 2 bA the corresponding line bundle in A is denoted by P˛, i.e., P˛ D P jA�f˛g. We
always denote Oe the origin of OA.

Let Db.A/ be the bounded derived category of coherent sheaves on A and denote by

ˆA! bA
P W Db.A/ ! Db.bA/

the Fourier-Mukai functor associated to P . It is an equivalence ([17]), whose quasi-inverse
is

(1.1) ˆ
bA!A

P_
Œg�

W Db.bA/ ! Db.A/:

When possible we will suppress the direction of the functor from the notation, writing simply
ˆP . Since P_

D .�1A; 1 bA/� P D .1A; �1 bA/� P it follows that ˆP_ D .�1/�ˆP . Finally,
we will denote Ri ˆP the induced i -th cohomology functors.

For the reader’s convenience we list some useful facts, in use throughout the paper,
concerning the above Fourier-Mukai equivalence.

Exchange of direct and inverse image of isogenies ([17] (3.4)). – Let ' W A ! B be an isogeny
of abelian varieties and let O' W bB ! bA be the dual isogeny. Then

(1.2) O'�ˆPA
. F / D ˆPB

'�. F /; O'�ˆPB
. G / D ˆPA

'�. G /:

4 e SÉRIE – TOME 53 – 2020 – No 4



COHOMOLOGICAL RANK FUNCTIONS ON ABELIAN VARIETIES 821

Exchange of derived tensor product and derived Pontryagin product ([17] (3.7)). – We have

(1.3) ˆP . F � G / D .ˆP F / ˝ .ˆP G / ˆP . F ˝ G / D .ˆP F / � .ˆP G /Œg�:

Serre-Grothendieck duality ([17] (3.8). See also [26] Lemma 2.2). – As customary, for a given
projective variety X (in what follows X will be either A or bA) and F 2 Db.X/, we denote
F _

WD RHom. F ; OX / 2 Db.X/. Then

(1.4) .ˆP F /_ D ˆP_. F _
/Œg�:

The transform of a non-degenerate line bundle ([17] Prop. 3.11(1)). – Given an ample line
bundle on A, the Fourier-Mukai transform ˆP .L/ is a locally free sheaf (concentrated in
degree 0) on bA, denoted by bL, of rank equal to h0.L/. Moreover

(1.5) '�
l
bL ' H 0.L/ ˝ L�1 D .L�1/˚h0.L/:

The Pontryagin product with a non-degenerate line bundle ([17] (3.10)). – Given a non-
degenerate line bundle N on A, we denote n D c1.N /. Let F 2 Db.A/. Then

(1.6) F � N D N ˝ '�
n

�
ˆP ..�1/� F / ˝ N /

�
:

(Hyper)cohomology and derived tensor product ([26] Lemma 2.1). – Let F 2 Db.A/ and
G 2 Db.bA/. We have

(1.7) H i .A; F ˝ ˆ
bA!A
P . G // D H i .bA; ˆA! bA

P . F / ˝ G /:

2. Cohomological rank functions on abelian varieties

In this section we define a certain non-negative rational number as the rank of the coho-
mology of a coherent sheaf (or, more generally, of the hypercohomology of a complex of
coherent sheaves) twisted with a rational power of a polarization. This definition is already
found in [1] and, somewhat implicitly, a notion like that was already in use in [14] (proof
of Thm 17.12) and [27] (proof of Thm 4.1). This provides rational cohomological rank
functions satisfying certain transformation formulas under Fourier-Mukai transform (Prop.
2.4 below). It follows that these functions are polynomial almost everywhere and extend to
continuous functions on an open neighborhood of Q in R (Corollaries 2.6 and 2.7).

D 2.1. – (1) Given F 2 Db.A/ and i 2 Z, define

hi
gen.A; F /

as the dimension of hypercohomology H i .A; F ˝ P˛/, for ˛ general in bA. (5)

(2) Given F 2 Db.A/, a polarization l on A and x D a
b

2 Q, b > 0, we define

hi
F .xl/ D b�2g hi

gen.A; ��
b. F / ˝ Lab/:

(5) It is well known that hypercohomology groups as the above satisfy the usual base-change and semicontinuity
properties, see e.g., [26] proof of Lemma 3.6 and [8] 7.7.4 and Remark 7.7.12(ii).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



822 Z. JIANG AND G. PARESCHI

The definition is dictated from the fact that the degree of �b W A ! A is b2g (see the
previous section for the notation) and ��

b
.l/ D b2l . Therefore the pullback via �b of the

class a
b
l is abl . It is easy to check that the definition does not depend on the representation

x D a
b

. For example, if n 2 Z, writing n D nb
b

one gets

b�2ghi
gen..��

b F / ˝ Lb2n/ D b�2ghi
gen.��

b. F ˝ Ln//

D b�2g
X

˛2 O��1
b

. Oe/

hi
gen. F ˝ Ln ˝ P˛/ D hi

gen. F ˝ Ln/;

where Oe is the identity point of bA and O�b W bA ! bA is the dual isogeny.

R 2.2. – [Coherent sheaves Q-twisted by a polarization] Let l be a polarization
on our abelian variety A. Following Lazarsfeld ([15]), but somewhat more restrictively, we
will define coherent sheaves Q-twisted by l as equivalence classes of pairs . F ; xl/ where
F is a coherent sheaf on A and x 2 Q, with respect to the equivalence relation generated
by . F ˝ Lh; xl/ � . F ; .h C x/l/, for L a line bundle representing l and h 2 Z. Such thing
is denoted F hxli (note that F ˝ P˛hxli D F hxli for ˛ 2 bA). Similarly, one can define
complexes of coherent sheaves Q-twisted by the polarization l . Now the quantity hi

F .xl/

depends only on the Q-twisted complex F hxli and one may think of it as the (generic)
cohomology rank hi .A; F hxli/.

Some immediate basic properties of generic cohomology ranks defined above are:

(a) �F .xl/ D
P

i .�1/i hi
F .xl/, where �F .xl/ is the Hilbert polynomial, i.e., the Euler

characteristic.

(b) Serre duality: hi
F .xl/ D h

g�i

F _ .�xl/.

(c) Serre vanishing: given a coherent sheaf F there is a x0 2 Q such that hi
F .xl/ D 0 for

all i > 0 and for all rational x � x0.

Proof of (c). – It is well known that there is n0 2 Z such that hi .A; F ˝ Ln0 ˝ P˛/ D 0

for all i > 0 and for all ˛ 2 Pic0X . Following the terminology of Mukai, this condition
is referred to as follows: F ˝ Ln satisfies IT(0) (the Index Theorem with index 0, see also
§5 below). Therefore, for all b 2 ZC, ��

b
. F / ˝ Lb2n0 satisfies IT(0). The tensor product of

a coherent IT(0) sheaf with a locally free IT(0) sheaf is IT(0) (see e.g., [27, Prop. 3.1] for a
stronger result). Therefore ��

b
. F / ˝ Lm satisfies IT(0) for all b 2 ZC and m � b2n0. This is

more than enough to ensure that hi
F .xl/ D 0 for all rational numbers x � n0. (6)

The following proposition describes the behavior of the generic cohomology ranks with
respect to the Fourier-Mukai transform.

P 2.3. – Let F 2 Db.A/ and let l be a polarization on A. Then, for x 2 QC

hi
F .xl/ D

xg

�.l/
h

g�i

'�
l

ˆ P_ . F _/
.
1

x
l/

(6) More precisely this proves, in the terminology of Section 5 below, that the Q-twisted coherent sheaves F hxli

satisfy IT(0) for all x 2 Q�n0 .
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and, for x 2 Q�,

hi
F .xl/ D

.�x/g

�.l/
hi

'�
l

ˆ P . F /
.�

1

x
l/:

Proof. – Let us start with the case x D a
b

2 QC. Then,

hi
F .xl/ D

1

b2g
hi

gen.A; ��
b F ˝ Lab/ D

1

b2g
dim Exti

A.��
b F _

; Lab
˛ /

D
1

b2g
dim Exti

OA
.ˆP .��

b F _
/; ˆP .Lab

˛ //;

where ˛ 2 OA is general, Lab
˛ WD Lab ˝ P˛, and the last equality holds by Mukai’s

equivalence [17].
Note that, by (1.2), ˆP .��

b
F _

/ ' O�b�ˆP . F _
/ where O�b W bA ! bA is the multiplication

by b on bA. By (1.5) RˆP .Lab
˛ / WD dLab

˛ is a vector bundle on bA and

(2.1) ��
ab'�

l
dLab

˛ D '�
abl
dLab

˛ ' ..Lab
˛ /�1/˚h0.Lab/:

Hence, for general ˛ 2 bA,

hi
F .xl/ D

1

b2g
dim Exti

bA. O�b�ˆP . F _
/;dLab

˛ / D
1

b2g
dim Exti

bA.ˆP . F _
/; O��

b
dLab

˛ /

D
1

b2g
dim Extg�i

bA . O��
b
dLab

˛ ; ˆP . F _
//

D
1

deg O�a deg 'l

1

b2g
dim Extg�i

A .'�
l O��

a O��
b
dLab

˛ ; '�
l O��

aˆP . F _
//

D
1

�.l/2

1

a2gb2g
dim Extg�i

A .'�
abl
dLab

˛ ; ��
a'�

l ˆP . F _
//

(2.1)
D

1

�.l/

1

agbg
hg�i .A; ��

a'�
l ˆP . F _

/ ˝ Lab
˛ /:

We also note that .�1/�
bAˆP . F _

/ D ˆP_. F _
/ and .�1/�

Al D l . Hence, applying .�1/�
A,

we get

hi
F .xl/ D

1

�.l/

1

agbg
hg�i

gen .��
a'�

l ˆP_. F _
/ ˝ Lab/ D

1

�.l/

ag

bg
h

g�i

'�
l

ˆ P_ . F _/
.
b

a
l//:

By similar argument (or by Serre duality) we get the equalities when x 2 Q�.

C 2.4. – Under the same hypothesis and notation of the previous proposition, for
each i 2 Z there are ��; �C > 0 and two polynomials P �

i; F ; P C
i; F 2 QŒx� of degree � dim A

such that, for x 2 .���; 0/ \ Q,
hi

F .xl/ D P �
i; F .x/

and, for x 2 .0; �C/ \ Q

hi
F .xl/ D P C

i; F .x/:

More precisely

hi
F .xl/ D

.�x/g

�.l/
�'�

l
Ri ˆ P . F /.�

1

x
l/ for x 2 .���; 0/ \ Q

hi
F .xl/ D

xg

�.l/
�'�

l
Rg�i ˆ P_ . F _/.

1

x
l/ for x 2 .0; �C/ \ Q:
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Proof. – The statement follows from Proposition 2.4 via Serre vanishing (see (c) above in
this section). Indeed for a sufficiently small x 2 QC we have that hk

'�
l

Rj ˆ P_ . F _/
. 1

x
l// D 0

for all k ¤ 0 and all j . Therefore the hypercohomology spectral sequence computing
h

g�i

'�
l

ˆ P_ . F _/
. 1

x
l// (7) collapses so that

h
g�i

'�
l

ˆ P_ . F _/
.
1

x
l// D h0

'�
l

Rg�i ˆ P_ . F _/
.
1

x
l// D �'�

l
Rg�i ˆ P_ . F _/.

1

x
l//:

This proves the statement for x > 0. The proof for the case x < 0 is the same.

R 2.5. – It follows from the proof that one can take as �� the minimum, for all i ,
of 1

xi
, where xi is a bound ensuring Serre vanishing for twists with powers of L of the sheaf

'�
l
Ri ˆP . F /. Similarly for �C.

The next corollary shows that the statement of the previous corollary holds more generally
in Q-twisted setting.

C 2.6. – Same hypothesis and notation of the previous proposition. Let x0 2 Q.
For each i 2 Z there are ��; �C > 0 and two polynomials P �

i; F ;x0
; P C

i; F ;x0
2 QŒx� of

degree � dim A such that, for x 2 .x0 � ��; x0/ \ Q,

hi
F .xl/ D P �

i; F ;x0
.x/

and, for x 2 .x0; x0 C �C/ \ Q

hi
F .xl/ D P C

i; F ;x0
.x/:

Proof. – This follows by reducing to the previous corollary via the formula

hi
F ..x0 C y/l/ D b�2ghi

��
b

. F /˝Lab.b2yl/

for x0 D a
b

, b > 0.

As a consequence we have

C 2.7. – The functions hi
F ;l

W Q ! Q�0 extend to continuous functions

hi
F ;L

W U ! R, where U is an open subset of R containing Q, satisfying the condition of

Corollary 2.6 above, namely for each x0 2 U there exist ��; �C > 0 and two polynomials
P �

i; F ;x0
; P C

i; F ;x0
2 QŒx� of degree � dim A, having the same value at x0, such that

hi
F .xl / D

(
P �

i; F ;x0
.x/ for x 2 .x0 � ��; x0�

P C
i; F ;x0

.x/ for x 2 Œx0; x0 C �C/:

(7) This expression stands for the spectral sequence computing the hypercohomogy groups
H g�i .A; ��

a.'�
l

ˆ P_ . F _// ˝ Lab ˝ P˛/ for b
a

D 1
x

and a general ˛ 2 Pic0X .
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Proof. – Let x0 2 Q. The assertion follows from Corollary 2.6 because, for x0 2 Q,
P �

i; F ;x0
.x0/ D P C

i; F ;x0
.x0/ D hi

F .x0l/. To prove this we can assume, using Corollary 2.6,

that x0 D 0. By Corollary 2.4 we have that P �
i; F ;x0

.0/ (resp. P C
i; F ;x0

.0/) coincide, up the
same multiplicative constant, with the coefficients of degree g of the Hilbert polynomial
of the sheaves '�

l
Ri ˆP . F /, resp. '�

l
Rg�i ˆP_. F _

/. Hence they coincide, up to the same
multiplicative constant, with the generic ranks of the above sheaves. By cohomology and base
change, and Serre duality, such generic ranks coincide with hi

F ;l
.0/.

R 2.8. – It seems likely that U D R, hence the cohomological rank functions
would be piecewise-polynomial (compare [3, Question 8.11]). This would follow from the
absence of accumulation points in R r U , but at present we don’t know how to prove that.
In any case, in the next section we prove that the cohomological rank functions extend to
continuous functions on the whole R.

Given two objects F and G in Db.A/ and f 2 HomDb.A/. F ; G / one can define similarly
the i -th cohomological rank, nullity and corank of the maps twisted with a rational multiple
of a polarization l as the generic rank, nullity and corank of the maps

H i .A; ��
b. F / ˝ Lab ˝ P˛/ ! H i .A; ��

b. G / ˝ Lab ˝ P˛/:

This gives rise to functions Q ! Q�0 satisfying the same properties. Let us consider, for
example, the rank, (the kernel and the corank have completely similar description) and let us
denote it rk

�
hi

f
.xl/

�
.

P 2.9. – Let x0 2 Q. For each i 2 Z there are ��; �C > 0 and two polynomials
P �

i;f;x0
; P C

i;f;x0
2 QŒx� of degree � dim A such that, for x 2 .x0 � ��; x0/ \ Q,

rk
�
hi

f .xl/
�

D P �
i;f;x0

.x/

and, for x 2 .x0; x0 C �C/ \ Q

rk
�
hi

f .xl/
�

D P C
i;f;x0

.x/:

Proof. – As above, we can assume that x0 D 0. By Corollary 2.4 and its proof there is a
�� > 0 such that for x D a

b
2 .���; 0/ (with a < 0 and b > 0), rk

�
hi

f
.xl/

�
coincides with

.�x/g

�.l/
rk.F� 1

x
/ where F� 1

x
is the natural map

F� 1
x

W H 0
�
��

�a.'�
l Ri ˆP F / ˝ L�ab

�
! H 0

�
��

�a.'�
l Ri ˆP G / ˝ L�ab

�
:

By an easy calculation with Serre vanishing (see (c) in this Section), up to taking a smaller
�� the image of the map F� 1

x
is H 0 of the image of the map coherent sheaves

��
�a.'�

l Ri ˆP F / ˝ L�ab ! ��
�a.'�

l Ri ˆP G / ˝ L�ab

and its dimension is

�Im.'�
l

Ri ˆ P .f //.�
1

x
l/:

In conclusion, for x 2 .���; 0/

rk
�
hi

f .xl/
�

D
.�x/g

�.l/
�Im.'�

l
Ri ˆ P .f //.�

1

x
l/ WD P �

i;f;0.x/:
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Similarly, for x 2 .0; �C/

rk
�
hi

f .xl/
�

D
.x/g

�.l/
�Im.'�

l
Rg�i ˆ P_ .f //.

1

x
l/ WD P C

i;f;0
.x/:

3. Continuity as real functions

The aim of this section is to prove Theorem 3.2 below, asserting that the cohomological
rank functions extend to continuous functions on the whole R (see Remark 2.8). We start
with a version of Serre’s vanishing needed in the proof.

L 3.1. – Let A be an abelian variety and let L be a very ample line bundle on A. Let
F be a coherent sheaf of dimension n on A. There exist two integers M � and M C such that
for all integers m 2 ZC, for all k D 0; : : : n and all sufficiently general complete intersections
Zk D D1 \ D2 \ � � � \ Dk of k divisors Di 2 jm2�i Lj with 0 < �i < 1 rational with m2�i 2 Z

(here we understand Z0 D A), and for all ˛ 2 bA, the following conditions hold:
8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

hi .��
m F jZk

˝ Lm2t ˝ P˛/ D 0

for all i � 1 and t 2 Z�M C

,

hi .��
m F jZk

˝ Lm2t ˝ P˛/ D �. Ext g�i
.��

m F jZk
; OA/ ˝ L�m2t /

for all i � n � 1 � s and t 2 Z�M �

.

The pair .M �; M C/ will be referred to as an effective cohomological bound for F .

Proof. – Note that the statement makes sense since L is assumed to be very ample and
�i WD m2�i 2 ZC. Since Zk is a general complete intersection, the Koszul resolution of OZk

,
tensored with ��

m F

(3.1) 0 ! ��
mF ˝ L�

P
i �i ! � � � ! ��

m F ˝ .
M

i

L��i / ! ��
m F ! ��

mF jZk
! 0

is exact. Therefore the bound of the upper line is a variant of Serre vanishing, in the version
of the previous section, via a standard diagram-chase.

Concerning the lower line, we first prove it for k D 0. By Serre duality

H i .��
m F ˝ Lm2t ˝ P˛/ D H g�i ..��

m F /_ ˝ L�m2t ˝ P _
˛ /

D H g�i .��
m. F _

/ ˝ L�m2t ˝ P _
˛ /:

Since F is a coherent sheaf of dimension n, Ext j
.F; OA/ vanishes for j < g�n while it has

codimension � j with support contained in the support of F for j � g �n (see for instance
[12, Proposition 1.1.6]). We apply Serre vanishing to find an integer N such that such that

H j .��
m Ext i

. F ; OA/ ˝ L�m2t ˝ P _
˛ / D 0 for all t 2 Z such that �t � N and j � 1.

The statement of the bottom line for k D 0 follows via the spectral sequence

H h.��
m Ext g�i�h

. F ; OA/ ˝ L�m2t ˝ P _
˛ / ) H g�i ..��

m F /_ ˝ L�m2t ˝ P _
˛ /:
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At this point the statement of the lower line for all k � g � n follows as above from the case
k D 0 and the fact that for a general choice of a very ample divisor D we have a short exact
sequence for all j � 0

0 ! ��
m Ext j

. F ; OA/ ! ��
m Ext j

. F ; OA/ ˝ OA.D/ ! Ext j C1
.��

m F jD
; OA/ ! 0

(see [12, Lemma 1.1.13]).

T 3.2. – Let A be an abelian variety, let l be a polarization on A and F 2 Db.A/.
The functions x 7! hi

F .xl/ extend to continuous functions on R. Such functions are bounded
above by a polynomial function of degree at most n D dim F , whose coefficients involve only
the intersection numbers of the support of F with powers of L, the ranks of the cohomology
sheaves of F on the generic points of their support, and an effective bound .N �; N C/ of generic
cohomology of F .

Proof. – We can assume that l is very ample. The proof will be in some steps. To begin
with, we prove the statement under the assumption that F is a pure sheaf. Let V1; : : : ; Vs be
the irreducible components of the support of F with reduced scheme structures. Hence
each Vj is an integral variety. Let tj be the length of F at the generic point of Vj and define

u. F / WD
X

j

tj .Vj � Ln/A:

We have seen in the previous lemma that hi
F .xl/ are natural polynomial functions for x �

M � and x � M C. We now deal with the case when M � � x � M C. More precisely we will
prove, by induction on n D dim F , the following statements

(a) hi
F ;l

extends to a continuous function on R;

(b) h0
F ;l

.x/ � u. F /
nŠ

.x � M �/n, for x � M �;

hi
F ;l

.x/ � 2n�1u. F /.M C � M �/n�1, for M � � x � M C,

and hn
F ;l

.x/ � u. F /
nŠ

.M C � x/n, for x � M C.

These assertions are clear if dim F D 0. Assume that they hold for all pure sheaves of
dimension � n � 1. We will prove that they imply the following assertions:

For all pure sheaves F with dim F D n and for all rational numbers x and 0 < � < 1

h0
F ..x C �/l/ � h0

F .xl/ � �
u. F /

.n � 1/Š
.x C � � M �/n�1 for x � M �I(3.2)

jhi
F ..x C �/l/ � hi

F .xl/j � �2n�1u. F /.M C � M �/n�1 for M � � x < x C � � M CI

(3.3)

hn
F .xl/ � hn

F ..x C �/l/ � �
u. F /

.n � 1/Š
.M C � x � �/n�1 for x C � � M C:(3.4)

Take M sufficiently large and divisible such that M x and M� are integers, take a general
divisor D 2 jM 2�Lj and consider the short exact sequence:

0 ! ��
M F ˝ LM 2x �D

�! ��
M F ˝ LM 2.xC�/ ! ��

M F ˝ LM 2.xC�/
jD

! 0:
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Taking the long exact sequence of cohomology of the above sequence tensored with a general
P˛ 2 bA, we see that
(3.5)

h0
F ..x C �/l/ � h0

F .xl/ �
1

M 2g
h0

gen.��
M F ˝ LM 2.xC�/

jD
/ D

1

M 2g
h0

��
M

F jD

.M 2.x C �/l/:

Note that ��
M F jD

is a pure sheaf on A of dimension n � 1. It is also easy to see that an

effective cohomological bound of ��
M F jD

is .M 2M �; M 2M C/. Hence condition (b)n�1

above yields that

h0
��

M
F jD

.M 2.x C �/l/ �
u.��

M F jD
/

.n � 1/Š
M 2n�2.x C � � M �/n�1:

The components of the support of ��
M F jD

are ��1V1 \ D; : : : ; ��1Vs \ D. Hence

u.��
M F jD

/ D
X

j

tj .��1
M Vj � D � Ln�1/A D

�

M 2n�2

X

j

tj .��
M Vj � ��

M Ln/A D �M 2g�2nC2r. F /:

It follows that

h0
F ..x C �/l/ � h0

F .xl/ � �
u. F /

.n � 1/Š
.x C � � M0/n�1

i.e., (3.2)n. The estimate (3.4)n is proved exactly in the same way as the h0
F ;L

case. Concerning

(3.3)n note that for M � � x < x C � � M C,

jhi
F ..x C �/l/ � hi

F .xl/j �
1

M 2g

�
hi�1

gen .��
M F jD

˝ LM 2.xC�// C hi
gen.��

M F jD
˝ LM 2.xC�//

�

� �2n�1u. F /.M C � M �/n�1:

This concludes the proof of the estimates (3.2) (3.3) (3.4) under the assumption that .b/n�1

holds.

Turning to .a/n and .b/n, note that the functions hi
F .xl/ satisfy the statement of Corol-

laries 2.6 and 2.7. Therefore the left derivative D�hi
F .xl/ and the right derivative DChi

F .xl/

exist on all x 2 Q (in fact on all x 2 U of Cor. 2.7), and they coincide away of a discrete
subset. The inequalities (3.2)n, (3.3)n and (3.4)n show that both derivatives are bounded
above by the corresponding polynomials of degree n � 1. Note that by Lemma 3.1 and the
assumption that F is pure, we have h0

F .M �l/ D 0 and hi
F .M Cl/ D 0 for i � 1, and hence

by integration, the above bounds for derivatives imply .a/n and .b/n for all x 2 U as above
and hence, by continuity, for all x 2 R. This concludes the proof of the theorem for pure
sheaves.

Next, we prove the theorem for all coherent sheaves F on A. Assume that dim F D n.
We consider the torsion filtration of F :

T0. F / � T1. F / � � � � � Tn�1. F / � Tn. F / D F ;

where Ti . F / is the maximal subsheaf of F of dimension i and hence Qi WD Ti . F /=Ti�1. F /

is a pure sheaf of dimension i . We see that h0
F .xl/ � h0

Tn�1. F /
.xl/ C h0

Qn
.xl/ and we also
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have, adopting the previous notation,

h0
F ..x C �/l/ � h0

F .xl/ �
1

M 2g
h0

��
M

F jD

.M 2.x C �/l/

�
1

M 2g

�
h0

��
M

Tn�1. F /jD

.M 2.x C �/l/ C h0
��

M
QnjD

.M 2.x C �/l/
�
:

We then proceed by induction on dim F and the results on the pure sheaf case to prove the
continuity of the function h0

F .xl/ and its boundedness. The proof of continuity for other
cohomology rank functions of F is similar.

Similarly the proof of the statement of the theorem for objects of the bounded derived
category follows the same lines, using the functorial hypercohomology spectral sequences

E
h;k
2 .��

m. F /˝Lr ˝P˛/ WD H h.A; H k
.��

m F ˝Lr ˝P˛// ) H hCk.A; ��
m F ˝Lr ˝P˛/:

This time, for x 2 Q, x D a
b

with b > 0 one defines the cohomological rank functions for the

groups appearing at each page: e
h;k
r; F .xl/ WD b�2g dim E

h;k
r .��

b
. F / ˝ La ˝ P˛/ for general

˛ 2 bA. Using Proposition 2.9 these functions are already defined in R minus a discrete set
satisfying the property stated in Corollary 2.6. By induction on r and on the dimension of the
cohomology sheaves one proves that these functions can be extended to continuous functions
satisfying the same property. They are bounded as above. From this and the convergence one
gets the same statements for the functions hi

F .xl/. We leave the details to the reader.

4. Critical points and jump loci

A critical point for the function x 7! hi
F .xl/ is a x0 2 R where the function is not smooth.

We denote S i
F ;l

the set of critical points of hi
F .xl/ and let SF ;l D

S
i S i

F ;l
. This is the subject

of this section. In all examples we know, the critical points of a cohomological rank function
are finitely many, and satisfy the conclusion of Corollary 2.7. We expect this to be true in
general.

It follows from the results of Section 2 that for x0 2 Q, or more generally for x0 in the open
set U of Corollary 2.7, x0 is a critical point if and only if the polynomials P �

i; F ;x0
and P C

i; F ;x0

do not coincide. As we will see below it is easy to produce examples of rational critical points.
However they can be irrational—even for line bundles on abelian varieties—as shown by the
following example.

E 4.1. – Let .A; l/ be a polarized abelian variety and let M be a non-degenerate
line bundle on A. Consider the polynomial P.x/ D �M .xl/. By Mumford, all roots of P.x/

are real numbers. Denote them by �1 > �2 > � � � > �k , let mi be the multiplicity of �i and
finally denote by �0 D 1, m0 D 0, and �kC1 D �1. We know by [18, Page 155] that for any
rational number x D a

b
2 .�iC1; �i / with b > 0, the line bundle M b ˝ La is non-degenerate

and has index ai WD
P

0�k�i mk . Hence

hk
M .xl/ D

(
.�1/kP.x/ if k D ai for some 0 � i � k, and x 2 .�iC1; �i /,

0 otherwise.

Hence the set of critical points of M is f�1; : : : ; �kg. If A is a simple abelian variety and M

and L are linearly independent in NS.A/ (such abelian varieties exist and they are called
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Shimura-Hilbert-Blumenthal varieties, see for instance [7]), then all roots of P.x/ are irra-
tional. Actually, if some root �i D a

b
is rational, then M b ˝La is a non-trivial degenerate line

bundle and hence its kernel is a non-trivial abelian subvariety of A, which is a contradiction.

A critical point x0 2 R is said to be of index k if the function hi
F .xl/ is of class C k but

not C kC1 at x0. By Corollaries 2.6 and 2.7 if x0 2 Q (or, more generally, x0 2 U as above)
this can be equivalently stated as follows

P C
i; F ;x0

� P �
i; F ;x0

D .x � x0/kC1Q.x/;

with Q.x/ 2 QŒx� of degree � g �k �1 such that Q.x0/ ¤ 0 (in particular, it follows that the
index is at most g � 1).The main result of this section is Proposition 4.4, relating the index
of a rational critical point with the dimension of the jump locus.

It is not difficult to exhibit cohomological rank functions with critical points even of index
zero. i.e., the function is non-differentiable at such a point. The simple examples below serve
also as illustration of the method of calculation provided by the results of Section 2.

E 4.2. – Let A D B � E, a principally polarized product of a principally
polarized .g�1/-dimensional abelian variety B and an elliptic curve E. Let ‚B be a principal
polarization on B and p a closed point of E. Let F D OB.‚B/⊠ OE . It is well known that:

(a) the FM transform—on E—of the sheaf OE is k. Oe/Œ�1�, the one-dimensional
skyscraper sheaf at the origin, in cohomological degree 1.

(b) The FM transform—on B—of the sheaf OB.�‚B/ is equal to O bB.‚bB/Œ�.g � 1/�.

By Künneth formula it follows from (a) that R0ˆP . F / D 0, hence h0
F .xl/ D 0 for x < 0

(of course this was obvious from the beginning). On the other hand, again from Künneth
formula together with (a) and (b) it follows that

RˆP_. F _
/ D RgˆP_. F _

/Œ�g� D ibB�
. O bB.‚bB//Œ�g�;

where ibB W bB ! bA is the natural inclusion Ob 7! . Ob; Oe/. Hence, for x > 0

h0
F .xl/ D .x/gh0

Rgˆ P_ . F _/
.
1

x
/ D xg.1 C

1

x
/g�1 D x.1 C x/g�1:

In conclusion

h0
F .xl/ D

(
0 for x � 0;

x.1 C x/g�1 for x � 0:

(Of course the same calculation could have been worked out in a completely elementary way.)
Hence x0 D 0 is critical point of index zero.

E 4.3. – Let A be the Jacobian of a smooth curve of genus g, equipped with the
natural principal polarization and let i W C ,! A be an Abel-Jacobi embedding. Let p 2 C

and let F D i� OC ..g � 1/p/. We claim that x0 D 0 is a critical point of index zero for the
function h0

F .xl/. Notice that F _
D i�!C .�.g � 1/p/Œ1 � g� and degC .!C .�.g � 1/p// D

g � 1. Hence R0ˆP . F / D 0, while

RˆP_. F _
/ D RgˆP_. F _

/Œ�g� D R1ˆP_

�
i�!C .�.g � 1/p/

�
Œ�g� WD H Œ�g�
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is a torsion sheaf in cohomological degree g (supported at a translate of a theta-divisor, where
it is of generic rank equal to 1). From Proposition 2.3 it follows that h0

F .xl/ D 0 for x � 0

and h1
F .xl/ D 0 for x � 0. Hence, by (a) of §1,

h0
F .xl/ D

(
0 for x � 0,

�F .xl/ D gx for x � 0.

This proves what claimed.
One can show that x0 D 0 is a critical point of index g � d � 1 of the h0-function of the

sheaf i� OC .dp/, with 0 � d � g � 1.

As it will be clear in the sequel, the previous examples are explained by the presence of a
jump locus of codimension one.

Jump loci. – We introduce some terminology. Let .A; l/ be a polarized abelian variety.
Let F 2 Db.A/ and x0 2 Q. The jump locus of the i -the cohomology of F at x0 D a

b
is the

closed subscheme of bA consisting of the points ˛ such that hi .A; .��
b

F / ˝ Lab ˝ P˛// is
strictly greater than the generic value, where L is a line bundle representing l . A different
choice of the line bundle L changes the jump locus in a translate of it while a different
fractional representation of x0, say x0 D ah

bh
changes the jump locus in its inverse image via

the isogeny �h W bA ! bA. Therefore, strictly speaking, for us the jump locus at x0 of a coho-
mological rank function hi

F .xl/ will be an equivalence class of (reduced) subschemes with
respect to the equivalence relation generated by translations and multiplication isogenies.
In this paper we will be only concerned with the dimension of these loci. We will denote it
by dim J iC. F hx0li/.

P 4.4. – Let F 2 Db.A/. If x0 2 Q is a critical point of index k for hi
F ;l

,

then codim bA J iC. F hx0i/ � k C 1.

Proof. – We may assume that x0 D 0. By Corollary 2.4 we know that in a left neighbor-
hood of 0, hi

F .xl/ D .�x/g

�.l/
�'�

l
Ri ˆ P . F /.�

1
x

l/ and in a right neighborhood of 0, hi
F .xl/ D

xg

�.l/
�'�

l
Rg�i ˆ P_ . F _/.

1
x

l/. We denote

P1.x/ WD �'�
l

Ri ˆ P . F /.xl/ D agxg C ag�1xg�1 C � � � C a1x C a0

and

P2.x/ WD �'�
l

Rg�i ˆ P_ . F _/.xl/ D bgxg C bg�1xg�1 C � � � C b1x C b0:

It follows hi
F .xl/ is strictly of class C k at 0 if and only if

(4.1) .�1/j ag�j D bg�j for j D 0; : : : ; k and .�1/kC1ag�k�1 ¤ bg�k�1:

We also note that for a coherent sheaf Q,

�Q.xl/ D

Z

A

ch. Q/exl D
X

j �0

1

.g � j /Š
.chj . Q/ � lg�j /Axg�j :

On the other hand, by Grothendieck duality (1.4) we have ˆP . F /_ D ˆP_. F _
/Œg�.

Thus we have a natural homomorphism Rg�i ˆP_. F _
/ ! Hom.Ri ˆP . F /; O bA/ WD H
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by the Grothendieck spectral sequence. By base change and Serre duality such homo-
morphism is an isomorphism of vector bundles on the open set V whose closed points
are the ˛ 2 bA such that hi . F ˝ P˛/ takes the generic value. Now assume that the
complement of V , i.e., a representative of J iC. F /, has codimension > k C 1. Hence
ch.Rg�i ˆP_. F _

// � ch. H / 2 CH>kC1.bA/: Since Ri ˆP . F / is a vector bundle on V ,
thus chj . H / D .�1/j chj .Ri ˆP /. F / for j � k C 1. This implies that

.�1/j ag�j D
.�1/j

.g � j /Š
.'�

l chj

�
Ri ˆP /. F / � lg�j

�
A

D
1

.g � j /Š
.'�

l chj

�
Rg�i ˆP_/. F _

/ � lg�j
�
A

D bg�j ;

for j D 0; : : : ; k C 1, which contradicts (4.1). This concludes the proof.

5. Generic vanishing, M-regularity and IT(0) of Q-twisted sheaves on abelian varieties

The notions of GV, M-regular and IT(0)-sheaves (and other related ones) are useful in
the study of the geometry of abelian and irregular varieties via the Fourier-Mukai transform
associated to the Poincaré line bundle. In this section we extend such notions to theQ-twisted
setting. In doing that we don’t claim any originality, as this point of view was already taken,
at least implicitly, in the work [27], Proof of Thm 4.1, and goes back to work of Hacon ([9]).
It turns out that the Q-twisted formulation of Hacon’s criterion for being GV, and related
results, is simpler and more expressive even for usual (non-Q-twisted) coherent sheaves or,
more generally, objects of Db.A/. In the last part of the section we go back to cohomological
rank functions. First we show how they can be used to provide a characterization of M-regu-
larity and related notions. Finally we show the maximal critical points relates to the notion
of Q-twisted GV sheaves.

As for jump loci (see the previous Section), one can define the cohomological support locus
of the i -th cohomology of the Q-twisted object of Db.A/, say F hx0li, as the equivalence
class (with respect to the equivalence relation generated by translations and inverse images
by multiplication-isogenies) of the loci

f˛ 2 bAjhi .A; .��
b F / ˝ Lab ˝ P˛// > 0g:

If hi
F .x0l/ D 0 it coincides with the jump locus while it is simply bA if hi

F .xl/ > 0. Its

dimension is well-defined, and we will denote it dim V i . F hx0li/.

The Q-twisted object F hx0li is said to be GV if codim bAV i . F hx0li/ � i for all i > 0. It
is said to be a M-regular sheaf if codim bAV i . F hx0li/ > i for all i > 0. It is said to satisfy
the index theorem with index 0, IT(0) for short, if V i . F hx0li/ is empty for all i ¤ 0.

If F hx0i is Q-twisted coherent sheaf or, more generally, a Q-twisted object of Db.A/ such
that V i . F hx0i/ is empty for i < 0, such conditions can be equivalently stated described as
follows:
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T 5.1. – (a) F hx0li is GV if and only if, for one (hence for all) representation
x0 D a

b

ˆP_.��
b F _

˝ L�ab/ D RgˆP_.��
b F _

˝ L�ab/Œ�g�: (8)

If this is the case, we have

Ri ˆP .��
b. F / ˝ Lab/ D Ext i

O bA
.RgˆP_.��

b F _
˝ L�ab/; O bA/:

(b) Assume that F hx0li is GV. Then it is M-regular if and only if the sheaf
RgˆP_.��

b
F _

˝ L�ab/ is torsion-free.

(c) Assume that F hx0li is GV, Then it is IT(0) if the sheaf RgˆP_.��
b

F _
˝ L�ab/ is

locally free. Equivalently

(5.1) ˆP .��
b. F / ˝ Lab/ D R0ˆP .��

b. F / ˝ Lab/:

These results follow immediately from the same statements for coherent sheaves or objects
in Db.A/, see e.g., the survey [21, §1], or [26, §3], where the subject is treated in much greater
generality.

In this language the well known criteria of Hacon ([9]) can be stated as follows:

T 5.2. – (a) F hx0li is GV if and only if F h.x0 C x/li is IT(0) for sufficiently
small x 2 QC. Equivalently F hx0li is GV if and only if F h.x0 Cx/li is IT(0) for all x 2 QC.

(b) If F hx0li is GV but not IT(0) then F h.x0 � x/li is not GV for all x 2 QC.
(c) F hx0li is IT(0) if and only if F h.x0 � x/li is IT(0) for sufficiently small x 2 QC.

Proof. – (a) Let x0 D a
b

. We have that F hx0li is GV if and only if ��
b
. F / ˝ Lab is GV.

Hacon’s criterion (see [26, Thm A]) states that this is the case if and only if

(5.2) H i .��
b. F / ˝ Lab ˝ ˆ

bA!A
P .N �k/Œg�/ D 0

for all i ¤ 0 and for all sufficiently big k 2 Z, where N is an ample line bundle on bA.
Equivalently (up to taking a higher lower bound for k),

(5.3) ��
b. F / ˝ Lab ˝ ˆ

bA!A
P .N �k/Œg� is IT .0/

for sufficiently big k. We take as N D Lı a line bundle representing the polarization lı dual
to l ([4] §14.4). By Prop 14.4.1 of loc. cit. we have that

'�
l lı D d1dg l(5.4)

and

'lı
ı 'l D �d1dg

;(5.5)

where .d1; : : : ; dg/ is the type of l . Combining with (1.5) we get

��
d1dgkˆ

bA!A
P .Lk

ı / D '�
l '�

lı
��

kˆ
bA!A
P .Lk

ı / D .'�
l .L�k

ı //˚kg�.lı/ D .L�d1dgk/˚kg�.lı/:

Loosely speaking, we can think of the vector bundle ˆ
bA!A
P

.Lk
ı
/ as representative of

.� 1
d1dgk

l/˚kg�.lı/. It follows, after a little calculation, that (5.3), hence the fact that F hx0li is

GV, is equivalent to the fact that F h.x0 C 1
d1dgk

/li is IT(0) for sufficiently big k. This is in

turn equivalent to the fact that F h.x0 C x/li is IT(0) for sufficiently small x 2 QC because

(8) This condition is usually expressed by saying that ��
b

F _˝L�ab satisfies the Weak Index Theorem with index g.
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the tensor product of an IT(0) (or, more generally, GV) sheaf and a locally free IT(0) sheaf
is IT(0) ([27, Prop. 3.1] ). This proves the first statement of (a). The second statement follows
again from loc.cit.

(b) follows from (a).
(c) is proved as (a) using a similar Hacon’s criterion telling that (5.1) is equivalent to the

fact that ��
b
. F / ˝ Lab ˝ ˆ

bA!A
P

.N k/ is IT(0) for sufficiently big k.

Using the cohomological rank functions on the left neighborhood of a rational point, we
have the following characterization of GV-sheaves and M-regular sheaves.

P 5.3. – (a) F hx0li is GV, if and only if hi
F ..x0 � x/l/ D O.xi / for

sufficiently small x 2 QC, for all i � 1.
(b) F hx0li is M-regular, if and only if hi

F ..x0 � x/l/ D O.xiC1/ for sufficiently small

x 2 QC, for all i � 1.

Proof. – We may suppose that x0 D 0. Then F is GV (resp. M-regular) is equivalent
to say that codim Ri ˆP . F / � i (resp. codim Ri ˆP . F / > i ) for all i � 1 (see [26]
Lemma 3.6). Then we conclude by Corollary 2.4.

It turns out that, more generally, the notion of gv-index ([25] Def. 3.1) can be extended to
the Q-twisted setting and described via cohomological rank functions as in Proposition 5.3.
We leave this to the reader.

It is likely that a sort converse of Proposition 4.4 holds, namely the rational critical
points arise only in presence of non-empty jump loci, although not necessarily for the same
cohomological index. A partial result in this direction is the following

P 5.4. – Let x0 2 Q. If the Q-twisted sheaf F hx0li is GV but not IT(0) then
x0 2 SF ;l . In fact it is the maximal element of SF ;l .

However notice that, given a coherent sheaf F , in general there is no reason to expect
that there is an x0 2 Q such that the hypothesis of the proposition holds. In other words, the
maximal critical point might be irrational.

Proof. – As before, we may assume that x0 D 0 and we need to compare the coefficients of
the two polynomials P1.x/ D �'�

l
R0ˆ P . F /.x/ and P2.x/ D �'�

l
Rgˆ P_ . F _/.x/. By assump-

tion, F is a GV sheaf, hence by Theorem 5.1(a) RˆP_. F _
/ D RgˆP_. F _

/Œ�g� and

Ri ˆP . F / D Ext i
.RgˆP_. F _

/; O bA/. Moreover the condition that F is GV but not IT(0)
implies that RgˆP_. F _

/ is not locally free. Hence for some i > 0, Ri ˆP . F / is nonzero.
Thus, hi

F .xl/ is nonzero for x in a left neighborhood of 0 and obviously hi
F .xl/ D 0 for

x positive. Hence x0 2 SF ;l .

R 5.5. – Under the above assumption, it is in general not true that x0 is a critical
point of h0

F .xl/ as shown by the following example. Let .A; �/ be a principally polarized
abelian variety and let ‚ be a theta-divisor. Let F D OA ˚ O‚.‚/. Then F is GV and not
IT(0). It is easy to see that

h0
F .xl/ D

(
.1 C x/g for x � �1;

0 for x < �1:
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However notice that h
g�1
F .xl/ D h

g
F .xl/ D .�x/g for �1 � x � 0.

6. Some integral properties of the coefficients

In this section we point out some interesting integrality properties of the polynomials
involved in cohomological rank functions. We will use the results of §2 throughout.

L 6.1. – Let F 2 Db.A/. Assume that hi
F .xl/ D P.x/ is a polynomial function

for x in an interval U1 � R. Then all coefficients of P.x/ belong to 1
gŠ
Z.

Proof. – We already know that P.x/ 2 QŒx� is a polynomial of degree at most g. We may
choose p sufficiently large such that there exists q 2 Z such that the numbers q

p
; : : : ; qCg

p
and

q
pC1

; : : : ; qCg
pC1

belong to U1.

By definition, ai WD P. qCi
p

/ D hi
F . qCi

p
/ D 1

p2g hi
gen. F ˝ Lp.qCi// 2 1

p2g Z. Then we
know that

P.x/ D

gX

iD0

aiQ
j ¤i .

i�j
p

/

Y

j ¤i

.x �
q C j

p
/ D

gX

iD0

aiQ
j ¤i .i � j /

Y

j ¤i

.px � q � j /:

Hence all coefficients of P.x/ belong to 1
gŠ

1
p2g Z. Applying the same argument to

P. q
pC1

/; : : : ; P. qCg
pC1

/, we see that all coefficients of P.x/ belong to 1
gŠ

1
.pC1/2g Z. Hence

they belong to 1
gŠ
Z.

R 6.2. – By a slightly different argument, we can say something more. Let
a
b

2 U1. Then by Corollary 2.4, we know that, for x > 0 small enough,

Q.x/ WD P.
a

b
� x/ D xg 1

�.l/
�'�

l
Ri ˆ P .��

b
F ˝Lab/.

1

b2
xl/(6.1)

D
1

�.l/

gX

kD0

�
chk.'�

l Ri ˆP .��
b F ˝ Lab// � lg�k

�
A

1

b2g�2k
xk :

Hence the coefficient bk of xk of Q.x/ is 1
�.l/

�
chk.'�

l
Ri ˆP .��

b
F ˝ Lab// � lg�k

�
A

1

b2g�2k .
Note that
�
chk.'�

l Ri ˆP .��
b F ˝ Lab// � lg�k

�
A

D
�
'�

l chk.Ri ˆP .��
b F ˝ Lab// � lg�k

�
A

D
deg 'l

.d1dg/g�k

�
chk.Ri ˆP .��

b F ˝ Lab// � l
g�k

ı

�
bA;

where lı is the dual polarization ([4] §14.4) and the last equality holds because of (5.4).
Moreover, since

(6.2) �.lı/ D
.d1dg/g

�.l/

we note that the class Œlı �g�k belongs to .g �k/Š
.d1dg/g�k

dg ���dkC1
H 2g�2k.bA;Z/. On the other hand,

it is clear that Œchk.Ri ˆP .��
b

F ˝ Lab//� 2 1
kŠ

H 2k.bA;Z/. Thus bk 2 .d1 � � � dk/ .g�k/Š
kŠ

1

b2g�2k Z.

From this computation, we see easily that the coefficient ak of xk in P.x/ belongs to
.d1 � � � dk/ .g�k/Š

kŠ
Z.
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We have the following strange corollary.

C 6.3. – Let F 2 Db.A/. Then bg j hi
gen.��

b
F ˝ La/ for all b such

that .b; gŠ/ D 1 and a 2 Z.

Proof. – Since hi
F .xl/ is a polynomial of degree at most g whose coefficients belong

to 1
gŠ
Z, we have that gŠbghi

F . a
b
l/ 2 Z. As .b; gŠ/ D 1, we conclude that bg j hi

gen.��
b

F ˝ La/.

7. GV-subschemes of principally polarized abelian varieties

Let .A; �/ be a g-dimensional principally polarized abelian variety. A subscheme X of A

is called a GV-subscheme if its twisted ideal sheaf I X .‚/ is GV. This technical definition is
motivated by the fact that the subvarieties ˙Wd of Jacobians and ˙F , the Fano surface of
lines of intermediate jacobians of cubic threefolds, are the only known examples of (non-
degenerate) GV-subschemes. We summarize some basic results on the subject in use in the
sequel. One considers the “theta-dual” of X , namely the cohomological support locus

V.X/ WD V 0. I X .‚// D f˛ 2 bAjh0. I X .‚/ ˝ P˛/ > 0g;

equipped with its natural scheme structure ([24] §4). Let X be a geometrically non-degenerate
GV-subscheme of pure dimension d . Then

(a) [28, Theorem 2(1)] X and V.X/ are reduced and irreducible.

(b) ([24]) V.X/ is a geometrically non-degenerate GV-scheme of pure dimension g�d �1 (the
maximal dimension). Moreover V.V.X// D X and both X and V.X/ are Cohen-Macaulay.

(c) (loc. cit.) ˆP . OX .‚// D
�

I V.X/.‚/
�_

. Equivalently, by Grothendieck duality
(see (1.4)), ˆP_.!X .�‚// D I V.X/.‚/Œ�d�.

(d) (loc. cit.) X has minimal class ŒX� D
�g�d

.g�d/Š
.

In loc. cit. it is conjectured that the converse of (d) holds. According to the conjecture of
Debarre, this would imply that the only geometrically non-degenerate GV-subschemes are
the subvarieties ˙Wi and ˙F as above. We refer to the Introduction for what is known in
this direction.

Generalities on GV-subschemes. – We start with some general results on GV-subschemes,
possibly of independent interest. The first proposition does not follow from Green-
Lazarsfeld’s Generic Vanishing Theorem because a GV-subscheme can be singular. It
does follow, via Lemma 7.8 below, from the Generic Vanishing Theorem of [22] which
works for normal Cohen-Macaulay subschemes of abelian varieties. However the following
ad-hoc proof is much simpler.

P 7.1. – Let X be a non-degenerate reduced GV-subscheme. Then its dualizing
sheaf !X is a GV-sheaf.
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Proof. – By Hacon’s criterion (5.2), it is enough to show that

H i .!X ˝ ˆP . OA.�k‚//Œg�/ D 0 for k sufficiently big:

We have that ˆP . OA.�k‚//Œg� is a vector bundle (in degree 0) which will be denoted, as

usual, ̂OA.�k‚/. We can write

H i .!X ˝ ̂OA.�k‚// D H i .!X .�‚/ ˝ ̂OA.�k‚/.‚//:

Applying the inverse of ˆP , namely ˆP_
Œg� (see (1.1)) to the last formula of (c) of this section

we get that !X .�‚/ D ˆP . I V.X/.‚//Œg � d�. Therefore, by (1.7)

H i ..!X .�‚// ˝ ̂OA.�k‚/.‚/// D H iCg�d
�

I V.X/.‚/ ˝ ˆP

�
̂OA.�k‚/.‚/

��
:

Clearly ̂OA.�k‚/ is an IT(0) sheaf for k � 1 ((1.5)). Therefore ˆP

�
̂OA.�k‚/.‚/

�
is a

sheaf (locally free) in cohomological degree 0. Hence the above cohomology groups vanish
for i > 0 because dim V.X/ D g � d � 1.

P 7.2. – Let X be a non-degenerate reduced GV-subscheme. Then

ˆP_.!X / D
�
ˆP . I V.X//

�
.�‚/Œg � d�:

Proof. – We have

ˆP .!X / D ˆP

�
!X .�‚/ ˝ OA.‚/

�

(1.3)
D ˆP .!X .�‚// � ˆP . OA.‚/Œg�

.c/;(1.5)
D .�1/� I V.X/.‚/Œ�d� � OA.�‚/Œg�

(1.6)
D .ˆP . I �V.X///.�‚/Œg � d�:

C 7.3. – Let X be a non-degenerate reduced GV-subscheme. Then

(7.1) Ri ˆP_.!X / D 0 for i ¤ 0; d and Rd ˆP_.!X / D k. Oe/: (9)

Proof. – This follows from the fact that also V.X/ is reduced Cohen-Macaulay ((b) of
this section). Therefore, by Proposition 7.1, combined by the duality characterization of
Theorem 5.2(a)

ˆP . OV.X// D Rd�g�1ˆP . OV.X//Œ�.g � d � 1/�:

Hence it follows from the standard exact sequence 0 ! I V.X/ ! OA ! OV.X/ ! 0

that Ri ˆP . I V.X// D 0 for i ¤ g � d; g and RgˆP . I V.X// D k. Oe/Œ�g�. Therefore the
assertion follows from the previous proposition.

Corollary 7.3 is quite strong. Its implications hold in a quite general context but, for sake
of brevity, here we will stick to an ad-hoc treatment of the case of GV-subschemes.

L 7.4. – Let X be a subscheme of an abelian variety A. If X satisfies (7.1) then the
natural maps ƒi H 1. OA/ ! H i . OX / are isomorphisms for all i < d and injective for i D d .

(9) The last assertion was proved under very general assumptions in [2, Prop. 6.1].
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Proof. – In the first place we note that (as it is well known) for all F 2 Db.A/ we have a
natural isomorphism

(7.2) H i .A; F / Š ExtgCi .k. Oe/; ˆP . F //;

where Oe denotes the origin of bA. Indeed, by the Fourier-Mukai equivalence,

H i .A; F / D HomD.A/. OA; F Œi �/ Š Hom
D. bA/

.k. Oe/Œ�g�; ˆP . F //

Š ExtgCi .k. Oe/; ˆP . F //:

Applying (7.2) to F D !X we are reduced to compute the hypercohomology spectral
sequence

ExtgCi�k.k. Oe/; RkˆP .!X // ) ExtgCi .k. Oe/; ˆP .!X // Š H i .!X /:

We recall that Extj

bA.k. Oe/; k. Oe// D ƒj H 1. OA/. Condition (7.1) makes the above spectral
sequence very easy. In fact we get the maps

H i .!X / Š ExtgCi .k. Oe/; ˆP .!X // ! ExtgCi�d .k. Oe/; Rd ˆP .!X /Œd �/

D ExtgCi�d .k. Oe/; k. Oe//

D ƒgCi�d H 1. OA/

D ƒd�i H 1. OA/_;

which are isomorphisms for i > 0 and surjective for i D 0. The lemma follows by duality.

The Poincaré polynomial of a GV-subscheme. – As an application of cohomological
rank functions we prove that the Hilbert polynomial of geometrically non-degenerate
GV-subschemes is the conjectured one.

T 7.5. – Let X be a geometrically non-degenerate GV-subscheme of dimension d

of a principally polarized abelian variety .A; �/. Then

� OX
.x�/ D

dX

iD0

 
g

i

!
.x � 1/i :

Proof. – We compute the functions hi
OX

.x�/ in a neighborhood of x0 D 1. First we
compute it in an interval .1� ��; 1� as in Corollary 2.4. By (b) and (c) of this section we have
that R0ˆP . OX .‚// D OA.�‚/, Rd ˆP . OX .‚// D !V.X/.�‚/ and Ri ˆP . OX .‚// D 0

for i ¤ 0; d (see e.g., [24, Prop. 5.1(b)]). Therefore, in a small interval Œ���; 0�

hi
OX .‚/.y�/ D

8
ˆ̂<
ˆ̂:

.�y/g� OA.�‚/.�
1
y

/ D yg.1 C 1
y

/g D .1 C y/g for i D 0;

.�y/gQ.� 1
y

/ for i D d;

0 for i ¤ 0; d;

where Q is the Hilbert polynomial of the sheaf !V.X/.�‚/, hence a polynomial of
degree g � d � 1. It follows that .�y/gQ.� 1

y
/ D ydC1T .y/, where T is a polynomial
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of degree g � d � 1 such that T .0/ ¤ 0. Setting x D 1 C y we get that in the interval
.1 � ��; 1� (10)

hi
OX

.x�/ D

8
ˆ̂<
ˆ̂:

xg for i D 0

.x � 1/dC1T .x � 1/ for i D d; where deg T D g � d � 1and T .1/ ¤ 0

0 for i ¤ 0; d:

Writing xg as its Taylor expansion centered at x0 D 1 this yields the equality of polynomials

� OX
.x�/ D

gX

iD0

 
g

i

!
.x � 1/i C .�1/d .x � 1/dC1T .x � 1/:

It follows that � OX
.x�/, which is a polynomial of degree d , is the Taylor expansion of xg at

order d .

In the following proposition we compute the cohomological rank functions (with respect
to the polarization � ) of the structure sheaf of a GV-scheme. In particular, this answers to
Question 8.10 of [3], asking, in the present terminology, for the cohomological rank functions
of the structure sheaf of a curve in its Jacobian.

P 7.6. – In the same hypotheses of the previous theorem

h0
OX

.x�/ D

8
ˆ̂<
ˆ̂:

0 for x � 0;

xg for x 2 Œ0; 1�;

� OX
.x�/ D

Pd
iD0

�
g
i

�
.x � 1/i for x � 1:

Proof. – The assertion for x � 0 is obvious. The assertion for x � 1 follows from the
fact that OX .‚/ is a GV-sheaf (in fact M-regular), this last assertion being well known, as it
follows at once from the definition of GV-subscheme and the exact sequence

0 ! I X .‚/ ! OA.‚/ ! OX .‚/ ! 0:

Therefore, by Theorem 5.2(a), OX h.1 C x/�i is IT(0) for x > 0. In the proof of the previous
theorem, we computed the function h0

OX
.x�/ D xg for x in an interval .1���; 1�. Therefore,

to conclude the proof, we need to show that we can take �� D 1. By Proposition 7.1, the
dualizing sheaf !V.X/ is a GV-sheaf. Hence, again by Theorem 5.2(a), !V.X/hx�i is IT(0)
for x > 0. Therefore both R0ˆP . OX .‚//hn�i D OA.�‚/hn�i and Rd ˆP . OX .‚//hn�i D

!V.X/.�‚/hn�i are IT(0) for n > 1. Therefore one can take �� D 1 (see Remark 2.5).

As a consequence of Corollary 7.3 and Theorem 7.5 we get

T 7.7. – Let X be a geometrically non-degenerate d -dimensional GV -subscheme
of a g-dimensional p.p.a.v. A. Then

hi . OX / D

 
g

i

!
for all i � d:

(10) Actually in Proposition 7.6 below it will be shown that �� D 1, but this is not necessary for the present Theorem.
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Proof. – Lemma 7.4 implies that the natural map ƒi H 1. OA/ ! H i . OX / is an isomor-
phism for i < d and injective for i D d . By Theorem 7.5 the coefficient of degree 0 of the
Poincaré polynomial, namely �. OX /, is equal to

Pd
iD0.�1/i

�
g
i

�
. The result follows.

If one believes that the conjectures mentioned at the beginning of this section are true, then
geometrically non-degenerate GV-subschemes should be normal with rational singularities.
On a somewhat different note, we take the opportunity to prove some partial results in this
direction, using the results of [28] and [5].

L 7.8. – Let .A; �/ be an indecomposable PPAV. Assume that X is a geometrically
non-degenerate GV-subscheme. Then X is normal.

Proof. – We know that X is reduced and irreducible by (a) of this section. Since an
irreducible theta divisor is smooth in codimension 1, by the argument in [5, Theorem 4.1],
GV-subschemes of A are smooth in codimension 1. Since X is Cohen-Macaulay, we conclude
that X is normal by Serre’s criterion.

C 7.9. – Let .A; �/ be an indecomposable PPAV. Assume that X is a geometri-
cally non-degenerate GV-subscheme of dimension 2. Then X has rational singularities.

Proof. – Fix � W X 0 ! X a resolution of singularities. By Lemma 7.8, we only need to
prove that ��!X 0 D !X to conclude that X has rational singularities.

We first claim that h1. OX 0/ D h0.�1
X 0/ D g. Assume the contrary. Then the Albanese

variety AX 0 has dimension h1. OX 0/ > g. We consider the commutative diagram

X 0

�
!!

�

��

aX0
// AX 0

��

X
�

�

// A:

Since X is normal, �� OX 0 D OX . Hence h1. OX 0/ D h1. OX / C h0.X; R1�� OX 0/ > g. Thus
h0.X; R1�� OX 0/ > 0 and hence there exists an irreducible curve C on X 0 which is contracted
by � and aX 0 jC

is generically finite onto its image. In particular, there exists a holomorphic

1-form !0 2 H 0.X 0; �1
X 0/ such that .!0/jC is non-zero. Pick p 2 C a general point and

consider the following local calculation around p. Let x; y be local analytic coordinates of X 0

around p and assume that C is defined by y D 0. We may assume that �.p/ is the origin
of A and �.x; y/ D .f1.x; y/; : : : ; fg.x; y// in an analytic neighborhood of p. Let m be
the multiplicity of C in the fiber ��.0/. Then the holomorphic functions fi can be written
as ymgi .x; y/ with gi holomorphic around p. For each holomorphic 1-form ! 2 H 0.A; �1

A/,
we write ��! D h1dx Ch2dy in a neighborhood of p. Then ym j h1 and ym�1 j h2. Thus for
any s 2 ��H 0.A; �2

A/ � H 0.X 0; KX 0/, the corresponding divisor D.s/ has multiplicity of C

� 2m � 1. On the other hand, since !0jC
¤ 0, writing locally !0 D g1dx C g2dy around p,

we have that .g1/jC
is non-zero. Hence there exists t 2 !0 ^ ��H 0.A; �1

A/ � H 0.X 0; KX 0/

such as the corresponding divisor D.t/ whose multiplicity of C is m � 1. But then we have
a contradiction, since, by a result of Schreieder mentioned in the Introduction, the natural
map H 0.X 0; KX 0/ ' ��H 0.A; �2

A/ is an isomorphism ([28, Theorem 2]). This proves what
we claimed. It follows that the natural map H 1. OA/ ! H 1. OX 0/ is an isomorphism.
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Consider the short exact sequence

0 ! ��!X 0 ! !X ! � ! 0:

By Theorem 7.7 and the result of Schreieder it follows that H 0.��!X 0/ ! H 0.!X / is an
isomorphism. By Theorem 7.7 and the above claim it follows that the map H 1.��!X 0/ !

H 1.!X / is an isomorphism. Thus h0.�/ D 0 hence the cohomological support locus V 0.�/ is
strictly contained in bA. On the other hand, we know that !X is M-regular by Corollary 7.3.
This, together with the fact that ��!X 0 is GV ([9]) yields that � is M-regular. Since V 0.�/ is
strictly contained in bA, this implies (as it is well known, see e.g., [21, Lemma 1.12(b)])
that � D 0.

C 7.10. – In the hypothesis of the previous corollary, let X 0 be any desingular-
ization of X . Then the induced morphism � W X 0 ! A is the Albanese morphism of X 0.

Proof. – In view of the fact that h1. OX 0/ D g D dim A, it is enough to prove that � does
not factor through any non-trivial isogeny. This means that if ˛ 2 bA is such that ��P˛ is
trivial then ˛ D Oe. But this follows from the last part of Lemma 7.3, which implies by base
change that the cohomological support locus V d .!X / D fOeg and Lemma 7.9. Alternatively,
one can use the results of [16].

8. Cohomological rank functions of the ideal of one point, multiplication maps

of global sections, and normal generation of abelian varieties

We refer to the Introduction for a general presentation of the contents of this section. Let
A be an abelian variety and l and n be polarizations on A (in our applications n will be a
multiple of l). Assume moreover that n is basepoint free. Let N be an ample and basepoint
free line bundle representing n. We consider the evaluation bundle of N , defined by the exact
sequence

(8.1) 0 ! MN ! H 0.N / ˝ OA ! N ! 0:

Finally, let p 2 A. We consider the cohomological rank functions hi
Ip

.xl/ and hi
MN

.xn/. (11)

In both cases for x � 0 the functions are zero for i � 2 and for x � 0 they are zero
for i ¤ 1; g. We consider their maximal critical points, namely

ˇ.l/ D inffx 2 Qjh1
Ip

.xl/ D 0g;

s.n/ D inffx 2 Qjh1
MN

.xn/ D 0g:

As it is easy to see, the problem illustrated by Remark 5.5 about Proposition 5.4 does not
occur for these two sheaves. Hence if x0 2 Q is such that I phx0li (resp. MN hx0ni) is GV but
not IT(0) then ˇ.l/ (resp. s.n/) is a critical point of hi

Ip
.xl/ (resp. hi

MN
.xn/) for i D 0; 1,

in fact the maximal one. In any case, for x 2 Q, the fact that x > ˇ.l/ (resp. y > s.n/) is
equivalent to the fact that I phxli (resp. MN hyni) is IT(0).

(11) Note that they don’t depend respectively on p and on N .
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Let us spell what the IT(0) (resp. GV) condition means for the above Q-twisted sheaves.
For x D a

b
2 Q>0, the fact that I phxli is IT(0) means that

h1.��
b. I p/ ˝ Lab

˛ / D 0

for all line ˛ 2 bA, where as usual Lab
˛ denotes Lab ˝ P˛. This means that the finite scheme

p C ��1
b

.0/ imposes independent conditions to the line bundles Lab
˛ for all ˛ 2 bA. Since the

Lab
˛ ’s are all translates of the same line bundle this means that for all p 2 A the finite scheme

p C ��1
b

.0/ imposes independent conditions to the global sections of the line bundle Lab

(hence the same happens for all line bundles Lab
˛ ). This condition can be interpreted as

basepoint-freeness for the fractional polarization xl . Note that if x 2 Z, writing x D xb
b

one
finds back the usual basepoint-freeness. In turn the fact that I phxli is GV but not IT(0)
means that for all ˛ in a proper closed subset of bA the finite scheme p C ��1

b
.0/ does not

impose independent conditions to the global sections of the line bundle Lab
˛ . As above this

means that for p in a proper subset of A the finite scheme p C ��1
b

.0/ does not impose
independent conditions to the global sections of Lab (hence the same property holds for all
line bundles Lab

˛ ). Again, for x 2 Z one finds back the usual notion of base points and base
locus. It follows that I p.L/ is any case GV and it is IT(0) if and only if l is basepoint free.
In other words: ˇ.l/ � 1 and equality holds if and only if l has base points.

Similarly, for y D a
b

, the fact that MN hyni is IT(0) (resp. GV) means that

h1.��
b.MN / ˝ N ab

˛ / D 0

for all (resp. for general) ˛ 2 bA. Pulling back the exact sequence (8.1) via �b and tensoring
with Lab

˛ this has the meaning mentioned in the introduction, namely that the multiplication
maps obtained by composing with the natural inclusion H 0.N / ,! H 0.��

b
N /

(8.2) H 0.N / ˝ H 0.N ab
˛ / ! H 0.��

b.N / ˝ N ab
˛ /

are surjective for all (resp. for general) ˛ 2 bA. The above maps (8.2) can be thought as the
multiplication maps of global sections of N and of a representative of the rational power N

a
b

(twisted by P˛)

P 8.1. – Let .A; n/ be a polarized abelian variety and assume that n is base-
point free. Let p 2 A. For i D 0; 1 and y < 1

hi
Ip

.yn/ D
.1 � y/g

�.n/
hi

MN
..�1 C

1

1 � y
/n/:

Consequently

(8.3) s.n/ D �1 C
1

1 � ˇ.n/
D

ˇ.n/

1 � ˇ.n/
:

Proof. – We can assume that p D e (the origin of A). The essential point of the proof is
that

(8.4) '�
n .R0ˆP . I e.N /// D MN ˝ N �1:

Indeed, by the exact sequence 0 ! I e.N / ! N ! N ˝ k.e/ ! 0 it follows
that R0ˆP . I e.N // is the kernel of the map

R0ˆP .N / D bN f
! R0ˆP .N ˝ k.e// D O bA:

4 e SÉRIE – TOME 53 – 2020 – No 4



COHOMOLOGICAL RANK FUNCTIONS ON ABELIAN VARIETIES 843

By (1.5) the map '�
n .f / is identified to a map H 0.N / ˝ N �1 ! OA which is easily seen to

be the evaluation map tensored with N �1.

Next, we notice that, since the polarization n is assumed to be basepoint free, we have that

(8.5) ˆP . I e.N // D R0ˆP . I e.N //:

To prove this, we first notice that H i . I e ˝ N˛/ D 0 for all ˛ 2 bA and i > 1. By base change
this implies that the support Ri ˆP . I e.N // is equal to

V 1. I e.L// D f˛ 2 bAjh1. I e ˝ N ˝ P˛/ > 0g;

which is non-empty if and only if n has base points. This proves (8.5).

Therefore, by Proposition 2.3 and degeneration of the spectral sequence computing the
hypercohomology, we have that for i D 0; 1 and t < 0

hi
I e.N /.tn/ D

.�t /g

�.n/
hi

'�
n R0ˆ P . I 0.N //

.�
1

t
n/

(8.4)
D

.�t /g

�.n/
hi

MN
..�1 �

1

t
/n/:

The first statement of the proposition follows setting y D 1Ct . The second statement follows
from the first one.

Applying the previous proposition to divisible polarizations n D hl we get Theorem D of
the Introduction, namely

C 8.2. – Let .A; l/ be a polarized abelian variety and let h be an integer such
that hl is basepoint free (hence h � 2, and h � 1 if l is basepoint-free). Then

(8.6) s.hl/ D
ˇ.l/

h � ˇ.l/
:

Consequently:

(a)

s.hl/ �
1

h � 1
and equality holds if and only if l has base points.

(b) Assume that l is base point free. Then s.l/ < 1 if and only if ˇ.l/ < 1
2

. In particular, if
ˇ.l/ < 1

2
then l is normally generated.

Proof. – (a) By definition, hi
I e

.x.hl// D hi
I e

..xh/l/. Hence ˇ.hl/ D 1
h

ˇ.l/. By the
previous proposition,

s.hl/ D
ˇ.hl/

1 � ˇ.hl/
D

ˇ.l/

h � ˇ.l/
:

The last statement follows from the fact that ˇ.l/ � 1 and equality holds if and only if l has
base points.

(b) The first assertion follows immediately from (8.6). Concerning the last assertion, we
have that s.l/ < 1 if and only if the multiplication maps

H 0.L/ ˝ H 0.L˛/ ! H 0.L2
˛/

are surjective for all ˛ 2 bA. A well known argument (e.g., [13], proof of Thm 6.8(c) and
Cor. 6.9, or [4], proof of Theorem 7.3.1) proves that this implies that L˛ is normally generated
for all ˛ 2 bA.
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Item (b) as well as the case h D 2 of item (a) of the above corollary have been already
commented in the Introduction. Here we note that the proposition implies that, for an integer
h � 2 and a

b
� 1

h�1
the “fractional” multiplication maps of global sections

H 0.Lh/ ˝ H 0.Lhab
˛ / ! H 0.��

b.Lh/ ˝ Lhab
˛ /

are surjective for general ˛ 2 bA and in fact for all ˛ 2 bA as soon as a
b

> 1
h�1

or l is basepoint
free. This is much stronger than the known results on the subject. For example, for h D 3

Koizumi’s theorem on projective normality, in a slightly stronger version ([13] Cor.6.9, [4]
Th. 7.3.1) tells that the above maps are surjective for all ˛ 2 bA for b D 1 and a D 2

3
while the

corollary asserts that the same happens for a
b

> 1
2

. Moreover, for the critical value a
b

D 1
2

,
the corollary tells that the maps

H 0.L3/ ˝ H 0.L6
˛/ ! H 0.��

2.L3/ ˝ L6
˛/

are surjective for general ˛ 2 bA and in fact for all ˛ 2 bA as soon as l is basepoint free. For
arbitrary h the same happens for the “critical” maps

H 0.Lh/ ˝ H 0.Lh.h�1/
˛ / ! H 0.��

h�1.Lh/ ˝ Lh.h�1/
˛ /:

Note that, when l is a principal polarization, the dimension of the source of the above maps
is equal to the dimension of the target, namely .h2.h � 1//g .
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GLOBAL REGULARITY FOR THE 3D FINITE DEPTH

CAPILLARY WATER WAVES

 X WANG

A. – In this paper, we prove global regularity, scattering, and the non-existence of small
traveling waves for the 3D capillary waves system in the flat bottom setting for smooth localized small
initial data.

To construct global solutions, we highly exploit the symmetric structures inside the capillary waves
system and control both a low order weighted norm and a high order weighted norm of the profile
of a good substitution variable over time to show that, although the nonlinear solution itself doesn’t
decay sharply at rate 1=.1C t / over time, the “1C˛” derivatives of the nonlinear solution indeed decay
sharply, where ˛ is some fixed positive number.

R. – Dans cet article, on démontre la régularité globale, la dispersion des solutions et
la non-existence des petites ondes progressives pour un système d’equations des ondes capillaires en
dimension 3 avec des petites données initiales régulières et localisées, dans le cas des fonds plats.

Pour construire des solutions globales, on exploite les structures symétriques du système d’ondes
capillaires et contrôle à la fois les évolutions des deux normes avec poids du profil d’une bonne variable
substitutive, l’une d’ordre petit et l’autre d’ordre grand. En conséquence, on montre que les dérivées
d’ordre 1 C ˛ de la solution non-linéaire décroissent rapidement au taux de 1=.1 C t /, bien que la
solution elle-même ne décroisse pas aussi rapidement, où ˛ est un nombre positif fixé.

1. Introduction

1.1. The set-up of problem and previous results

We study the evolution of a constant density irrotational inviscid fluid, e.g., water, inside
a time dependent domain �.t/ � R3, which has a fixed flat bottom † and a moving
interface �.t/. Above the water region �.t/ is vacuum. We neglect the gravity effect and
only consider the surface tension effect in this paper. The problem under consideration is
also known as the capillary waves system.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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848 X. WANG

After normalizing the depth of �.t/ to be “1,” we can represent �.t/; �.t/; and † in the
Eulerian coordinates as follows,

�.t/ WD f.x; y/ W x 2 R2;�1 � y � h.t; x/g;

�.t/ WD f.x; h.t; x/ W x 2 R2g; † WD f.x;�1/ W x 2 R2g;

where h.t; x/ represents the height of interface, which will be a small perturbation of zero.
Let “u” and “p” denote the velocity and the pressure of the fluid respectively. Then the

evolution of fluid can be described by the free boundary Euler equation as follows,

(1.1) @tuC u � ru D �rp; r � u D 0; r � u D 0; in �.t/:

The free surface �.t/ moves with the normal component of the velocity according to the
kinematic boundary condition as follows,

@t C u � r is tangent to [t�.t/:

The pressure p satisfies the Young-Laplace equation as follows,

p D �H.h/; on �.t/;

where “�” denotes the surface tension coefficient, which will be normalized to be one, and
H.h/ represents the mean curvature of the interface, which is given as follows,

H.h/ D r �
� rhp

1C jrhj2

�
:

Lastly, the following Neumann type boundary condition holds on the bottom †,

u � En D 0; on †:

Because the bottom is assumed to be fixed, the fluid cannot go through the bottom. This
explains why the above boundary condition holds.

Since the velocity field is irrotational, we can represent it in terms of a velocity potential �.
Let  be the restriction of the velocity potential on the boundary �.t/, more precisely,
 .t; x/ WD �.t; x; h.t; x//. From the divergence free condition and the boundary conditions,
we can derive the Laplace equation with two boundary conditions as follows,

(1.2) .@2y C�x/� D 0;
@�

@En j† D 0; �j�.t/ D  :

Hence, we can reduce the study of the motion of fluid in �.t/ to the study of the evolution
of the height function “h.t; x/” and the restricted velocity potential “ .t; x/” as follows,

(1.3)

8
<̂

:̂

@th D G.h/ ;

@t D H.h/ � 1
2
jr j2 C

.G.h/ C r h � r /2

2.1C jr hj2/
;

whereG.h/ D
p
1C jr hj2 N .h/ and N .h/ is the Dirichlet-Neumann operator at the

interface �.t/. See e.g., [42] for the derivation of the system (1.3).
The capillary waves system (1.3) has the conserved energy and the conserved momentum

as follows, see e.g., [7],
(1.4)

H .h.t/;  .t// WD
h Z

R2

1

2
 .t/G.h.t// .t/C

jrh.t/j2

1C
p
1C jrh.t/j2

dx
i

D H .h.0/;  .0//;
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(1.5)
Z

R2

h.t; x/dx D

Z

R2

h.0; x/dx:

From [34, Lemma 3.4], we know that

(1.6) .Flat bottom setting/ W

ƒ�2ŒG.h/ � D jrj tanh jrj � r � .hr / � jrj tanh jrj.hjrj tanh jrj /;

(1.7) .Flat bottom setting/ W ƒ�2Œ@t � D �h �
1

2
jr j2 C

1

2
.jrj tanh jrj /2;

where ƒ�2ŒN � denotes the linear terms and the quadratic terms of the nonlinearity N .
From the above Taylor expansions, in the small solution regime, the conserved Hamilto-

nian in (1.4) tells us that the L2-norm of .rxh; jrj
p

tanh jrj / doesn’t change much over
time. More precisely, the following approximation holds,

1

4

�
krh.t/k2

L2 C kjrjP�1Œ .t/�k
2
L2 C kjrj1=2P�1Œ .t/�k

2
L2

�
� H . h.t/;  .t//

D H .h.0/;  .0// � 4
�
krh.t/k2

L2 C kjrjP�1Œ .t/�k
2
L2 C kjrj1=2P�1Œ .t/�k

2
L2

�
:(1.8)

There is an extensive literature on the study of the water waves system. Without being
exhaustive, we only discuss some previous works here and refer readers to the references
therein.

Previous results on the local existence of the water waves system. – Due to the quasilinear
nature of the water waves systems, to obtain the local existence, it is very important to
get around the losing derivatives issue. Early works of Nalimov [32] and Yosihara [41]
considered the local well-posedness of the small perturbation of a flat interface such that
the Rayleigh-Taylor sign condition holds. It was first discovered by Wu [37, 38] that the
Rayleigh-Taylor sign condition holds without the smallness assumptions in the infinite
depth setting. She showed the local existence for arbitrary size of initial data in Sobolev
spaces. After the breakthrough of Wu’s work, there are many important works devoted to
improve the understanding of local well-posedness of the full water waves system and the
free boundary Euler equations. Christodoulou-Lindblad [10] and Lindblad [31] considered
the gravity waves with vorticity. Beyer-Gunter [8] considered the effect of surface tension.
Lannes [30] considered the finite depth setting. See also Shatah-Zeng [33], and Coutand-
Shkoller [11]. It turns out that local well-posedness also holds even if the curvature of the
interface is unbounded and the bottom is very rough even without regularity assumption,
only a finite separation condition is required, see the works of Alazard-Burq-Zuily [1, 2] for
more detailed and precise description of this result.

Previous results on the long time behavior of the water waves system. – The long time behavior
of the water waves system is more difficult and challenging. To study the long time behavior,
the low frequency part of the solution plays an essential role. It is very interesting to see that
the water waves systems in different settings have very different behavior at the low frequency
part. Even for a small perturbation of static solution and flat interface, we only have few
results so far. Note that it is possible to develop the so-called “splash-singularity” for a large
perturbation, see [9] and references therein for more details.

We first discuss previous results in the infinite depth setting. The first long-time result for
the water waves system is due to the work of Wu [39], where she proved the almost global
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existence of the 2Dgravity waves for small initial data. Subsequently, Germain-Masmoudi-
Shatah [17] and Wu [40] proved the global existence for the 3D gravity waves system, which
is the first global regularity result for the water waves system. Global existence of the 3D
capillary waves was also obtained, see Germain-Masmoudi-Shatah [18]. For the 2D gravity
waves system, it is highly nontrivial to bypass the almost global existence. As first pointed
out by Ionescu-Pusateri [27] and independently by Alazard-Delort [3, 4], we have to modify
the profile appropriately first to prove the global existence. The nonlinear solution possesses
the modified scattering property instead of the usual scattering. Later, a different inter-
esting proof of the almost global existence was obtained in the holomorphic coordinates
by Hunter-Ifrim-Tataru [22], then Ifrim-Tataru [23] improved this result and gave another
interesting proof of the global existence. The author [35] considered the infinite energy
solution of the gravity waves in 2D, which removed the momentum assumption assumed
in previous results. Global existence of the capillary waves system in 2D was also obtained.
See Ionescu-Pusateri [28, 29] and Ifrim-Tataru [23]. For the 3D gravity-capillary waves
with any possible positive gravity effect constant and positive surface tension coefficient,
Deng-Ionescu-Pausader-Pusateri [14] proved global existence for small localized initial data
in the infinite depth setting.

Now, we move on to the finite depth setting. The behavior of the water waves system in
the finite depth setting is more delicate than the infinite depth setting due to three factors
listed as follows, the presence of small traveling waves, the more complicated structure at low
frequencies, and less favorable quadratic terms.

Roughly speaking, the existence of small (in L2 sense) traveling waves for the water waves
system in different settings can be summarized as follows. From previous results [40, 17, 14]
on the 3D water waves system in the infinite depth setting, we know that there is no small
traveling waves regardless the size of �=g. However, we do know the existence of small
traveling waves for the 3D gravity-capillary waves system in the flat bottom setting as long
as �=g > 1=3, see [12]. From the recent work of the author [36], we know that there is no
small traveling wave for the 3D gravity waves system in the flat bottom setting, i.e., �=g D 0.
So far, it is still not clear whether there exist small traveling waves for the 3D gravity-capillary
waves system in the flat bottom setting if 0 < �=g � 1=3.

On the long time behavior side. Only results on the gravity waves system were obtained.
The large time existence was obtained by Alvarez-Samaniego-Lannes [6] for the 3D finite
depth gravity waves system. Recently, the author [34, 36] showed that the 3D gravity waves
system admits global solutions for small smooth localized initial data in the flat bottom
setting. For the 2D gravity waves system in the flat bottom setting, Harrop-Griffiths-Ifrim-
Tataru [21] showed that the lifespan of the solution is at least of size 1=�2 if the small initial
data is of size �.

1.2. Main difficulties for the capillary waves system in the flat bottom settings

Note that the linear operator of the Dirichlet-Neumann operator changes with respect to
the depth of water region. To help readers understand the main difficulties of the capillary
waves in the finite depth setting, we compare the capillary waves system in the infinite depth
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setting and the flat bottom setting with the depth of water region normalized to be one.
Intuitively speaking, we have the following two types of dispersive equations,

.Infinite depth setting/ .@t C i jrj3=2/u D N 1.u/;(1.9)

.Flat bottom setting/ .@t C i jrj3=2
p

tanh jrj/u D N 2.u/:(1.10)

The main new difficulties of the 3D capillary waves in the flat bottom setting, which
are caused by the difference of linear operators in two settings at low frequencies, can be
summarized by the following two facts.

(i) The nonlinearity of (1.10) doesn’t have null structure at low frequencies, which does
appear in the infinite depth setting. Intuitively speaking, the presence of null structure
stabilizes the nonlinear effect. Hence, we expect a stronger nonlinear effect at low
frequencies, which makes the global regularity problem more delicate in the flat bottom
setting.

(ii) A new type of time resonance set appears for the capillary waves system in the flat
bottom setting. The long time accumulated effect caused by the new time resonance
set has not been carefully studied before. Given the fact that there exists a finite time
blow up solution for a similar equation but with a different nonlinearity, we expect that
the nonlinear effect caused by the new type of time resonance set is very delicate.

For the sake of readers, we provide more detailed discussion about the existence of null
structure at low frequencies in two different settings here. Note that

.Infinite depth setting/ W ƒ�2Œ@th� D ƒ�2ŒG.h/ � D jrj � r � .hr / � jrj.hjrj /;

(1.11)

.Infinite depth setting/ W ƒ�2Œ@t � D �h �
1

2
jr j2 C

1

2
.jrj /2:

(1.12)

From (1.11) and (1.12), it is easy to check that the symbols of quadratic terms vanish if the
output frequency of quadratic terms is zero. Moreover, if the frequency of the height function
“h.t/” is zero, then the symbol of quadratic terms in “@th.t/” also vanishes. Unfortunately,
we lose all these favorable cancelations for the capillary waves system (1.3) in the flat bottom
setting. From (1.6) and (1.7), it is easy to check that the symbols of quadratic terms in the
corresponding scenarios don’t vanish in the flat bottom setting.

Due to the lack of null structures at low frequencies in the flat bottom setting, we expect
much stronger nonlinear effect for the finite depth capillary waves. One way to capture the
nonlinear effect is to study the growth of the profile of the solution, which is the pull back of
the nonlinear solution along the linear flow, with respect to time.

For simplicity and also for intuitive purpose, we study a relevant toy model of the capillary
waves system (1.3). More precisely, we consider the long time behavior of the following toy
model,

(1.13) .Toy model/ W .@t � i�/v D Q1.v; Nv/CQ2.v; v/CQ3. Nv; Nv/; v W Rt �R2x �! C;
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where the symbols qi .� � �; �/ of the quadratic terms Qi .:; :/, i 2 f1; 2; 3g, satisfy the
following estimate,
(1.14)

k F �1
Œqi .� � �; �/ k.�/ k1

.� � �/ k2
.�/�kL1 � C minf22maxfk1;k2g; 1g; i 2 f1; 2; 3g;

where C is some absolute constant.
The toy model (1.13) is derived by only keeping the quadratic terms of (1.3), which are

expected to be the leading terms in the small data regime, and replacing the linear operator
jrj3=2

p
tanh jrj by the leading operator jrj2 at low frequencies. The estimate of symbol in

(1.14) captures the facts that there are at least two derivatives inside (1.3) and the size of
symbol is “1” in both 1�1 (sizes of two input frequencies) ! 0 (size of the output frequency)
type interaction and the 1 � 0 ! 1 type interaction.

It turns out that the toy model (1.13), which is a 2D quadratic Schrödinger equation,
is already a very delicate problem due to the presence of v Nv type nonlinearity. Even the
quadratic Schrödinger equation in 3D is not completely solved.

If without the v Nv type quadratic term, then the 1� 1 ! 0 type interaction is actually not
bad. Note that the phases are all of size 1 in the 1 � 1 ! 0 type interaction if there is no
v Nv type quadratic term. The high oscillation of phase in time will also stabilize the growth
of the profile in a neighborhood of zero frequency even without the smallness arose from
the symbol. We refer readers to the works of Germain-Masmoudi-Shatah [15, 16] for more
detailed discussion.

To capture the nonlinear effect of v Nv type quadratic term in the toy model (1.13), we
study the growth of profile g.t/ WD e�it�v.t/ over time, which gives us a sense of what the
dispersion of the nonlinear solution “v.t/” will be. From the Duhamel’s formula, we have

bg.t; �/ D bg.0; �/C

Z t

0

Z

R2

�
ei2s���q1.� � �; �/bg.s; � � �/bNg.s; �/

C ei2s��.���/q2.� � �; �/bg.s; � � �/bg.s; �/
C eis.j�j2Cj���j2Cj�j2/q3.� � �; �/bNg.s; � � �/bNg.s; �/

�
d�ds:

(1.15)

We start from the first iteration by replacing “g.s/” on the right side of (1.15) with the
initial data g.0/, whose frequency is localized around “1”. As a result, intuitively speaking,
the following rough estimate holds in a small neighborhood of zero,

(1.16) ct � jbg.t; �/j � Ct; when j�j � c=t;

where c and C are some absolute constants and the time “t” is very large.
Due to the nonlinear nature of the problem, the growth of profile at low frequencies will

trigger the growth of profile at other modes of frequencies. Therefore, it is reasonable to
expect that a certain instability could possibly happen. Recently, Ikeda and Inui [24] showed
that there exists a class of small L2 initial data such that the solution of the quadratic
Schrödinger equation with v Nv type nonlinearity blows up within a polynomial time in both
2D and 3D.

This intuition, which comes from the first Picard iteration in (1.16), says that the nonlinear
solution behaves differently from a linear flow. It says few precise information about the
nonlinear solution itself. In this paper, our goal is not trying to classify all possible outcomes
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for different types of nonlinearities inside the toy model (1.13). Because it is a very delicate
problem, we should not expect a universal answer. Instead, our goal is to exploit some hidden
structures inside the capillary water waves (1.3) and show that the 3D capillary waves system
(1.3) admits global solution for small localized initial data.

1.3. Main result

In this paper, we show that the solution of the capillary waves system (1.3) globally exists
and scatters to a linear solution in a weak normed space for small initial data. More precisely,
our main theorem is stated as follows,

T 1.1. – Let N0 D 2000; ı 2 .0; 10�9�, and ˛ D 1=10. Assume that the initial
data .h0;  0/ 2 HN0C1=2.R2/ �HN0C1=2.R2/ satisfies the following smallness condition,

k.h0;  0/kHN0C1=2 C
X

�2fL;�g

k.�h0; � 0/kH10C1=2

C
X

�1;�22fL;�g

k.�1�2h0; �
1�2 0/kH1=2 � �0;

where �0 is a sufficiently small constant, � WD x? � rx and L WD x � rx C 2. Then there exists
a unique global solution for the capillary water waves system (1.3) with initial data .h0;  0/.
Moreover, the solution scatters to a corresponding linear solution in a homogeneous Sobolev
space PH˛Cı and the following estimate holds,
(1.17)

sup
t2Œ0;T �

.1C t /�ık. Qƒh; /.t/kHN0 C .1C t /
� X

k2Z

2.1C˛/kC6kCkPk Œ.h;  /.t/�kL1

�
� C�0;

where C is some absolute constant and Qƒ WD jrj1=2.tanh jrj/�1=2.

R 1.1. – From (1.17), we know that the solution decays over time. This fact
implies that there is no small traveling waves for the 3D capillary waves system (1.3) in the
flat bottom setting, i.e., �=g D 1.

1.4. Main ideas of proof

The idea of proving global existence for the 3D finite depth capillary waves system (1.3)
is classic, which is iterating the local existence result by controlling both the energy and the
dispersion of the nonlinear solution over time.

The whole argument depends on the dispersion estimate of the nonlinear solution, which
is very delicate. The main difficulty and the delicacy come from the complicated and large
time resonance set associated with the quadratic terms. More precisely, the time resonance
sets of the quadratic terms are defined as follows,

T �;� WD f.�; �/ W ƒ.j�j/ � �ƒ.j� � �j/ � �ƒ.j�j/ D 0g; �; � 2 fC;�g:
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As a typical example, the following approximation holds at low frequencies for the case when
� D C and � D �,

T C;� \ f.�; �/ W j�j; j�j � 2�10g � f.�; �/ W j�j; j�j � 2�10; ƒ.j�j/ �ƒ.j� � �j/Cƒ.j�j/

(1.18)

� 2� � � � 0g:

Note that the time resonance set is almost everywhere since it is possible that “� � � D 0” no
matter what the sizes of j�j and j�j are.

Recall (1.16). Since the growth mode happens at a small neighborhood of zero, it is
reasonable to expect that the spatial derivatives, which provide smallness at low frequencies,
compensate theL1

x decay rate of the nonlinear solution. To capture this expectation, we aim
to prove the sharp decay rate for certain derivatives of the nonlinear solution instead of the
nonlinear solution itself.

Now, the first question is how many derivatives we associate with the nonlinear solution
to obtain the sharp decay rate. To answer this question, we need to keep a basic principle
in mind. Generally speaking, the more derivatives we associate with the solution the less
information we can tell about the solution itself. Recall (1.16). Intuitively speaking, because
of the accumulated effect of the 1 � 1 ! 0 type interaction, it is unlikely that the “1�”
derivatives of the profile of the nonlinear solution do not grow over time. Therefore, in
practice, we expect that 1C˛ derivatives of solution decay sharply, where ˛ is a small positive
number.

Now, the real question is whether we can close the argument and show that our expec-
tation indeed holds globally in time. The argument that we will present is very complicated
and technical. There are two main ingredients that are very essential to the validity to
the argument: (i) there are requisite symmetric structures inside the finite depth capillary
wave system (1.3); (ii) the bulk scenario, which is nontrivial to justify and will be clear
later, is the accumulated effect of the t�1=2 � t�1=2 ! t�1=2 type interaction. Recall (1.14),
there are two derivatives in total at low frequencies. Hence, the accumulated effect of the
t�1=2 � t�1=2 ! t�1=2 type interaction is compensated by the symbol of quadratic terms.
As a result, the bulk scenario is not an issue.

We discuss some main ideas and strategies used in the bootstrap argument with more
details as follows.

1.4.1. Energy estimate: controlling the high frequency part of solution. – We first point out
that the difference of the high frequency part between the infinite depth setting and the flat
bottom setting is very little. Thanks to the works of Alazard-Métivier [5] and Alazard-Burq-
Zuilly [1, 2], by using the method of paralinearization and symmetrization, we can find a pair
of good unknown variables, such that the equations satisfied by the good unknown variables
have symmetries inside, which help us to avoid losing derivatives in the energy estimate.

Recall that we expect that the decay rate of 1C˛ derivatives of solution is sharp. However,
within our expectation, the L1

x -norm of the nonlinear solution itself in the worst scenario
is only .1 C t /�1=2Cı . As a result, a rough L2 � L1 type energy estimate is not sufficient
to close the energy estimate. Hence, we need to pay special attention to the low frequency
part of the input putted in L1-type space. To this end, an important step is to understand
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the structure of the low frequency part of the Dirichlet-Neumann operator, which has been
studied in details in [34].

We first state our desired energy estimate and then explain the main intuitions behind. We
expect that the following new type of energy estimate holds,

(1.19)
ˇ̌ d
dt
E.t/

ˇ̌
� CE.t/

�
k.h.t/;  .t//kW 6;1C˛ C k.h.t/;  .t//kW 6;1k.h.t/;  .t//kW 6;0

�
;

where C is some absolute constant and the W ;b type function space is defined as follows,

(1.20) kf kW ;b WD
X

k2Z

.2k C 2bk/kPkf kL1 ; b < :

Note that the desired new type of energy estimate (1.19) is sufficient to show that the energy
only grows sub-polynomially as long as the nonlinear solution decays sharply inW 6;1C˛. To
derive the new type energy estimate (1.19), besides the quadratic terms, we also need to pay
special attention to the low frequency part of the cubic terms.

Now, we provide an intuitive explanation about why the desired estimate (1.19) holds.
Note that the following three facts hold: (i) there are at least two derivatives in total inside
the quadratic terms; (ii) we don’t lose derivatives after utilizing symmetries during the energy
estimates; (iii) the total number of derivatives doesn’t decrease in this process. As a result,
intuitively speaking, there are only two possible scenarios, which are listed as follows: (i)
Including the High � High type interaction, there are at least two derivatives associated
with the input with relatively smaller frequency; (ii) Smooth error terms. In other words, the
high order Sobolev-norm of those terms can be controlled by their L2-norms. Therefore, we
can put the input with larger frequency in L1 and put the other input in L2. In whichever
scenario, the input putted in L1 type space always associates with two spatial derivatives,
which explains the first estimate in (1.19). A very similar intuition also holds for cubic and
higher order terms, which leads to the second part of (1.19).

1.4.2. The dispersion estimate: sharp decay rate of the 1 C ˛ derivatives of solution. – To
carry out the analysis of decay estimate, we first identify a good substitution variable, which
has the same decay rate as the original solution. Instead of proving the dispersion estimate
for the original variable, our goal is reduced to prove the sharp decay estimate for the good
substitution variable over time.

We divide the rest of this subsubsection into three parts. (i) In the first part, we explain
how to find such a good substitution variable. (ii) In the second part, we explain some main
ideas in the estimate of the lower order weighted norm. Our goal is to prove that, under the
assumption that the high order weighted norm only grows sub-polynomially over time, the
low order weighted norm of the profile doesn’t grow over time, which implies that the decay
rate of 1C ˛ derivatives of the nonlinear solution is sharp. (iii) In the third part, we explain
main ideas behind the estimate of high order weighted norm and show that it indeed grows
only sub-polynomially over time.

A good substitution variable. – The good substitution variable is obtained by using the
normal form transformation that removes some nonlinearities, which associate with phases
that are highly oscillating in time. As a result, the equation satisfied by the good substitution
variable has less terms, which simplify the whole argument.
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For simplicity, we consider the toy model (1.13) to illustrate the main idea behind. Define
the profile of u.t/ as f .t/ WD eitƒu.t/, as a result of direct computation, we have

bf .t; �/ D bf .0; �/C
X

�;�2fC;�g

Z t

0

Z

R2

eisˆ
�;�.�;�/q�;�.� � �; �/cf �.s; � � �/cf �.s; �/d�ds;

where f C WD f DW PCŒf �, f � WD Nf DW P�Œf �, q�;�.� � �; �/ is the symbol of u�u� type
quadratic term, and the phases ˆ�;�.�; �/, �; � 2 fC;�g, are defined as follows,

ˆ�;�.�; �/ D j�j2 � �j� � �j2 � �j�j2; �; � 2 fC;�g:

Note that
r�ˆ

C;C.�; �/ D �.� � �/ � � H) r�ˆ
C;C.�; �=2/ D 0:

Therefore, we can’t do integration by parts in “�” around a small neighborhood of .�; �=2/
(space resonance set) . Fortunately, .�; �=2/ doesn’t belong to the time resonance set. From
the explicit formula, it is easy to check the validity of the following estimate,

ˆC;C.�; �=2/ D j�j2 � 2.j�j=2/2 D j�j2=2:

Very similarly, we can verify that the following estimate holds when j�j � 2�10j�j and
� D � or j�j � 2�10j�j, �� D C,

2�2 maxfj�j2; j�j2g � jˆ�;�.�; �/j � 22 maxfj�j2; j�j2g:

Since the associated phases are relatively large, we refer those cases as the high-oscillation-
in-time cases.

To take the advantage of the high oscillation in time for these scenarios, we can use a
normal form transformation to remove the high oscillation in time cases as follows,

(1.21) v WD uC
X

�;�2fC;�g

A�;�.u
�; u�/; a�;�.� � �; �/ D

X

k2Z

iq�;�.� � �; �/

ˆ�;�.�; �/

�
�
 �k�10.� � �=2/ k.�/C

1 � �

2
 k.�/ �k�10.�/C

1C ��

2
 k.�/ �kC10.�/

�
;

where a�;�.� � �; �/, �; � 2 fC;�g, are the symbol of quadratic terms A�;�.:; :/. Note that
there are at least two derivatives inside the symbol, which cover the loss of dividing the phase.
As a result, the normal form transformation is not singular.

The discussion so far is restricted to the toy model (1.13). For the capillary waves system
(1.3), we use similar ideas not only for quadratic terms, but also for cubic terms and quartic
terms, see (4.20). Please refer to Subsection 4.1 for more details.

The low order weighted norm. – We first define the low order weighted norm Z1-norm and
the high order weighted norm Z2-norm as follows,

kgkZ1
WD

X

k2Z

X

j��k�

kgkBk;j
; kgkBk;j

WD .2.1C˛/k C 210kC/2j k'kj .x/Pkg.x/kL2 ;(1.22)

kgkZ2
WD

X

�1;�22fL;�g

k�1�2gkL2 C k�1gkL2 ;(1.23)

where 'kj .x/ is defined in (2.1), which is first introduced in the work of Ionescu-Pausader [25].
An advantage of using this type of space is that it not only localizes the frequency but also
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localizes the spatial concentration. The atomic space of this type has been successfully used
in many dispersive PDEs, see [14, 13, 19, 25, 26, 36].

Define the profile of the good substitution variable v.t/ as g.t/ WD eitƒv.t/. From the
linear dispersion estimates (2.10) and (2.11) in Lemma 2.7, to prove the sharp decay rate,
it would be sufficient to prove that the Z1-norm of the profile g.t/ doesn’t grow over time.
Now, under the assumption that the Z2-norm only grows polynomially, we explain some
main ideas of how to prove that Z1-norm doesn’t grow over time.

Note that the High � High type interaction is not an issue because we put a very
high order weighted (i.e., 2.1C˛/k) in the definition of Z1-norm, see (1.22). It remains to
consider the High � Low type interaction, e.g., j�j � 2�10j�j. As a typical example of
the bulk threshold case in the High � Low type interaction, we consider the case when
j�j 2 Œ2�10=t; 210=t�; j�j 2 Œ2�10; 210�. To get around the difficulty caused by the lack of
null structure and the growth of profile around the small neighborhood of zero frequency
(see(1.16)), we analyze more carefully the source of the growth mode inside the nonlinearity
of the capillary waves system (1.3).

Recall (1.5). We know that bh.t; 0/ is conserved over time. Moreover, a simple Fourier
analysis shows that jb .t; 0/j � 210jt j�0, where �0 is the size of initial data. These two facts
motivate us to expect that the source of trouble should be the restricted velocity potential
b .t; �/ instead of the height function bh.t; �/, i.e., the size of bh.t; �/ should be much smaller
than bg.t; �/ when j�j � 210=t , where time “t” is very large. As a matter of fact, we do have a
better estimate for bh.t; �/, see (5.15) in Lemma 5.3, which says that bh.t; �/ grows at most at
rate “t2ı” with respect to time if j�j � 210=t:Recall again (1.6) and (1.7), we know that there
is at least one spatial derivative associated with the velocity potential “ .t/”. Therefore, if
the velocity potential “ .t/” has the small frequency “�,” the associated spatial derivative
contributes to the smallness of j�j. To sum up, either the symbol contributes to the smallness
of “j�j” or the input with smaller frequency is the height function “h.t/”. In whichever case,
the bulk threshold case j�j 2 Œ2�10=t; 210=t�; j�j 2 Œ2�10; 210� is not an issue.

For the non-threshold case, we do integration by parts in “�” once to take the advantage
of the gap between the threshold case and the non-threshold case. For the High � High type
interaction, the gap is created by the extra “2˛k” we put in the definition ofZ1-norm. For the
High � Low type and Low � High type interactions, the gap is created by the observation
on the source of growth mode that we made in the above discussion. The gain of decay rate
from the gap between the threshold case and the non-threshold case is more than the loss
from the growth rate of the high order weighted norm. This fact leads to the conclusion that
the Z1-norm of the profile doesn’t grow in time.

The high order weighted norm. – Now, we explain some essential ideas that make it possible
to conclude that the high order weighted norm (Z2-norm) of the profile grows at most rate
“tı” with respect to time.

The losing derivatives issue. – Note that the high frequency part of the nonlinear solution is
controlled by the high order energy (HN0 -norm) of the nonlinear solution, which only grows
at most at rate tı with respect to time. As a result, we only have to consider the case when the
sizes of all frequencies are less than t5=1900, which is only a minor growth rate. Therefore, the
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losing derivatives issue can be reduced to the losing time decay rate issue. For the cubic and
higher order terms, we use the extra decay rate to cover the loss of losing derivatives. Since
the “1=t” decay rate for the quadratic terms is critical to close the argument, we can’t afford
the loss of time decay rate.

To get around this issue, we notice that it would be sufficient to avoid losing derivatives
at the quadratic level if the losing derivatives issue is only relevant at the quadratic level.
After carefully studying the explicit quadratic terms of the capillary waves system (1.3), we
study the system of equations satisfied by .h;  � Tjrj tanh jrj h/, which is the truncation
up to quadratic level of the good unknown variable found in the paralinearization and
symmetrization process, instead of the system of equations satisfied by .h;  /. As a result,
after utilizing the symmetric structure for the good substitution variable, the quadratic term
doesn’t lose derivatives.

The insufficient decay rates issue. – Now, we explain the main ideas used in two typical
scenarios in which it is not obvious to obtain the critical “1=t” decay rate over time.

Recall that we applied the vector field “L WD x � r C 2” (equivalently, “�� � r�”
on the Fourier side) on the profile of the nonlinear solution in the definition of Z2-norm.
A drawback of using the “L” vector field is that we face a loss of “t” when “L” hits the phases
of nonlinearities. To be more precise and as a typical example, we consider the High � Low
type interaction of the quadratic term. Note that (see (6.17) and (6.19) for more details), the
following decomposition holds if the vector field “L” hits the phase.

(1.24) � � r�ˆ
C;�.�; �/ D O.1/ˆC;�.�; �/CO.j�j2/; when j�j � 2�10j�j:

For the first term on the right hand side of (1.24), which is comparable with the phase
function ˆC;�.�; �/, we can take the advantage of oscillation in time by doing integration
by parts in time once first and then take the advantage of the space oscillation in “�”. For
the second term of (1.24), the smallness of “j�j2” acts like null structures, which allow us to
obtain sharp L1

x decay rate even after taking the advantage of the space oscillation in “�”.
Another typical scenario with insufficient time decay rate is the case when all the vector

fields hit the input with the largest frequency. Since the L1
x -norm of the nonlinear solution

itself only decays at rate .1 C t /�1=2Cı , a rough L2 � L1 type estimate is not sufficient to
close the argument. To get around this issue, we use the hidden symmetric structure inside the
capillary waves system. As a result, a similar decomposition as in (1.24) holds for the symbol
of quadratic terms after utilizing the symmetric structure inside the capillary waves system.
Therefore, the aforementioned strategy is also applicable for the case we are considering. For
the cubic terms, similar to the desired energy estimate (1.19), the symmetric structure inside
the capillary waves system (1.3) also plays an essential role.

1.5. The outline of this paper

In Section 2, we introduce notations and some basic lemmas that will be used constantly.
In Section 3, we prove a new type of energy estimate by using the method of paralinearization
and symmetrization and paying special attention to the low frequency part. In Section 4,
we identify a good substitution variable to carry out the estimate of weighted norms. In
Section 5, we prove that the low order weighted norm doesn’t grow over time under the
assumptions that the high order weight norm only grows appropriately and a good control
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of the quintic and higher order remainder term is available. In Section 6, we prove that the
high order weighted norm only grows appropriately under the assumption that we have a
good control on the quintic and higher order remainder term. In Section 7, we first prove
some fixed time weighted norm estimates, which were taken for granted in Section 5 and 6,
and then estimate the quintic and higher order reminder terms by using a fixed point type
argument.

Acknowledgment. – Part of this work was done when I visited Tsinghua University during
the Summer of 2016. The author would like to thank Pin Yu for the invitation and the
warm hospitality during the stay. Also I would like to thank the anonymous referee for many
helpful suggestions which improved the presentation of this paper.

2. Preliminaries

For p 2 NC, then we use ƒp.N / to denote the p-th order terms of the nonlinearity N .
Also, we use notationƒ�pŒN � to denote the p-th and higher orders terms, i.e.,ƒ�pŒN � WDP
q�p ƒqŒN �. For example,ƒ2ŒN � denotes the quadratic term of N andƒ�2ŒN � denotes

the quadratic and higher order terms of N . If there is no special annotation, Taylor expan-
sions are in terms of the height function “h.t/” and the restricted velocity potential “ .t/”.

We fix an even smooth function Q W R ! Œ0; 1� supported in Œ�3=2; 3=2� and equals to 1
in Œ�5=4; 5=4�. For any k 2 Z, we define

 k.x/ WD Q .x=2k/ � Q .x=2k�1/;  �k.x/ WD Q .x=2k/ D
X

l�k

 l .x/;

 �k.x/ WD 1 �  �k�1.x/;

and use Pk , P�k and P�k to denote the projection operators by the Fourier multipliers  k ;
 �k and  �k respectively. We use fk.x/ to abbreviate Pkf .x/. We use both bf .�/ and
F .f /.�/ to denote the Fourier transform of f , which is defined as follows,

F .f /.�/ D

Z
e�ix��f .x/dx:

We use F �1
.g/ to denote the inverse Fourier transform of g.�/. For an integer k 2 Z, we

use kC to denote maxfk; 0g and use k� to denote minfk; 0g. We use f C andPC.f / to denote
f itself and use f � and P�.f / to denote the complex conjugate Nf of f .

Recall the Z1-normed space and the Z2-normed space we defined in (1.22) and (1.23).
The spatial localization function 'kj .x/ used there is defined as follows,

(2.1) 'kj .x/ WD

8
ˆ̂<
ˆ̂:

 .�1;�k�.x/ if k C j D 0 and k � 0;

 .�1;0�.x/ if j D 0 and k � 0;

 j .x/ if k C j � 1 and j � 1:

For any k 2 Z; j � �k�, we define

fk;j WD PŒk�2;kC2�Œ'
k
j .x/Pkf �:
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For two localized functions f .x/; g.x/ 2 L2, we use the convention that the symbol q.:; :/
of a bilinear form Q.:; :/ is defined in the following sense throughout this paper,

(2.2) F ŒQ.f; g/�.�/ D
1

4�2

Z

R2

bf .� � �/bg.�/q.� � �; �/d�:

Very similarly, the symbol c.:; :; :/ of a trilinear form C.f; g; h/ is defined in the following
sense:

F ŒC.f; g; h/�.�/ D
1

16�4

Z

R2

Z

R2

bf .� � �/bg.� � �/bh.�/c.� � �; � � �; �/d�d�:

Define a class of symbol and its associated norms as follows,

S 1 WD fm W R4 orR6 ! C; m is continuous and k F �1
.m/kL1 < 1g;

kmkS 1 WD k F �1
.m/kL1 ;

km.�; �/kS 1
k;k1;k2

WD km.�; �/ k.�/ k1
.� � �/ k2

.�/kS 1 ;

km.�; �; �/kS 1
k;k1;k2;k3

WD km.�; �; �/ k.�/ k1
.� � �/ k2

.� � �/ k3
.�/kS 1 :

L 2.1. – For i 2 f1; 2; 3g; f 2 W iC1;1.R2i /, there exists an absolute constant
C 2 RC such that the following estimate holds,
(2.3)

Z

R2i

f .�1; : : : ; �i /

iY

jD1

eixj ��j kj
.�j /d�1 � � � d�i


L1

x1;:::;xi

�

iC1X

mD0

iX

jD1

C2mkj k@m�j f kL1 :

L 2.2. – Assume that m, m0 2 S1, f; g; h 2 L1.R2/\L1.R2/, p; q; r; s 2 Œ1;1� ,
then there exists an absolute constant C 2 RC, such that the following estimates hold,

km �m0kS1 � CkmkS1km0kS1 ;(2.4)
 F �1�

Z

R2

m.�; �/ bf .� � �/bg.�/d�
�
Lp

� CkmkS 1kf kLq kgkLr ;(2.5)

if 1=p D 1=q C 1=r ,

 F �1�
Z

R2

Z

R2

m0.�; �; �/ bf .� � �/bh.�/bg.� � �/d�d�
�
Lp

� Ckm0kS 1kf kLq kgkLr khkLs ;

(2.6)

where 1=p D 1=q C 1=r C 1=s:

D 2.3. – Given � 2 NC; � � 0 and m 2 R, we use �m� .R
2/ to denote the

space of locally bounded functions a.x; �/ on R2� .R2=f0g/, which are C1 with respect to �
for � ¤ 0. Moreover, for any ˛ 2 N2C, there exists a constant C˛.a/, which only depends
on “˛” and the symbol a.x; �/ itself, such that the following estimate holds for the symbol
a.x; �/,

8j�j � 1=2; k@˛� a.:; �/kW �;1 � C˛.a/.1C j�j/m�j˛j;

whereW �;1 is the usual Sobolev space. For a symbol a 2 �m� , we define its norm as follows,

Mm
� .a/ WD sup

j˛j�2C�

sup
j�j�1=2

k.1C j�j/j˛j�m@˛� a.:; �/kW �;1 :
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D 2.4. – (i) We use P�m� .R
2/ to denote the subspace of �m� .R

2/, which
consists of symbols that are homogeneous of degree m in �:

(ii) If a D
X

0�j<�

a.m�j /, where a.m�j / 2 P�m�j
��j .R

2/, then we call a.m/ and a.m�1/ as the

principal symbol and the subprincipal symbol of a respectively.

(iii) An operator T is said to be of order m, m 2 R, if for all � 2 R, it’s bounded from
H�.R2/ to H��m.R2/. We use Sm to denote the set of all operators of order m.

For a; f 2 L2 and a pseudo differential operator Qa.x; �/, we define the operator Taf and
TQaf as follows,

Taf D F �1
Œ

Z

R

ba.� � �/�.� � �; �/ bf .�/d��; TQaf(2.7)

D F �1
Œ

Z

R

F x. Qa/.� � �; �/�.� � �; �/ bf .�/d��;

where the cut-off function is defined as follows,

(2.8) �.� � �; �/ D

(
1 when j� � �j � 2�10j�j;

0 when j� � �j � 210j�j:

L 2.5. – Letm 2 R and � > 0 and let a 2 �m� .R
d /, if we denote .Ta/� as the adjoint

operator of Ta and denote Na as the complex conjugate of a, then we know that, .Ta/� � Ta� is
of order m � �, where

a� D
X

j˛j<�

1

i j˛j˛Š
@˛� @

˛
x Na:

Moreover, the operator norm of .Ta/� � Ta� is bounded by Mm
� .a/:

Proof. – See [1, Theorem 3.10].

L 2.6. – Let m 2 R and � > 0; if given symbols a 2 �m� .R
d / and b 2 �m

0

� .R
d /, we

define

a]b D
X

j˛j<�

1

i j˛j˛Š
@˛� a@

˛
xb;

then for all � 2 R, there exists a constant K such that

(2.9) kTaTb � Ta]bkH�!H��m�m0C� � KMm
� .a/M

m0

� .b/:

We have the following lemma on the L1
x decay estimate of the linear solution associated

with the capillary wave system (1.3).

L 2.7. – For f 2 L1.R2/ and any � 2 Œ0; 1�, there exists an absolute constant C and
a constant C� which only depends on � such that the following L1

x -type estimates hold,

keitƒPkf kL1
x

� C.1C jt j/�12k=2kf kL1 ; if k � 0:(2.10)

keitƒPkf kL1
x

� C� .1C jt j/�
1C�

2 2
.1��/k

2 kf kL1 ; if k � 0:(2.11)
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Proof. – After checking the expansion of the phase, see (6.13), we can apply the main
result in [20, Theorem 1:(a)&(b)] directly to derive above results.

3. The energy estimate

The goal of this section is to prove that the energy of solution grows at most at rate .1Ct /ı

over time. We first state our bootstrap assumption as follows,

(3.1) sup
t2Œ0;T �

.1C t /�ık. Qƒh.t/;  .t/kHN0 C .1C t /k.h.t/;  /.t/kW 6;1C˛ � �1 WD �
5=6
0 ;

where Qƒ WD jrj1=2.tanh jrj/�1=2 and the function space W 6;1C˛ was defined in (1.20).

The main result of this section is summarized as the following proposition.

P 3.1. – Under the bootstrap assumption (3.1), there exists an absolute
constant C such that the following energy estimate holds for any t 2 Œ0; T �,

k. Qƒh.t/;  .t//k2
HN0

(3.2) � C
�
�20 C

Z t

0

k. Qƒh.s/;  .s//k2
HN0

�
k.h;  /kW 6;1C˛ Ck.h;  /kW 6;0k.h;  /kW 6;1

�
ds

�
:

We separate this section into three parts: (i) Firstly, we introduce main results and briefly
explain main ideas of the paralinearization process for the capillary waves system (1.3). (ii)
Secondly, with the highlighted structures of losing derivative inside the system (1.3), we
symmetrize the system (1.3) such that it doesn’t lose derivatives during the energy estimate.
(iii) Lastly, we use the symmetrized system to prove the desired new energy estimate (3.2).

3.1. Paralinearization of the full system

Most of this section has been studied in details in [34]. Here we only briefly introduce
related main results and main ideas behind those results. Please refer to [34] for more detailed
discussions.

To perform the paralinearization process, we need some basic estimates of the Dirichlet-
Neumann operator, which are obtained from analyzing the velocity potential inside the water
region “�.t/”.

Recall that the velocity potential �.t; x/ satisfies the following Laplace equation with two
boundary conditions as follows,

(3.3) �� D 0; �j�.t/ D  .t/; @En�j† D 0:

To simplify analysis, we map the water region “�.t/” into the strap S WD R � Œ�1; 0� by
doing change of coordinates as follows,

.x; y/ �! .x; z/; z WD
y � h.t; x/

1C h.t; x/
:

We define '.t; z/ WD �.t; z C h.t; x//. From (3.3 ), we have

(3.4) P' WD Œ�x C Qa@2z C Qb � r@z C Qc@z �' D 0; 'jzD0
D  ; @z'jzD�1

D 0;
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where

Qa D
.y C 1/2jrhj2

.1C h/4
C

1

.1C h/2
D
1C .z C 1/2jrhj2

.1C h/2
;(3.5)

Qb D �2
.y C 1/rh

.1C h/2
D

�2.z C 1/rh

1C h
; Qc D

�.z C 1/�xh

.1C h/
C 2

.z C 1/jrhj2

.1C h/2
;(3.6)

G.h/ D Œ�r h � r� C @y��jyDh
D
1C jr hj2

1C h
@z'jzD0

� r � r h:(3.7)

Hence, to study the Dirichlet-Neumann operator, it is sufficient to study the only nontrivial
part of G.h/ , which is @z'jzD0

:

From (3.4), we can derive the following fixed point type formulation for rx;z', which
provides a good way to analyze and estimate the Dirichlet-Neumann operator in the small
data regime. More precisely, we have

rx;z' D

"he�.zC1/jrj C e.zC1/jrj

e�jrj C ejrj

i
r ;

e.zC1/jrj � e�.zC1/jrj

e�jrj C ejrj
jrj 

#

C Œ0; g1.z/�C

Z 0

�1
ŒK1.z; s/ �K2.z; s/ �K3.z; s/�.g2.s/C r � g3.s//ds

C

Z 0

�1
K3.z; s/jrjsign(z � s)g1.s/ � jrjŒK1.z; s/CK2.z; s/�g1.s/ ds;(3.8)

where

K1.z; s/ WD
h r

2jrj

e�zjrj � ezjrj

e�jrj C ejrj
e.s�1/jrj C

r

2jrj
e.zCs/jrj;(3.9)

�
1

2

ezjrj C e�zjrj

e�jrj C ejrj
e.s�1/jrj C

1

2
e.zCs/jrj

i
;

K2.z; s/ WD
h r

2jrj

e�zjrj � ezjrj

e�jrj C ejrj
e�.sC1/jrj ; �

1

2

ezjrj C e�zjrj

e�jrj C ejrj
e�.sC1/jrj

i
;(3.10)

K3.z; s/ D
h r

2jrj
e�jz�sjjrj ;

1

2
e�jz�sjjrjsign(s � z)

i
;(3.11)

g1.z/ D
2 hC h2 � .z C 1/2jr hj2

.1C h/2
@z' C

.z C 1/r h � r'

1C h
; g1.�1/ D 0;(3.12)

g2.z/ D
.z C 1/jr hj2@z'

.1C h/2
�

r h � r'

1C h
; g3.z/ D

.z C 1/r h@z'

1C h
:(3.13)

In the small data regime, the fixed point type formulation (3.8) is sufficient to derive the
L2-type and L1-type estimates for rx;z' as summarized in the following lemma.

L 3.2. – Assume that .h;  / 2 HN0C1=2.R2/�HN0C1=2.R2/ and given any k;  2 R

s.t., k � N0�1 and  � N0�3. Under the bootstrap assumption (3.1), there exists an absolute
constantC such that the following estimates hold for the derivative of velocity potential “rx;z'”
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inside the mapped water region,

krx;z'kL1
z Hk � C

�
kr kHk C k hkHkC1kr kgW 0

�
;

(3.14)

krx'kL1
z

gW  � Ckr k gW  ; k@z'kL1
z

gW  � C
�
k kW ;1C˛ C k hk

W̃ C1
kr k gW 

�
;

(3.15)

kƒ�2Œrx;z'�kL1
z

gW  � Ckr k gW  khk
W̃ C1

;

(3.16)

kƒ�2Œrx;z'�kL1
z Hk � C

�
k hkgW 1kjrj kHk C kr kgW 0k hkHkC1

�
;

(3.17)

kƒ�2Œrx;z'�kL1
z L2 � C

��
k.h;  /kW 6;1C˛ C k.h;  /kW 6;1k.h;  /kW 6;0

�
k.h;  /kH2

�
;

where the L1
x -type function space gW  is defined as follows,

gW  WD ff W kf k gW  WD kP�0Œf �.x/kL1
x

C
X

k2Z;k�1

2kkPk.x/kL1
x
< 1g:

Proof. – Thanks to the small data regime, above estimates can be obtained from the
fixed point type formulation in (3.8) by using a fixed point type argument. With minor
modifications, the proof of above estimates are almost same as the proof of Lemma 3.3
in [34].

During the paralinearization process, we usually omit good error terms, which do not lose
derivatives. For simplicity, we define the equivalence relation “≈” as follows,

A ≈ B; if and only if A � B is a good error term in the sense of (3.18);

(3.18) kgood error termkHk

� C
�
k.h;  /kW 6;1C˛ C k.h;  /kW 6;0k. h;  /kW 6;1

��
khkHk C k k

H .k�1=2/C

�
;

where C is an absolute constant and 0 � k � N0.

As a result of paralinearization in Alazard-Burq-Zuily [1], modulo the good error terms,
we can identify the principal part of the Dirichlet-Neumann operator as in the following
lemma.

L 3.3. – Under the smallness condition (4.49), the following equivalence relation in
the sense of (3.18) holds,

G.h/ � T�! � TV � r h; ! WD  � TBh;(3.19)

B
abbr
D B. h/ D

G.h/ C r h � r 

1C jr hj2
; V

abbr
D V. h/ D r � Br h;

� D �.1/ C �.0/; �.1/ WD
p
.1C jrhj2/j�j2 � .rh � �/2;

�.0/ D
1C jrhj2

2�.1/

�
r �

��.1/ C irh � �

1C jrhj2
rh

�
C ir��

.1/ � r
��.1/ C irh � �

1C jrhj2
��
;

where “!” is the so-called good unknown variable and �.1/ and �.0/ are the principal symbol
and sub-principal of the Dirichlet-Neumann operator respectively.
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Proof. – The detailed proof of above lemma can be found in Alazard-Burq-Zuily [1,
Proposition 3.14]. Only minor modifications are required.

As a result of paralinearization in [1], modulo the good error terms, we can identify the
bulk terms of the nonlinearity of “@t ” in the capillary wave system (1.3) as in the following
lemma.

L 3.4. – Under the bootstrap assumption (3.1), the following equivalence relation in
the sense of (3.18) holds,

H.h/ � �Tlh; l D l .2/ C l .1/; l .2/ D .1C jrhj2/�1=2
�
j�j2 �

�
rh � �

�2

1C jrhj2

�
;

l .1/ D
�i

2
.rx � r�/l

.2/;

(3.20)
1

2
jr j2 �

1

2

.r h � r CG.h/ /2

1C jr hj2
≈ TV � r! � TBG.h/ :

Proof. – See [1, Lemma 3.25 & Lemma 3.26].

3.2. Symmetrization of the full system

In this subsection, we use the results obtained in the paralinearization process to find
out the good substitution variables such that the system of equations satisfied by the good
substitution variables has requisite symmetries inside.

Recall (1.3) and results in Lemma 3.3 and Lemma 3.4, we have

(3.21)

(
@th ≈ T�! � TV � rh

@t ≈ �TlhC TBG.h/ � TV � r!:

The symmetrization process, which is only relevant at the high frequency part, is same as
what Alazard-Burq-Zuily did in [1]. We first state the main results and then briefly explain
main ideas behind.

Intuitively speaking, the symmetrization process can be summarized as seeking two good
substitution variables .U1; U2/ D .Tph; Tqw/ with good unknown symbols p.x; �/ and
q.x; �/ to be determined such that the system of equations satisfied by .U1; U2/ has requisite
symmetries such that it doesn’t lose derivatives during energy estimate. As a result of the
symmetrization process in Alazard-Burq-Zuily [1], the good substitution variables and their
associated symbols are given as follows,

(3.22)
U1 D Qƒ.hC Tpj�j�1=2�1h/; U2 D ! C Tq�1!;

! D  � TBh; Qƒ D jrj1=2.tanh jrj/�1=2;

where

(3.23) p D p.1=2/ C p.�1=2/; q D .1C jrhj2/�1=2;

(3.24)

p.1=2/ D .1Cjrhj2/�5=4
p
�.1/; p.�1=2/ D

1

 .3=2/

�
ql .1/� .1=2/p.1=2/Cir�

.3=2/�rxp
.1=2/

�
;
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(3.25)  D
p
l .2/�.1/ C

s
l .2/

�.1/
Re�.0/

2
�
i

2

�
r� � rx

�p
l .2/�.1/ � j�j3=2:

Note that, in the sense of losing derivatives, U1 and U2 are equivalent to Tph and Tq!. Here,
we pulled out and emphasized the leading linear terms.

From (3.21) and (3.22), we can derive the system of equations satisfied by U1 and U2 as
follows,

(3.26)

(
@tU1 D ƒU2 C TU2 � TV � rU1 CR1;

@tU2 D �ƒU1 � TU1 � TV � rU2 CR2;

whereR1 andR2 are good error terms in the sense of (3.18), i.e., the following estimate holds
for the error terms for some absolute constant C ,
(3.27)
kR1kHN0 C kR2kHN0 � C

�
k.h;  /kW 6;1C˛ C k.h;  /kW 6;1k.h;  /kW 6;0

�
k. Qƒh; /kHN0 :

Very importantly, the symbol “.x; �/” satisfies the following equivalence relation,

(3.28) T � .T /
�;

where the equivalence relation “�” is defined in the following sense,

Ta1
� Ta2

; iff kTa1
f �Ta2

f kHk � Ck
�
k.h;  /kW 6;1C˛ Ck.h;  /kW 6;1k.h;  /kW 6;0

�
kf kHk ;

where k 2 RC and Ck is some constant that only depends on “k”. From the above equiv-
alence relation, we can verify that the system (3.26) indeed has requisite symmetries for
avoiding losing derivatives.

Now, we explain why the good unknown symbols p.x; �/ and q.x; �/ are given as (3.23)
and (3.24). Recall that � 2 �15 and l 2 �25 . To obtain the system (3.26) from the system (3.21),

naturally, we are seeking p 2 �1=25 , q 2 �05 and � 2 �3=25 such that the equivalence relation
(3.28) and the following two equivalence relations hold at the same time,

(3.29) TpT� � TCj�j3=2Tq; TqTl � TCj�j3=2Tp:

From Lemma 2.5, we have

(3.30)
�
T

��
� T�� ; �� D  .3=2/ C  .1=2/ C

1

i
r� � rx

.3=2/:

Hence, (3.28) can be reformulated as follows,

(3.31) T � T
.3=2/C.1=2/C 1

i
r� �rx.3=2/ :

By using Lemma 2.6, we can derive six equations about the principal symbols and sub-
principal symbols of p.x; �/, q.x; �/, and .x; �/ from the three equivalence relations in
(3.29) and (3.31). After solving those equations, one can see that the principal symbols and
sub-principal symbols of p.x; �/, q.x; �/, and .x; �/ are given as in (3.23), (3.24), and (3.25).
For more detailed computations, please refer to [1, Subsection 4.2].

From the bootstrap assumption (3.1) and estimates in Lemma 3.2, the following estimate
holds,

(3.32) kU1 � QƒhkHN0 C kU2 �  kHN0 � C.khkW 6;1 C k kW 6;1/k. Qƒh; /kHN0 � C�21 ;
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whereC is an absolute constant. From the above estimate (3.32), we know that the difference
of energy between .U1; U2/ and . Qƒh; / is a higher order smallness. Therefore, to control the
energy of . Qƒh; / over time, it would be sufficient to control the energy of .U1; U2/ over time.

3.3. Energy estimate

We define the energy as follows,

(3.33) EN0
.t/ WD kU1.t/k

2
L2 C kU2.t/k

2
L2 C kUN0

1 .t/k2
L2 C kUN0

2 .t/k2
L2 ;

where

(3.34) U
N0

1 .t/ D TˇU1.t/; U
N0

2 .t/ D TˇU2.t/; ˇ WD
�
 .3=2/ C j�j3=2

�2N0=3;

where  .3=2/.x; �/ is the principal symbol of .x; �/, which is defined in (3.25). Note that,
from the above definition, the following equality holds,

@�ˇ@x
�
 .3=2/ C j�j3=2

�
D @�

�
 .3=2/ C j�j3=2

�
@xˇ:

Hence, very importantly, the operator as follows is an operator of order zero,

TˇTCj�j3=2 � TCj�j3=2Tˇ :

R 3.1. – To estimate the high order Sobolev norm, we use the variable TˇUi
instead of using jrjN0Ui because the commutator ŒTj�jN0 ; T � is of order 1=2, which causes
the loss of derivatives. The idea of using the good variables TˇU1 and TˇU2 comes from the
work of Alazard-Burq-Zuily [1].

Recall the definition (3.34) and the system (3.26). As a result of direct computation, we
can derive the system of equations satisfied by UN0

1 and UN0

2 as follows,

(3.35)

(
@tU

N0

1 D ƒU
N0

1 C TU
N0

2 � TV � rUN0

1 CRN0

1 ;

@tU
N0

2 D �ƒUN0

1 � TU
N0

2 � TV � rUN0

2 CRN0

2 ;

where the good remainder terms RN0

1 and RN0

1 satisfy the following estimate,
(3.36)

kRN0

1 kL2 C kRN0

2 kL2 � C
�
k.h;  /kW 6;1C˛ C k.h;  /kW 6;1k.h;  /kW 6;0

�
k. Qƒh; /kHN0 ;

where C is some absolute constant. Recall (3.33). From the bootstrap assumption (3.1), it is
easy to see that the following estimate holds,

c2
�
k Qƒh.t/k2

HN0
C k .t/k2

HN0

�
� c1

�
kU1.t/k

2

HN0
C kU2.t/k

2

HN0

�
� EN0

.t/

� C1
�
kU1.t/k

2

HN0
C kU2.t/k

2

HN0

�
(3.37)

� C2
�
k Qƒh.t/k2

HN0
C k .t/k2

HN0

�
;

where ci and Ci , i 2 f1; 2g, are some absolute constants.
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Recall the systems of equations in (3.26) and (3.27). From the estimates (3.35) and (3.36)
and the L2 � L1 type bilinear estimate, we have

ˇ̌
ˇ d
dt
EN0

.t/
ˇ̌
ˇ � C1

h
k.U1.t/; U2.t//kHN0 k.R1.t/;R2.t/;R

N0

1 .t/;R
N0

2 .t//kL2

C
ˇ̌
ˇ
Z

R2

U1
�

� TV � rU1
�

C U2
�

� TV � rU2
�

C U
N0

1

�
� TV � rUN0

1

�
C U

N0

2

�
� TV � rUN0

2

�
dx

ˇ̌
ˇ

C
ˇ̌
ˇ
Z

R2

U1.T�U2/ � U2.T�U1/C U
N0

1 .T�U
N0

2 / � UN0

2 .T�U
N0

1 /
ˇ̌
ˇ
i

� C2

h�
k.h;  /kW 6;1C˛ C k.h;  /kW 6;1k.h;  /kW 6;0

�
k.U1; U2/k

2

HN0

C
ˇ̌
ˇ
Z

R2

U1.T� � .T�/
�/U2/C U

N0

1 .T� � .T�/
�/U

N0

2 dx
ˇ̌
ˇ
i

� C3
�
k.h;  /kW 6;1C˛ C k.h;  /kW 6;1k.h;  /kW 6;0

�
k.U1; U2/k

2

HN0
;

(3.38)

whereCi ; i 2 f1; 2; 3g, are some absolute constants. Note that, in the above estimate, we used
the following facts, which are direct results from (3.30),

(3.39) ƒ1Œ� D j�j1=2
�1
2
�h �

�

j�j
� rx.rh �

�

j�j
//; M 0

5 .ƒ�2Œ� �ƒ�2Œ
��/ � Ckhk2

W 6;1 ;

where C is some absolute constant. The first equality in the above equality (3.39) is derived
from the explicit formula of  in (3.25). Note thatƒ1Œ� only depends on the second deriva-
tive of h, which explains why we can gain .1 C ˛/ derivatives at the low frequency part for
the input putted in L1-type space.

Combining the estimates (3.38) and (3.37), it is easy to see that the desired estimate (3.2)
in Proposition 3.1 holds. Hence finishing the proof of Proposition 3.1.

4. The set-up of the weighted norm estimates

By using the linear dispersion estimates in Lemma 2.7, we reduce the study of the disper-
sion estimate of the nonlinear solution to the study of the weighted norms of the profile of
the nonlinear solution.

In this section, we mainly introduce the set-up of the weighted norms (the Z1-norm
and the Z2-norm) estimates, which includes two main steps as follows: (i) We identify a
good substitution variable, which allows us to study and control properly the evolution of
the weighted norms of the good substitution variable over time. (ii) We reduce our goal of
proving the sharp dispersion estimate to two desired estimates inside a fixed dyadic time
interval.

4.1. A good substitution variable

To avoid losing derivatives at the quadratic level, we use the following variable instead of
the velocity potential “ ” itself,

Q WD  � Tjrj tanh jrj h;
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which is the linear and quadratic terms of the good unknown variable “!” defined in (3.22).
Hence, instead of working on the system of equations satisfied by .h;  /, we work on the
system of equations satisfied by .h; Q /:

From (1.6) and (1.7), as a result of direct computations, we obtain the following equalities,

ƒ�2Œ@th� D jrj tanh jrj Q C jrj tanh jrj
�
Tjrj tanh jrj Q h

�
(4.1)

� r � .hr Q / � jrj tanh jrj.hjrj tanh jrj Q /

ƒ�2Œ@t Q � D �h �
1

2
jr Q j2 C

1

2
jjrj tanh jrj Q j2(4.2)

� Tjrj tanh jrj Q jrj tanh jrj Q � Tjrj tanh jrj�hh:

We remark that the Taylor expansions in (4.1), (4.2) and also in the rest of paper are all in
terms of .h; Q /.

Next, we reduce the system of equations satisfied by h and Q into a quasilinear equation

satisfied by u D QƒhC i Q , where Qƒ D jrj1=2
�

tanh jrj
��1=2

. Very naturally, we have

(4.3) h D Qƒ�1
�uC Nu

2

�
; Q D cCuC c� Nu; c� WD ��i=2:

There, from (1.3), (4.1), and (4.2), we can derive the equation satisfied by u as follows,

.@t C iƒ/u D
X

�;�2fC;�g

Q�;�.u
�; u�/C

X

�;�;�2fC;�g

C�;�;�.u
� ; u� ; u�/

C
X

�1;�2;�1;�22fC;�g

D�1;�2;�1;�2
.u�1 ; u�2 ; u�1 ; u�2/C R ;(4.4)

where R denotes the quintic and higher order terms. From (4.1), (4.2), and (4.3), we can
obtain the detailed formulas of quadratic terms as follows,

Q�;�.u
�; u�/ D �

c�

2
Qƒ@x. Qƒ�1u�@xu

�/

�
c�

2
Qƒjrj tanh jrj. Qƒ�1u�jrj tanh jrju� � Tjrj tanh jrju� Qƒ�1u�/

C
ic�c�

2

�
� ru� � ru� C jrj tanh jrju�jrj tanh jrju�

� Tjrj tanh jrju� jrj tanh jrju� � Tjrj tanh jrju� jrj tanh jrju�
�

�
i

4
Tjrj tanh jrj�u�u�; �; � 2 fC;�g:

(4.5)

We gave the detailed formulas of quadratic terms Q�;�.:; :/, �; � 2 fC;�g, because the
precise detailed formulas help us to verify a symmetric structure that we will reveal later.

Define the profile of the solution u.t/ as f .t/ WD eitƒu.t/. From (4.4), we have

@t bf .t; �/ D
X

.�;�/2fC;�g

Z

R2

eitˆ
�;�.�;�/q�;�.� � �; �/cf �.t; � � �/cf �.�/d�

C
X

�;�;�2fC;�g

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/c�;�;�.� � �; �� �; �/cf � .t; � � �/cf �.t; �� �/cf �.t; �/d�d�

C
X

�1;�2;�1;�22fC;�g

Z

R2

Z

R2

eitˆ
�1;�2;�1;�2 .�;�;�;�/d�1;�2;�1;�2

.���; ���; ���; �/df �1.t; ���/
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(4.6) � df �2.t; � � �/df �1.t; � � �/df �2.t; �/d�d�d� C eitƒ.�/cR .t; �/;

where the phasesˆ�;�.�; �/,ˆ�;�;�.�; �; �/, andˆ�1;�2;�1;�2.�; �; �; �/ are defined as follows,

ˆ�;�.�; �/ D ƒ.j�j/ � �ƒ.j� � �j/ � �ƒ.j�j/; ƒ.j�j/ WD j�j3=2
p

tanh j�j;(4.7)

ˆ�;�;�.�; �; �/ D ƒ.j�j/ � �ƒ.j� � �j/ � �ƒ.j� � � j/ � �ƒ.j� j/;(4.8)

ˆ�1;�2;�1;�2.�; �; �; �/ D ƒ.j�j/ � �1ƒ.j� � �j/ � �2ƒ.j� � � j/ � �1ƒ.j� � �j/ � �2ƒ.j�j/:

(4.9)

From (4.5), we write explicitly the symbol q�;�.� � �; �/ ofQ�;�.u�; u�/ in the sense of (2.2)
as follows,

q�;�.� � �; �/ D
� c� Q�.j�j2/

2 Q�.j� � �j2/

�
� � � � j�jj�j tanh.j�j/ tanh.j�j/

�

C
ic�c�

2

�
.� � �/ � �C j� � �jj�j � tanh.j� � �j/ tanh.j�j/

��
Q�.�; � � �/

C
�c� Q�.j�j2/

2 Q�.j�j2/

�
.� � �/ � � � j� � �jj�j tanh.j�j/ tanh.j� � �j/

�

C
c� Q�.j�j2/

2 Q�.j� � �j2/
� � �C ic�c�.� � �/ � �C

i

4
j�j2.tanh j�j/2

�
�.�; � � �/;

(4.10)

where

Q�.�/ WD j�j1=4.tanh.
p

j�j//�1=2; Q�.�/ D 1C
j�j

6
CO.j�j2/; if j�j � 2�10;

Q�.�; � � �/ WD 1 � �.�; � � �/ � �.� � �; �/:(4.11)

Note that, in (4.10), we switched the roles of � � � and � when j� � �j � 2�10j�j. As a result,
the following estimate holds inside the support of the symbol q�;�.� � �; �/, �; � 2 fC;�g,

(4.12) k2 � k1 C 10; where � 2 supp. k2
.x//; � � � 2 supp. k1

.� � �//:

From the estimate (2.3) in Lemma 2.1 and the detailed formula of the symbol q�;�.���; �/

in (4.10), the following rough estimate holds for some absolute constant C ,

(4.13) kq�;�.� � �; �/ k.�/ k1
.� � �/ k2

.�/kS 1 � C22k1 ; �; � 2 fC;�g:

Moreover, from the explicit formula in (4.10), we can identify the leading part “c.�/”
of qC;�.� � �; �/ for the case when j�j � 2�10j�j as follows,

(4.14) c.�/ WD
cC

2
Q�.j�j2/j�j2

�
1 � tanh.j�j/2

�
:

After subtracting c.�/ from the symbol qC;�.:; :/, from the estimate (2.3) in Lemma 2.1, the
following improved estimate holds for some absolute constant C ,

(4.15) k
�
qC;�.� � �; �/ � c.�/

�
 k1

.� � �/ k2
.�/kS 1 � C2k2Ck1 ; if k2 � k1 � 10:

Since it is also very essential to identify the symmetric structure inside the cubic terms,
which will play an important role in theZ2-norm estimate of the cubic terms, we summarize
some properties of the symbols of cubic terms of the Dirichlet-Neumann operator as in the
following lemma.
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L 4.1. – After writing the cubic term ƒ3ŒB.h/ � in terms of u and Nu via the
equality (4.3), we do dyadic decompositions for all inputs and rearrange inputs such that the
following unique decomposition holds

ƒ3ŒB.h/ � D
X

�;�;�2fC;�g

C 0
�;�;� .u

�; u� ; u� /;

where the first input u� of cubic term C 0
�;�;� .u

�; u� ; u� / has the largest scale of dyadic
localization among three inputs. Then there exists an absolute constantC such that the following
estimates hold for the symbol c0

�;�;� .�; �; �/ of the cubic term C 0
�;�;� .u

�; u� ; u� /,

kc0
�;�;� .�; �; �/ k1

.� � �/ k2
.� � �/ k3

.�/kS 1 � C22k1C2k1;C :(4.16)

k
�
c0
�;�;� .�; �; �/ �

c�

4
d.�/

�
 k1

.� � �/ k2
.� � �/ k3

.�/kS 1 � C2maxfk2;k3gC3k1;C ;

(4.17)

if k2; k3 � k1� 10, where the detailed formula of d.�/ is given in (4.19). Moreover, there exists
an absolute constant C such that the following rough estimate holds for the symbol of quartic
terms ƒ4ŒB.h/ �,

(4.18) kd�1;�1;�2;�2
.�; �; �; �/ k1

.� � �/ k2
.� � �/ k3

.� � �/ k4
.�/kS 1

� C22maxfk1;:::;k4gC3maxfk1;:::;k4gC :

Proof. – Note that the detailed formulas of symbols of cubic terms and quartic terms can
be derived from iterating the fixed point type formulation of rx;z' in (3.8). To prove (4.16)
and (4.18), it is sufficient to prove that the corresponding estimates hold for ƒ3Œgi .z/� and
ƒ4Œgi .z/�, i 2 f1; 2; 3g. From (3.12) and (3.13), we have

ƒ2Œg1.z/� D 2hƒ1Œ@z'�C .z C 1/r h �ƒ1Œr'�;

ƒ2Œg2.z/� D �r h �ƒ1Œr'�; ƒ2Œg3.z/� D .z C 1/rhƒ1Œ@z'�:

Recall that

ƒ1Œrx;z'� D

"he�.zC1/jrj C e.zC1/jrj

e�jrj C ejrj

i
r ;

e.zC1/jrj � e�.zC1/jrj

e�jrj C ejrj
jrj 

#
:

From the above formula and the formulation (3.8), we know that there are two derivatives
insideƒ2Œrx;z'.z/� at low frequencies. We can keep doing the iteration process to check the
minimal number and the maximal number of derivatives insideƒ3Œrx;z'�. For example, from
(3.12) and (3.13), we obtain the cubic terms of gi .z/; i 2 f1; 2; 3g, as follows,

ƒ3Œg1.z/� D 2hƒ2Œ@z'�C
�

� 3h2 � .z C 1/2jrhj2
�
ƒ1Œ@z'� � .z C 1/hrh � r';

ƒ3Œg2.z/� D .z C 1/jrhj2ƒ1Œ@z'�C hrh �ƒ1Œr'� � rh �ƒ2Œr'�;

ƒ3Œg3.z/� D .z C 1/rhƒ2Œ@z'� � .z C 1/hrhƒ1Œ@z'�:

Recall that there are at least two derivatives insideƒ2Œrx;z'�. Hence, we know that there are
at least two derivatives and at most four derivatives in total inside ƒ3Œrx;z'�. Following the
same strategy, we know that there are at least two derivatives and at most five derivatives
inside ƒ4Œrx;z'�. There two facts imply that our desired estimates (4.16) and (4.18) hold.

Next, we prove our desired estimate (4.17). We first identify the bulk term, in which all
derivatives act on the input that has the largest scale of dyadic localization of frequencies.
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With this principle in mind, recall (3.12) and (3.13), we know that the bulk term only appears
in g1.z/, which is T.2hCh2/=.1Ch/2@z':Recall the fixed point formulation (3.8). We know that
the bulk term ofƒ2Œ@z'.z/�, in which all derivatives act on the input with the largest scale of
dyadic localization of frequencies, is given as follows,

Z 0

�1

�
� e�jz�sjjrj � e.zCs/jrj C

ezjrj C e�zjrj

e�jrj C ejrj
.e.s�1/jrj C e�.sC1/jrj/

�

�
esC1jrj � e�.sC1/jrj

ejrj C e�jrj
jrj2

�
Th 

�
ds C 2

e.zC1/jrj � e�.zC1/jrj

e�jrj C ejrj
jrj.Th /:

In the same spirit, we can derive the bulk term ofƒ3Œ@z'.z/jzD0
�, in which all derivatives act

on the input with the largest scale of dyadic localization of frequencies, is given as follows,

C.h; h;  / D F �1�
Z

R2

Z

R2

b .� � �/bh.� � �/bh.�/d.�/�.�; �/�.� � �; �/d�d�
�
;

where

d.�/ WD 2

Z 0

�1

Z 0

�1

� .e�.zC1/j�j � e.zC1/j�j/

e�j�j C ej�j

�e.sC1/j�j � e�.sC1/j�j

ej�j C e�j�j

�
� .ezj�j C e�zj�j/.e.s�1/j�j C e�.sC1/j�j/

e�j�j C ej�j
� e�jz�sjj�j � e.zCs/j�j

�
j�j3dsdz

�

Z 0

�1

� .e�.sC1/j�j � e.sC1/j�j/

e�j�j C ej�j

�2
j�j2ds C tanh.j�j/j�j:

(4.19)

After removing the bulk term, by definition, there is at least one derivative acts on the input,
which doesn’t have the largest scale of dyadic localization of frequencies, for the rest of terms.
This fact implies that our desired estimate (4.17) holds.

With the previous preparation, which improves our understanding of the equation satis-
fied byu in (4.4), we are now ready to find a good substitution variable. We seek a good substi-
tution variable as follows,

v.t/ D u.t/C
X

�;�2fC;�g

A�;�.u
�.t/; u�.t//C

X

�;�;�2fC;�g

B�;�;�.u
� .t/; u�.t/; u�.t//

C
X

�1;�2;�1;�22fC;�g

E�1;�2;�1;�2
.u�1.t/; u�2.t/; u�1.t/; u�2.t//;

(4.20)

where quadratic terms A�;�.:; :/, cubic terms B�;�;�.:; :; :/, and quartic terms E�1;�2;�1;�2
.:; :; :; :/

are to be determined. From the equation satisfied by u.t/ in (4.4) and definition of v.t/ in
(4.20), as a result of direct computation, we have

.@t C iƒ/v D
X

�;�2fC;�g

QQ�;�.v
�.t/; v�.t//C

X

�;�;�2fC;�g

QC�;�;�.v
� .t/; v�.t/; v�.t//

C
X

�1;�2;�1;�22fC;�g

QD�1;�2;�1;�2
.v�1.t/; v�2.t/; v�1.t/; v�2.t//C R1.t/;

(4.21)
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where R1.t/ is the quintic and higher order terms. The quadratic terms and cubic terms are
given as follows,

QQ�;�.v
�; v�/ D Q�;�.v

�; v�/C iƒ.A�;�.v
�; v�// � i�A�;�.ƒv

�; v�/ � i�A�;�.v
�; ƒv�/;(4.22)

QC�;�;�.v
� ; v� ; v�/ WD bC�;�;�.v� ; v� ; v�/C iƒ.B�;�;�.v

� ; v� ; v�// � i�B�;�;�.ƒv
� ; v� ; v�/

� i�B�;�;�.v
� ; ƒv� ; v�/ � i �B�;�;�.v

� ; v� ; ƒv�/;(4.23)

where the cubic term bC�;�;�.v� ; v� ; v�/ is the unique cubic term associated with the following
equality, such that the scales of dyadic localized frequencies of inputs v� ; v� ; and v� are
ordered in a descending manner after we rearrange the inputs,

X

�;�;�2fC;�g

bC�;�;�.v� ; v� ; v�/ D
X

�;�;�2fC;�g

C�;�;�.v
� ; v� ; v�/

C
X

�;�;�1;�12fC;�g

A�;�.P�ŒQ�1;�1
.v�1 ; v�1/�; v�/

C A�;�.v
� ; P� ŒQ�1;�1

.v�1 ; v�1/�/

� QQ�;�
�
P�

�
A�1;�1

.v�1 ; u�1/
�
; v�

�

� QQ�;�
�
v�; P�

�
A�1;�1

.v�1 ; v�1/
��
:

(4.24)

More precisely, the following estimate holds inside the support of symbol Oc�;�;�.���; ���; �/

of the trilinear operator bC�;�;�.:; :; :/,
(4.25)
k3 � k2 � k1; where � 2 supp. k3

.x//; � � � 2 supp. k2
.x//; � � � 2 supp. k1

.x//:

Similarly, for any �1; �2; �1; �2 2 fC;�g, the quartic term QD�1;�2;�1;�2
.v�1.t/; v�2.t/;

v�1.t/; v�2.t// in (4.21) is given as follows,

QD�1;�2;�1;�2
.v�1.t/; v�2.t/;v�1.t/; v�2.t// D bD�1;�2;�1;�2

.v�1.t/; v�2.t/; v�1.t/; v�2.t//

C iƒ.E�1;�2;�1;�2
.v�1.t/; v�2.t/; v�1.t/; v�2.t///

� i�1E�1;�2;�1;�2
.ƒv�1.t/; v�2.t/; v�1.t/; v�2.t//

� i�2E�1;�2;�1;�2
.v�1.t/; ƒv�2.t/; v�1.t/; v�2.t//

� i�1E�1;�2;�1;�2
.v�1.t/; v�2.t/; ƒv�1.t/; v�2.t//

� i�2E�1;�2;�1;�2
.v�1.t/; v�2.t/; v�1.t/; ƒv�2.t//;

(4.26)

where bD�1;�2;�1;�2
.v�1 ; v�2 ; v�1 ; v�2/ is the unique decomposition associated with the

quartic terms such that the scales of dyadic localization of frequencies of all inputs are
ordered in a descending manner. More precisely, the following estimate holds inside
the support of symbol Od�1;�2;�1;�2

.� � �; � � �; � � �; �/ of the multilinear operator
bD�1;�2;�1;�2

.:; :; :; :/,

k4 � k3 � k2 � k1; where � 2 supp. k4
.x//; � � � 2 supp. k3

.x//;

(4.27) � � � 2 supp. k2
.x//; � � � 2 supp. k1

.x//;

The detail formula of bD�1;�2;�1;�2
.:; :; :; :/ can be obtained explicitly from A�;�.:; :/;

B�;�;�.:; :; :/; Q�;�.:; :; :/, C�;�;�.:; :; :/, and the quartic terms D�1;�2;�1;�2
.:; :; :; :/ in (4.4).

Since its detailed formula is not necessary in later argument, for simplicity, we omit it here.
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Now, we are ready to determine the normal formal transformation defined in (4.20).

Firstly, we consider the quadratic terms. Recall (4.7). Note that, if j�j � 2�10j�j,
� D � or if j�j � 2�10j�j, �� D C, the size of phase “ˆ�;�.�; �/” is comparable to
“maxfƒ.j�j/;ƒ.j�j/g,” which is relatively big. Moreover, if .�; �/ lies inside a small neigh-
borhood of .�; �=2/(the space resonance set), the size of phase is also relatively big. More
precisely, the following estimate holds,

cƒ.j�j/ � jˆ�;�.�; �/j � Cƒ.j�j/; if j� � �=2j � 2�10j�j;

where c and C are some absolute constants.

To take the advantage of the fact that the phase is highly oscillating with respect to time in
the aforementioned scenarios, we use the normal form transformationA�;�.:; :/ by choosing
the symbol a�;�.:; :/ defined as follows,

a�;�.� � �; �/ D
X

k22Z

iq�;�.� � �; �/

ˆ�;�.�; �/
 k2

.�/
�
 �k2�10.� � �=2/ �k2C9.� � �/ �k2�9.�/

C 1f�g.�/ �k2C10.� � �/C 1fCg.��/ �k2�10.�/ �k2C9.� � �//;

(4.28)

where 1S .�/ denotes the characteristic function of set S and the phaseˆ�;�.�; �/ satisfies the
following estimate inside the support of a�;�.� � �; �/,

(4.29) cmaxfj�j; j�jg2.1C maxfj�j; j�jg/�1=2 � jˆ�;�.�; �/j

� C maxfj�j; j�jg2.1C maxfj�j; j�jg/�1=2;

where c and C are some absolute constants.

Next, we proceed to consider the cubic terms. Recall (4.8). Note that, for �; �; � 2 fC;�g,
the phase ˆ�;�;�.�; �; �/ is relatively big in the scenarios listed as follows,

� If � D � and j�j; j� j � 2�10j�j:

� If j� � �=2j � 2�10j�j and � � 2�10j�j .

� If j� � 2�=3j � 2�10j�j and j� � �=3j � 2�10j�j, i.e., .� � �; � � �; �/ is close
to .�=3; �=3; �=3/, which is the space resonance in � and � set.

� If j� � � C ��j � 2�10j�j, j� � � C ��j � 2�10j�j, and j� C ��j � 2�10j�j, i.e.,
.� � �; � � �; �/ is very close to .���;���;���/, which is the space resonance in �
and � set, where .�; �; �/ 2 eS WD f.C;�;�/; .�;C;�/; .�;�;C/g. See the proof of
Lemma 5.7 for more details.

To take the advantage of the high oscillation of phase with respect to time in aforemen-
tioned scenarios, we use the normal form transformationB�;�;�.:; :; :/ by choosing the symbol
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b�;�;�.:; :; :/ defined as follows,

b�;�;�.� � �; � � �; �/ D
ibc�;�;�.� � �; � � �; �/

ˆ�;�;�.�; �; �/

�
X

k2Z

 k.�/
�
1eS ..�; �; �// �k�10..1C �/� � �/ �k�10.� C ��/

C  �k�10.� � 2�=3/ �k�10.� � �=3/

C  �k�10.� � �=2/ �k�10.�/

C 1f�g.�/ �k�10.� � �/ �k�10.�/
�
;

(4.30)

where bc�;�;�.:; :; :/ is the associated symbol of cubic term bC�;�;�.:; :; :/ which is defined in
(4.24) and the phase “ˆ�;�;�.�; �; �/” satisfies the following estimate inside the support of the
symbol bc�;�;�.:; :; :/,

(4.31) jˆ�;�;�.�; �; �/j

2 maxfj�j; j� � � j; j� jg2.1C maxfj�j; j� � � j; j� jg/�1=2Œc; C �;

where where c and C are some absolute constants.

Lastly, we consider the quartic terms. Note that the phase ˆ�1;�2;�1;�2.�; �; �; �/, which
is defined in (4.9), is relatively big if j�j; j� j; j�j � 2�10j�j, �1 D � or if j� � �=2j; j� j,
j�j � 2�10j�j. Hence, we use the normal form transformation E�1;�2;�1;�2

.:; :; :; :/ by
choosing its symbol e�1;�2;�1;�2

.:; :; :/ defined as follows,

e�1;�2;�1;�2
.� � �; � � �; � � �; �/ D

ibd�1;�2;�1;�2
.� � �; � � �; � � �; �/

ˆ�1;�2;�1;�2.�; �; �; �/

X

k2Z

 k.�/

(4.32)
�

�
 �k�10.���=2/ �k�10.���/ �k�10.�/C1f�g.�1/ �k�10.�/ �k�10.���/ �k�10.�/

�
;

where bd�1;�2;�1;�2
.:; :; :; :/ is the associated symbol of quartic term bD�1;�2;�1;�2

.:; :; :; :/ and
the phase ˆ�1;�2;�1;�2.�; �; �; �/ satisfies the following estimate inside the support of the
symbol bd�1;�2;�1;�2

.:; :; :; :/,

(4.33) jˆ�1;�2;�1;�2.�; �; �; �/j

2 maxfj�j; j� � � j; j� � �j; j�jg2.1C maxfj�j; j� � � j; j� � �j; j�jg/�1=2Œc; C �;

where c and C are some absolute constants.

From the estimates (4.29), (4.31), and (4.33, the estimate (2.3) in Lemma 2.1, and the
estimate (4.13), the following estimate holds for some absolute constant C ,

ka�;�.� � �; �/ k.�/ k1
.� � �/ k2

.�/kS 1

C kb�;�;�.� � �; �/ k.�/ k1
.� � �/ k2

.� � �/ k3
.�/kS 1

C ke�1;�2;�1;�2
.� � �; � � �; � � �; �/ k.�/ k1

.� � �/

�  k2
.� � �/ k3

.� � �/ k4
.�/kS 1

� C2k1;C :

(4.34)
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With the above determined normal form transformation, now we are ready to study the
time evolution of the profile g.t/ WD eitƒv.t/ associated with v.t/. Recall (4.21). As a result
of direct computations, we obtain the following equality,

@tg.t; �/ k.�/ D
X

�;�2fC;�g

X

k1;k22Z;k2�k1C10

B
�;�

k;k1;k2
.t; �/

C
X

�;�;�2fC;�g

X

k3�k2�k1

T
�;�;�
k;k1;k2;k3

.t; �/

C
X

�1;�2;�1;�22fC;�g

X

k4�k3�k2�k1

K
�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/C eitƒ.�/ dR1.t; �/ k.�/;

(4.35)

where

B
�;�

k;k1;k2
.t; �/ WD

Z

R2

eitˆ
�;�.�;�/ Qq�;�.� � �; �/dg�

k1
.t; � � �/dg�

k2
.�/ k.�/d�;(4.36)

T
�;�;�
k;k1;k2;k3

.t; �/ D

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/ Qd�;�;�.� � �; � � �; �/dg�

k1
.t; � � �/dg�

k2
.t; � � �/

(4.37)

� dg�
k3
.t; �/ k.�/d�d�;

K
�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/ D

Z

R2

Z

R2

eitˆ
�1;�2;�1;�2 .�;�;�;�/ Qe�1;�2;�1;�2

.� � �; � � �; � � �; �/

� dg�1

k1
.t; � � �/dg�2

k2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/ k.�/d�d�d�;(4.38)

where

Qq�;�.� � �; �/ D
X

k22Z

q�;�.� � �; �/ k2
.�/

�
 �k2�9.� � 2�/ �k2C4.� � �/ �k2�5.�/

C
1C �

2
 �k2C5.� � �/C

.1 � ��/

2
 �k2�5.�/ �k2C4.� � �/

�
;(4.39)

Qd�;�;�.� � �; � � �; �/ D Oc�;�;�.� � �; � � �; �/C ib�;�;�.� � �; � � �; �/ˆ�;�;�.�; �; �/;

(4.40)

(4.41) Qe�1;�2;�1;�2
.� � �; � � �; � � �; �/

D Od�1;�2;�1;�2
.� � �; � � �; � � �; �/

C ie�1;�2;�1;�2
.� � �; � � �; � � �; �/ˆ�1;�2;�1;�2.�; �; �; �/:

Recall the fact that we rearranged inputs such that the scales of dyadic localization of inputs
are ordered in a descending manner, see (4.12), (4.25) and (4.27). It explains why we have
k2 � k1 C 10, k3 � k2 � k1 and k4 � k3 � k2 � k1 in (4.35).

Note that, from (4.39), the following equalities hold if j�j � 2�10j�j,

(4.42) Qq�;�.� � �; �/ D 0; QqC;�.� � �; �/ D qC;�.� � �; �/:

Moreover, if j�j � 2�10j�j, we have

(4.43) Qq�;�.� � �; �/ D 0; � 2 fC;�g:
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Recall (4.40) and (4.41). From the rough estimates of the symbols of the cubic terms in
(4.16) and the quartic terms in (4.18), the following rough estimates hold for some absolute
constant C ,

k Qd�;�;�.� � �; � � �; �/kS 1
k;k1;k2

� C22k1C3k1;C ;(4.44)

kQe�1;�2;�1;�2
.� � �; � � �; � � �; �/ k1

.� � �/ k2
.� � �/ k0

1
.� � �/ k0

2
.�/kS 1 � C22k1C4k1;C :

(4.45)

In later high order weighted norm estimate, we will also need to use the hidden symmetry
inside the symbol Qd�;�;�.� � �; � � �; �/ when j� j; j�j � 2�10j�j. To this end, we identify the
leading symbol inside Qd�;�;�.� � �; � � �; �/ first. From (4.30) and (4.40), we know that we
only have to consider the case when � D C and the leading part of Qd�;�;�.� � �; � � �; �/ is
same as the leading part of Qc�;�;�.� � �; �� �; �/. Recall (4.24) and (4.28).If k2; k3 � k1 � 10;

then the following estimate holds,
(4.46)
k. QdC;�;�.� � �; � � �; �/ � e.�// k1

.� � �/ k2
.� � �/ k3

.�/kS 1 � C2maxfk2;k3gCk1C4k1;C :

where C is some absolute constant and e.�/ is given as follows,

(4.47) e.�/ WD
cC

4
Q�.j�j2/d.�/ �

ic.�/2

ƒ.j�j/
;

where “d.�/” is defined in (4.19). We remark that the first part of e.�/ comes from the cubic
term C�;�;�.u

� ; u� ; u�/ in (4.24), see (4.17) in Lemma 4.1 and the second part of e.�/ comes
from the composition of quadratic terms and the normal form transformation in (4.24).

4.2. Further reduction of the dispersion estimate

In this subsection, we first show that the dispersion rate of the nonlinear solution v.t/
and u.t/ are comparable in W 6;1C˛ space and then reduce the control of the dispersion rate
of v.t/ into the control of weighted norms for the profile g.t/ of v.t/ in a fixed dyadic time
interval.

L 4.2. – Under the bootstrap assumption (3.1), the following estimate holds,

(4.48) sup
t2Œ0;T �

.1C t /kv.t/ � u.t/kW 6;1C˛ C kv.t/ � u.t/kHN0�10 � �0:

Proof. – From the L1 � L1 type bilinear estimate in (2.5), the estimate of symbols in
(4.34) and the L1 ! L2 type Sobolev embedding, the following estimate holds for some
absolute constant C ,

kv.t/ � u.t/kW 6;1C˛ � Cku.t/k4=3
W 6;1C˛ ku.t/k2=3

HN0
� C.1C t /�6=5�21 � .1C t /�6=5�0:

From the L2 � L1 type bilinear estimate, the following estimate holds for some absolute
constant C ,

kv.t/ � u.t/kHN0�10 � Cku.t/kHN0 ku.t/kW 4;0 � C�21 � �0:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



878 X. WANG

Therefore, to control the dispersion rate of the nonlinear solution u.t/, now it would
be sufficient to control the weighted norms of the profile g.t/ of the nonlinear solution
v.t/. Recall the definitions of Z1-norm and Z2-norm in (1.22) and (1.23), we expect that
the Z1-norm of the profile g.t/ doesn’t grow and the Z2-norm of the profile only grows
appropriately, which leads us to the following bootstrap assumption for some T 0 2 .0; T �,

(4.49) sup
t2Œ0;T 0�

.1C t /ke�itƒg.t/kW 6;1C˛ C kg.t/kZ1
C .1C t /�

Qıkg.t/kZ2
� �1 D �

5=6
0 ;

where Qı WD 400ı.

To close the bootstrap argument, it would be sufficient to prove that there exists some
absolute constant “C” such that the following estimates hold for any t1; t2 2 Œ2m�1; 2m� �

Œ0; T 0�, m 2 ZC,

kg.t2/ � g.t1/kZ1
� C2�ım�0;(4.50)

kg.t2/k
2
Z2

� kg.t1/k
2
Z2

� C22
Qım�0:(4.51)

The proof of the desired estimate (4.50) is postponed to the Section 5 and the proof of the
desired estimate (4.51) is postponed to the Section 6.

5. The low order weighted norm estimate

In this section, we mainly prove (4.50) under the bootstrap assumption (4.49). Recall
(4.35). Note that, from the estimate (7.13) in Lemma 7.4, the low order weighted norm of
the quintic and higher order remainder term dR1.t; �/ is controlled. In the first subsection,
we estimate the low order weight norm (Z1-norm) of the quadratic terms B�;�

k;k1;k2
.�; �/ in

details. In the last subsection, we estimate the Z1-norm of the cubic terms T �;�;�
k;k1;k2;k3

.t; �/

and quartic terms K�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/ at the same time because the methods we will use for

cubic terms and quartic terms are very similar.

5.1. The Z1-norm estimate of quadratic terms

Recall (4.35). Based on the possible size of k1 and k2, we separate into two cases, which
are the High-High type interaction and the High-Low type interaction.

The main result for the High-High type interaction is summarized in the following lemma.

L 5.1. – Under the bootstrap assumption (4.49), the following estimate holds for any
�; � 2 fC;�g, and any t1; t2 2 Œ2m�1; 2m�,

(5.1)
X

k2Z

X

j��k�

X

k1;k22Z;jk1�k2j�10

 F �1

�Z t2

t1

B
�;�

k;k1;k2
.t; �/dt

�
Bk;j

� C2�ım�0;

where C is some absolute constant.
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Proof. – Recall (1.22) and (4.36). Note that, from theL2 ! L1 type Sobolev embedding
and L2 � L2 type estimate, the following rough estimate holds for any �; � 2 fC;�g,

k F �1
Œ

Z t2

t1

B
�;�

k;k1;k2
.t; �/dt �kBk;j

� sup
t2Œ2m�1;2m�

C2.2C˛/kCmCjC2k1C10k1;Ckgk1
.t/kL2kgk2

.t/kL2

� C2.2C˛/kCmCjC.2�2˛/k1�.N0�12/k1;C�0;

where C is some absolute constant. From the above estimate, we can first rule out the case
when k � �.1Cı/.mCj /=.2C˛/ or k1 � �.1Cı/.mCj /=.4�˛/ or k1 � .mCj /=.N0�30/.
As a result, it is sufficient to consider the case when k and k1 are restricted in the following
range,
(5.2)
� .1C ı/.mC j /=.2C˛/ � k � k1 � .mC j /=.N0� 30/; k1 � �.1C ı/.mC j /=.4�˛/:

Recall again (4.36). After doing spatial localizations for two inputs, the following decompo-
sition holds,

F �1�
B
�;�

k;k1;k2
.t; �/�.x/ D

X

j1��k1;�;j2��k2;�

F �1�
B
�;�;j1;j2

k;k1;k2
.t; �/�.x/;(5.3)

F �1
ŒB
�;�;j1;j2

k;k1;k2
.t; �/�.x/ D

Z

R2�R2

eix��Citˆ�;�.�;�/ Qq�;�.� � �; �/ĝ�
k1;j1

.t; � � �/(5.4)

� ĝ�
k2;j2

.�/ k.�/d�d�:

From the linear decay estimates in Lemma 2.7, the bootstrap assumptions (3.1) and
(4.49), and the estimate (4.48) in Lemma 4.2, we obtain the following estimates for any
t 2 Œ2m�1; 2m� � Œ0; T 0�;

kgk;j .t/kL2 � k'kj .x/gk.t/kL2 � C minf2�j�.1C˛/k�8kC ; 2�2j�2kCQımg�1;

ke�itƒgk.t/kL1 � C minf2�m�.1C˛/k�6kC ; 2�mCQım�kg�1;

kgk.t/kL2 � C2�.N0�10/kCCım�0;

where C is some absolute constant.

Based on the possible size of j , we separate into two cases as follow.

Case 1. – If j � .1 C ı/maxfm C k1;�k�g C 2 Qım. We first consider the case when
minfj1; j2g � j � ıj � ım, the following estimate holds,

X

minfj1;j2g�j�ıj�ım

k F �1
Œ

Z t2

t1

B
�;�

k1;j1;k2;j2
.t; �/dt �kBk;j

� sup
t2Œ2m�1;2m�

X

minfj1;j2g�j�ıj�ım

C2.2C˛/k

� 2mCjC10kCC2k1kgk1;j1
.t/kL2kgk2;j2

.t/kL2

� C2.2C˛/kCmCQımC10ım�.2�2ı/j�.2�2˛/k1�6k1;C�0

� C2�2ım�2ıj �0;

where C is some absolute constant.
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Now we proceed to consider the case minfj1; j2g � j � ıj � ım. Note that, when � is
not very close to �=2 (space resonance set), e.g., j�� �=2j � 2�10j�j, the following estimates
hold,

jr�ˆ
�;�.�; �/j D 2

ˇ̌
��0.j� � �j2/.� � �/ � ��0.j�j2/�

ˇ̌
� 2�10j�j

�
j� � �j C j�j C 1

��1=2
;

(5.5)

jr�ˆ
�;�.�; �/j C jr�ˆ

�;�.�; �/j � 210 maxfj�j; j�jg.j�j C j�j C 1/�1=2;(5.6)

where �.jxj/ WD ƒ.
p

jxj/. Therefore, from (5.6), we know that the following estimate holds
if jxj 2 Œ2j�2; 2jC2�,

(5.7) jr�
�
x � � C tˆ�;�.�; �/

�
j D

ˇ̌
x C tr�ˆ

�;�.�; �/
ˇ̌

2 Œ2j�4; 2jC4�:

If j2 D minfj1; j2g, then we can do change of variables first to switch the role of ��� and �.
As a result, the following estimate holds if jxj 2 Œ2j�2; 2jC2�,

jr�
�
x � � C tˆ�;�.�; � � �/

�
j D

ˇ̌
x C tr�ˆ

�;�.�; � � �/
ˇ̌

2 Œ2j�4; 2jC4�:

To sum up, in whichever case, by doing integration by parts in � once, we gain 2�j by paying
the price of at most maxf2minfj1;j2g; 2�kg. Hence, the net gain of doing integration by parts
in “�” once is at least 2�ım�ıj . After doing this process many times, we can see rapidly decay.

Case 2. – If j � .1C ı/maxfmC k1;�k�g C 2 Qım. As j is bounded from above now, from
(5.2), we have the following upper bound and lower bound for k and k1,
(5.8)

�m=.1C ˛=3/ � k � k1 � 2ˇm; j � maxfmC k1;�k�g C 3 Qım; ˇ WD 1=.N0 � 50/;

Hence, it would be sufficient to consider fixed k and k1 inside the range (5.8), as there are
at most m3 cases to consider, which is only a logarithmic loss.

After doing integration by parts in � many times, we can rule out the case when
maxfj1; j2g � m C k� � 3ˇm. It remains to consider the case when maxfj1; j2g �

mC k� � 3ˇm. From L2 �L1 type bilinear estimate in Lemma 2.2, the following estimate
holds after putting the input with the maximum spatial concentration in L2 and the other
input in L1,

X

maxfj1;j2g�mCk��3ˇm

k F �1
Œ

Z t2

t1

B
�;�

k1;j1;k2;j2
.t; �/dt �kBk;j

� C2.1C˛/kCmCjC2k1C10kC�m�.1C˛/k1

� minf2�m�k��.1C˛/k1C6ˇm; 2�2k1�2.mCk��3ˇm/CQımg�21

� C minf2˛kC12kCC.1�2˛/k1C10ˇm; 2�.1�˛/kC12kC�˛k1�mC10ˇmg�0(5.9)

� C2�10ım�0;

where C is some absolute constant. To sum up, from the above estimate and the previous
discussion, it is easy to see that the desired estimate (5.1) holds.

The main result of the High-Low type interaction is summarized in the following lemma.
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L 5.2. – Under the bootstrap assumption (4.49), the following estimate holds for any
� 2 fC;�g, and any t1; t2 2 Œ2m�1; 2m�,

(5.10)
X

k2Z

X

j��k�

X

k1;k22Z;k2�k1�10

k
X

�2fC;�g

F �1
Œ

Z t2

t1

B
�;�

k;k1;k2
.t; �/dt �kBk;j

� C2�ım�0;

where C is some absolute constant.

Proof. – Recall (4.42). Note that � D C for the case we are considering. Recall (4.14)
and (4.15). Motivated from the improved estimate (4.15), we split the symbol “ QqC;�.�; �/”
into two parts as follows,

QqC;�.� � �; �/ D q1C;�.� � �; �/C q2C;�.� � �; �/;

(5.11) q1C;�.� � �; �/ D c.�/; q2C;�.� � �; �/ D qC;�.� � �; �/ � c.�/:

Hence, motivated from the above decomposition of the symbol QqC;�.���; �/, we do decom-
position as follows,

X

�2fC;�g

Z t2

t1

B
C;�
k;k1;k2

.t; �/dt D
X

iD1;2

I ik;k1;k2
;

I ik;k1;k2
D

X

�2fC;�g

Z t2

t1

Z

R2

eitˆ
C;�.�;�/qiC;�.���; �/dg

k1
.t; ���/dg�

k2
.t; �/ k.�/d�dt; i D 1; 2:

Recall (5.11). Note that q1C;�.� � �; �/ doesn’t depend on the sign “�”. Hence, we have

I 1k;k1;k2
D 2

Z t2

t1

Z

R2

eit.ƒ.j�j/�ƒ.j���j/c.�/dg
k1
.t; � � �/R̂e.v/.t; �/ k2

.�/ k.�/d�dt:

From (4.20) and the estimate (5.15) in Lemma 5.3, the following estimate holds after using
the volume of the support of “�,”

kI 1k1;k2
kBk;j

� sup
t2Œ2m�1;2m�

C12
.3C˛/kCmCjC10kCkgk1

.t/kL222k2kR̂e.v/.t; �/ k2
.�/kL1

�

� C22
.3C˛/kCmCımCjC2k2�.N0�30/kC.kbh.t; �/ k2

.�/kL1
�

C kuk2
H10 C kuk3

H10 C kuk4
H10/

� C3
�
2.3C˛/kC2mC10ımCjC3k2�.N0�30/kC�0 C 2.3C˛/kC3mC10ımCjC4k2�.N0�30/kC�0

�
;

(5.12)

where C1; C2; and C3 are some absolute constants.

Now we proceed to estimate I 2
k1;k2

. Recall (5.11) and (4.15). From the L2 � L1 type

bilinear estimate (2.5) in Lemma 2.2 and L1 ! L2 type Sobolev embedding, we have

kI 2k1;k2
kBk;j

� sup
t2Œ2m�1;2m�

C2.2C˛/kCmCjCk2Ck1C10kCkgk1
.t/kL2keitƒgk2

.t/kL1

� C2.3C˛/k�.N0�10/kCCmCjC2k2C2ım�0;(5.13)

where C is some absolute constant. To sum up, from (5.12) and (5.13), we can rule out the
case when k2 � �.1C 5ı/maxf.mC j /=2; .3mC j /=4g or k � 4.mC j /=.N0 � 40/. Now,
we only need to consider the case when k2 is restricted in the following range,

(5.14) � .1C 5ı/maxf.mC j /=2; .3mC j /=4g � k2 � k � .3mC j /=.N0 � 40/:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



882 X. WANG

Similar to the idea used in the proof of Lemma 5.1, we also separate into two cases based on
the size of “j ” as follows.

Case 1. – If j � .1 C ı/maxfm C k;�k�g C 10ım. We first consider the case when
minfj1; j2g � j � ıj � ım. Same as we considered in the High � High type interaction,
we can also do integration by parts in “�” many times to see rapidly decay. Now, we proceed
to consider the case when minfj1; j2g � j � ıj � ım. From L2 �L1 type bilinear estimate
and L1 ! L2 type Sobolev embedding, we have

kI 1k1;k2
kBk;j

� sup
t2Œ2m�1;2m�

X

minfj1;j2g�j�ıj�ım

C2.1C˛/kC10kCCmCjC2k1Ck2

kgk1;j1
.t/kL2kgk2;j2

.t/kL2

� C2.1C˛/kCk2C.1C50ˇ/m�.1�50ˇ/j 2�j=2�k2=2�21 � C2�ˇm�0;

where C is some absolute constant.

Case 2. – If j � .1Cı/maxfmCk;�k�gC10ım. For this case, whether j1 is less than j2
makes a difference. Hence, we separate into two cases based on whether j1 is smaller than j2
as follows.

If j1 � j2. – For this case, we don’t need to do change of coordinates to switch the role
between � � � and �. Note that jr�ˆ

C;�.�; �/j � C j�j holds for some absolute constant.
Since this upper bound is better than the one used in the rough estimate, which leads to expect
that the upper bound of “j ” can be improved. More precisely, we can rule out the case when
j � maxfmC k2;�k�g C 100ˇm and j1 � j � ım by doing integration by parts in � many
times. If j � maxfmCk2;�k�gC100ˇm and j �ım � j1 � j2, then the following estimate
holds after using theL2�L1 type bilinear estimate andL1 ! L2 type Sobolev embedding,

X

j�ım�j1�j2

k F �1
Œ

Z t2

t1

B
C;�
k1;j1;k2;j2

.t; �/dt �kBk;j

� sup
t2Œ2m�1;2m�

X

j�ım�j1�j2

C2.1C˛/kC10kCCmCjC2k1kgk1;j1
.t/kL22k2kgk2;j2

.t/kL2

� C2.1C˛/kCk2C.1C50ˇ/m�.1�50ˇ/j 2�25ˇj�25ˇk2�21

� C2�ˇm�0;

where C is some absolute constant.

It remains to consider the case when j � maxfm C k2;�k�g C 100ˇm. If moreover
k� C k2 � �m C ˇm, it is easy to see our desired estimate holds from (5.12) and (5.13).
Hence, we only have to consider the case when k� C k2 � �mC ˇm. For this case, we have
j � mC k2 C 100ˇm. Recall (5.14), we know that k2 � �4m=5 � 30ˇm:

Same as in the decomposition (5.3), we also do spatial localizations for two inputs.
After doing integration by parts in “�” many times, we can rule out the case when
j2 � mC k1;� � 10ım. Therefore, it remains to consider the case when j2 � mC k1;� � 10ım.
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After putting gk2;j2
in L2 and putting gk1;j1

in L1, we have

X

j2�maxfmCk1;��10ım;j1g

k F �1
Œ

Z t2

t1

B
C;�
k1;j1;k2;j2

.t; �/dt �kBk;j

�
X

j2�maxfmCk1;��10ım;j1g

C2.1C˛/kC10kC

� 22k1CmCj sup
t2Œ2m;2mC1�

ke�itƒgk1;j1
.t/kL1kgk2;j2

.t/kL2

� C2�m�k2C150ˇm�21 � C2�ˇm�0;

where C is some absolute constant.

If �k2 � j2 � j1. – We first consider the case when k1 C k2 � �4m=5. From the L2 �L1

type bilinear estimate and L1 ! L2 type Sobolev embedding, the following estimate holds
for some absolute constant C ,

X

j2�j1

k F �1
Œ

Z t2

t1

B
C;�
k1;j1;k2;j2

.t; �/dt �kBk;j

� sup
t2Œ2m�1;2m�

X

j2�j1

C2.1C˛/kC10kCCmCjC2k1kgk1;j1
.t/kL22k2kgk2;j2

.t/kL2

�
X

�k2�j1

C22mC.4C˛/k1Ck22�2k1�2j1C50ˇm�21

� C2.2C˛/kC3k2C2mC50ˇm�21

� C2�ˇm�0:

Lastly, it remains to consider the case when k1 C k2 � �4m=5. For this case, we do
integration by parts in � many times to rule out the case when j1 � m C k1;� � 10ım. For
the case when j1 � mC k1;� � 10ım, the following estimate holds from the L2 � L1 type
bilinear estimate,

X

j1�maxfj2;mCk1;��10ımg

 F �1

�Z t2

t1

B
C;�
k1;j1;k2;j2

.t; �/dt

�
Bk;j

�
X

j1�maxfj2;mCk1;��10ımg

C2.1C˛/kC10kC2mCjC2k1 sup
t2Œ2m�1;2m�

kgk1;j1
.t/kL2ke�itƒgk2;j2

.t/kL1

� C2�m�.1C˛/k2C50ˇm�21 � C2�ˇm�0;

where C is some absolute constant. Hence finishing the proof of the desired estimate (5.10).

L 5.3. – Under the bootstrap assumption (3.1), the following estimate holds for
t 2 Œ2m�1; 2m� � Œ0; T �, m 2 N and k 2 Z; k � 0,

(5.15) kbh.t; �/ k.�/kL1
�

� C22ım
�
22kC2m C 2kCm

�
�0;

where C is some absolute constant.
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Proof. – Recall (4.6). It is easy to see the following estimate holds for any t 2 Œ2m�1; 2m�

and k � 0;

(5.16) k bf .t; �/ k.�/kL1
�

� �0 C C1

Z t

0

kf .s/k2
H10ds � C22

mC2ım�0;

where C1 and C2 are some absolute constants. Recall the equation satisfied by the height
function “h.t/” in (1.3) and the Taylor expansion of the Dirichlet-Neumann operator in
(1.6), we have

@tbh.t; �/ D j�j tanh.j�j/b .t; �/C F Œƒ2ŒG.h/ ��.�/C F Œƒ�3ŒG.h/ ��.�/:

Hence, from L2 � L2 type bilinear estimate (2.5) in Lemma 2.2 and the estimate (5.16), the
following estimate holds for any k � 0,

kbh.t; �/ k.�/kL1
�

� �0 C C1
� Z t

0

22kkb .s; �/ k.�/kL1
�
ds C

Z t

0

2kkh.s/kH10k .s/kH10ds
�

(5.17)

� �0CC2
� Z t

0

22kk bf .s; �/ k.�/kL1
�
dsC

Z t

0

2kkf .s/k2
H10ds

�
� C32

2ım
�
22kC2mC2kCm

�
�0;

where C1; C2, and C3 are some absolute constants. Hence finishing the proof of the desired
estimate (5.15).

5.2. The Z1 estimates of cubic terms and quartic terms.

The main goal of this subsection is to prove the following proposition,

P 5.4. – Under the bootstrap assumption (4.49), the following estimate holds
for some absolute constant C and any t 2 Œ2m�1; 2m�,

X

k2Z

X

j��k�

� X

k3�k2�k1

k F �1
ŒT
�;�;�
k;k1;k2;k3

.t; �/�kBk;j
C

X

k4�k3�k2�k1

k F �1
ŒK

�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/�kBk;j

�

(5.18) � C2�m�ˇm�0;

where T �;�;�
k;k1;k2;k3

.t; �/ and K�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/ are defined in (4.37) and (4.38) respectively.

Proof. – Same as the strategy used in the estimate of quadratic terms, we can do integra-
tion by parts in “�” many times to rule out the case when j � .1Cı/maxfmCk1;�k�gC2 Qım.
Hence, in the rest of this section, we restrict ourself to the case when

j � .1C ı/maxfmC k1;�k�g C 2 Qım:
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From the L2 �L1 �L1 type trilinear estimate in Lemma 2.2, the following estimate holds
for some absolute constant C ,

k F �1
ŒT
�;�;�
k;k1;k2;k3

.t; �/�kBk;j

� C2.1C˛/kCjC2k1C2k1;CC10kCke�itƒgk1
kL1kgk2

.t/kL2ke�itƒgk3
kL1

� C minf2.1C˛/kC2k1Ck3C20ˇm; 2.1C˛/kC3k1�.N0�30/k1;CCk3CmCˇmg�0;

(5.19)

k F �1
ŒK

�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/�kBk;j

� C2.1C˛/kC10kCCjC2k1C2k1;Cke�itƒgk1
kL1ke�itƒgk2

kL2kgk3
.t/kL2

� ke�itƒgk4
.t/kL1 � C2.1C˛/kCk4C20ˇm minf22k1�m=2; 23k1�.N0�30/k1;CCm=2g�0:

(5.20)

From the rough estimate (5.19), we can rule out the case when k3 � �m � 30ˇm, or
k1 � 2ˇm or k � �m=.1 C ˛=2/ for the cubic terms. From the rough estimate (5.20), we
can rule out the case when k4 � �m=2 � 30ˇm or k1 � 2ˇm or k � �m=.2 C ˛/ for the
quartic terms.

Therefore, for the cubic terms, it would be sufficient to obtain the following desired
estimate

(5.21) sup
t2Œ2m�1;2m�

k F �1
ŒT
�;�;�
k;k1;k2;k3

.t; �/�.x/kBk;j
� C2�m�ˇm�0;

where integers k, k1, k2, k3 are fixed inside the following range

(5.22) .Cubic terms/ �m�30ˇm � k3 � k2 � k1 � 2ˇm; �m=.1C˛=2/ � k � 2ˇm:

For the quartic terms, it would be sufficient to obtain the following estimate,

(5.23) sup
t2Œ2m�1;2m�

k F �1
ŒK

�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/�.x/kBk;j

� C2�m�ˇm�0;

where integers k, k1, k2, k3, k4 are fixed inside the following range,
(5.24)
.Quartic terms/ �m=2� 30ˇm � k4 � k3 � k2 � k1 � 2ˇm; �m=.2C˛/ � k � 2ˇm:

From the results in Lemma 5.5, Lemma 5.6, and Lemma 5.7, we know that the desired
estimates (5.21) and (5.23) ) indeed hold. Hence finishing the desired estimate (5.18.

L 5.5. – Under the bootstrap assumption (4.49) and the assumption that k2 � k1 � 10,
the desired estimate (5.21) for the cubic terms holds for fixed k; k1; k2; and k3 inside the range
listed in (5.22) and the desired estimate (5.23) holds for fixed k; k1; k2; k3 and k4 inside the range
listed in (5.24).

Proof. – Recall the normal form transformation we did in Subsection 4.1. Note that the
case when “� D �” is removed by the normal form transformation when k2 � k1�10. Hence,
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we can restrict ourself to the case “� D C”. Recall (4.8). Note that the following estimates
hold for the case we are considering,

jr�ˆ
C;�;�.�; �; �/j D jr�ˆ

C;�2;�1;�2.�; �; �/j D
ˇ̌
ƒ0.j�j/

�

j�j
�ƒ0.j� � �j/

� � �

j� � �j

ˇ̌

� 2maxf2k1∠.�; � � �/; j�j � j� � �jg � 4j�j � 2k2C3:(5.25)

2k1�k1;C=2�10 � jr�ˆ
C;�;�.�; �; �/j D

ˇ̌
ƒ0.j� � �j/

� � �

j� � �j
C �ƒ0.j� � � j/

� � �

j� � � j

ˇ̌
(5.26)

� 2k1�k1;C=2C10:

After doing spatial localizations for the inputs dgk1
.�/ and dgk2

.�/, we have the decomposition
as follows,

T
�;�;�
k;k1;k2;k3

.t; �/ D
X

j1��k1;�;j2��k2;�

T
�;�;�
k1;j1;k2;j2

.t; �/;

T
�;�;�
k1;j1;k2;j2

.t; �/ D

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/ Qd�;�;�.� � �; � � �; �/ĝ�

k1;j1
.t; � � �/

� ĝ�
k2;j2

.t; � � �/dg�
k3
.t; �/d�d�;

K
�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/ D

X

j1��k1;�;j2��k2;�

K
�1;�2;�1;�2

k1;j1;k2;j2
.t; �/;

K
�1;�2;�1;�2

k1;j1;k2;j2
.t; �/ D

Z

R2

Z

R2

Z

R2

eitˆ
�1;�2;�1;�2 .�;�;�;�/ Qe�1;�2;�1;�2

.� � �; � � �; � � �; �/

� ĝ�1

k1;j1
.t; � � �/ĝ�2

k2;j2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/d�d�d�:

(5.27)

Based on the possible size of j , we separate into two cases as follows.

If j � maxfm C k2;�k1;�g C ˇm. – Recall (5.25). By doing integration by parts in “�”
many times, we can rule out the case j1 � j � ım. If j1 � j � ım, then from L2�L1 �L1

type multilinear estimate in Lemma 2.2, the following estimates hold,

k
X

j1�j�ım

F �1
ŒT
�;�;�
k1;j1;k2;j2

.t; �/�kBk;j

�
X

j1�j�ım

C2.1C˛/kCjC2k1C2k1;CC10kC2k2kgk2
.t/kL2ke�itƒgk3

.t/kL1kgk1;j1
.t/kL2

� C2�m=2C30ˇm2k2�j �0 � C2�3m=2C40ˇm�0:

k
X

j1�j�ım

F �1
ŒK

�1;�2;�1;�2

k1;j1;k2;j2
.t; �/�kBk;j

�
X

j1�j�ım

C2.1C˛/kCjC2k1C2k1;CC10kC2k2kgk2
.t/kL2ke�itƒgk3

.t/kL1

� ke�itƒgk4
.t/kL1kgk1;j1

.t/kL2

� C2�2mC40ˇm�0:
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If j � maxfmCk2;�k1;�gCˇm. – From theL2�L1�L1�L1 type multilinear estimate,
the following estimate holds for some absolute constant C ,

k F �1
ŒK

�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/�kBk;j

� C2.1C˛/kC10kCCjC2k1C2k1;Cke�itƒgk1
kL1ke�itƒgk2

kL1ke�itƒgk3
kL1kgk4

kL2

� C2�3m=2C40ˇm�0:

Hence finishing the proof of the desired estimate (5.23) for the quartic terms.

Now we proceed to estimate the cubic terms “TC;�;�
k;k1;k2;k3

.t; �/”. If moreover

k1 C k2 � �m=2 � 12ˇm, then the following estimate holds from the L2 � L1 � L1

type trilinear estimate (2.6) in Lemma 2.2 and L1 ! L2 type Sobolev embedding,

k F �1
ŒT

C;�;�
k;k1;k2;k3

.t; �/�kBk;j

� C2.1C˛/kC10kCCjC2k1C2k1;Cke�itƒgk1
.t/kL12k2kgk2

.t/kL2kgk3
.t/kL2

� C22k1C2k2C20ˇm�0 C 2k1C2k2C20ˇm�0 � C2�m�ˇm�0;

where C is some absolute constant. If k1Ck2 � �m=2�12ˇm. Recall (5.26). By doing inte-
gration by parts in “�” many times, we can rule out the case when maxfj1; j2g � mC k1;� � ˇm.
For the case when maxfj1; j2g � m C k1;� � ˇm, the following estimate holds from
L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2,

X

maxfj1;j2g�mCk1;��ˇm

k F �1
ŒT
�;�;�
k1;j1;k2;j2

.t; �/�kBk;j

�
X

j1�maxfmCk1;��ˇm;j2g

C2.1C˛/kC10kCC2k1Cj kgk1;j1
.t/kL2ke�itƒgk2;j2

.t/kL1ke�itƒgk3
.t/kL1

C
X

j2�maxfmCk1;��ˇm;j1g

C2.1C˛/kC10kCCjC2k1kgk2;j2
.t/kL2ke�itƒgk1;j1

.t/kL1ke�itƒgk3
.t/kL1

� C2�5m=2C50ˇm�k2�0 � C2�m�ˇm�0;

(5.28)

where C is some absolute constant. Hence finishing the proof of desired estimates (5.21) and
(5.23) for the case when k2 � k1 � 10.

L 5.6. – Under the bootstrap assumption (4.49) and the assumption that k1 � 10 �

k2 � k1 C 1 and k2 � k3 � 10 � k2 C 1, the desired estimate (5.21) for the cubic terms holds
for fixed k; k1; k2; and k3 inside the range listed in (5.22) and the desired estimate (5.23) holds
for fixed k; k1; k2; k3 and k4 inside the range listed in (5.24).

Proof. – From L2 � L1 � L1 � L1 type mutilinear estimate, we have

k F �1
ŒK

�1;�2;�1;�2

k;k1;k2;k3;k4
.t; �/�kBk;j

� C2.1C˛/kC10kCCjC2k1ke�itƒgk1
.t/kL1ke�itƒgk2

.t/kL1

� ke�itƒgk3
.t/kL1kgk4

.t/kL2(5.29)

� C2�3m=2C40ˇm�0:

Hence finishing the proof of the quartic terms. Now, it remains to estimate the cubic
terms “T �;�;�

k;k1;k2;k3
.t; �/”. After putting gk3

in L2 and the other two inputs in L1, from the
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L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2 when k � �2ˇm, the following
estimate holds for some absolute constant C ,

k F �1
ŒT
�;�;�
k;k1;k2;k3

.t; �/�kBk;j
� C2.1C˛/kCjC2k1C2k1;Cke�itƒgk1

.t/kL1ke�itƒgk2
.t/kL2kgk3

.t/kL2

� C maxf2˛k�2mC2ˇm; 2.1C˛/k�mCˇmg�31 � C2�m�ˇm�0:

Hence, it remains to consider the case when k � �2ˇm. Recall the normal form transfor-
mation we did in Subsection 4.1. Note that the case when � is close to �=2 is removed, see
(4.30). Hence, the following estimate always holds for the case we are considering,

(5.30) jr�ˆ
�;�;�.�; �; �/j � 2k�k1;C=2�10:

From the above estimate, after doing integration by parts in “�” many times, we can rule out
the case when maxfj1; j2g � mC k� � 3ˇm. Hence, we only have to consider the case when
maxfj1; j2g � mC k� � 3ˇm . From the L2 �L1 �L1 type estimate (2.6) in Lemma 2.2,
the following estimate holds,

X

maxfj1;j2g�mCk��3ˇm

k F �1
ŒT
�;�;�
k1;j1;k2;j2

.t; �/�kBk;j

�
X

maxfj1;j2g�mCk��3ˇm

C2.1C˛/kC10kCCjC2k1kgk1;j1
.t/kL22k2kgk2;j2

.t/kL2ke�itƒgk3
.t/kL1

� C2�3m=2C50ˇm�0;

where C is some absolute constant. Hence finishing the proof.

L 5.7. – Under the bootstrap assumption (4.49) and the assumption that k1 � 10 �

k2 � k1 C 1 and k2 � k3 � 10 � k2 C 1, the desired estimate (5.21) for the cubic terms holds
for fixed k; k1; k2; and k3 inside the range listed in (5.22) and the desired estimate (5.23) holds
for fixed k; k1; k2; k3 and k4 inside the range listed in (5.24).

Proof. – Note that, because the size of “k3” plays little role in (5.29), the estimate
(5.29) still holds for the quartic terms. Hence, we only have to estimate the cubic term
“T �;�;�
k;k1;k2;k3

.t; �/”. Define

S 1 WD f.C;�;�/; .�;C;C/g; S 2 WD .C;�;C/; .�;C;�/g;(5.31)

S 3 WD f.C;C;�/; .�;�;C/g; S 4 WD f.C;C;C/; .�;�;�/g:(5.32)

Recall (4.8). Note that the space resonance in both “�” and “�” set is given as follows,

R �;�;� WD f.�; �; �/ W r�ˆ
�;�;�.�; �; �/ D r�ˆ

�;�;�.�; �; �/ D 0g

D f.�; �; �/ W � D
�
.1C ��/.1C ��/ � ��

�
�; � D .1C ��/�g; �; �; � 2 fC;�g:

More specifically, we have

R �;�;� D f.�; �; �/ W � D �; � D 2�g; .� � �; � � �; �/jR�;�;�
D .��; �; �/; .�; �; �/ 2 S 1;

R �;�;� D f.�; �; �/ W � D �; � D 0g; .� � �; � � �; �/jR�;�;�
D .�;��; �/; .�; �; �/ 2 S 2;

R �;�;� D f.�; �; �/ W � D ��; � D 0g; .� � �; � � �; �/jR�;�;�
D .�; �;��/; .�; �; �/ 2 S 3;

R �;�;� D f.�; �; �/ W � D 3�; � D 2�g; .� � �; � � �; �/jR�;�;�
D .�=3; �=3; �=3/; .�; �; �/ 2 S 4:
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When .�; �; �/ 2 S 1 [ S 2 [ S 3. – Note that, after changing of variables, those three cases
are symmetric. Hence, it would be sufficient to estimate the case when .�; �; �/ 2 S 1 in details.

We first do change of variables and then localize around the space resonance set with a well
chosen threshold. As a result, we can decompose the cubic term T

�;�;�
k;k1;k2;k3

.t; �/ as follows,

T
�;�;�
k;k1;k2;k3

.t; �/ D
X

l1;l2�Nl�

C �;l1;l2.t; �/; C �;l1;l2.t; �/ D
X

j1��k1;�;j2��k2;�

C
�;l1;l2
j1;j2

.t; �/;

(5.33)

C
�;l1;l2
j1;j2

.t; �/ WD

Z

R2

Z

R2

eit
ê�;�;�.�;�;�/ Qd�;�;�.�; 2� C �C �; � C �/ĝ�

k1;j1
.t;�� � � � �/

(5.34)

� ĝ�
k2;j2

.t; � C �/dg�
k3
.t; � C �/'l1I Nl�

.�/'l2I Nl�
.�/d�d�;

where the phase ê�;�;�.�; �; �/ is defined as follows,

(5.35) ê�;�;�.�; �; �/ WD ƒ.j�j/��ƒ.j�C�C� j/��ƒ.j�C�j/��ƒ.j�C� j/; .�; �; �/ 2 S 1;

the thresholds Nl� WD �2m=5 � 10ˇm and NlC WD k� � 10 and the cutoff function 'lI Nl .�/ with

the threshold Nl is defined as follows,

(5.36) 'lI Nl .x/ WD

(
 �Nl .jxj/ if l D Nl

 l .jxj/ if l > Nl :

If � D C, i.e., .�; �; �/ D .C;�;�/. – Recall the normal form transformation that we did in
Subsection 4.1 , see (4.20) and (4.30). For the case we are considering, i.e., .�; �; �/ 2 eS , we
already canceled out the case when maxfl1; l2g D NlC. Hence it would be sufficient to consider
the case when maxfl1; l2g > Nl�. By the symmetry between inputs, without loss of generality,
we assume that l2 D maxfl1; l2g > NlC WD k� � 10: For this case, we take the advantage of
the fact that r�ê�;�;�.�; �; �/ is relatively big, i.e., we are away from the space resonance in
“�” set. More precisely, we have

(5.37)
ˇ̌
r�êC;�;�.�; �; �/

ˇ̌
D

ˇ̌
ƒ0.j� C �C � j/

� C �C �

j� C �C � j
�ƒ0.j� C �j/

� C �

j� C �j

ˇ̌
� 2l2�10:

Hence, we can do integration by parts in “�” many times to rule out the case when
maxfj1; j2g � m C k� � ˇm. From the L2 � L1 � L1 type trilinear estimate (2.6) in
Lemma 2.2 and the L1 ! L2 type Sobolev embedding, the following estimate holds,

X

maxfj1;j2g�mCk��ˇm

k F �1
ŒC

C;l1;l2
j1;j2

.t; �/�.x/kBk;j
�

X

maxfj1;j2g�mCk��ˇm

C2.1C˛/kC10kCCjC2k1

� ke�itƒgk3
.t/kL1kgk2;j2

.t/kL22k2kgk1;j1
.t/kL2 � C2�3m=2C40ˇm�0;

where C is some absolute constant.

If � D �, i.e., .�; �; �/ D .�;C;C/. – By the symmetry between l1 and l2, without loss of
generality, we assume that l2 D maxfl1; l2g. Recall (5.35). We have

ˇ̌
r� ê�;C;C.�; �; �/

ˇ̌

D
ˇ̌
ˇƒ0.j�j/

�

j�j
Cƒ0.j� C �j/

� C �C �

j� C �C � j
�ƒ0.j� C �j/

� C �

j� C �j
�ƒ0.j� C � j/

� C �

j� C � j

ˇ̌
ˇ:
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From the above equality, we know that the following estimate holds,

(5.38)
ˇ̌
r� ê�;C;C.�; �; �/

ˇ̌
'l1I Nl�

.�/'l2I Nl�
.�/ � 2l2C10:

Hence, we can first rule out the case when j � m C l2 C 2ˇm by doing integration by
parts in “�” many times. From now on, it would be sufficient to consider the case when
j � mC l2 C 2ˇm.

We first consider the case when l2 D Nl� D �2m=5 � 10ˇm. After using the volume of
supports in “�” and “� ,” the following estimate holds,

k F �1
ŒC�; Nl�; Nl�.t; �/�.x/kBk;j

� C2.1C˛/kC10kCCjC2k124
Nlkgk1

.t/kL2kgk2
.t/kL1kgk3

.t/kL1

� C25
NlCmC30ˇm�31 � C2�m�ˇm�0;

where C is some absolute constant. Now, we proceed to consider the case when l2 > Nl� D

�2m=5 � 10ˇm. Note that the following estimate holds for the case we are considering,

(5.39)
ˇ̌
r�ê�;C;C.�; �; �/

ˇ̌
� 2l2�kC=2�10:

Therefore, we can do integration by parts in � many times to rule out the case when
maxfj1; j2g � m C l2 � 4ˇm. From the L2 � L1 � L1 type trilinear estimate (2.6) in
Lemma 2.2, the following estimate holds for some absolute constant C when maxfj1; j2g �

mC l2 � 4ˇm,

X

maxfj1;j2g�mCl2�4ˇm

k F �1
ŒC

�;l1;l2
j1;j2

.t; �/�.x/kBk;j

� C2.1C˛/kC10kCCjC2k1ke�itƒgk3
.t/kL1

�
� X

j2�maxfmCl2�4ˇm;j1g

kgk2;j2
.t/kL2ke�itƒgk1;j1

.t/kL1

C
X

j1�maxfmCl2�4ˇm;j2g

ke�itƒgk2;j2
.t/kL1

� kgk1;j1
.t/kL2

�
� C2�2m�l2�m=2C40ˇm�0 � C2�m�ˇm�0:

(5.40)

When .�; �; �/ 2 S 4. – Very similarly, we localize around the space resonance set
“.�=3; �=3; �=3/” by doing change of variables for “T �;�;�

k1;k2;k3
.t; �/” as follows,

T
�;�;�
k1;k2;k3

.t; �/ D

Z

R2

Z

R2

eit
b̂�;�;�.�;�;�/ Qd�;�;�.�; 2�=3C �C �; �=3C �/dg�

k1
.t; �=3 � � � �/

� dg�
k2
.t; �=3C �/dg�

k3
.t; �=3C �/d�d�;

where the phase b̂�;�;�.�; �; �/ is defined as follows,

b̂�;�;�.�; �; �/ WD ƒ.j�j/� �ƒ.j�=3���� j/��ƒ.j�=3C�/� �ƒ.j�=3C� j/; .�; �; �/ 2 S 4:

Recall the normal form transformation that we did in Subsection 4.1. The symbol around
a neighborhood of .�=3; �=3; �=3/ has been canceled, see (4.30) and (4.40). Hence, the
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following decomposition holds,

T
�;�;�
k;k1;k2;k3

.t; �/ D
X

iD1;2

T
�;�;�
k1;k2;k3Ii .t; �/;

T
�;�;�
k1;k2;k3I1.t; �/ D

X

j1��k1;�;j2��k2;�

T
�;�;�
k1;j1;k2;j2I1.t; �/;

T
�;�;�
k1;k2;k3I2.t; �/ D

X

j1��k1;�;j3��k3;�

T
�;�;�
k1;j1;k3;j3I2.t; �/

T
�;�;�
k1;j1;k2;j2I1.t; �/ D

Z

R2

Z

R2

eit
b̂�;�;�.�;�;�/ Qd�;�;�.�; 2�=3C �C �; �=3C �/ĝ�

k1;j1
.t; �=3 � � � �/

� ĝ�
k2;j2

.t; �=3C �/dg�
k3
.t; �=3C �/ �k�20.2�C �/d�d�;(5.41)

T
�;�;�
k1;j1;k3;j3I2.t; �/ D

Z

R2

Z

R2

eit
b̂�;�;�.�;�;�/ Qd�;�;�.�; 2�=3C �C �; �=3C �/ �k�20.2� C �/

�  �k�20.2�C �/ĝ�
k1;j1

.t; �=3 � � � �/dg�
k2
.t; �=3C �/(5.42)

� ĝ�
k3;j3

.t; �=3C �/d�d�:

The estimates of “T �;�;�
k1;k2;k3I1.t; �/” and “T �;�;�

k1;k2;k3I2.t; �/” are very similar. For simplicity, we
only estimate T �;�;�

k1;k2;k3I1.t; �/ in details here. Note that “2� C �” is bounded from below

by 2k�10 for the case we are considering, which implies that the size of r�b̂�;�;�.�; �; �/ is
bounded from blow by 2k�kC=2�20. Therefore, after doing integration by parts many times
in “�,” we can rule out the case when maxfj1; j2g � m C k� � 2ˇm. For the case when
maxfj1; j2g � m C k� � 2ˇm, a similar estimate as in (5.40) holds for some absolute
constant C as follows,

X

maxfj1;j2g�mCk��2ˇm

k F �1
ŒT
�;�;�
k1;j1;k2;j2I1.t; �/�kBk;j

� R.H.S. of (5.40) � C2�m�ˇm�0:

Hence finishing the proof.

6. The high order weighted norm estimate

In this section, our main goal is to prove (4.51) under the smallness assumption (4.49).
The plan of this section is listed as follows. (i) In Subsection 6.1, we first classify different
scenarios when estimating the left hand side of (4.51) and then show a key decomposition,
e.g., (6.17), holds when the vector field OL� hits the phases ˆ�;�.�; �/. (ii) In Subsection 6.2
and Subsection 6.3, we finish theZ2-estimate of the quadratic terms for the High-High type
interaction and the High-Low type interaction respectively; (iii) In Subsection 6.4, we finish
the Z2-estimate of the cubic terms; (iv) In Subsection 6.5, we finish the Z2-estimate of the
quartic terms. Therefore, combining the aforementioned estimates with the estimate (7.13)
of quintic and higher order reminder terms “ R1” in Lemma 7.4 in Section 7, we finish the
high order weighted norm estimate.
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6.1. The set-up of the Z2-norm estimate

Define

(6.1) O�� WD ��? �r� ; d� WD 0; �� WD ��?; OL� WD �� �r� ; dL WD �2; �L WD ��:

(6.2)
�1k WD f.k1; k2/ W jk1�k2j � 10; k � k1C10g; �2k WD f.k1; k2/ W k2 � k1�10; jk1�kj � 10g:

Recall that L WD x � r C 2 and � WD x? � r and the Z2 norm is defined in (1.23). We have

O��bg.t; �/ D d�g.t; �/; OL�bg.t; �/ D cLg.t; �/;

(6.3) kg.t/kZ2
2

� X

�1
�
;�2

�
2f O�� ; OL� g

k�1� �
2
�bg.t; �/kL2 C k�1�bg.t; �/kL2

�
Œc; C �;

where c and C are some absolute constants.

Since the estimate of the second part of the right hand side of (6.3) is similar and also
much easier than the first part, for simplicity, we only estimate the first part in details here.
Therefore, to prove the desired estimate (4.51), it would be sufficient to prove the following
desired estimate for any �1

�
; �2
�

2 f OL� ; O��g(correspondingly, �1; �2 2 fL;�g) and any

t1; t2 2 Œ2m�1; 2m�,

(6.4)
ˇ̌
ˇRe

� Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2� @tbg.t; �/d�dt

�ˇ̌
ˇ � C22

Qım�20 ;

where C is some absolute constant.

Recall (4.35). We first classify the quadratic terms. Recall (4.36). From the direct compu-
tations, we have the following identity for the quadratic terms,

Z t2

t1

Z

R2

Z

R2

�1
�
�2
�

bgk.t; �/�1� �2�B
�;�

k;k1;k2
.t; �/d�dt

D

Z t2

t1

Z

R2

Z

R2

�1
�
�2
�

bgk.t; �/eitˆ
�;�.�;�/

h
�1� �

2
�

�
Qq�;�.� � �; �/dg�

k1
.t; � � �/

�dg�
k2
.t; �/

C
X

l;nDf1;2g

i t
�
� l�ˆ

�;�.�; �/
�
�n�

�
Qq�;�.� � �; �/dg�

k1
.t; � � �/

�dg�
k2
.t; �/

� t2�1�ˆ
�;�.�; �/�2�ˆ

�;�.�; �/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/

i
d�d�dt:(6.5)

To make the formulation (6.5) symmetric, we separate � i
�
bg.t; ���/, i 2 f1; 2g, into two parts

as follows,

� i�bg.t; � � �/ D � i���bg.t; � � �/ � � i�bg.t; � � �/:

After applying the above decomposition to the equality (6.5), we do integration by parts in
“�” in (6.5) to move the derivative in front of � i�bg.t; � � �/ around, see (6.1). As a result, the
following equality holds,

(6.6) Re
h Z t2

t1

Z

R2

�1
�
�2
�
bgk.t; �/�1� �2�B

�;�

k;k1;k2
.t; �/d�dt

i
D

X

iD1;2;3;4

ReŒP ik;k1;k2
�;
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where

P 1k;k1;k2
WD

X

fl;ngDf1;2g

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/i t.� l� C � l�/ˆ

�;�.�; �/

�
�
Qq�;�.� � �; �/

�dg�
k2
.t; �/�̂ng

�

k1
.t; � � �/C dg�

k1
.t; � � �/�̂ng�

k2
.t; �/

�
(6.7)

C .�n� C �n� C d�n/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/

�
d�d�dt;

P 2k;k1;k2
WD �

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/t2.�1� C �1� /ˆ

�;�.�; �/.�2� C �2� /

�ˆ�;�.�; �/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/d�d�dt;(6.8)

P 3k;k1;k2
WD

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/

�
Qq�;�.� � �; �/

� ̂�1�2g
�

k1
.t; � � �/dg�

k2
.t; �/

C dg�
k1
.t; � � �/ ̂�1�2g�

k2
.t; �/

�

C .�1� C �1� C d�1/.�2� C �2� C d�2/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/

C .� l� C � l� C d�l / Qq�;�.� � �; �/(6.9)

�
�
�̂ng

�

k1
.t; � � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/�̂ng�

k2
.t; �/

��
d�d�dt;

P 4k;k1;k2
WD

X

j1��k1;�;j2��k2;�

P
4;j1;j2

k;k1;k2
; P

4;j1;j2

k;k1;k2
WD

X

fl;ngDf1;2g

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/

� eitˆ
�;�.�;�/ Qq�;�.� � �; �/ ̂� lg

�

k1;j1
.t; � � �/ ̂�ng�

k2;j2
.t; �/d�d�dt:(6.10)

Now we reveal a subtle structure inside the symbol “.�� C��/ˆ
�;�.�; �/,” which appears

in P i
k;k1;k2

; i 2 f1; 2g, see (6.7) and (6.8). Note that, the following equalities hold when

j�j � 2�10j�j and � D C,
�

OL� C OL�
�
ˆ�;�.�; �/ D �2� �

�
�0.j�j2/� � �0.j� � �j2/.� � �/

�
� 2� �

�
� �0.j� � �j2/.� � �/

(6.11) � ��0.j�j/�
�

D �4
�
�0.j�j2/C �00.j�j2/j�j2

�
� � �CO.j�j2/;

. O�� C O��/ˆ
�;�.�; �/ D �2�? �

�
�0.j�j2/� � ��.j� � �j2/.� � �/

�

(6.12) � 2�? �
�

���.j� � �j2/.�� �/� ��0.j�j2/�
�

D �2��0.j� � �j2/
�
�? � �C �? � �/ D 0;

where �.jxj/ WD ƒ.
p

jxj/. The following approximation holds when j�j is very close to zero,

(6.13) ƒ.j�j/ D j�j2 �
1

6
j�j4 CO.j�j6/; �.j�j/ D j�j �

1

6
j�j2 CO.j�j3/; j�j � 2�10:

Moreover, the following equalities hold when j�j � 2�10j�j and �� D �;
�

OL� C OL�
�
ˆ�;�.�; �/ D �2�0.j�j2/j�j2 C�2�0.j� � �j2/� � .� � �/C 2��0.j� � �j2/� � .�� �/

(6.14) C 2��0.j�j2/j�j2 D �4�
�
�0.j�j2/C �00.j�j2/j�j2

�
� � �CO.j�j2/;

(6.15) . O�� C O��/ˆ
�;�.�; �/ D �2��0.j� � �j2/

�
�? � �C �? � �/ D 0:
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Now, we show that similar decompositions also hold for the phase ˆ�;�.�; �/ in two
different scenarios so that we can link the symbol .�� C ��/ˆ

�;�.�; �/ with the phase
ˆ�;�.�; �/. Note that the following expansion holds when j�j � 2�10j�j and � D C,

(6.16) ˆ�;�.�; �/ D �.j�j2/ � �.j�j2 � 2� � �C j�j2/ � ��.j�j2/ D 2�0.j�j2/� � �CO.j�j2/:

Hence, from (6.16) and (6.11), the following identity holds when j�j � 2�10j�j and � D C,
(6.17)
�

OL� C OL�
�
ˆ�;�.�; �/ D Qc.� � �/ˆ�;�.�; �/CO.j�j2/; Qc.�/ WD �

2�00.j�j2/j�j2 C 2�0.j�j2/

�0.j�j2/
:

Moreover, the following approximation holds for the phase ˆ�;�.�; �/ when j�j � 2�10j�j

and �� D �,

(6.18) ˆ�;�.�; �/ D �.j�j2/��
�
�.j�j2�2� ��Cj�j2/��.j�j2/

�
D 2��0.j�j2/� ��CO.j�j2/:

Therefore, from (6.18) and (6.14), the following identity holds when j�j � 2�10j�j and
�� D �,

(6.19)
�

OL� C OL�
�
ˆ�;�.�; �/ D Qc.� � �/ˆ�;�.�; �/CO.j�j2/:

6.2. Z2-norm estimate of the quadratic terms: if jk1 � k2j � 10

Recall the decomposition (6.6). We know that the Z2-norm estimate of the quadratic
terms in the High-High type interaction follows from the estimate (6.20) in Lemma 6.1 and
the estimate (6.22) in Lemma 6.2.

L 6.1. – Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C ,

(6.20)

ˇ̌
ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 3k;k1;k2

ˇ̌
ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 4k;k1;k2

ˇ̌
ˇ̌
ˇ̌ � C22

Qım�0:

Proof. – Recall (6.6). From the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, we
haveˇ̌

ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 3k;k1;k2

ˇ̌
ˇ̌
ˇ̌

� sup
t1;t22Œ2m�1;2m�

X

jk1�k2j�10

C2mC2k1kP�k1C20�
1�2g.t/kL2

�
ke�itƒgk1

.t/kL1

C ke�itƒgk2
.t/kL1

�� X

l;m2f1;2g

k�1�2gkm
.t/kL2 C k� lgkm

kL2 C kgkm
.t/kL2

�
(6.21)

� C22
Qım�20 ;

where C is some absolute constant. The estimate of P 4
k;k1;k2

is similar but slightly different.
The spatial concentrations of inputs play a role. Note that, from the definition of Zi -norms,
i 2 f1; 2g in (1.22) and (1.23) and the linear decay estimate (2.11) in Lemma 2.7, the following
estimate holds for some absolute constant C ,

k� lgk;j kL2 � C2�k�jCQım�1; ke�itƒ� lgk;j kL1 � C2�mCkC2j k'kj .x/Pkg.t/kL2 :
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After first doing spatial localizations for the inputs gk1
.t/ and gk2

.t/ and then put the input
with smaller spatial concentration in L1 and the other input in L2, the following estimate
holds for some constants C1 and C2,
ˇ̌
ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 4k;k1;k2

ˇ̌
ˇ̌
ˇ̌

� sup
t1;t22Œ2m�1;2m�

X

jk1�k2j�10

X

fl;mgDf1;2g

C12
mC2k1kP�k1C20�

1�2g.t/kL2

�
� X

j1�j2

k� lgk1;j1
kL2ke�itƒ�ngk2;j2

kL1 C
X

j2�j1

ke�itƒ� lgk1;j1
kL1k�ngk2;j2

kL2

�

�
X

j2

C22
2k1C2j2k'k2

j2
.x/Pk2

g.t/kL2

� X

j1�j2

22
Qım�j1�1

�

C
X

j1

C22
2k1C2j1k'k1

j1
.x/Pk1

g.t/kL2

� X

j2�j1

22
Qım�j2�1

�

� C22
2Qım�20 :

From the above estimate and the estimate (6.21), we know that the desired estimate (6.20)
holds.

L 6.2. – Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C ,

(6.22)

ˇ̌
ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 1k;k1;k2

ˇ̌
ˇ̌
ˇ̌ C

ˇ̌
ˇ̌
ˇ̌

X

jk1�k2j�10;k�k1C20

P 2k;k1;k2

ˇ̌
ˇ̌
ˇ̌ � C22

Qım�0:

Proof. – Note that, from the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the
following estimate holds for some absolute constant C ,

jP 1k;k1;k2
j C jP 2k;k1;k2

j

� sup
t2Œ2m�1;2m�

C.22mCkC3k1 C 23mC2kC4k1/
X

i;jD1;2

�
kgki

.t/kL2 C 2k1kr�bgki
.t; �/kL2

�

� k�1�2gkkL2ke�itƒgkj
.t/kL1(6.23)

� C2
QımCım.2mCkCk1;��15k1;C C 22mC2kC2k1;��14k1;C/�20 :(6.24)

From the above rough estimate (6.23), we can rule out the case when kCk1;� � �mC Qım=3

or k1 � m=5. From now on, we restrict ourself to the case when kC k1;� � �mC Qım=3 and
k1 � m=5.

Recall (6.7) and (6.15). We know that the integral inside P 1
k;k1;k2

actually vanishes when

� l D O�� . Hence, we only need to consider the case when � l
�

D OL� . Based on the possible
size of k, we separate into two cases as follows.
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Case 1: if k � k1 � 10. – Recall the normal form transformation that we did in Subsec-
tion 4.1. For the case we are considering, we have �� D �. Recall (6.19). To take the advan-
tage of this decomposition, we decompose P 1

k;k1;k2
and P 2

k;k1;k2
into two parts respectively

as follows,

(6.25) jP 1k;k1;k2
j �

X

�2fL;�g

j�1;1
k;k1;;k2

j C j�1;2
k;k1;;k2

j; jP 2k;k1;k2
j � j eP 1k;k1;k2

j C j eP 2k;k1;k2
j;

where

�
1;i
k;k1;;k2

WD

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/i t Qqi�;�.���; �/

�
Qq�;�.���; �/

�
�̂g

�

k1
.t; ���/

(6.26)

�dg�
k2
.t; �/Cdg�

k1
.t; ���/�̂g�

k2
.t; �/

�
C.��C��Cd�/ Qq�;�.���; �/

dg�
k1
.t; ���/dg�

k2
.t; �/

�
d�d�dt;

(6.27)

eP ik;k1;k2
D �

Z t2

t1

Z

R2

Z

R2

L̂Lgk.t; �/e
itˆ�;�.�;�/t2bqi�;�.�; �/dg�k1

.t; � � �/dg�
k2
.t; �/d�d�dt;

where
(6.28)
Qq1�;�.���; �/ D Qc.���/ˆ�;�.�; �/; Qq2�;�.���; �/ WD . OL�C OL�/ˆ

�;�.�; �/�Qc.���/ˆ�;�.�; �/:

(6.29)
bq1�;�.�; �/ D bp1�;�.�; �/ˆ�;�.�; �/; bp1�;�.�; �/ WD Qq�;�.� � �; �/. OL� C OL�/ˆ

�;�.�; �/ Qc.� � �/;

(6.30)
bq2�;�.�; �/ D Qq�;�.� � �; �/. OL� C OL�/ˆ

�;�.�; �/
�
. OL� C OL�/ˆ

�;�.�; �/ � Qc.� � �/ˆ�;�.�; �/
�
:

From the estimate (2.3) Lemma 2.1, the following estimates hold for some absolute
constant C ,

(6.31)
k Qq2�;�.� � �; �/kS 1

k;k1;k2

� C22k ; kbp1�;�.�; �/kS 1
k;k1;k2

� C2kC3k1 ;

kbq2�;�.�; �/kS 1
k;k1;k2

� C23kC3k1 :
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After doing integration by parts in “�” once for �1;2
k;k1;;k2

and doing integration by parts in

“�” twice for eP 2
k;k1;k2

, the following estimates hold for some absolute constants C1 and C2,

X

k�k1C20;jk1�k2j�10

j�1;2
k;k1;;k2

j C
ˇ̌ eP 2k;k1;k2

ˇ̌

� sup
t2Œ2m�1;2m�

X

k�k1C20;jk1�k2j�10

h
C1k�

1�2gk.t/kL22mCkCk1Ck1;C

�
� X

iD0;1;2

2ik1kri
�dgk1

.t; �/kL2 C 2ik1kri
�dgk2

.t; �/kL2

�� X

iD1;2

ke�itƒgki
kL1

�

C
X

j1�j2

C12
kC3k1Ck1;C

� k�1�2gk.t/kL222j2k'k2

j2
.x/Pk2

g.t/kL22j1k'k1

j1
.x/Pk1

g.t/kL2

C
X

j2�j1

C12
kC3k1Ck1;Ck�1�2gk.t/kL2

� 22j1k'k2

j2
.x/Pk2

g.t/kL22j2k'k1

j1
.x/Pk1

g.t/kL2

i
� C22

2Qım�20 :(6.32)

To sum up, from the estimate (6.25), the estimate (6.32), the estimate (6.33) in Lemma 6.3
and the estimate (6.45) in Lemma 6.4, we finish the estimate of P i

k;k1;k2
, i 2 f1; 2g, for the

case we are considering.

Case 2: If k � k1 � 10 and jk1 � k2j � 10. – For the case we are considering, the sizes of
all frequencies are comparable, which implies that the estimate (6.32) also holds for P 1

k;k1;k2

and P 2
k;k1;k2

without decomposing the symbols of quadratic terms as in the estimate (6.25).

Hence finishing the proof of the desired estimate (6.22).

L 6.3. – Under the bootstrap assumption (4.49) and the assumption that kC k1;� �

�m C Qım=3, k � k1 � 10 and k1 � m=5, the following estimate holds for some absolute
constant C ,

(6.33) j�1;1
k;k1;k2

j � C29=5
Qım�20 :

Proof. – Recall the associated symbol Qq1�;�.� � �; �/ of �1;1
k;k1;k2

in (6.28). To take the
advantage of smallness of symbol near the time resonance set, we do integration by parts
in time once. As a result, we have

(6.34) �
1;1
k;k1;k2

D
X

iD1;2

e�1;i
k;k1;k2

; e�1;1
k;k1;k2

D
X

j1��k1;�;j2��k2;�

e�j1;j2;1;1

k;k1;k2
;
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e�j1;j2;1;1

k;k1;k2
WD �

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/ Qc.� � �/

�
Qq�;�.� � �; �/

�
�
ĝ�
k2;j2

.t; �/�̂g
�

k1;j1
.t; � � �/C ĝ

�

k1;j1
.t; � � �/�̂g�

k2;j2
.t; �/

�

C .�� C �� C d�/ Qq�;�.�; �/ĝ
�

k1;j1
.t; � � �/ĝ�

k2;j2e
.t; �/

�
d�d�dt

C
X

iD1;2

.�1/i
Z

R2

Z

R2

̂�1�2gk.ti ; �/e
itiˆ

�;�.�;�/ti Qc.� � �/
�
Qq�;�.� � �; �/

�
�
�̂g

�

k1;j1
.ti ; � � �/ĝ�

k2j2
.ti ; �/C ĝ

�

k1;j1
.ti ; � � �/�̂g�

k2;j2
.ti ; �/

�

C .�� C �� C d�/ Qq�;�.� � �; �/ĝ�
k1;j1

.ti ; � � �/ĝ�
k2;j2

.ti ; �/
�
d�d�;(6.35)

e�1;2
k;k1;k2

D �

Z t2

t1

Z

R2

Z

R2

eitˆ
�;�.�;�/t Qc.� � �/

�
Qq�;�.� � �; �/@t

�
̂�1�2gk.t; �/

�
�
�̂g

�

k1
.t; � � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/�̂g�

k2
.t; �/

��
(6.36)

C .�� C �� C d�/ Qq�;�.� � �; �/@t
�
̂�1�2gk.t; �/

dg�
k1
.t; � � �/dg�

k2
.t; �/

��
d�d�dt:

For e�1;1
k;k1;k2

, we do integration by parts in “�” once. As a result, from the L2 � L1

type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute
constants C ,

je�1;1
k;k1;k2

j � sup
t2Œ2m�1;2m�

C2k1;Ck�1�2gkkL2

�
h
2�kCk1

� X

iD0;1;2

2ik1kri
�bgk1

.t; �/kL2 C 2ik1kri
�bgk2

.t; �/kL2

�

�
� X

iD1;2

ke�itƒgki
.t/kL1

�
C

X

j1�j2

2�kC3k1Cj1ke�itƒ F �1�r�bgk2;j2

�
kL1kgk1;j1

kL2

C
X

j2�j1

2�kC3k1Cj2ke�itƒ F �1�r�bgk1;j1

�
kL1kgk2;j2

kL2

i

� C2�m�k�k1C2QımCım�20 � C29
Qım=5�20 :

Now, we proceed to estimate e�1;2
k;k1;k2

in (6.36). Since “@t” can hit every input inside
e�1;2
k;k1;k2

, which creates many terms. We put terms that have similar structures together and

split e�1;2
k;k2;k2

into five parts as follows,

e�1;2
k;k1;k2

D
X

iD1;2;3;4;5

b� ik;k1;k2
;(6.37)

b�1k;k1;k2
D �

Z t2

t1

Z

R2

Z

R2

eitˆ
�;�.�;�/t Qc.� � �/

�
Qq�;�.� � �; �/

�
�
�̂g

�

k1
.t; � � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/�̂g�

k2
.t; �/

�

C .�� C �� C d�/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/

�
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�
�
@t ̂�1�2gk.t; �/ �

X

�02fC;�g

X

.k0
1
;k0

2
/2�2

k

eBC;�0

k;k0
1
;k0

2

.t; �/
�
d�d�dt;(6.38)

where eBC;�0

k;k0
1
;k0

2

.t; �/ is defined in (7.8),

b�2k;k1;k2
D

X

�02fC;�g

X

.k0
1
;k0

2
/2�2

k

�

Z t2

t1

Z

R2

Z

R2

Z

R2

eitˆ
C;�0

.�;�/ ̂�1�2gk0
1
.t; � � �/dg�0

k0
2

.t; �/ QqC;�0.� � �; �/

� teitˆ
�;�.�;�/ Qc.� � �/

�
Qq�;�.� � �; �/

�
�̂g

�

k1
.t; � � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/�̂g�

k2
.t; �/

�

(6.39) C .�� C �� C d�/ Qq�;�.� � �; �/dg�
k1
.t; � � �/dg�

k2
.t; �/

�
d�d�d�dt;

b�3k;k1;k2
D �

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/t Qc.� � �/

�
Qq�;�.� � �; �/

�
�̂g

�

k1
.t; � � �/@tdg�k2

.t; �/

C@t
dg�
k1
.t; ���/�̂g�

k2
.t; �/C ̂�ƒ�3Œ@tg

�

k1
�.t; ���/dg�

k2
.t; �/C dg�

k1
.t; ���/ ̂�ƒ�3Œ@tg

�
k2
�.t; �/

�

(6.40) C .�� C �� C d�/ Qq�;�.� � �; �/@t
�dg�
k1
.t; � � �/dg�

k2
.t; �/

��
d�d�dt;

(6.41)
b� ik;k1;k2

D
X

k0
1
;k0

2
2Z

�
k0

1
;k0

2
Ii�3

k;k1;k2
; �

k0
1
;;k0

2
Ii�4

k;k1;k2
WD

X

j 0
1

��k0
1;�

;j 0
2

��k0
2;�

�
k0

1
;j 0

1
;k0

2
;j 0

2
Ii�4

k;k1;k2
; i 2 f4; 5g;

�
k0

1
;j 0

1
;k0

2
;j 0

2
I1

k;k1;k2
WD

X

�;�2fC;�g

�

Z t2

t1

Z

R2

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/t Qc.� � �/ Qq�;�.� � �; �/

�
�
P�Œe

itˆ�;�.���;�/ Qq�;�.� � � � �; �/ĝ�
k0

2
;j 0

2

.t; �/����ĝ
�
k0

1
;j 0

1

.t; � � � � �/�dg�
k2
.t; �/

(6.42) C dg�
k1
.t; � � �/P� Œe

itˆ�;�.�;�/ Qq�;�.�� �; �/��ĝ
�
k0

1
;j 0

1

.t; �� �/ĝ�
k0

2
;j 0

2

.t; �/�
�
d�d�d�dt;

�
k0

1
;j 0

1
;k0

2
;j 0

2
I2

k;k1;k2
D

X

�;�2fC;�g

�

Z t2

t1

Z

R2

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/i t2 Qc.� � �/ Qq�;�.� � �; �/

�
�
P�Œe

itˆ�;�.���;�/����ˆ
�;�.� ��; �/ Qq�;�.� ����; �/ĝ�

k0
2
;j 0

2

.t; �/ĝ�
k0

1
;j 0

1

.t; � ����/�dg�
k2
.t; �/

(6.43)

Cdg�
k1
.t; ���/P� Œe

itˆ�;�.�;�/��ˆ
�;�.�; �/ Qq�;�.���; �/ĝ�

k0
1
;j 0

1

.t; ���/ĝ�
k0

2
;j 0

2

.t; �/�
�
d�d�d�dt:

Recall (6.38). For b�1
k;k2;k2

, we do integration by parts in “�” once. From (7.7) in

Lemma 7.2 and the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the following
estimate holds for some constant C ,

jb�1k;k1;k2
j � sup

t2Œ2m�1;2m�

C2�kC5k1;CCk1
�
2

QımCım C 23
QımCk

�

�
�
.

X

iD0;1;2

2ik1kri
�dgk1

.t; �/kL2/ke�itƒgk2
.t/kL1

C .
X

iD0;1;2

2ik1kri
�dgk2

.t; �/kL2/ke�itƒgk1
kL1
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C
X

j1�j2

2�mC2j2Cj1Ck1Ck2k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

C
X

j2�j1

2�mC2j1Cj2Ck1Ck2k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

�

� C2�mC2QımCım�k�k1�20 C 2�mC4ˇm�20 � C29
Qım=5�20 :

Recall (6.39). For b�2
k;k2;k2

, we do integration by parts in “�” once. Recall that jk0
1�kj � 10.

The loss of 2�k from integration by parts in “�” is compensated by the smallness of 22k
0
1

from the symbol QqC;�0.� � �; �/. As a result, from the L2 � L1 type bilinear estimate (2.5)
in Lemma 2.2, the following estimate holds for some absolute constant C ,

jb�2k;k1;k2
j � sup

t2Œ2m�1;2m�

X

k0
2

�k�10

C2mCkCk1k�1�2gk0
1
kL2ke�itƒgk0

2
.t/kL1

�
� X

iD0;1;2

2ik1kri
�bgk1

.t; �/kL2 C 2ik1kri
�bgk2

.t; �/kL2

�

�
� X

iD1;2

2k1ke�itƒ F �1
Œr�bgki

�kL1 C ke�itƒgki
kL1

�

� C2�m=2Cˇm�20 :

Now, we proceed to estimate b�3
k;k2;k2

. Recall (6.40). From estimate (7.1) in Lemma 7.1,

estimate (5.18) in Proposition 5.4, (7.13) in Lemma 7.4, and the L2 � L1 type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C ,

jb�3k;k1;k2
j � sup

t2Œ2m�1;2m�

X

lD1;2

C22mC.2�˛/k1

��
k@tbgkl

.t; �/ �
X

�;�2fC;�g

X

.k0
1
;k0

2
/2�1

kl

B
�;�

kl ;k
0
1
;k0

2

.t; �/kL2ke�itƒ�gk3�l
.t/kL1

C k�gk3�l
.t/kL2

X

.k0
1
;k0

2
/2�1

kl

ke�itƒ F �1
ŒB
�;�

kl ;k
0
1
;k0

2

.t; �/�kL1

C kƒ�3Œ@tgkl
�kZ1

ke�itƒgk3�l
.t/kL1

�
k�1�2gk.t/kL2 � C23

Qım=2�20 :

Lastly, we estimate b�4
k;k1;k2

and b�5
k;k1;k2

. Recall (6.41). Based on the size of difference
between k0

1 and k0
2 and the size of k0

1;� C k2, we split into three cases as follows,

If jk0
1 � k0

2j � 10. – For this case, we know that r�ˆ
�;�.:; :/ is bounded from blow

by 2k1;��k0
1;C . Hence, to take advantage of this fact, we do integration by parts in “�” once

for �
k0

1
;k0

2
I1

k;k1;k2
and do integration by parts in “�” twice for �

k0
1
;k0

2
I2

k;k1;k2
. As a result, from the

L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for some
absolute constant C ,

X

jk0
1

�k0
2

j�10;jk1�k2j�10

X

iD1;2

j�
k0

1
;k0

2
Ii

k;k1;k2
j � sup

t2Œ2m�1;2m�

X

jk0
1

�k0
2

j�10;jk1�k2j�10

C2mCk1Ck0
1

C2k0
1;C

�
� X

iD0;1;2

2ik
0
1kri

�dgk0
1
.t; �/kL2 C 2ik

0
1kri

�dgk0
2
.t; �/kL2

�

4 e SÉRIE – TOME 53 – 2020 – No 4



3D FINITE DEPTH CAPILLARY WAVES 901

�
� X

iD1;2

2k1ke�itƒ F �1
Œr�bgk0

i
�kL1 C ke�itƒgk0

i
kL1

�

�
� X

iD1;2

ke�itƒgki
kL1

�
k�1�2gk.t/kL2 � C2�ˇm�20 :

If k0
2 � k0

1 � 10 and k0
1;� C k0

2 � �19m=20. – Note that jk0
1 � k1j � 10. For this case, we use

the same strategy that we used in the estimates (5.12) and (5.13). From the estimate (5.15) in
Lemma 5.3, we know that the following estimate holds for some absolute constant C ,

X

k0
2

�k1�10;k0
2

Ck1;���9m=10

X

iD1;2

j�
k0

1
;k0

2
Ii

k;k1;k2
j

� sup
t2Œ2m�1;2m�

X

k0
2

�k1�10;k0
2

Ck1;���9m=10

C
�
23k

0
2kbgk0

2
.t; �/kL1

�

C 2k
0
1

C2k0
2kR̂eŒv�.t; �/ k0

2
.�/kL1

�

�� X

iD1;2

ke�itƒgki
kL1

�

�
�
22mC2k1Ck0

1k�gk0
1
kL2 C 23mC2k1C2k0

1
Ck0

2kgk0
1
.t/kL2

�
k�1�2gk.t/kL2

�
X

k0
2

�k1�10;k0
2

Ck1;���9m=10

C23
QımC2mC2k1C3k0

2.1C 22mC2k1;�C2k0
2/�20

� C2�ˇm�20 :

If k0
2 � k0

1 � 10 and k1;� C k0
2 � �19m=20. – We first do integration by parts in “�” many

times to rule out the case when maxfj 0
1; j

0
2g � mCk1;��ˇm. If maxfj 0

1; j
0
2g � mCk1;��ˇm,

from the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C ,

X

iD1;2

X

maxfj 0
1
;j 0

2
g�mCk1;��ˇm

j�
k0

1
;j 0

1
;k0

2
;j 0

2
Ii

k;k1;k2
j

� sup
t2Œ2m�1;2m�

C
h X

j 0
1

�maxfj 0
2
;mCk1;��ˇmg

�
2mCj 0

1
C5k1 C 22mC5k1Ck0

2

�

� kgk0
1
;j 0

1
.t/kL2kgk0

2
;j 0

2
.t/kL1

� X

iD1;2

ke�itƒgki
kL1

�

C
X

j 0
2

�maxfj 0
1
;mCk1;��ˇmg

�
�
2mCj 0

2
C5k1 C 22mC5k1Ck0

2

�
kgk0

2
;j 0

2
.t/kL2kgk0

1
;j 0

1
.t/kL1

�
� X

iD1;2

ke�itƒgki
kL1

�i
k�1�2gk.t/kL2 � C2�m�k0

2
C10ˇm�20

� C2�ˇm�20 :(6.44)

Hence finishing the proof.

L 6.4. – Under the bootstrap assumption (4.49) and the assumption that kC k1;� �

�m C Qım=3, k � k1 � 10, and k1 � m=5, the following estimate holds for some absolute
constant C ,

(6.45) j eP 1k;k1;k2
j � C29=5

Qım�20 :
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Proof. – Recall (6.27) and its associated symbol in (6.29). To take the advantage of the
small symbol near the time resonance set, for eP 1

k;k1;k2
, we do integration by parts in time

once. As a result, we have

eP 1k;k1;k2
D

X

iD1;2;3;4;5

bP ik;k1;k2
;

bP 1k;k1;k2
D

X

iD1;2

.�1/i
Z

R2

Z

R2

L̂Lgk.ti ; �/e
itiˆ

�;�.�;�/i t2i bp1�;�.�; �/

� dg�
k2
.ti ; �/

dg�
k1
.ti ; � � �/d�d�

�

Z t2

t1

Z

R2

Z

R2

L̂Lgk.t; �/e
itˆ�;�.�;�/i2tbp1�;�.�; �/dg�k1

.t; � � �/dg�
k2
.t; �/d�d�dt:(6.46)

bP 2k;k1;k2
D �

Z t2

t1

Z

R2

Z

R2

�
@t L̂Lgk.t; �/ �

X

�2fC;�g

X

.k0
1
;k0

2
/2�2

k

eBC;�
k;k0

1
;k0

2

.t; �/
�

� eitˆ
�;�.�;�/i t2bp1�;�.�; �/dg�k1

.t; � � �/dg�
k2
.t; �/d�d�dt;(6.47)

bP 3k;k1;k2
WD

X

j1��k1;�;j2��k2;�

bP 3;j1;j2

k;k1;k2
;

(6.48)

bP 3;j1;j2

k;k1;k2
D

X

�02fC;�g

X

.k0
1
;k0

2
/2�2

k

�

Z t2

t1

Z

R2

Z

R2

Z

R2

eitˆ
�;�.�;�/i t2e�itˆC;�0

.�;�/

(6.49)

� L̂Lgk0
1
.t; � � �/dg�0

k0
2

.t; �/ QqC;�0.� � �; �/bp1�;�.�; �/

� ĝ�
k1;j1

.t; � � �/ĝ�
k2;j2

.t; �/d�d�d�dt;

bP 4k;k1;k2
WD �

Z t2

t1

Z

R2

Z

R2

eitˆ
�;�.�;�/i t2bp1�;�.�; �/ ̂�1�2gk.t; �/

�
� ̂ƒ�3Œ@tg

�

k1
�.t; � � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/ ̂ƒ�3Œ@tg

�
k2
�.t; �/

�
d�d�dt;(6.50)

bP 5k;k1;k2
D

X

k0
1
;k0

2
2Z

cP 0
k0

1
;k0

2

k;k1;k2
;

(6.51)

cP 0
k0

1
;k0

2

k;k1;k2
D

X

j 0
1

��k0
1;�

;j 0
2

��k0
2;�

cP 0
k0

1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
;

cP 0
k0

1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
WD

X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆ�;�.�;�/i t2bp1�;�.�; �/

(6.52)

�
�
P�Œe

itˆ�0;�0
.���;�/ Qq�0;�0.� � � � �; �/

̂
g
�0

k0
1
;j 0

1

.t; � � � � �/ĝ�
0

k0
2
;j 0

2

.t; �/�

�  k1
.� � �/dg�

k2
.t; �/C dg�

k1
.t; � � �/P�(6.53)
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� Œeitˆ
�0;�0

.�;�/ Qq�0;�0.� � �; �/
̂
g
�0

k0
1
;j 0

1

.t; � � �/ĝ�
0

k0
2
;j 0

2

.t; �/� k2
.�/

�
d�d�d�dt:

Recall (6.46) and (6.47). For bP 1
k;k1;k2

and bP 2
k;k1;k2

, we do integration by parts in “�” twice.

As a result, from the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2 and estimate (7.7)
in Lemma 7.2, the following estimate holds for some absolute constant C ,

X

iD1;2

j bP ik;k1;k2
j

� sup
t2Œ2m�1;2m�

C2k1C6k1;CCım
�
2

Qım�k C 23
Qım

�

�
h� X

iD0;1;2;jD1;2

2ik1kri
�bgkj

.t; �/kL2

�� X

iD1;2

ke�itƒgki
.t/kL1

�

C
X

j1�j2

22k1Cj1ke�itƒ F �1�r�bgk2;j2

�
kL1kgk1;j1

.t/kL2

C
X

j2�j1

22k1Cj2ke�itƒ F �1�r�bgk1;j1

�
kL1kgk2;j2

.t/kL2

i

� C2�m�k�k1C2QımCım�20 C C2�mC4ˇm�20 � C29
Qım=5�20 :

Now, we proceed to estimate bP 3
k;k1;k2

. Recall (6.49). Note that .k0
1; k

0
2/ 2 �2

k
, i.e.,

jk0
1 � kj � 10. Hence the symbol QqC;�0.� � �; �/ contributes the smallness of “22k”. By

doing integration by parts in “�” many times, we can rule out the case when maxfj1; j2g �

mC k� � k1;C �ˇm. If maxfj1; j2g � mC k� � k1;C �ˇm, from the L2 �L1 type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C ,

X

k0
2

�k0
1

�10
maxfj1;j2g�mCk��k1;C�ˇm

jcP 0
3

k;k1;j1;k2;j2
j

� sup
t2Œ2m�1;2m�

X

k0
2

�k0
1

�10
maxfj1;j2g�mCk��k1;C�ˇm

C23mC3kC3k1

�
� X

j1�maxfj2;mCk��k1;C�ˇmg

ke�itƒgk2;j2
.t/kL1kgk1;j1

.t/kL2

C
X

j2�maxfj1;mCk��k1;C�ˇmg

kgk2;j2
.t/kL2

� ke�itƒgk1;j1
.t/kL1

�
kLLgk0

1
.t/kL2ke�itƒgk0

2
.t/kL1

� C2�m=2C10ˇm�20 :

Now, we proceed to estimate bP 4
k;k1;k2

. Recall (6.50) and the estimate of symbol “bp1�;�.�; �/”
in (6.31). For this case, we do integration by parts in “�” once. As a result, from estimate
(5.18) in Proposition (5.4), estimate (7.13) in Lemma (7.4), and L2 � L1 type bilinear
estimate (2.5) in Lemma 2.2, the following estimate holds for some absolute constant C ,

j bP 4k;k1;k2
j � sup

t2Œ2m�1;2m�

C22mC.2�˛/k1Ck1;Ck�1�2gk.t/kL2
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�
�
kƒ�3Œ@tgk1

�kZ1
ke�itƒgk2

.t/kL1 C kƒ�3Œ@tgk2
�kZ1

ke�itƒgk1
.t/kL1

�

� C2�ˇmC2Qım�20 � C2�ım�20 :

Lastly, we proceed to estimate bP 5
k;k1;k2

. Recall (6.51) and (6.53). We first consider the case
when jk0

1 � k0
2j � 10. By doing integration by parts in “�” many times, we can rule out the

case when maxfj 0
1; j

0
2g � mCk1;� �k0

1;C �ˇm. If maxfj 0
1; j

0
2g � mCk1;� �k0

1;C �ˇm, after
using the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C ,

X

jk0
1

�k0
2

j�10;k1�k0
1

C10

maxfj 0
1
;j 0

2
g�mCk1;��k0

1;C
�ˇm

jcP 0
k0

1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
j

� sup
t2Œ2m�1;2m�

X

iD1;2
jk0

1
�k0

2
j�10;k1�k0

1
C10

C23mCkC3k1C2k0
1

�
� X

j 0
1

�maxfj 0
2
;mCk1;��k0

1;C
�ˇmg

kgk0
1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
kL1

C
X

j 0
2

�maxfj 0
1
;mCk1;��k0

1;C
�ˇmg

kgk0
2
;j 0

2
.t/kL2ke�itƒgk0

1
;j 0

1
kL1

�

� ke�itƒgki
.t/kL1kLLgk.t/kL2

� C2�mC10ˇm�20 :

It remains to consider the case when k0
2 � k0

1 � 10. We split it into four cases based on the
size of k0

1 C k0
2 and whether k is greater than k0

2 as follows.

If k0
1;� C k0

2 � �19m=20 and k � k0
2 C 20. – By using the same strategy that we used in the

estimates (5.12) and (5.13), from estimate (5.15) in Lemma 5.3, the following estimate holds
for some absolute constant C ,

X

k0
2

�k0
1

�10;jk1�k0
1

j�20

jcP 0
k0

1
;k0

2

k;k1;k2
j

� sup
t2Œ2m�1;2m�

X

k0
2

�k0
1

�10;jk1�k0
1

j�20

C23mCkC4k1kLLgk.t/kL2kgk0
1
.t/kL2

�
�
ke�itƒgk1

.t/kL1 C ke�itƒgk2
.t/kL1

�

�
�
2k

0
1

C2k0
2kR̂eŒv�.t; �/ k0

2
.�/kL1

�
C 23k

0
2kbgk0

2
.t; �/kL1

�

�

� C23mC2QımC4k0
2

C3k1�15k1;C.1C 2mCk1Ck0
2/ � C2�ˇm�20 :

If k0
1;� C k0

2 � �19m=20 and k � k0
2 C 20. – For the case we are considering, we have

j� j � 2�5j�j � 2�10j�j. Hence, the following estimate holds,

(6.54) jr�
�
ˆ�;�.�; �/C �.ˆ�

0;�0

.�; �//
�
j C jr�

�
ˆ�;�.�; �/C �.ˆ�

0;�0

.� � �; �//
�
j

� 2�10j� � � j.1C j�j/�1=2 � 2k�k1;C=2�20:
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To take advantage of this fact, we do integration by parts in “�” once. As a result, from
estimate (5.15) in Lemma 5.3, the following estimate holds for some absolute constant C ,

jcP 0
k0

1
;k0

2

k;k1;k2
j � sup

t2Œ2m�1;2m�

C22mC3k1Ck1;C

�
� X

iD1;2

ke�itƒgki
.t/kL1 C 2k1ke�itƒ F �1

Œr� cgki
.t; �/�kL1

�

�
� X

iD1;2

kgk0
1
.t/kL2 C 2k1kr�bgki

.t; �/kL2 C 2k1kr�bgk0
1
.t; �/kL2

�

�
�
2k

0
1

C2k0
2kR̂eŒv�.t; �/ k0

2
.�/kL1

�
C 23k

0
2kbgk0

2
.t; �/kL1

�

�
kLLgk.t/kL2

� C2�ˇm�20 :

If k0
1;�Ck0

2 � �19m=20 and k � k0
2C20. – By doing integration by parts in “�” many times,

we can rule out the case when maxfj 0
1; j

0
2g � mCk1;� �ˇm. If maxfj 0

1; j
0
2g � mCk1;� �ˇm,

from the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C ,

X

maxfj 0
1
;j 0

2
g�mCk1;��ˇm

jcP 0
k0

1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
j

� sup
t2Œ2m�1;2m�

C23mCkC3k1C2k0
1

� X

iD1;2

ke�itƒgki
.t/kL1

�

�
� X

j 0
1

�maxfj 0
2
;mCk1;��ˇmg

kgk0
1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
.t/kL1

C
X

j 0
2

�maxfj 0
1
;mCk1;��ˇmg

kgk0
2
;j 0

2
.t/kL2 � ke�itƒgk0

1
;j 0

1
.t/kL1

�
kLLgk.t/kL2

� C2�m�k0
2

C10ˇm�20 � C2�ˇm�20 :

If k0
1;�Ck0

2 � �19m=20 and k � k0
2C20. – By doing integration by parts in “�” many times,

we can rule out the case when maxfj 0
1; j

0
2g � mCk1;� �ˇm. Now, it remains to consider the

case when maxfj 0
1; j

0
2g � mC k1;� � ˇm. As k � k0

2 C 20, it is easy to see that the estimate
(6.54) still holds. For this case, we do integration by parts in “�” once. As a result, from the
L2 � L1 � L1 type estimate, the following estimate holds for some absolute constant C ,

X

maxfj 0
1
;j 0

2
g�mCk1;��ˇm

jcP 0
k0

1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
j

� C22mC4k1
� X

iD1;2

2k1ke�itƒ F �1
Œr� cgki

.t; �/�kL1 C ke�itƒgki
.t/kL1

�

�
� X

j 0
1

�maxfj 0
2
;mCk1;��ˇmg

2j
0
1kgk0

1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
.t/kL1

C
X

j 0
2

�maxfj 0
1
;mCk1;��ˇmg

2�mC2j 0
1kgk0

1
;j 0

1
.t/kL2kgk0

2
;j 0

2
kL2

�
kLLgk.t/kL2

� C2�m=2C10ˇm�20 C C2�m�k0
2

C10ˇm�20 � C2�ˇm�20 :
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Hence finishing the proof.

6.3. Z2-norm estimate of the quadratic terms: if k2 � k1 � 10.

Note that, for the case we are considering, we have � D C (see (4.42)). To simplify the
problem, we first rule out the very high frequency case and very low frequency case.

We first consider the case when k1 C k2 � �19m=20. By using the same strategy that we
used in the estimates of (5.12) and (5.13), from estimate (5.15) in Lemma 5.3, the following
estimate holds for some absolute constant C ,

ˇ̌ Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2�B

C;�
k;k1;k2

.t; �/d�dt
ˇ̌

� sup
t2Œ2m�1;2m�

Ck�1�2gk.t/kL2

� X

iD0;1;2

2ik1kri
�bgk1

.t; �/kL2

�
2mCk1

�
1C 22mC2k2C2k1

�

� min
˚
2k1C2k2kR̂eŒv�.t; �/ k2

.�/kL1
�

C 23k2kbgk2
.t; �/kL1

�
; 2k1Ck2kgk2

.t/kL2

	

� C23
Qım minf2mC2k1Ck2.1C 22mC2k1C2k2/; 22mCk1C3k2.1C 23mC3k1C3k2/g

� C2�ˇm�20 :

Next, we consider the case when k1 is relatively big. More precisely, we consider the case
when k1 � 5ˇm and k1 C k2 � �19m=20. Recall (6.5). Note that ��dgk1

.t; � � �/ D

��� � r�dgk1
.t; � � �/. When �� hits dgk1

.t; � � �/, we do integration by parts in “� ”to move
around the derivative r� in front of dgk1

.t; ���/. As a result, from theL2�L1 type bilinear
estimate, the following estimate holds for some absolute constant C ,

X

k1�5ˇm;k2��m�k1

ˇ̌ Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2�B

C;�
k;k1;k2

.t; �/d�dt
ˇ̌

�
X

k1�5ˇm;k2��m�k1

sup
t2Œ2m�1;2m�

Ck�1�2gk.t/kL2kgk1
.t/kL22k2

�
�
2�2k2kgk2

.t/kL2 C 2�k2kr�bgk2
.t/kL2 C kr2

�bgk2
.t/kL2

�

�
X

k1�5ˇm;k2��m�k1

C23mCˇmC4k1�k2�.N0�30/k1;C�0 � C2�ˇm�0:(6.55)

Hence, for the rest of this subsection, we restrict ourself to the case when k1Ck2 � �19m=20

and k1 � 5ˇm. Recall the decomposition (6.6). We know that the desired estimate for
the remaining cases follows from the estimate (6.56) in Lemma 6.5, the estimate (6.71) in
Lemma 6.6, and the estimate (6.93) in Lemma 6.8. Hence finishing the Z2-norm estimate of
the quadratic terms for the High� Low type interaction.

L 6.5. – Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C ,
(6.56) X

k1;k22Z;jk�k1j�10;k2�k1�10;k1Ck2��19m=20;k1�5ˇm

jReŒP 3k;k1;k2
�j C jP 4k;k1;k2

j � C22
Qım�20 :
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Proof. – We first estimate P 4
k;k1;k2

. Recall (6.10). By doing integration by parts in “� ”
many times, we can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If maxfj1; j2g �

m C k1;� � ˇm, from the L2 � L1 type bilinear estimate, the following estimate holds for
some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

jP 4;j1;j2

k;k1;k2
j

� sup
t2Œ2m�1;2m�

C2mC2k1
� X

j1�maxfj2;mCk1;��ˇmg

2�mCk1Cj1Ck2C2j2

� k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

C
X

j2�maxfj1;mCk1;��ˇmg

2�mCk1C2j1Ck2Cj2k'k2

j2
.x/gk2

.t/kL2

�

� k�1�2gk.t/kL2 � C2�m�k2C20ˇm�20 � C2�ˇm�20 :(6.57)

It remains to estimate P 3
k;k1;k2

, we decompose it into three parts as follows,

P 3k;k1;k2
D

X

iD1;2;3

Qi
k;k1;k2

;

(6.58)

Q1
k;k1;k2

D

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ QqC;�.� � �; �/ ̂�1�2gk1

.t; � � �/dg�
k2
.t; �/d�d�dt;

(6.59)

Q2
k;k1;k2

D

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ QqC;�.� � �; �/dgk1

.t; � � �/ ̂�1�2g�
k2
.t; �/d�d�dt;

(6.60)

Q3
k;k1;k2

D
X

j1��k1;�;j2��k2;�

Q
j1;j2;3

k;k1;k2
; Q

j1;j2;3

k;k1;k2
WD

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/

�
� X

fl;ngDf1;2g

.� l� C � l� C d�l / QqC;�.� � �; �/

�
�

̂�ng
k1;j1

.t; � � �/ĝ�
k2;j2

.t; �/C ĝ
k1;j1

.t; � � �/ ̂�ng�
k2;j2

.t; �/
�

C.�1� C �1� C d�1/.�2� C �2� C d�2/ QqC;�.� � �; �/ĝ
k1;j1

.t; � � �/ĝ�
k2;j2

.t; �/
�
d�d�dt:(6.61)

We first estimate Q1
k;k1;k2

. Note that after switching the role of � and � � � inside Q1
k;k1;k2

,
we have

Re
�
Q1
k;k1;k2

�
D Re

� eQ1
k;k1;k2

�
;

eQ1
k;k1;k2

WD
1

2

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�.�;�/p

C;�
k;k1

.� � �; �/�̂1�2g.t; � � �/dg�
k2
.t; �/d�d�dt;

where

(6.62) p
C;�
k;k1

.� � �; �/ D QqC;�.� � �; �/ k.�/ k1
.� � �/C QqC;��.�;��/ k.� � �/ k1

.�/:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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From (4.10) and (4.39), we have

p
C;�
k;k1

.� � �; �/ D p
C;�;1
k;k1

.� � �; �/C p
C;�;2
k;k1

.� � �; �/ D O.1/� � �CO.j�j2/:

Recall (6.16). From the above decomposition, we can decomposepC;�.���; �/ into two parts
as follows,

(6.63) p
C;�
k;k1

.� � �; �/ D
X

iD1;2

QpC;�;i
k;k1

.� � �; �/; QpC;�;1
k;k1

.� � �; �/ D
�i

2
ak;k1

.�/ˆC;�.�; �/;

where uniquely determined symbols ak;k1
.�/ and QpC;�;2

k;k1
.� � �; �/ satisfy the following esti-

mate for some absolute constant C ,

(6.64) k QpC;�;2
k;k1

.� � �; �/kS 1
k;k1;k2

� C22k2 ; kak;k1
.�/kS 1

k;k1;k2

� C:

Correspondingly, we decompose eQ1
k;k1;k2

into two parts as follows,

eQ1
k;k1;k2

D
X

iD1;2

eQ1Ii
k;k1;k2

;

eQ1Ii
k;k1;k2

WD

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�.�;�/

� QpC;�;i
k;k1

.� � �; �/�̂1�2g.t; � � �/dg�
k2
.t; �/d�d�dt; i 2 f1; 2g:

From the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds,
X

jk�k1j�10;k2�k1�10

j eQ1I2
k;k1;k2

j

� sup
t2Œ2m�1;2m�

X

jk�k1j�10;k2�k1�10

C22k2k�1�2gk1
.t/ kL2ke�itƒgk2

.t/kL1

� k�1�2gk.t/kL2 � C22
Qım�20 ;(6.65)

where C is some absolute constant. For eQ1I1
k;k1;k2

, we do integration by parts in time. As a
result, we have

eQ1I1
k;k1;k2

D
X

iD1;2

bQ1Ii
k;k1;k2

;

bQ1I1
k;k1;k2

WD
X

iD1;2

.�1/i�1
Z

R2

Z

R2

�̂1�2g.ti ; �/e
itiˆ

C;�.�;�/�̂1�2g.ti ; � � �/
ak;k1

.�/

2
dg�
k2
.ti ; �/d�d�

C

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�.�;�/ ak;k1

.�/

2
�̂1�2g.t; � � �/@tdg�k2

.t; �/d�d�dt;

bQ1I2
k;k1;k2

WD
1

2

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/ak;k1

.�/@t
�
�̂1�2g.t; �/�̂1�2g.t; � � �/

�dg�
k2
.t; �/d�d�dt:

From the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds
for some absolute constant C ,

j bQ1I1
k;k1;k2

j � sup
t2Œ2m�1;2m�

Ck�1�2gk.t/kL2k�1�2gk1
.t/kL2

�
ke�itƒgk2

kL1 C 2mke�itƒ@tgk2
.t/kL1

�

� C2�m=2Cˇm�20 :(6.66)
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Recall the estimate (7.7) in Lemma 7.2. It motivates us to do the decomposition as follows,

bQ1I2
k;k1;k2

D bQ1I2;1
k;k1;k2

C bQ1I2;2
k;k1;k2

;

where

bQ1I2;1
k;k1;k2

WD

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/ ak;k1

.�/

2
dg�
k2
.t; �/

�
��
@t ̂�1�2gk.t; �/ �

X

.k0
1
;k0

2
/2�2

k

X

�02fC;�g

eBC;�0

k;k0
1
;k0

2

.t; �/
�
�̂1�2g.t; � � �/

C �̂1�2g.t; �/
�
@t ̂�1�2gk1

.t; � � �/ �
X

.k0
1
;k0

2
/2�2

k1

X

�02fC;�g

eBC;�0

k1;k
0
1
;k0

2

.t; � � �/
��
d�d�dt;

bQ1I2;2
k;k1;k2

WD
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/ ak;k1

.�/

2

h
�̂1�2g.t; � � �/dg�

k2
.t; �/

� eitˆC;�.�;�/ ̂�1�2gk0
1
.t; � � �/ ̂g�

0

k0
2

.t; �/ QqC;�0.� � �; �/C �̂1�2g.t; �/dg�
k2
.t; �/

� eitˆ
C;�0

.���;�/ QqC;�0.� � � � �; �/ ̂�1�2gk0
1
.t; � � � � �/ ̂g�

0

k0
2

.t; �/
i
d�d�d�dt:

From estimate (7.7) in Lemma 7.2 and the L2 � L1 type bilinear estimate (2.5) in
Lemma 2.2, the following estimate holds for some absolute constant C ,

j bQ1I2;1
k;k1;k2

j � sup
t2Œ2m�1;2m�

C240ˇm�0k�
1�2gk.t/kL2ke�itƒgk2

.t/kL1 � C2�m=2C60ˇm�20 :

Now, we proceed to estimate bQ1I2;2
k;k1;k2

. To utilize symmetry, we do change of variables for the
second part of integration as follows .�; �; �/ �! .� � �; �;��/. As a result, we have

bQ1I2;2
k;k1;k2

WD
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/

�
h
�̂1�2g.t; � � �/dg�

k2
.t; �/

ak;k1
.�/

2
̂�1�2gk0

1
.t; � � �/ ̂g�

0

k0
2

.t; �/ QqC;�0.� � �; �/

C
ak;k1

.� � �/

2
�̂1�2g.t; � � �/dg�

k2
.t; �/ QqC;�0.� � �;��/

� ̂�1�2gk0
1
.t; � � �/ ̂g�

0

k0
2

.t;��/
i
d�d�d�dt

D
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

1

2

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/

� �̂1�2g.t; � � �/dg�
k2
.t; �/�̂1�2g.t; � � �/ ̂g�

0

k0
2

.t;��/ Qr
k;k0

1

�;�0 .�; �; �/d�d�d�dt;(6.67)

where

Qr
k;k0

1

�;�0 .�; �; �/ WD ak;k1
.�/ QqC;��0.� � �; �/ k0

1
.���/Cak;k1

.���/ QqC;�0.���;��/ k0
1
.���/;

ˆC;�.�; �/ �ˆC;�0

.�; �/ D �ƒ.� � �/ � �ƒ.�/Cƒ.� � �/ � �0ƒ.�/:
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Recall (4.14) and (4.15). From the Lemma 2.1, we know that the following estimate holds

(6.68) kQr�;�0.�; �; �/ k0
2
.�/ k1

.� � �/ k2
.�/kS 1 � C2maxfk2;k

0
2

gCk1 ;

whereC is some absolute constant. From (6.68), and theL2�L1�L1�L1 type multilinear
estimate, the following estimate holds for some absolute constant C ,

j bQ1I2;2
k;k1;k2

j � sup
t2Œ2m�1;2m�

X

k0
2

�k1�10

C2mCmaxfk2;k
0
2

gCk1k�1�2gk1
.t/kL2ke�itƒgk2

.t/kL1

� ke�itƒgk0
2
.t/kL1k�1�2gk.t/kL2 � C2�m=2C30ˇm�20 :

Next, we estimate Q2
k;k1;k2

. Recall (6.60). From the L2 � L1 type bilinear estimate (2.5) in
Lemma 2.1, (4.14) and (4.15), the following estimate holds for some absolute constant C ,

ˇ̌ X

k2�k1C2;jk�k1j�10

Q2
k;k1;k2

ˇ̌
� sup
t2Œ2m�1;2m�

X

jk�k1j�10

C2mC2k1kP�k1C2Œ�
1�2g�.t/kL2

� ke�itƒgk1
.t/kL1k�1�2gk.t/kL2 � C22

Qım�20 :(6.69)

Lastly, we estimateQ3
k;k1;k2

. Recall (6.61). By doing integration by parts in “�” many times,
we can rule out the case when maxfj1; j2g � mCk1;� �ˇm. If maxfj1; j2g � mCk1;� �ˇm,
from the L2 � L1 type bilinear estimate, the following estimate holds for some absolute
constant C ,

X

maxfj1;j2g�mCk1;��ˇm

ˇ̌
Q
j1;j2;3

k;k1;k2

ˇ̌

� sup
t2Œ2m�1;2m�

X

iD1;2

C2mC2k1
� X

j1�maxfj2;mCk1;��ˇmg

2k1Cj1kgk1;j1
.t/kL2

� .ke�itƒ� igk2;j2
.t/kL1 C ke�itƒgk2;j2

.t/kL1/

C
X

j2�maxfj1;mCk1;��ˇmg

C2k2Cj2kgk2;j2
.t/kL2

� .ke�itƒ� igk1;j1
.t/kL1 C ke�itƒgk1;j1

.t/kL1/
�
k�1�2gk.t/kL2

� C2�mC20ˇm�k2�20 � C2�ˇm�20 :(6.70)

Hence finishing the proof.

L 6.6. – Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C ,

(6.71)
X

k1;k22Z;jk�k1j�10;k2�k1�10;k1Ck2��19m=20;k1�5ˇm

jP 1k;k1;k2
j � C22

Qım�20 :

Proof. – Recall (6.7) and (6.12). Same as in the High � High type interaction, we know
that the integral inside P 1

k;k1;k2
vanishes if � l D �:Hence, we only have to consider the case

when� l D L. Recall (6.17). We know that similar decompositions as in (6.25) and (6.28) also
hold. Recall (6.28) and (6.17). From the estimate (2.3) in Lemma 2.1, the following estimate
holds for some absolute constant C ,

(6.72) k Qq2C;�.�; �/ k.�/ k1
.� � �/ k2

.�/kS 1 � C22k2 ; if k2 � k1 � 10:
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After doing integration by parts in “�” once, the following decomposition holds,

(6.73) j�1;2
k;k1;k2

j � j�1;2I1
k;k1;k2

j C j�1;2I2
k;k1;k2

j;

where

�
1;2I1
k;k1;;k2

WD

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/r�

�
� r�ˆ

C;�.�; �/

jr�ˆC;�.�; �/j2
Qq2C;�.� � �; �/

�
QqC;�.� � �; �/

�
�
�̂g

k1
.t; � � �/dg�

k2
.t; �/C dg

k1
.t; � � �/�̂g�

k2
.t; �/

�

C .�� C �� C d�/ QqC;�.� � �; �/dg
k1
.t; � � �/dg�

k2
.t; �/

��

� ̂�1�2gk.t; �/e
itˆC;�.�;�/r�

�
� r�ˆ

C;�.�; �/

jr�ˆC;�.�; �/j2
Qq2C;�.� � �; �/ QqC;�.� � �; �/dg�

k2
.t; �/

�
�̂g

k1
.t; � � �/d�d�dt;

�
1;2I2
k;k1;k2

WD
X

j1��k1;�;j2��k2;�

�
1;2I2
k;k1;j1;k2;j2

;

�
1;2I2
k;k1;j1;k2;j2

WD

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/�̂g

k1;j1
.t; � � �/r�

�
� r�ˆ

C;�.�; �/

jr�ˆC;�.�; �/j2
Qq2C;�.� � �; �/ QqC;�.� � �; �/ĝ�

k2;j2
.t; �/

�
d�d�dt:

From the L2 � L1 type bilinear estimate, the following estimate holds for some absolute
constant C ,

X

k2�k1�10;jk1�kj�10

j�1;2I1
k;k1;;k2

j

� sup
t2Œ2m�1;2m�

X

k2�k1�10;jk1�kj�10

X

iD1;2

C2mC2k2k�1�2gk.t/kL2

�
��
22k1kr2

�bgk1
.t; �/kL2 C 2k1kr�bgk1

.t; �/kL2/ke�itƒgk2
.t/kL1

C 2k1ke�itƒgk1
.t/kL1

�
2k2kr2

�bgk2
.t; �/kL2

C kr�bgk2
.t; �/kL2 C 2�k2kgk2

.t/kL2

�

C
X

j1�j2

2�mCk2Ck122j2k'k2

j2
.x/gk2

.t/kL22j1k'k1

j1
.x/gk1

.t/kL2

C
X

j2�j1

2�mCk2Ck122j1k'k2

j2
.x/gk2

.t/kL22j2k'k1

j1
.x/gk1

.t/kL2

�
� C22

Qım�20 :(6.74)

Now, we proceed to estimate �1;2I2
k;k1;;k2

. By doing integration by parts in “�” many times, we
can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If maxfj1; j2g � mC k1;� � ˇm,
from the L2 � L1 type bilinear estimate, the following estimate holds for some absolute
constant C ,

X

maxfj1;j2g�mCk1;��ˇm

ˇ̌
�
1;2I2
k;k1;j1;k2;j2

ˇ̌
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� sup
t2Œ2m�1;2m�

C2mC2k2Ck1
� X

j1�maxfj2;mCk1;��ˇmg

2k1Cj1kgk1;j1
.t/kL2

�
�
2�k2ke�itƒgk2;j2

kL1 C ke�itƒ F �1
Œr�gk2;j2

.t/�kL1

�

C
X

j2�maxfj1;mCk1;��ˇmg

2j2kgk2;j2
.t/kL2ke�itƒ�gk1;j1

.t/kL1

�
k�1�2gk.t/kL2

� C2�m=2C20ˇm�20 :(6.75)

Recall the estimates (6.25) and (6.73). From the estimates (6.74), (6.75) and the estimate
(6.76) in Lemma 6.7, we know that our desired estimate (6.71) holds.

L 6.7. – Under the bootstrap assumption (4.49) and the assumption that k1 C k2 �

�19m=20 and k1 � 5ˇm, the following estimate holds for some absolute constant C ,

(6.76) j�1;1
k;k1;k2

j � C2�ˇm�20 :

Proof. – Same as in the High � High interaction, we do integration by parts in time once.
As a result, we have the same formulations as in (6.34), (6.35) and (6.36).

We first estimate e�1;1
k;k1;k2

. Recall (6.34). By doing integration by parts in “�” many times,
we can rule out the case when maxfj1; j2g � mCk1;� �ˇm. If maxfj1; j2g � mCk1;� �ˇm,
from theL2�L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for
some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

je�j1;j2;1;1

k;k1;k2
j

� sup
t2Œ2m�1;2m�

C2mC2k1k�1�2gkkL2

�
� X

j1�maxfj2;mCk1;��ˇmg

2k1Cj1kgk1;j1
.t/kL2

�
ke�itƒgk2;j2

kL1

C 2k2ke�itƒ F �1
Œr�bgk2;j2

.t/�kL1

�

C
X

j2�maxfj1;mCk1;��ˇmg

2k2Cj2kgk2;j2
.t/kL2.ke�itƒgk1;j1

kL1

C 2k1ke�itƒ F �1
Œr�bgk1;j1

.t/�kL1/
�

� C2�m�k2C20ˇm�20 � C2�ˇm�20 :

Now, we proceed to estimate e�1;2
k;k1;k2

. Recall (6.36). Since now k1 and k2 are not compa-
rable, different from the decomposition we did in (6.37) in the High � High type interaction,
we do decomposition as follows,

(6.77) e�1;2
k;k1;k2

D
X

iD1;:::;7

e�1;2Ii
k;k1;k2

(6.78) e�1;2I2
k;k1;k2

D
X

k0
2

�k0
1

C10

b�k
0
1
;k0

2
;1

k;k1;k2
; b�k

0
1
;k0

2
;1

k;k1;k2
D

X

j2��k2;�;j
0
1

��k0
1;�

;j 0
2

��k0
2;�

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;1

k;k1;k2;j2
;

(6.79) e�1;2I3
k;k1;k2

D
X

k0
2

�k0
1

C10

b�k
0
1
;k0

2
;2

k;k1;k2
; b�k

0
1
;k0

2
;2

k;k1;k2
D

X

j1��k1;�;j
0
1

��k0
1;�

;j 0
2

��k0
2;�

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;2

k;k1;j1;k2
;
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e�1;2Ii
k;k1;k2

D
X

j1��k1;�;j2��k2;�

e�1;2Ii
k;k1;j1;k2;j2

; i 2 f4; 5g;

e�1;2I1
k;k1;k2

WD �

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ Qc.� � �/t@tdg�k2

.t; �/

�
�
QqC;�.�; �/�̂gk1

.t; � � �/C .�� C �� C d�/ QqC;�.�; �/dgk1
.t; � � �/

�
d�d�dt;

which results from the case when @t hits the input “dgk2
.t; � � �/” in (6.36).

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;1

k;k1;k2;j2
WD

X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/t Qc.� � �/eitˆ

�0;�0
.���;�/

� Qq�0;�0.� � � � �; �/ k1
.� � �/

̂
g
�0

k0
1
;j 0

1

.t; � � � � �/ĝ�
0

k0
2
;j 0

2

.t; �/

�
�
QqC;�.� � �; �/�̂g�

k2;j2
.t; �/C .�� C �� C d�/ QqC;�.� � �; �/ĝ�

k2;j2
.t; �/

�
d�d�dt;(6.80)

which is resulted from the quartic terms when @t hits the input “dgk1
.t; � � �/” in (6.36).

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;2

k;k1;j1;k2
WD

X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ Qc.� � �/t QqC;�.� � �; �/

� ĝk1;j1
.t; � � �/eitˆ

�0;�0
.�;�/

�
��

�
Qq�0;�0.� � �; �/

̂
g
�0

k0
1
;j 0

1

.t; � � �/
�

C i t��ˆ
�0;�0

.�; �/ Qq�0;�0.� � �; �/
̂
g
�0

k0
1
;j 0

1

.t; � � �/
�

� ĝ�
0

k0
2
;j 0

2

.t; �/d�d�d�dt;(6.81)

which is resulted from the quartic terms when @t hits the input “�̂gk2
.t; �/” in (6.36).

e�1;2I4
k;k1;j1;k2;j2

WD �

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/t Qc.� � �/

(6.82)

�
��

̂�ƒ�3Œ@tg�k1;j1
.t; � � �/ĝ�

k2;j2
.t; �/C ĝk1;j1

.t; � � �/ ̂�ƒ�3Œ@tg� �k2;j2
.t; �/

C ̂ƒ�3Œ@tg�k1;j1
.t; � � �/�̂g�

k2;j2
.t; �/

�
QqC;�.� � �; �/

C .�� C �� C d�/ QqC;�.� � �; �/ ̂ƒ�3Œ@tg�k1;j1
.t; � � �/ĝ�

k2;j2
.t; �/

�
d�d�dt;(6.83)

which is resulted from the quintic and higher order terms when @t hits the inputs “gk1
.t/,”

“�gk1
.t/,” and “�gk2

.t/” in (6.36).

e�1;2I5
k;k1;j1;k2;j2

D �

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/t Qc.� � �/

�
�
@t ̂�1�2gk.t; �/ �

X

�2fC;�g

X

.k0
1
;k0

2
/2�2

k

eBC;�
k;k0

1
;k0

2

.t; �/
�

�
�
QqC;�.� � �; �/.ĝk1;j1

.t; � � �/�̂g�
k2;j2

.t; �/C �̂gk1;j1
.t; � � �/ĝ�

k2;j2
.t; �//

C .�� C ��/ QqC;�.� � �; �/ĝk1;j1
.t; � � �/ĝ�

k2;j2
.t; �/

�
d�d�dt;(6.84)
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which is resulted from the good error terms when @t hits “�1�2gk.t/” in (6.36).

e�1;2I6
k;k1;k2

D
X

jk0
1

�k0
2

j�10

b�k
0
1
;k0

2
;3

k;k1;k2I1 C
X

k0
2

�k0
1

�10

b�k
0
1
;k0

2
;3

k;k1;k2I2;(6.85)

b�k
0
1
;k0

2
;3

k;k1;k2Ii D
X

j 0
1

��k0
1;�

;j 0
2

��k0
2;�

;j2��k2;�

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;3

k;k1;k2;j2Ii ; i 2 f1; 2g;(6.86)

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;3

k;k1;k2;j2I1 WD
X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ Qc.� � �/

� t QqC;�.� � �; �/ĝ�
k2;j2

.t; �/ k1
.� � �/eitˆ

�0;�0
.���;�/ĝ�

0

k0
2
;j 0

2

.t; �/

�
h
i t����ˆ

�0;�0

.� � �; �/ Qq�0;�0.� � � � �; �/
̂
g
�0

k0
1
;j 0

1

.t; � � � � �/

C ����

�
Qq�0;�0.� � � � �; �/

̂
g
�0

k0
1
;j 0

1

.t; � � � � �/
�i
d�d�d�dt;(6.87)

which is resulted from the quartic terms when @t hits the input “�̂gk1
.t; ���/” in (6.36) and

moreover two inputs inside ƒ2Œ@t �̂gk1
.t; � � �/� have comparable sizes of frequencies, see

(6.85).

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;3

k;k1;k2;j2I2 WD
X

�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/ Qc.���/t QqC;�.���; �/ĝ

�
k2;j2

.t; �/

� k1
.���/eitˆ

C;�0
.���;�/ĝ�

0

k0
2
;j 0

2

.t; �/
h
i t����ˆ

C;�0

.���; �/ QqC;�0.�����; �/ĝ
k0

1
;j 0

1

.t; �����/

(6.88)

C����

�
QqC;�0.�����; �/ĝ

k0
1
;j 0

1

.t; �����/
�
��̂g

k0
1
;j 0

1

.t; �����/ QqC;�0.�����; �/
i
d�d�d�dt;

which is resulted from the quartic terms when @t hits the input “�̂gk1
.t; ���/” in (6.36) and

moreover two inputs insideƒ2Œ@t �̂gk1
.t; ���/� have different size of frequencies (see (6.85))

and the bulk term of this scenario is removed.

e�1;2I7
k;k1;k2

D
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/t r
�;�0

k1;k
0
1

.�; �; �/

(6.89) � c�g.t; � � �/dg�
k2
.t; �/�̂1�2g.t; � � �/ ̂g�

0

k0
2

.t;��/d�d�d�dt;

which is resulted from putting the bulk term inside “ƒ2Œ@t �̂gk1
.t; ���/�” and the bulk term

inside “ƒ2Œ@t ̂�1�2gk.t; �/�” together, and the symbol r�;�
0

k1;k
0
1

.�; �; �/ is given as follows,

r
�;�0

k1;k
0
1

.�; �; �/ D Qc.� � �/ QqC;�.� � �; �/ QqC;��0.� � �; �/ k0
1
.� � �/ k1

.� � �/ k.�/

C Qc.� � � � �/ QqC;�.� � � � �; �/ QqC;�0.� � �;��/ k0
1
.� � �/ k.� � �/ k1

.� � � � �/:

Recall (4.14) and (4.15). From the estimate (2.3) in Lemma 2.1, the following estimate holds
for some absolute constant C ,

(6.90) kr�;�
0

k1;k
0
1

.�; �; �/ k2
.�/ k0

2
.�/kS 1 � C2maxfk2;k

0
2

gC3k1 :
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With the above preparation of classifying all terms inside e�1;2
k;k1;k2

, see the decomposition
(6.77). Now, we are ready to estimate them one by one. From estimate (7.2) in Lemma 7.1
and the L2 � L1 type bilinear estimate, we have

je�1;2I1
k;k1;k2

j � sup
t2Œ2m�1;2m�

X

iD1;2

C22mC2k1k@tdgk2
.t; �/kL2

�
�
ke�itƒ� igk1

.t/kL1 C ke�itƒgk1
.t/kL1

�
k�1�2gk.t/kL2

� C2mC2Qım.2�21m=20 C 2�2m�k2C2Qım/�20 � C2�ˇm�20 ;

where C is some absolute constant. Now, we proceed to estimate e�1;2I2
k;k1;k2

. Recall (6.78) and
(6.80). We split into two cases as follows based on the size of difference between k0

1 and k0
2.

If jk0
1 � k0

2j � 5. – Note that k0
1 � k1 � 5 � k2 C 5. By doing integration by parts in “�”

many times, we can rule out the case when maxfj 0
1; j2g � mCk0

1;� �ˇm. Hence, it would be
sufficient to consider the case when maxfj 0

1; j2g � mCk0
1;� �ˇm. From the L2�L1 �L1

type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for some absolute
constant C ,

X

jk0
1

�k0
2

j�5

ˇ̌
ˇ̌
ˇ̌

X

maxfj 0
1
;j2g�mCk0

1;�
�ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;1

k;k1;k2;j2

ˇ̌
ˇ̌
ˇ̌

� sup
t2Œ2m�1;2m�

X

jk0
1

�k0
2

j�5

C22mC2k1C2k0
1k�1�2gk.t/kL2

�
� X

j 0
1

�maxfj2;mCk0
1;�

�ˇmg

kgk0
1
;j 0

1
kL2ke�itƒgk0

2
kL1

� .ke�itƒgk2;j2
kL1 C ke�itƒ�ngk2;j2

kL1/

C
X

j2�maxfj 0
1
;mCk0

1;�
�ˇmg

ke�itƒgk0
1
;j 0

1
kL12k2Cj2kgk2;j2

kL2ke�itƒgk0
2
.t/kL1

�

� C2�m�k2C20ˇm�20 � C2�2ˇm�20 :

If k0
2 � k0

1 � 5. – For this case we have jk1 � k0
1j � 2 and k0

1 � k2 C 5. If moreover
k1 C k0

2 � �9m=10, then from estimate (5.15) in Lemma 5.3, the following estimate holds
for some absolute constant C ,

X

k0
2

�minf�9m=10�k1;k1�10g

jb�k
0
1
;k0

2
;1

k;k1;k2
j

� sup
t2Œ2m�1;2m�

X

k0
2

�minf�9m=10�k1;k1�10g

C22mC3k1k�1�2gk.t/kL2

� ke�itƒgk0
1
kL1

�
kgk2

kL2 C k�ngk2
kL2

�

�
�
23k

0
2kbgk0

2
.t; �/kL1

�
C 2k1C2k0

2kR̂eŒv�.t; �/ k0
2
.�/kL1

�

�

� C2�2ˇm�20 :

Lastly, if k1 C k0
2 � �9m=10, we can do integration by part in “�” many times to

rule out the case when maxfj 0
1; j

0
2g � m C k1;� � ˇm. Also, by doing integration by
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parts in “�” many times, we can rule out the case when maxfj 0
1; j2g � m C k1;� � ˇm.

Hence, it would be sufficient to consider the case when maxfj 0
1; j2g � m C k1;� � ˇm and

maxfj 0
1; j

0
2g � mCk1;� �ˇm, which implies that one of the following two cases must holds:

(i) j 0
1 � m C k1;� � ˇm; (ii) j 0

1 � m C k1;� � ˇm and j2; j 0
2 � m C k1;� � ˇm. From the

L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C ,

ˇ̌
ˇ̌
ˇ̌

X

maxfj 0
1
;j 0

2
g;maxfj 0

1
;j2g�mCk1;��ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;1

k;k1;k2;j2

ˇ̌
ˇ̌
ˇ̌

� sup
t2Œ2m�1;2m�

C22mC4k1
� X

j 0
1

�mCk1;��ˇm

kgk0
1
;j 0

1
kL2ke�itƒgk0

2
;j 0

2
kL1

�
�
ke�itƒgk2;j2

kL1 C ke�itƒ�gk2;j2
kL1

�

C
X

j 0
2
;j2�mCk1;��ˇm

22k2Cj2kgk2;j2
kL2kgk0

2
;j 0

2
kL2ke�itƒgk0

1
;j 0

1
kL1

�
k�1�2gk.t/kL2

� C2�m�k0
2

C20ˇm�20 � C2�2ˇm�20 :

Now, we proceed to estimate e�1;2I3
k;k1;k2

. Recall (6.79) and (6.81). We separate into two cases
as follows based on the size of difference between k0

1 and k0
2.

If jk0
1�k0

2j � 10. – Note that k0
1 � k2�5. By doing integration by parts in “� ,” we can rule

out the case when maxfj 0
1; j

0
2g � mCk2;��k0

1;C�ˇm. If maxfj 0
1; j

0
2g � mCk2;��k0

1;C�ˇm,
from the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate
holds for some absolute constant C ,

X

jk0
1

�k0
2

j�10

ˇ̌
ˇ̌
ˇ̌
ˇ

X

maxfj 0
1
;j 0

2
g�mCk2;��k0

1;C
�ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;2

k;k1;j1;k2

ˇ̌
ˇ̌
ˇ̌
ˇ

� sup
t2Œ2m�1;2m�

X

jk0
1

�k0
2

j�10

C22mC2kC2k0
1k�1�2gk.t/kL2

�
� X

j 0
1

�fj 0
2
;mCk2;��k0

1;C
�ˇmg

2k
0
1.2j

0
1 C 2mCk2/kgk0

1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
.t/kL1

C
X

j 0
2

�fj 0
1
;mCk2;��k0

1;C
�ˇmg

2k
0
1.2j

0
1 C 2mCk2/kgk0

2
;j 0

2
.t/kL22�mkgk0

1
;j 0

1
.t/kL1

�

� ke�itƒgk1
.t/kL1 � C2�m�k2C20ˇm�20 � C2�2ˇm�20 :

If k0
2 � k0

1 � 10. – For this case, we have k2 � 2 � k0
1 � k2 C 2 � k1 � 5. By doing

integration by parts in “�,” we can rule out the case when maxfj1; j
0
1g � m C k1;� � ˇm.

If maxfj1; j
0
1g � m C k1;� � ˇm, from the L2 � L1 � L1 type trilinear estimate (2.6) in

Lemma 2.2, the following estimate holds for some absolute constant C ,
X

k0
2

�k0
1

�10

ˇ̌ X

maxfj1;j
0
1

g�mCk1;��ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;2

k;k1;j1;k2

ˇ̌
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� sup
t2Œ2m�1;2m�

X

k0
2

�k0
1

�10

C22mC2kC2k0
1k�1�2gk.t/kL2ke�itƒgk0

2
.t/kL1

�
� X

j1�maxfj 0
1
;mCk1;��ˇmg

.2k
0
1

Cj 0
1 C 2mCk2Ck0

1/kgk1;j1
.t/kL22�mkgk0

1
;j 0

1
.t/kL1

C
X

j 0
1

�maxfj1;mCk1;��ˇmg

.2k
0
1

Cj 0
1 C 2mCk2Ck0

1/kgk0
1
;j 0

1
.t/kL2ke�itƒgk1;j1

.t/kL1

�

� C2�m=2C20ˇm�20 :

Now, we proceed to estimate e�1;2I4
k;k1;k2

and e�1;2I5
k;k1;k2

. Recall (6.77), (6.83), and (6.84). By doing
integration by parts in “�,” we can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If
maxfj1; j2g � m C k1;� � ˇm, from estimate (7.7) in Lemma 7.2, (6.137) in Lemma 6.14,
and the L2 �L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds for
some absolute constant C ,
X

iD4;5

X

maxfj1;j2g�mCk1;��ˇm

je�1;2Ii
k;k1;j1;k2;j2

j

� sup
t2Œ2m�1;2m�

C2mC2k1Cˇm
� X

j1�maxfj2;mCk1;��ˇmg

2k1Cj1

� .ke�itƒgk2;j2
.t/kL1 C ke�itƒ�gk2;j2

.t/kL1

�

�
�
26kCkgk1;j1

.t/kL2 C 2mkƒ�3Œ@tg.t/�k1;j1
kL2

�

C 2mCk2kgk1;j1
kL22k2Cj2kƒ�3Œ@tg.t/�k2;j2

kL2

C
X

j2�maxfj1;mCk1;��ˇmg

2k1Cj1
�
26kCkgk1;j1

kL2 C 2mkƒ�3Œ@tg.t/�k1;j1
kL2

�
2k2kgk2;j2

kL2

C 2k2Cj2
�
26kCkgk2;j2

kL2 C 2mkƒ�3Œ@tg.t/�k2;j2
kL2

�

� ke�itƒgk1;j1
.t/kL1

�
� C2�mC40ˇm�k2�20 � C2�2ˇm�20 :

Now, we proceed to estimate e�1;2I6
k;k1;k2

. Recall (6.85) and (6.86). We split into three cases
based on the difference between k0

1 and k0
2 and the size of k0

1 C k0
2.

If jk0
1 � k0

2j � 10, i.e., we are estimating b�k
0
1
;k0

2
;3

k;k1;k2I1. – Note that we have k0
1 � k1 � 5.

Recall (6.87). By doing integration by parts in “�” many times, we can rule out the case when
maxfj 0

1; j
0
2g � m C k1;� � k0

1;C � ˇm: If maxfj 0
1; j

0
2g � m C k1;� � k0

1;C � ˇm, from the
L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C ,

ˇ̌
ˇ̌
ˇ̌
ˇ

X

maxfj 0
1
;j 0

2
g�mCk1;��k0

1;C
�ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;3

k;k1;k2;j2I1

ˇ̌
ˇ̌
ˇ̌
ˇ

� sup
t2Œ2m�1;2m�

C22mC2kC2k0
1k�1�2gk.t/kL2ke�itƒgk2

.t/kL1

�
� X

j 0
1

�maxfj 0
2
;mCk1;��k0

1;C
�ˇmg

.2mCk1Ck0
2 C 2k

0
2

Cj 0
1/kgk0

1
;j 0

1
kL2ke�itƒgk0

2
;j 0

2
kL1
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C
X

j 0
2

�maxfj 0
1
;mCk1;��k0

1;C
�ˇmg

.2mCk1Ck0
2 C 2k

0
2

Cj 0
1/kgk0

2
;j 0

2
kL22�mkgk0

1
;j 0

1
kL1

�

� C2�m=2C20ˇm�20 :

˚ If k0
2 � k0

1 � 10 and k0
1 C k0

2 � �19m=20. For this case, we have jk0
1 � k1j � 5. Recall

(6.85). From estimate (5.15) in Lemma 5.3, the following estimate holds for some absolute
constant C ,

jb�k
0
1
;k0

2
;3

k;k1;k2I2j � sup
t2Œ2m�1;2m�

C22mC3k1k�1�2gk.t/kL2ke�itƒgk2
.t/kL1

�
�
.2mCk0

2
Ck1 C 1/kgk0

1
kL2 C

X

iD1;2

2k
0
2kr�bgk0

1
.t; �/kL2

�

�
�
23k

0
2kbgk0

2
.t/kL1

�
C 2k1C2k0

2kR̂eŒv�.t; �/ k0
2
.�/kL1

�

�

� C2�2ˇm�20 :

If k0
2 � k0

1�10 and k0
1Ck0

2 � �19m=20. – Recall (6.88). By doing integration by parts in “�”
many times, we can rule out the case when maxfj 0

1; j
0
2g � mCk1;��ˇm. By doing integration

by parts in “�” many times, we can rule out the case when maxfj 0
1; j2g � m C k1;� � ˇm.

Therefore, we only need to consider the case when maxfj 0
1; j

0
2g � m C k1;� � ˇm and

maxfj 0
1; j2g � m C k1;� � ˇm. In other words, either j 0

1 � m C k1;� � ˇm or j 0
2; j2 �

m C k1;� � ˇm. From the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the
following estimate holds,

ˇ̌
ˇ̌
ˇ̌

X

maxfj 0
1
;j 0

2
g;maxfj 0

1
;j2g�mCk1;��ˇm

b�k
0
1
;j 0

1
;k0

2
;j 0

2
;3

k;k1;k2;j2I2

ˇ̌
ˇ̌
ˇ̌

� sup
t2Œ2m�1;2m�

C22mC4k
� X

j 0
1

�mCk1;��ˇm

.2mCk1Ck0
2 C 2k

0
2

Cj 0
1/

� kgk0
1
;j 0

1
kL2ke�itƒgk0

2
;j 0

2
kL1ke�itƒgk2;j2

.t/kL1

C
X

j 0
2
;j2�mCk1;��ˇm

.2mCk1Ck0
2ke�itƒgk0

1
;j 0

1
kL1 C 2k

0
2ke�itƒ F �1

Œr� ĝk0
1
;j 0

1
�kL1/

� kgk0
2
;j 0

2
kL22k2kgk2;j2

.t/kL2

�
k�1�2gk.t/kL2

� C2�2ˇm�20 :

Lastly, we estimate e�1;2I7
k;k1;k2

. Recall (6.89). After doing spatial localizations for inputs

“�gk1
” and “gk2

” inside e�1;2I7
k;k1;k2

, we have

(6.91) e�1;2I7
k;k1;k2

D
X

j1��k1;�;j2��k2;�

e�1;2I7
k;k1;j1;k2;j2

;

e�1;2I7
k;k1;j1;k2;j2

WD
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/t r
�;�0

k1;k
0
1

.�; �; �/

(6.92) � �̂gk1;j1
.t; � � �/ĝ�

k2;j2
.t; �/ ̂�1�2gk0

1
.t; � � �/ ̂g�

0

k0
2

.t;��/d�d�d�dt:
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By doing integration by parts in “�” many times, we can rule out the case when maxfj1; j2g �

mCk1;��ˇm. If maxfj1; j2g � mCk1;��ˇm, from theL2�L1�L1 type trilinear estimate
(2.6) in Lemma 2.2 and (6.90), the following estimate holds for some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

je�1;2I7
k;k1;j1;k2;j2

j

� sup
t2Œ2m�1;2m�

X

k0
2

�k1�10

C22mCmaxfk2;k
0
2

gC3k1ke�itƒgk0
2
.t/kL1

�
� X

j1�maxfj2;mCk1;��ˇmg

k�gk1;j1
.t/kL2ke�itƒgk2;j2

.t/kL1

C
X

j2�maxfj1;mCk1;��ˇmg

ke�itƒ�gk1;j1
.t/kL1kgk2;j2

.t/kL2

�
k�1�2gk.t/kL2

� C2�m=4C20ˇm�31 C C2�m�k2C20ˇm�20 � C2�2ˇm�20 :

Hence finishing the proof.

L 6.8. – Under the bootstrap assumption (4.49), the following estimate holds for
some absolute constant C ,

(6.93)
X

k1;k22Z;jk�k1j�10;k2�k1�10;k1Ck2��19m=20;k1�5ˇm

jP 2k;k1;k2
j � C22

Qım�20 :

Proof. – Recall (6.8) and (6.12). Note that P 2
k;k1;k2

vanishes except when �1 D �2 D L.

Hence, we only have to consider the case when �1 D �2 D L. We decompose it into two
parts as follows,

P 2k;k1;k2
D

X

iD1;2

P
2;i
k;k1;k2

; P
2;i
k;k1;k2

D �

Z t2

t1

Z

R2

Z

R2

L̂Lgk.t; �/e
itˆC;�.�;�/t2bqiC;�.�; �/

� dgk1
.t; � � �/dg�

k2
.t; �/d�d�dt; i 2 f1; 2g;

where bqiC;�.� � �; �/, i 2 f1; 2g, are defined in (6.29) and (6.30). After doing integration by
parts in “�” twice, from the estimate of the symbol bq2C;�.� � �; �/ in (6.31), the following
estimate holds,

X

k2�k1�10;jk1�kj�10

ˇ̌
P
2;2
k;k1;;k2

ˇ̌
� sup
t2Œ2m�1;2m�

X

k2�k1�10;iD1;2

2mCk1C3k2Ck1;C

�
ke�itƒgk2

.t/kL1

�
kr2

�bgk1
.t; �/kL2 C 2�k2kr�bgk1

.t; �/kL2

�

C ke�itƒgk1
.t/kL1

�
kr2

�bgk2
.t; �/kL2 C 2�k2kr�bgk2

.t; �/kL2 C 2�2k2kgk2
.t/kL2

�

C
X

j1�j2

2�mC2j2Cj1k'k2

j2
.x/gk2

.t/kL2k'k1

j1
.x/gk1

.t/kL2

C
X

j2�j1

2�mC2j1Cj2k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

�
k�1�2gk.t/kL2

� C22
Qım�20 :
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For “P 2;1
k;k1;k2

,” we do integration by parts in time once. As a result, we have

P
2;1
k;k1;k2

D
X

iD1;2;3;4;5

eP ik;k1;k2
; eP 1k;k1;k2

D
X

j1��k1;�;j2��k2;�

eP j1;j2;1

k;k1;k2
;

(6.94)

eP j1;j2;1

k;k1;k2
D

X

iD1;2

.�1/i
Z

R2

Z

R2

̂�1�2gk.ti ; �/e
itiˆ

C;�.�;�/i t2i bp1C;�.�; �/

� ĝk1;j1
.ti ; � � �/ĝ�

k2;j2
.ti ; �/d�d�

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/i2tbp1C;�.�; �/

� ĝk1;j1
.t; � � �/ĝ�

k2;j2
.t; �/ � eitˆ

C;�.�;�/i t2bp1C;�.�; �/ĝk1;j1
.t; � � �/

� ĝ�
k2;j2

.t; �/
�
@t ̂�1�2gk.t; �/ �

X

�2fC;�g

X

.k0
1
;k0

2
/2�2

k

eBC;�
k;k0

1
;k0

2

.t; �/
�
d�d�dt;(6.95)

eP 2k;k1;k2
D

X

k0
2

�k0
1

C10

bP 2;k
0
1
;k0

2

k;k1;k2
; bP 2;k

0
1
;k0

2

k;k1;k2
D

X

j1��k1;�;j
0
1

��k0
1;�

;j 0
2

��k0
2;�

bP 2;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;j1;k2
;

(6.96)

bP 2;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;j1;k2
WD

X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/i t2bp1C;�.�; �/ĝk1;j1

.t; � � �/

� P�
�
eitˆ

�0;�0
.�;�/ Qq�0;�0.� � �; �/

̂
g
�0

k0
1
;j 0

1

.t; � � �/ĝ�
0

k0
2
;j 0

2

.t; �/
�
d�d�dt;(6.97)

eP 3k;k1;k2
D

X

jk0
1

�k0
2

j�10

bP 3;k
0
1
;k0

2

k;k1;k2
; bP 3;k

0
1
;k0

2

k;k1;k2
D

X

j 0
1

��k0
1;�

;j 0
2

��k0
2;�

bP 3;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
;

(6.98)

bP 3;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
D

X

�0;�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

̂�1�2gk.t; �/e
itˆC;�.�;�/i t2bp1C;�.�; �/eitˆ

�0;�0
.���;�/

� Qq�0;�0.� � � � �; �/
̂
g
�0

k0
1
;j 0

1

.t; � � � � �/ĝ�
0

k0
2
;j 0

2

.t; �/dg�
k2
.t; �/d�d�dt:(6.99)

eP 4k;k1;k2
D

X

j1��k1;�;j2��k2;�

eP 4k;k1;j1;k2;j2
;

eP 4k;k1;j1;k2;j2
WD �

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/i t2bp1C;�.�; �/ ̂�1�2gk.t; �/

(6.100)

�
�

̂ƒ�3Œ@tg�k1;j1
.t; � � �/ĝ�

k2;j2
.t; �/C ĝ

k1;j1
.t; � � �/ ̂ƒ�3Œ@tg� �k2;j2

.t; �/
�
d�d�dt;

eP 5k;k1;k2
D

X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

Z

R2

eitˆ
C;�.�;�/i t2bp1C;�.�; �/

(6.101)

h
dgk1

.t; � � �/dg�
k2
.t; �/eitˆ

C;�0
.�;�/ ̂�1�2gk0

1
.t; � � �/ ̂g�

0

k0
2

.t; �/ QqC;�0.� � �; �/
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C ̂�1�2gk.t; �/dg�k2
.t; �/eitˆ

C;�0
.���;�/ QqC;�0.� � � � �; �/

� dgk0
1
.t; � � � � �/ ̂g�

0

k0
2

.t; �/
i
d�d�d�dt:(6.102)

D
X

k0
2

�k0
1

�10;jk1�k0
1

j�10

X

�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/

� i t2er�;�0

k1;k
0
1

.�; �; �/bg.t; � � �/dg�
k2
.t; �/�̂1�2g.t; � � �/ ̂g�

0

k0
2

.t;��/d�d�d�dt;

where the symbol “bp1�;�.�; �/” is defined in (6.29) and the symboler�;�0

k1;k
0
1

.�; �; �/ is defined as

follows,

er�;�0

k1;k
0
1

.�; �; �/ D bp1C;�.�; �/ QqC;��0.� � �; �/ k0
1
.� � �/ k1

.� � �/ k.�/

C bp1C;�.� � �; �/ QqC;�0.� � �;��/ k0
1
.� � �/ k1

.� � � � �/ k.� � �/:

Recall (6.29), (4.14) and (4.15). From the estimate (2.3) in Lemma 2.1, the following estimate
holds,

(6.103) ker�;�0

k1;k
0
1

.�; �; �/ k2
.�/ k0

2
.�/kS 1 � C2maxfk2;k

0
2

gCk2C4k1 ;

where C is some absolute constant. After doing spatial localizations for inputs bgk1
.t/ and

bgk2
.t/ in eP 5

k;k1;k2
, the following decomposition holds,

eP 5k;k1;k2
D

X

k0
2

�k0
1

�10;jk1�k0
1

j�10

bP 5;k
0
1
;k0

2

k;k1;k2
; bP 5;k

0
1
;k0

2

k;k1;k2
D

X

j1��k1;�;j2��k2;�

bP 5;k
0
1
;k0

2

k;k1;j1;k2;j2
;

(6.104)

bP 5;k
0
1
;k0

2

k;k1;j1;k2;j2
D

X

�02fC;�g

�

Z t2

t1

Z

R2

Z

R2

eitˆ
C;�.�;�/�itˆC;�0

.�;�/i t2er�;�0

k1;k
0
1

.�; �; �/ĝk1;j1
.t; � � �/

� ĝ�
k2;j2

.t; �/ ̂�1�2gk0
1
.t; � � �/ ̂g�

0

k0
2

.t;��/d�d�d�dt:(6.105)

With the above preparation, now we are ready to estimate QP i
k;k1;k2

, i 2 f1; : : : ; 5g, one by
one.

We first estimate QP 1
k;k1;k2

. Recall (6.94) and (6.95). By doing integration by parts in “�”
many times, we can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If maxfj1; j2g �

m C k1;� � ˇm, from the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, (7.7) in
Lemma 7.2„ the following estimate holds for some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

j eP j1;j2;1

k;k1;k2
j

� sup
t2Œ2m�1;2m�

C22mC2QımCk2C3k1C6kC
� X

j1�maxfj2;mCk1;��ˇmg

kgk1;j1
.t/kL2

� ke�itƒgk2;j2
.t/kL1 C

X

j2�maxfj1;mCk1;��ˇmg

kgk2;j2
.t/kL2ke�itƒgk1;j1

.t/kL1

�

� C2�2ˇm�20 :
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Now we proceed to estimate QP 2
k;k1;k2

. Recall (6.96) and (6.97). Based on the size of the
difference between k0

1 and k1, we split into two cases as follows,

If k0
1 � k1 � 5. – For this case, we have k0

1 � k2 C 5 and jk0
1 � k0

2j � 5. By doing integration
by parts in “� ,” we can rule out the case when maxfj 0

1; j
0
2g � m C k2;� � k0

1;C � ˇm. If
maxfj 0

1; j
0
2g � mC k2;� � k0

1;C � ˇm, from the L2 �L1 �L1 type trilinear estimate (2.6)
in Lemma 2.2, the following estimate holds for some constant C ,

X

k0
1

�k1�5

ˇ̌
ˇ̌
ˇ̌
ˇ

X

maxfj 0
1
;j 0

2
g�mCk2;��k0

1;C
�ˇm

bP 2;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;j1;k2

ˇ̌
ˇ̌
ˇ̌
ˇ

� sup
t2Œ2m�1;2m�

X

jk0
1

�k0
2

j�5

C23mCk2C3k1C2k0
1

�
� X

j 0
1

�maxfj 0
2
;mCk2;��k0

1;C
�ˇmg

kgk0
1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
kL1

C
X

j 0
2

�maxfj 0
1
;mCk2;��k0

1;C
�ˇmg

kgk0
2
;j 0

2
.t/kL2ke�itƒgk0

1
;j 0

1
kL1

�

� k�1�2gk.t/kL2ke�itƒgk1
.t/kL1 � C2�m�k2C30ˇm�20 � C2�2ˇm�20 :

If k0
1 � k1 � 5. – For this case, we do integration by parts in “� ” many times to rule out

the case when maxfj 0
1; j1g � m C k1;� � ˇm. If maxfj 0

1; j1g � m C k1;� � ˇm, from the
L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C ,

X

k0
2

�k0
1

�k1�5

ˇ̌
ˇ̌
ˇ̌

X

maxfj 0
1
;j1g�mCk1;��ˇm

bP 2;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;j1;k2

ˇ̌
ˇ̌
ˇ̌

� sup
t2Œ2m�1;2m�

X

k0
2

�k0
1

�k1�5

C23mCk2C3k1C2k0
1

�
� X

j 0
1

�maxfj1;mCk1;��ˇmg

kgk0
1
;j 0

1
.t/kL2ke�itƒgk1;j1

kL1

C
X

j1�maxfj 0
1
;mCk1;��ˇmg

kgk1;j1
.t/kL2

� ke�itƒgk0
1
;j 0

1
kL1

�
ke�itƒgk0

2
.t/kL1k�1�2gk.t/kL2

� C2�m=2C30ˇm�20 :

Now, we proceed to estimate QP 3
k;k1;k2

. Recall (6.98) and (6.99). Note that jk0
1 � k0

2j � 10

and “r�ˆ
�0;�0

.� � �; �/” always has a lower bound, which is 2k1�k0
1;C : By doing integration

by parts in “�” many times, we can rule out the case when maxfj 0
1; j

0
2g � mCk1;��k0

1;C�ˇm.
If maxfj 0

1; j
0
2g � mCk1;� �k0

1;C �ˇm, from the L2�L1 �L1 type trilinear estimate (2.6)
in Lemma 2.2, the following estimate holds for some constant C ,

X

jk0
1

�k0
2

j�10

X

maxfj 0
1
;j 0

2
g�mCk1;��k0

1;C
�ˇm

j bP 3;k
0
1
;j 0

1
;k0

2
;j 0

2

k;k1;k2
j
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� sup
t2Œ2m�1;2m�

X

jk0
1

�k0
2

j�10

C23mCk2C3k1C2k0
1

�
� X

j 0
1

�maxfj 0
2
;mCk1;��k0

1;C
�ˇmg

kgk0
1
;j 0

1
.t/kL2ke�itƒgk0

2
;j 0

2
kL1

C
X

j 0
2

�maxfj 0
1
;mCk1;��k0

1;C
�ˇmg

kgk0
2
;j 0

2
.t/kL2

� ke�itƒgk0
1
;j 0

1
kL1

�
ke�itƒgk2

.t/kL1k�1�2gk.t/kL2

� C2�m=2C30ˇm�20 :

Now, we proceed to estimate QP 4
k;k1;k2

. Recall (6.100). By doing integration by parts in “�”
many times, we can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If maxfj1; j2g �

mCk1;��ˇm, from theL2�L1 type bilinear estimate (2.5) in Lemma 2.2, estimate (6.137) in
Lemma 6.14, and estimate (7.3) in Lemma 7.1, the following estimate holds for some absolute
constant C ,

X

maxfj1;j2g�mCk1;��ˇm

k eP 4k;k1;j1;k2;j2
kL2

� sup
t2Œ2m�1;2m�

C23mCk2C3k1k�1�2gk.t/kL2

�
� X

j1�maxfj2;mCk1;��ˇmg

kƒ�3Œ@tg
��k1;j1

kL2ke�itƒgk2;j2
kL1

C kgk1;j1
kL22k2kƒ�3Œ@tgk2

�kL2

C
X

j2�maxfj1;mCk1;��ˇmg

kƒ�3Œ@tg
��k2;j2

kL2ke�itƒgk1;j1
kL1

C 2k2kgk2;j2
.t/kL2kƒ�3Œ@tg

�

k1
�kL2

�

� C2�m�k2C40ˇm�20 C C2�m=2C40ˇm�20 � C2�2ˇm�20 :

Lastly, we estimate QP 5
k;k1;k2

. Recall (6.104) and (6.105). For the case we are considering,
we have k0

2 � k0
1�10 and jk0

1�k1j � 10. By doing integration by parts in “�” many times, we
can rule out the case when maxfj1; j2g � mC k1;� � ˇm. If maxfj1; j2g � mC k1;� � ˇm,
from the L2 �L1 �L1 type trilinear estimate (2.6) in Lemma 2.2 and estimate (6.103), the
following estimate holds for some absolute constant C ,

X

k0
2

�k1�10

X

maxfj1;j2g�mCk1;��ˇm

j bP 5;k
0
1
;k0

2

k;k1;j1;k2;j2
j

� sup
t2Œ2m�1;2m�

X

k0
2

�k1�10

C23mCk2Cmaxfk2;k
0
2

gC4k1

� k�1�2gk.t/kL2

� X

j1�maxfj2;mCk1;��ˇmg

kgk1;j1
kL2ke�itƒgk2;j2

kL1

C
X

j2�maxfj1;mCk1;��ˇmg

kgk2;j2
kL2ke�itƒgk1;j1

kL1

�
ke�itƒgk0

2
.t/kL1

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



924 X. WANG

� C2�m=2C30ˇm�20 C C2�m�k2C30ˇm�20 � C2�2ˇm�20 :

Hence finishing the proof.

6.4. The Z2 norm estimate of cubic terms

Recall (4.35) and (4.37). Note that we have k3 � k2 � k1 for the case we are considering.
For any �1

�
; �2
�

2 f OL� ; O��g, we have

�1� �
2
�ƒ3Œ@tbg.t; �/� k.�/ D

X

�;�;�2fC;�g

X

k3�k2C1�k1C2

X

iD1;2;3;4

T
�;�;�;i
k;k1;k2;k3

.t; �/;

T
�;�;�;i
k;k1;k2;k3

.t; �/ D
X

j1��k1;�;j2��k2;�;j3��k3;�

T
�;�;�;i
k;k1;j1;k2;j2;k3;j3

.t; �/; i 2 f3; 4g;

where

T
�;�;�;1
k;k1;k2;k3

.t; �/ D

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/ Qd�;�;�.� � �; � � �; �/�1� �

2
�
dg�
k1
.t; � � �/

� dg�
k2
.t; � � �/dg�

k3
.t; �/ k.�/d�d�;(6.106)

T
�;�;�;2
k;k1;k2;k3

.t; �/ D

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/

�
�1� �

2
�

�
Qd�;�;�.� � �; � � �; �/

�dg�
k1
.t; � � �/

C
X

fl;ngDf1;2g

� l�
Qd�;�;�.� � �; � � �; �/�n�

dg�
k1
.t; � � �/

�
(6.107)

� dg�
k2
.t; � � �/dg�

k3
.t; �/ k.�/d�d�;

T
�;�;�;3
k;k1;j1;k2;j2;k3;j3

.t; �/ D

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/eitˆ

�;�;�.�;�;�/i t
�
� l�ˆ

�;�;�.�; �; �/
�

� �n�
�

Qd�;�;�.� � �; � � �; �/ĝ�
k1;j1

.t; � � �/
�
ĝ�
k2;j2

.t; � � �/(6.108)

� ĝ�
k3;j3

.t; �/ k.�/d�d�;

T
�;�;�;4
k;k1;j1;k2;j2;k3;j3

.t; �/ D �

Z

R2

Z

R2

eitˆ
�;�;�.�;�;�/t2

�
�1�ˆ

�;�;�.�; �; �/�2�ˆ
�;�;�.�; �; �/

�

� Qd�;�;�.� � �; � � �; �/ĝ�
k1;j1

.t; � � �/ĝ�
k2;j2

.t; � � �/(6.109)

� ĝ�
k3;j3

.t; �/ k.�/d�d�:

Therefore, we have

(6.110) Re
� Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2�ƒ3Œ@tbg.t; �/� k.�/d�dt

�

D
X

�;�;�2fC;�g

X

k3�k2�k1

X

iD1;2;3;4

Re
�
T
�;�;�;i
k;k1;k2;k3

�;

(6.111) T
�;�;�;i
k;k1;k2;k3

D

Z t2

t1

Z

R2

Z

R2

�1
�
�2
�
bg.t; �/T �;�;�;i

k;k1;k2;k3
.t; �/d�dt:

The main goal of this subsection is to prove the following proposition,
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P 6.9. – Under the bootstrap assumption (4.49), the following estimates hold
for some absolute constant C ,
(6.112)

sup
t1;t22Œ2m�1;2m�

ˇ̌ X

k2Z

Re
� Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2�ƒ3Œ@tbg.t; �/� k.�/d�dt

�ˇ̌
� C22

Qım�20 ;

(6.113)

sup
t2Œ2m�1;2m�

X

iD1;2;3;4

X

k2Z

X

k3�k2�k1

T �;�;�;i
k;k1;k2;k3

.t; �/

L2 � C2�mCQım

�
1C 22

QımCkC5kC
�
�0:

Proof. – To simplify the problem, we first rule out the very high frequency case and the
very low frequency case. Very similar to what we did in the estimate of quadratic terms (see
(6.55)), we do integration by parts in � to move the derivatives r� of r�bgk1

.t; � � �/ D

�r�bgk1
.t; ���/ around such that there is no derivatives in front of bgk1

.t; ���/. As a result,
from the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2 and the L1 ! L2 type
Sobolev embedding, the following estimate holds for some absolute constant C ,

X

iD1;2;3;4

kT �;�;�;i
k;k1;k2;k3

.t; �/kL2 � C22mC2k1C6k1;Ckgk1
.t/kL22k2Ck3kgk3

.t/kL2

�
2�2k2kgk2

.t/kL2

C 2�k2kr�bgk2
.t/kL2 C kr2

�bgk2
.t/kL2

�
� C22mCˇm�.N0�20/k1;C�0:(6.114)

From the above estimate, we can rule out the case when k1 � 4ˇm. It remains to consider
the case when k1 � 4ˇm. Next, we proceed to rule out the very low frequency case. If either
k � �2m or k3 � �3m � 30ˇm, then from the L2 � L1 � L1 type trilinear estimate, the
following estimate holds for some absolute constant C ,

X

iD1;2;3;4

kT �;�;�;i
k;k1;k2;k3

.t; �/kL2 � C.1C 22mC2k/2kCk3C4k1;C
�
22k1kr2

�bgk1
.t; �/kL2

C 2k1kr�bgk1
.t; �/kL2 C kgk1

.t/kL2

�
kgk2

.t/kL2kgk3
.t/kL2 � C2�m�ˇm�0:(6.115)

Therefore, from now on, we restrict ourself to the case when k; k1, k2, and k3 are in the range
listed as follows,

(6.116) � 3m � 30ˇm � k3 � k2 � k1 � 4ˇm; �2m � k � 4ˇm:

Recall (6.107). From the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the
following estimate holds for some absolute constant C ,

kT �;�;�;2
k;k1;k2;k3

.t; �/kL2 � C22k1C4k1;C
�
ke�itƒgk1

kL1 C
X

iD1;2

ke�itƒ� igk1
kL1

�
ke�itƒgk2

kL1

� kgk3
kL2 � C2�3m=2C50ˇm�20 H) jT �;�;�;2

k;k1;k2;k3
j � C2�m=2C50ˇm�20 :

Since there are only at most “m4 ”cases in the range (6.116), to prove (6.112) and (6.113),
it would be sufficient to prove the following estimate for any i D 1; 3; 4, any �; �; � 2 fC;�g,
and any fixed k; k1; k2; k3 in the range (6.116),
(6.117)

jRe
�
T
�;�;�;i
k;k1;k2;k3

�
j � C23

Qım=2�20 ; kT �;�;�;i
k;k1;k2;k3

.t; �/kL2 � C2�mCQım=2
�
1C 22

QımCkC5kC
�
�0;

where C is some absolute constant.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



926 X. WANG

From the results in the next three lemmas, i.e., Lemma 6.10, Lemma 6.11, and Lemma 6.12,
we know that our desired estimates in (6.117) indeed holds for fixed k; k1; k2; k3 in the range
listed in (6.116). Hence finishing the proof.

L 6.10. – For i D 1; 3; 4 and fixed k; k1; k2; k3 in the range (6.116) , our desired
estimates listed in (6.117) hold if moreover k2 � k1 � 10.

Proof. – Recall the normal form transformation that we did in Subsection 4.1, see (4.30)
and (4.40). For the case we are considering, which is k2 � k1� 10, we have “� D C” and the
fact that the estimate jr�ˆ

C;�;�.�; �; �/j � 2k2 holds for some absolute constant C .

We first estimate T
C;�;�;1
k1;k2;k3

and T
C;�;�;1
k1;k2;k3

.t; �/. Recall (6.106) and (6.111). From the

L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds for
some absolute constant C ,

kTC;�;�;1
k1;k2;k3

.t; �/kL2 � C22k1C4k1;C
�
22k1kr2

� dgk1
.t; �/kL2 C 2k1kr�dgk1

.t; �/kL2 C kgk1
.t/kL2

�

� ke�itƒgk2
kL1ke�itƒgk3

kL1 � C2�mC7Qım=3CkC5kC�0:(6.118)

Since the L1
x decay rate of the nonlinear solution itself is slightly slower than t�1=2, a

roughL2�L1�L1 is not sufficient to close the estimate of T �;�;�;1
k1;k2;k3

. An essential ingredient
is to utilize symmetry such that one of the inputs putted in L1 associates with a spatial
derivative. To see the symmetric structure, we decompose TC;�;�;1

k1;k2;k3
into three parts as follows,

T
C;�;�;1
k;k1;k2;k3

D
X

iD1;2;3

T
C;�;�;1Ii
k;k1;k2;k3

; T
C;�;�;1I1
k;k1;k2;k3

D

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�;�.�;�;�/e.�/

� �̂1�2g.t; � � �/ k.�/ k1
.� � �/dg�

k2
.t; � � �/dg�

k3
.t; �/d�d�d�dt;

T
C;�;�;1I2
k;k1;k2;k3

D

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�;�.�;�;�/

�
QdC;�;�.�; �; �/ � e.�/

�

�  k.�/ ̂�1�2g
k1
.t; � � �/dg�

k2
.t; � � �/dg�

k3
.t; �/d�d�d�dt;

T
C;�;�;1I3
k;k1;k2;k3

D

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/eitˆ
C;�;�.�;�;�/ QdC;�;�.� � �; � � �; �/dg�

k2
.t; � � �/

�  k.�/dg�k3
.t; �/

�
�1� �

2
� dg
k1
.t; � � �/ � ̂�1�2g

k1
.t; � � �/

�
d�d�d�dt;

where e.�/ is defined in (4.47). After switching the role of � and � � � inside TC;�;�;1I1
k1;k2;k3

, we
have

X

�;�2fC;�g

ReŒTC;�;�;1I1
k1;k2;k3

� D
X

�;�2fC;�g

ReŒ QTC;�;�
k1;k2;k3

�; QTC;�;�
k1;k2;k3

WD
1

2

Z t2

t1

Z

R2

Z

R2

�̂1�2g.t; �/

�eitˆ
C;�;�.�;�;�/ Qdk;k1

.�; �; �/�̂1�2g.t; � � �/dg�
k2
.t; � � �/dg�

k3
.t; �/d�d�d�dt;

where
Qdk;k1

.�; �; �/ WD e.�/ k1
.� � �/ k.�/C e.� � �/ k1

.�/ k.� � �/:

Recall (4.47). From the estimate (2.3) in Lemma 2.1, the following estimate holds for some
absolute constant C ,

(6.119) k Qdk;k1
.�; �; �/ k2

.� � �/ k3
.�/kS 1 � C2maxfk2;k3gCk1C4k1;C :
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From (6.119), (4.46) and the L2 � L1 � L1 type trilinear estimate (2.5) in Lemma 2.2, we
have

X

iD1;2;3

X

�;�2fC;�g

jRe
�
T

C;�;�;1Ii
k;k1;k2;k3

�
j

� sup
t2Œ2m�1;2m�

C2mCk1C4k1;CCmaxfk2;k3g
�
22k1kr2

�bgk1
.t; �/kL2

C 2k1kr�bgk1
.t; �/kL2 C kgk1

.t/kL2

�
k�1�2gk1

kL2ke�itƒgk2
kL1ke�itƒgk3

kL1

� C2�m=2C50ˇm�20 ;

where C is some absolute constant.
Therefore, now it would be sufficient to estimate TC;�;�;i

k1;k2;k3
and TC;�;�;i

k1;k2;k3
.t; �/, i 2 f3; 4g.

Recall (6.108), (6.109), and (6.111). By doing integration by parts in “�” many times, we can
rule out the case when maxfj1; j2g � mCk1;� �ˇm. If maxfj1; j2g � mCk1;� �ˇm, from
the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds
for some absolute constant C ,

X

iD3;4


X

maxfj1;j2g�mCk1;��ˇm

T
C;�;�;i
k;k1;j1;k2;j2;k3;j3

.t; �/


L2

� C2mC3k1Ck2C4k1;Cke�itƒgk3
kL1

�
h X

j1�maxfj2;mCk1;��ˇmg

.2k1Cj1 C .1C 2mCk1Ck2//kgk1;j1
kL2ke�itƒgk2;j2

kL1

C
X

j2�maxfj1;mCk1;��ˇmg

�
2k1ke�itƒ F �1

Œr� ĝk1;j1
.t; �/�kL1

C .1C 2mCk1Ck2/ke�itƒgk1;j1
kL1

�
kgk2;j2

kL2

i

� C2�3m=2C50ˇm�0:

Note that the above estimate is sufficient to imply our second desired estimate in (6.117).
Hence finishing the proof.

L 6.11. – For i D 1; 3; 4 and fixed k; k1; k2; k3 in the range (6.116) , our desired
estimate (6.117) holds if either jk1 � k2j � 10 and k3 � k2 � 10 or jk1 � k2j � 10,
jk3 � k2j � 10; k � k1 � 10.

Proof. – The estimate of T �;�;�;1
k;k1;k2;k3

.t; �/ is straightforward. As jk1�k2j � 10, the size of

symbol compensates the decay rate of e�itƒgk2
.t/. From the L2 � L1 � L1 type trilinear

estimate (2.6) in Lemma 2.2, the following estimate holds for some absolute constant C ,

kT �;�;�;1
k;k1;k2;k3

.t; �/kL2 � C22k1C4k1;C
�
22k1kr2

�bgk1
.t; �/kL2 C 2k1kr�bgk1

.t; �/kL2 C kgk1
.t/kL2

�

� ke�itƒgk2
kL1ke�itƒgk3

kL1 � C2�3m=2C50ˇm�0:(6.120)

Now, we proceed to estimate T �;�;�;3
k;k1;k2;k3

.t; �/ and T
�;�;�;4
k;k1;k2;k3

.t; �/. Recall (6.108) and
(6.109). Note that, if either jk1 � k2j � 10 and k3 � k2 � 10 or jk1 � k2j � 10,
jk3 � k2j � 10; k � k1 � 10, we know that r�ˆ

�;�;�.�; �; �/ has a lower bound, which
is 2k�4ˇm. To take advantage of this fact, we do integration by parts in “�” many times to
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rule out the case when maxfj1; j2g � mC k� � 5ˇm. If maxfj1; j2g � mC k� � 5ˇm, from
the L2 � L1 � L1 type trilinear estimate (2.6) in Lemma 2.2, the following estimate holds
for some absolute constant C ,

X

iD3;4


X

maxfj1;j2g�mCk��5ˇm

T
C;�;�;i
k;k1;j1;k2;j2;k3;j3

.t; �/


L2

� C2mC2kCk1C4k1;Cke�itƒgk3
kL1

�
� X

j2�maxfj1;mCk��5ˇmg

�
.1C 2mC2k1/ke�itƒgk1;j1

kL1 C 2k1ke�itƒ

� F �1
Œr� ĝk1;j1

.t; �/�kL1

�
kgk2;j2

kL2

C
X

j1�maxfj2;mCk��5ˇmg

�
2mC2k1 C 2j1Ck1

�
ke�itƒgk2;j2

kL1kgk1;j1
kL2

�
(6.121)

� C2�3m=2C50ˇm�0:

From (6.120) and (6.121), it is easy to see our desired estimates in (6.117) hold.

L 6.12. – For i D 1; 3; 4 and fixed k; k1; k2; k3 in the range (6.116) , our desired
estimate (6.117) holds if jk1 � k2j � 10, jk3 � k2j � 10, and jk � k1j � 10.

Proof. – Since we still have jk1 � k2j � 10, the estimate of T �;�;�;1
k;k1;k2;k3

.t; �/ in (6.120)

still holds. It would be sufficient to estimate T �;�;�;3
k;k1;k2;k3

.t; �/ and T �;�;�;4
k;k1;k2;k3

.t; �/, which is
more delicate. For those cases, we need to study the space resonance in “�” set and the space
resonance in “�” set carefully as we did in the Z1-norm estimate of cubic terms in the proof
of Lemma 5.7.

Recall that we already canceled out the case when .�; �; �/ 2 S 4 (see (5.32)) and
.� � �; � � �; �/ is very close to .�=3; �=3; �=3/ in the normal form transformation. There-
fore, for the case when .�; �; �/ 2 S 4, we only have to consider the case when .���; ���; �/ is
not close to .�=3; �=3; �=3/, in which case either r�ˆ

�;�;�.�; �; �/ or r�ˆ
�;�;�.�; �; �/ has a

good lower bound, which allows us to do integration by parts either in � or in � . The
estimate of this case is similar and also easier than the estimate of (6.121) in the proof of
Lemma 6.11. We omit details here.

Now, we focus on the case when .�; �; �/ 2 S i , i 2 f1; 2; 3g: By the symmetries between
inputs, it would be sufficient to consider the case when .�; �; �/ 2 S 1, i.e., .�; �; �/ 2

f.C;�;�/; .�;C;C/g. After changing the variables as follows .�; �; �/ �! .�; 2� C �C �; � C �/,
we have the following decomposition for i 2 f3; 4g;

T
�;�;�;i
k;k1;k2;k3

.t; �/ WD
X

l1;l2�Nl�

H l1;l2;�;i�2.t; �/;

H l1;l2;�;i�2.t; �/ D
X

j1��k1;�;j2��k2;�

H
l1;l2;�;i�2
j1;j2

.t; �/;

H
l1;l2;�;1
j1;j2

.t; �/ WD
X

fl;ngDf1;2g

Z

R2

Z

R2

eit
ê�;�;�.�;�;�/i t

�
� l�ˆ

�;�;�.�; 2� C �C �; � C �/
�
'l1I Nl�

.�/

� 'l2I Nl�
.�/ k.�/�

n
�

�
Qd�;�;�.�� � � � �; � C �; � C �/ĝ�

k1;j1
.t;�� � � � �/

�
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� ĝ�
k2;j2

.t; � C �/ĝ�
k3;j3

.t; � C �/d�d�;

H
l1;l2;�;2
j1;j2

WD �

Z

R2

Z

R2

eit
ê�;�;�.�;�;�/t2

�
�1�ˆ

�;�;�.�; 2� C �C �; � C �/

� �2�ˆ
�;�;�.�; 2� C �C �; � C �/

�
Qd�;�;�.�� � � � �; � C �; � C �/

� ĝ�
k1;j1

.t;�� � � � �/ĝ�
k2;j2

.t; � C �/dg�
k3
.t; � C �/ k.�/

� 'l1I Nl�
.�/'l2I Nl�

.�/d�d�;

where ê�;�;�.�; �; �/ is defined in (5.35), the cutoff function 'lI Nl .�/ is defined in (5.36) and the

thresholds are chosen as follows, NlC WD k1 � 10 and Nl� WD �m=2C 10ımC k1;C=2.

If � D C, i.e., .�; �; �/ D .C;�;�/. – Recall the normal form transformation that we
did in (4.1), see (4.20) and (4.30). For the case we are considering, .�; �; �/ 2 eS , we have
already removed the case when maxfl1; l2g D NlC. Hence it would be sufficient to consider
the case when maxfl1; l2g > NlC. Due to the symmetry between inputs, we assume that
l2 D maxfl1; l2g. As l2 > NlC, we can take the advantage of the fact that “r�ê�;�;�.�; �; �/”
is big by doing integration by parts in “�”. From (5.37), we can rule out the case when
maxfj1; j2g � mC k� � ˇm by doing integration by parts in “�” many times.

If maxfj1; j2g � mC k� � ˇm, from the L2 � L1 � L1 type trilinear estimate (2.6) in
Lemma 2.2, the following estimate holds for some absolute constant C ,

X

maxfj1;j2g�mCk��ˇm

X

iD1;2

kH l1;l2;�;i
j1;j2

.t; �/kL2

� C2mC4k1C4k1;C

� X

j1�maxfj2;mCk��ˇmg

�
2mC2k1 C 2k1Cj1

�

� kgk1;j1
.t/kL2ke�itƒgk2;j2

.t/kL1

C
X

j2�maxfj1;mCk��ˇmg

�
.2mC2k1 C 1/ke�itƒgk1;j1

.t/kL1

C 2k1ke�itƒ F �1
Œr� ĝk1;j1

.t; �/�kL1

�
kgk2;j2

.t/kL2

�
ke�itƒgk3

.t/kL1(6.122)

� C2�2mC50ˇm�0:

If � D �, i.e., .�; �; �/ D .�;C;C/. – Note that the estimates (5.38) and (5.39) hold for the
case we are considering. Same as before, due to the symmetry between inputs, without loss
of generality, we assume that l2 D maxfl1; l2g.

We first consider the case when l2 > Nl�. Recall (5.37), by doing integration by parts in “�”
many times, we can rule out the case when maxfj1; j2g � m C l2 � 4ˇm. If maxfj1; j2g �

mC l2 � 4ˇm, from the L2 �L1 �L1 type trilinear estimate, the following estimate holds
for some absolute constant C ,

X

maxfj1;j2g�mCl2�4ˇm

X

iD1;2

kH l1;l2;�;i
j1;j2

.t; �/kL2 � C2mC3k1Cl2C4k1;C

�
� X

j1�maxfj2;mCl2�4ˇmg

�
2mCk1Cl2 C 2j1Ck1

�
kgk1;j1

.t/kL2ke�itƒgk2;j2
.t/kL1
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C
X

j2�maxfj1;mCl2�4ˇmg

�
.1C 2mCk1Cl2/ke�itƒgk1;j1

.t/kL1

C 2k1ke�itƒ F �1
Œr� ĝk1;j1

.t; �/�kL1

�
kgk2;j2

.t/kL2

�
ke�itƒgk3

.t/kL1(6.123)

� C2�2mC50ˇm�20 :

Lastly, we consider the case when l2 D Nl� D �m=2C 10ımC k1;C=2. Recall the estimate
(5.38). For this case, we use the volume of support in “�” and “�”. As a result, the following
estimate holds for some absolute constant C ,

X

iD1;2

kH
Nl�; Nl�;�;i .t; �/kL2

� C24k1;C
�
22mC6 NlC4k1 C 2mC5 NlC4k1

��
2�k1kgk1

.t/kL2 C kr�dgk1
.t; �/.t/kL2

�

� kgk2
.t/kL1kgk3

.t/kL1 � C2�mC100ım�20 ;(6.124)

hence finishing the proof.

6.5. The Z2 norm estimate of the quartic terms

Recall (4.38). For any �1
�
; �2
�

2 f OL� ; O��g; we have

�1� �
2
�ƒ4Œ@tbg.t; �/� k.�/ D

X

�1;�2;�1;�22fC;�g

X

k4�k3�k2�k1

X

iD1;2;3;4

K
�1;�2;�1;�2;i

k;k1;k2;k3;k4
.t; �/;

K
�1;�2;�1;�2;i

k;k1;k2;k3;k4
.t; �/ D

X

j1��k1;�;j2��k2;�

K
�1;�2;�1;�2;i

k;k1;j1;k2;j2;k3;k4
.t; �/; i 2 f3; 4g;

where

K
�1;�2;�1;�2;1

k;k1;k2;k3;k4
.t; �/ WD

Z

R2

Z

R2

Z

R2

eitˆ
�1;�2;�1;�2 .�;�;�;�/

(6.125)

� Qe�1;�2;�1;�2
.� � �; � � �; � � �; �/�1� �

2
�

dg�1

k1
.t; � � �/(6.126)

� dg�2

k2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/ k.�/d�d�d�;

K
�1;�2;�1;�2;2

k;k1;k2;k3;k4
.t; �/ WD

Z

R2

Z

R2

Z

R2

eitˆ
�1;�2;�1;�2 .�;�;�;�/ k.�/

�
�
�1� �

2
�

�
Qe�1;�2;�1;�2

.� � �; � � �; � � �; �/
�dg�1

k1
.t; � � �/

C
X

fl;ngDf1;2g

� l� Qe�1;�2;�1;�2
.� � �; � � �; � � �; �/�n�

dg�1

k1
.t; � � �/

�

� dg�2

k2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/d�d�d�;(6.127)

K
�1;�2;�1;�2;3

k;k1;j1;k2;j2;k3;k4
.t; �/ WD

X

fl;ngDf1;2g

Z

R2

Z

R2

Z

R2

 k.�/e
itˆ�1;�2;�1;�2 .�;�;�;�/i t

�
�
� l�ˆ

�1;�2;�1;�2.�; �; �; �/
�
�n�

�
Qe�1;�2;�1;�2

.� � �; � � �; � � �; �/

� ĝ�1

k1;j1
.t; � � �/

�
ĝ
�2

k2;j2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/d�d�d�;
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K
�1;�2;�1;�2;4

k;k1;j1;k2;j2;k3;k4
.t; �/ WD �

Z

R2

Z

R2

Z

R2

 k.�/e
itˆ�1;�2;�1;�2 .�;�;�;�/t2�1�ˆ

�1;�2;�1;�2.�; �; �; �/

� �2�ˆ
�1;�2;�1;�2.�; �; �; �/ Qe�1;�2;�1;�2

.� � �; � � �; � � �; �/

� ĝ�1

k1;j1
.t; � � �/ĝ�2

k2;j2
.t; � � �/dg�1

k3
.t; � � �/dg�2

k4
.t; �/d�d�d�:(6.128)

The main goal of this subsection is to prove the following proposition.

P 6.13. – Under the bootstrap assumption (4.49), the following estimates hold
for some absolute constant C and any t 2 Œ2m�1; 2m�,

sup
t1;t22Œ2m�1;2m�

ˇ̌ X

k

Z t2

t1

Z

R2

�1
�
�2
�
bg.t; �/�1� �2�ƒ4Œ@tbg.t; �/� k.�/d�dt

ˇ̌
� C22

Qım�20 :

(6.129)

sup
t2Œ2m�1;2m�

k�1� �
2
�ƒ4Œ@tbg.t; �/�kL2 � C2�mCQım�20 :(6.130)

Proof. – As usual, we first rule out the very high frequency case and the very low
frequency case. Same as what we did in the estimate of cubic terms, we move the derivative
r� D �r� in front of bgk1

.t; � � �/ around by doing integration by parts in � such that there
is no derivative in front of bgk1

.t; � � �/. As a result, the following estimate holds,
X

iD1;2;3;4

kK�1;�2;�1;�2;i

k;k1;k2;k3;k4
.t; �/kL2 � C.1C 22mC2k/26k1;Ckgk1

.t/kL2

�
�
kr2

� dgk2
.t; �/kL2 C 2�k2kr�dgk2

.t; �/kL2 C 2�2k2kgk2
.t/kL2

�
(6.132)

� 2k3Ck4kgk3
.t/kL2kgk4

.t/kL2 � C22mCˇm�.N0�10/k1;C�20 ;

where C is some absolute constant. Hence, we can rule out the case when k1 � 4ˇm. It
remains to consider the case when k1 � 4ˇm. We can also rule out the very low frequencies
case. If either k4 � �3m � 30ˇm or k � �2m, then the following estimate holds for some
absolute constant C ,

X

iD1;2;3;4

kK�1;�2;�1;�2;1

k;k1;k2;k3;k4
.t; �/kL2 � C.1C 22mC2k/2kCk4C4k1;C

�
�
22k1kr2

�bgk1
.t; �/kL2 C 2k1kr�bgk1

.t; �/kL2 C kgk1
.t/kL2

�

� ke�itƒgk2
.t/kL1kgk3

.t/kL2kgk4
.t/kL2 � C2�m�ˇm�20 :

Now it would be sufficient to consider fixed k; k1; k2; k3, and k4 in the following range,

(6.133) � 3m � 30ˇm � k4 � k3 � k2 � k1 � 4ˇm; �2m � k � 3ˇm:

From the L2 � L1 � L1 � L1 type multilinear estimate, the following estimate holds
X

iD1;2

kK�1;�2;�1;�2;i

k;k1;k2;k3;k4
.t; �/kL2 � C22k1C4k1;C

�
�
22k1kr2

�bgk1
.t; �/kL2 C 2k1kr�bgk1

.t; �/kL2 C kgk1
.t; �/kL2

�

� ke�itƒgk2
.t/kL1ke�itƒgk3

.t/kL1ke�itƒgk4
.t/kL1 � C2�3m=2C50ˇm�20 ;(6.134)

where C is some absolute constant.
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It remains to estimate the case when i D 3; 4. We first consider the case when k1�10 � k3.
For this case, the following estimate holds from the L2 �L1 �L1 �L1 type estimate, the
following estimate holds for some absolute constant C ,
X

iD3;4

kK�1;�2;�1;�2;i

k;k1;k2;k3;k4
.t; �/kL2 � C2mC4k1C4k1;C

�
��

ke�itƒgk1
.t/kL1 C 2k1ke�itƒ F �1

Œr�bgk1
.t; �/�kL1

�
C 2mC2k1ke�itƒgk1

.t/kL1

�

� ke�itƒgk2
.t/kL1ke�itƒgk3

.t/kL1kgk4
.t/kL2

(6.135)

� C2�mCQım=2�20 :

Lastly, we consider the case when k3 � k1 � 10. Recall (4.32) and (4.41). Because of
the construction of the normal form transformation we did in Subsection 4.1, we know that
the case when � is very close to �=2 and j� j; j�j � 2�10j�j is removed, which means that
“r�ˆ

�1;�2;�1;�2.�; �; �; �/” has a lower bound, which is 2k�k1;C . To take advantage of this
fact, we do integration by parts in “�” many times to rule out the case when maxfj1; j2g �

mCk� �5ˇm. If maxfj1; j2g � mCk� �5ˇm, from theL2�L1 �L1 �L1 type estimate,
the following estimate holds for some absolute constant C ,

X

iD3;4

X

maxfj1;j2g�mCk��5ˇm

kK�1;�2;�1;�2;i

k;k1;j1;k2;j2;k3;k4
.t; �/kL2

�
X

j1�maxfj2;mCk��5ˇmg

C2mCkCk2C2k1C4k1;C
�
2mCkCk1 C 2k1Cj1

�
kgk1;j1

.t/kL2

� ke�itƒgk2;j2
.t/kL1ke�itƒgk3

.t/kL1ke�itƒgk4
.t/kL1

C
X

j2�maxfj1;mCk��5ˇmg

C2mCkCk2C2k1C4k1;C
�
2k1ke�itƒ F �1

Œr� ĝk1;j1
.t; �/�kL1

C 2mCkCk1ke�itƒgk1;j1
.t/kL1

�
2k2kgk2;j2

.t/kL2ke�itƒgk3
.t/kL1kgk4

.t/kL2

(6.136)

� C2�3m=2C50ˇm�20 :

To sum up, from the estimates (6.134), (6.135) and (6.136), we know that our desired esti-
mates (6.129) and (6.130) hold.

L 6.14. – Under the bootstrap assumption (4.49), the following estimates hold for
any t 2 Œ2m�1; 2m� and any �1

�
; �2
�

2 f OL� ; O��g;

(6.137) k�1� �
2
�ƒ�3Œ@t bgk.t; �/�kL2 � C2�mCQım

�
1C 22

QımCkC5kC
�
�0;

Proof. – The desired estimate (6.137) follows straightforwardly from the estimate (6.113)
in Proposition (6.9), the estimate (6.130) in Proposition (6.13), and the estimate (7.13) in
Lemma 7.4.
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7. Fixed time weighted norm estimates

There are mainly two tasks to complete in this section. (i) Firstly, we prove some fixed
time weighted norm estimates, which are stated in Lemma 7.1 and Lemma 7.2 and have been
used in previous two sections. (ii) Lastly, we estimate both the low order weighted norm
(Z1-norm) and the high order weighted norm (Z2-norm) of the profile of the quintic and
higher order remainder term R1, see the equation satisfied by the good substitution variable
v in (4.21). Therefore, finishing the bootstrap argument of the weighted norms of the profile
g.t/ D eitƒv.t/ over time.

L 7.1. – Under the bootstrap assumption (4.49), the following estimates hold,

sup
t2Œ2m�1;2m�

k@tbgk.t; �/ �
X

�;�2fC;�g

X

.k1;k1/2�
1
k

B
�;�

k;k1;k2
.t; �/kL2 � C2�21m=20�0;(7.1)

sup
t2Œ2m�1;2m�

k@tbgk.t; �/kL2 � C minf2�2m�kC2Qım; 2�mCımg�0 C C2�21m=20�0;(7.2)

sup
t2Œ2m�1;2m�

kƒ�3Œ@tbgk.t; �/�kL2 � C2�3m=2Cˇm�0;(7.3)

where C is some absolute constant, �1
k

is defined in (6.2) and B�;�
k;k1;k2

.t; �/ is defined in (4.36).

Proof. – For the cubic and higher order terms, after putting the input with the smallest
frequency inL2 and all other inputs inL1, the decay rate ofL2 norm is at least 2�3m=2Cˇm,
which gives us our desired estimate (7.3). Hence to prove (7.1) and (7.2), we only have to
consider the quadratic terms “B�;�

k;k1;k2
.t; �/”. Recall (4.36), after doing spatial localizations

for two inputs, we have

B
�;�

k;k1;k2
.t; �/ D

X

j1��k1;�;j2��k2;�

B
�;�;j1;j2

k;k1;k2
.t; �/;

B
�;�;j1;j2

k;k1;k2
.t; �/ D

Z

R2

eitˆ
�;�.�;�/ Qq�;�.�; �/ĝ

�

k1;j1
.t; � � �/ĝ�

k2;j2
.t; �/ k.�/d�:

We first consider the case when jk1 � k2j � 10. From the L2 �L1 type bilinear estimate
(2.5) in Lemma 2.2, the following estimate holds for some absolute constant C ,
(7.4)X

jk1�k2j�10

kB�;�
k;k1;k2

.t; �/kL2 �
X

jk1�k2j�10

C22k1kgk1
kL2ke�itƒgk2

.t/kL1 � C2�mCım�0:

Meanwhile, after doing integration by parts in “�” once, the following estimate also holds,
X

jk1�k2j�10

kB�;�
k;k1;k2

.t; �/kL2 �
X

jk1�k2j�10

C22k12�m�kCk1;C
�
ke�itƒgk1

kL1 C ke�itƒgk2
kL1

�

�
�
kr�bgk1

.t; �/kL2 C kr�bgk2
.t; �/kL2 C 2�k1kgk1

.t/kL2

�
� C2�2m�kC2Qım�0:(7.5)

Now, we consider the case when k2 � k1 � 10 and k1;� C k2 � �18m=19. Similar to
the proof of the estimate (5.10) in Lemma 5.2, from the estimate (5.15) in Lemma 5.3, the
following estimate holds for some absolute constant C ,

X

k1;�Ck2��18m=19


X

�2fC;�g

B
�;�

k;k1;k2
.t; �/
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�
X

k1;�Ck2��18m=19

Ckgk1
.t/kL2 minf22k1Ck2kgk2

.t/kL2 ;

� 2k1C3k2kbgk2
.t; �/kL1

�
C 22k1C2k2kR̂eŒv�.t; �/ k2

.�/kL1
�

g

�
X

k1;�Ck2��18m=19

C23
Qım minf22k1;�Ck2 ; 22k2

�
2k1;�Ck2Cm C 22k1;�C2k2C2m

�
g

� C2�21m=20�0:

Lastly, we consider the case when k2 � k1 � 10 and k1;� C k2 � �18m=19. After
doing integration by parts in “�” many times, we can rule out the case when maxfj1; j2g �

mC k1;� � ˇm: If maxfj1; j2g � mC k1;� � ˇm, from the L2 � L1 type bilinear estimate
(2.5) in Lemma 2.2, the following estimate holds for some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

kB�;�;j1;j2

k;k1;k2
.t; �/kL2

�
X

j1�maxfj2;mCk1;��ˇmg

C22k1ke�itƒgk2;j2
kL1kgk1;j1

kL2

C
X

j2�maxfj1;mCk1;��ˇmg

C22k1ke�itƒgk1;j1
kL1kgk2;j2

kL2(7.6)

� C2�3m�2k2�k1;�C3ˇm�0 � C2�21m=20�0:

Combining the estimates (7.4), (7.5), and (7.6), it is easy to see that our desired estimate (7.2)
holds.

L 7.2. – Under the bootstrap assumption (4.49), the following estimate holds for any
t 2 Œ2m�1; 2m�,
(7.7)

k@t �̂1�2gk.t; �/ �
X

�2fC;�g

X

.k1;k2/2�
2
k

eBC;�
k;k1;k2

.t; �/kL2 � C2�mCQımCım
�
1C 22

QımCkC5kC
�
�0;

where C is some absolute constant, �1; �2 2 fL;�g and eBC;�
k;k1;k2

.t; �/ is defined as follows,

(7.8) eBC;�
k;k1;k2

.t; �/ WD

Z

R2

eitˆ
C;�.�;�/ QqC;�.� � �; �/ ̂�1�2gk1

.t; � � �/dg�
k2
.t; �/ k.�/d�:

Proof. – From (6.113) in Proposition 6.9, (6.130) in Proposition 6.13, and (7.13) in
Lemma 7.4, we know that all terms except quadratic terms inside @t �̂1�2gk.t; �/ already
satisfy the desired estimate 7.7. Hence, we only need to estimate the quadratic terms. Based
on the possible size of k1 and k2, we separate into two cases as follows.

If .k1; k2/ 2 �1
k

, i.e., jk1 � k2j � 10. – Note that the following equality holds,

�1� �
2
�B

�;�

k1;k2
.t; �/ D

X

iD1;2;3

K
�;�;1Ii
k1;k2

;

K
�;�;1I1
k1;k2

WD

Z

R2

eitˆ
�;�.�;�/�1� �

2
�

�
Qq�;�.� � �; �/dg�

k1
.t; � � �/

�dg�
k2
.t; �/d�;

K
�;�;1I2
k1;k2

WD
X

l;mDf1;2g

Z

R2

eitˆ
�;�.�;�/i t

�
� l�ˆ

�;�.�; �/
�
�n�

�
Qq�;�.� � �; �/
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� dg�
k1
.t; � � �/

�dg�
k2
.t; �/d�;

K
�;�;1I3
k1;k2

WD �

Z

R2

eitˆ
�;�.�;�/t2

�
�1�ˆ

�;�.�; �/�2�ˆ
�;�.�; �/

�
Qq�;�.� � �; �/

� dg�
k1
.t; � � �/

�dg�
k2
.t; �/d�:

From the L2 � L1 type bilinear estimate (2.5) in Lemma 2.2, the following estimate holds
for some absolute constant C ,

X

jk1�k2j�10

kK�;�;1I1
k1;k2

kL2 � C22k1
�
22kkr2

�bgk1
.t; �/kL2 C 2kkr�bgk1

.t; �/kL2 C kbgk1
.t; �/kL2

�

� ke�itƒgk2
.t/kL1 � C2�mCQım�0:

We do integration by parts in “� ” once forK�;�;1I2
k1;k2

and do integration by parts in “� ” twice

for K�;�;1I3
k1;k2

. As a result, the following estimate holds for some absolute constant C ,
X

jk1�k2j�10

X

iD2;3

kK�;�;1Ii
k1;k2

kL2

�
X

jk1�k2j�10

C22k1
� X

iD0;1;2

2ik1kri
�bgk1

.t; �/kL2 C 2ik1kri
�bgk2

.t; �/kL2

�

�
�
ke�itƒgk1

.t/kL1 C ke�itƒgk2
.t/kL1

�

C
X

jk1�k2j�10

X

j1�maxf�k1;�;j2g

C24k1ke�itƒ F �1
Œr�bgk2;j2

.t; �/�kL1kr�bgk1;j1
.t; �/kL2

C
X

jk1�k2j�10

X

j2�maxf�k2;�;j1g

C24k1ke�itƒ F �1
Œr�bgk1;j1

.t; �/�kL1kr�bgk2;j2
.t; �/kL2

� C2�mCQım�0 C
X

j1��k1;�

C2�mC4k1C2j1k'k1

j1
.x/gk1

.t/kL2

� X

j2�j1

2j2k'k2

j2
.x/gk2

.t/kL2

�

C
X

j2��k2;�

C2�mC4k1C2j2k'k2

j2
.x/gk2

.t/kL2

� X

j1�j2

2j1k'k1

j1
.x/gk1

.t/kL2

�

� C2�mCQım�0:

If .k1; k2/ 2 �2
k

, i.e., k2 � k1 � 10. – For this case we have � D C. We separate it into two
cases based on the size of k1 C k2. If k1 C k2 � �18m=19, the following estimate holds from
estimates (5.15) in Lemma 5.3,

X

iD1;2;3


X

�2fC;�g

K
C;�;1Ii
k1;k2


L2

C


X

�2fC;�g

eBC;�
k;k1;k2

.t; �/


L2

�
�� X

iD0;1;2

2ik1kri
�bgk1

.t; �/kL2

�

C 2mCk1Ck2
� X

iD0;1

2ik1kri
�bgk1

.t; �/kL2

�
C 22mC2k1C2k2kgk1

.t/kL2

�

� C minf2k1C3k2kbgk2
.t/kL1

�
C 22k1C2k2kR̂eŒv�.t; �/ k2

.�/kL1
�
; 22k1Ck2kgk2

kL2g
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� C.2k1CQım C 22mC3k1C2k2C2Qım/minf2k1Ck2 ; 23k2Cm C 2k1C4k2C2mg�0

� C2�m�ˇm�0;

where C is some absolute constant.

Now, we will rule out the case when k1 is relatively large. Same as before, we move the
derivative r� D �r� in front of bgk1

.t; � � �/ around by doing integration by parts in � such
that there is no derivative in front of bgk1

.t; � � �/. As a result, if k1 C k2 � �18m=19 and
k1 � 5ˇm, the following estimate holds for some absolute constant C ,

X

k1Ck2��18m=19;k1�5ˇm

X

iD1;2;3

kKC;�;1Ii
k1;k2

kL2 C keBC;�
k;k1;k2

.t; �/kL2

� C22mC2k1Ck2C4k1;Ckgk1
.t/kL2

�
�
kr2

�bgk2
.t; �/kL2 C 2�k2kr�bgk2

.t; �/kL2 C 2�2k2kgk2
.t/kL2

�

�
X

k1Ck2��18m=19;k1�5ˇm

C22mCˇmC2k1�k2�.N0�10/k1;C�21 � C2�m�ˇm�0:

Lastly, we consider the case when k1 C k2 � �18m=19 and k1 � 5ˇm. Note that

�1� �
2
�B

C;�
k1;k2

.t; �/�

Z

R2

eitˆ
C;�.�;�/ QqC;�.���; �/ ̂�1�2gk1

.t; ���/dg�
k2
.t; �/d� D

4X

iD1

K
C;�;2Ii
k1;k2

;

where

K
C;�;2I1
k1;k2

D

Z

R2

eitˆ
C;�.�;�/ QqC;�.� � �; �/dgk1

.t; � � �/ ̂�1�2g�
k2
.t; �/d�;

K
C;�;2I2
k1;k2

D
X

j1�k1;�;j2��k2;�

K
C;�;2I2
k1;j1;k2;j2

;

K
C;�;2I2
k1;j1;k2;j2

WD
X

.l;n/2f.1;2/;.2;1/g

Z

R2

eitˆ
C;�.�;�/

h
QqC;�.� � �; �/ ̂� lgk1;j1

.t; � � �/ ̂�ng�
k2;j2

.t; �/

C .� l� C � l� C d�l / QqC;�.� � �; �/
�

̂�ngk1;j1
.t; � � �/ĝ�

k2;j2
.t; �/

C ĝk1;j1
.t; � � �/ ̂�ng�

k2;j2
.t; �/

�

C i t.� l� C � l�/ˆ
C;�.�; �/.�n� C �n� C d�n/ QqC;�.� � �; �/ĝk1;j1

.t; � � �/ĝ�
k2;j2

.t; �/

C .�1� C �1� C d�1/.�2� C �2� C d�2/ QqC;�.� � �; �/ĝk1;j1
.t; � � �/ĝ�

k2;j2
.t; �/d�:

K
C�;2I3
k1;k2

D
X

.l;n/2f.1;2/;.2;1/g

Z

R2

eitˆ
C;�.�;�/i t.� l� C � l�/ˆ

C;�.�; �/ QqC;�.� � �; �/

�
�dg�
k2
.t; �/�̂ngk1

.t; � � �/C dgk1
.t; � � �/�̂ng�

k2
.t; �/

�
d�

K
C;�;2I4
k1;k2

D �

Z

R2

eitˆ
C;�.�;�/t2.�1� C �1� /ˆ

�;�.�; �/.�2� C �2� /ˆ
C;�.�; �/ QqC;�.� � �; �/

� dgk1
.t; � � �/dg�

k2
.t; �/d�:

From the L2 � L1 type estimate (2.5) in Lemma 2.2, the following estimate holds,
KC;�;2I1

k1;k2


L2 � C22k1k�1�2gk2

.t/kL2ke�itƒgk1
.t/kL1 � C2�mCQım�0;
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where C is some absolute constant. Now, we proceed to estimateKC;�;2I2
k1;k2

. By doing integra-
tion by parts in � many times, we can rule out the case when maxfj1; j2g � mC k1;� � ˇm.
From the L2 � L1 type estimate (2.5) in Lemma 2.2, the following estimate holds when
maxfj1; j2g � mC k1;� � ˇm,

X

maxfj1;j2g�mCk1;��ˇm

kKC;�;2I2
k1;j1;k2;j2

kL2

�
X

j1�maxfmCk1;��ˇm;j2g

C22k1
�
2j1Ck1Ck2Cj2 C 2mCk1Ck2

�

� kgk1;j1
.t/kL22�mkgk2;j2

.t/kL1

C
X

j2�maxfmCk1;��ˇm;j1g

C22k1
�
2j1Ck1Ck2Cj2 C 2mCk1Ck2

�

� kgk2;j2
.t/kL22�mkgk1;j1

.t/kL1

� C2�2m�k2C20ˇm�0 � C2�m�ˇm�0;

where C is some absolute constant.

Lastly, it remains to consider KC;�;2Ii
k1;k2

, i 2 f3; 4g. We do integration by parts in “�” once

for KC;�;2I3
k1;k2

and do integration by parts in “�” twice for KC;�;2I4
k1;k2

. As a result, the following
estimate holds,

kKC;�;2I3
k1;k2

kL2 C kKC;�;2I4
k1;k2

kL2

� C
� X

iD0;1;2

2ik2kri
�bgk2

.t; �/kL2 C 2ik1kri
�bgk1

.t; �/kL2

�

�
�
22k1ke�itƒgk1

kL1 C 2k1Ck2ke�itƒgk2
kL1

�

C
X

j1�maxf�k1;�;j2g;j2��k2;�

C2�mC3k1Ck2Cj1C2j2k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

C
X

j2�maxf�k2;�;j1g;j1��k1;�

C2�mC3k1Ck2Cj2C2j1k'k1

j1
.x/gk1

.t/kL2k'k2

j2
.x/gk2

.t/kL2

� C2�mC2QımCım=2Ck�0;

where C is some absolute constant, hence finishing the proof.

The rest of this section is devoted to prove the weighted norm estimates for the remainder
term R1 in (4.35), which will be done by using the fixed point type formulation (3.8). Before
that, we first prove the weighted norm estimates for a very general multilinear form, which
will be used as black boxes.

For gi 2 HN0�10 \Z1 \Z2, i 2 f1; : : : ; 5g, we define a multilinear form as follows,

Q
�;�;�
k;�;�

.g1.t/; g2.t/; g3.t/; g4.t/; g5.t//.�/

WD

Z

R2

Z

R2

Z

R2

Z

R2

eitˆ
�;�;�
�;� .�;�;�;�0;� 0/q�;�;��;� .�; �; �; �

0; � 0/

� bg�1.t; � � �/bg�2.t; � � �/bg�3.t; � � �0/cg�4 .t; �0 � � 0/bg�5.t; � 0/ k.�/d�
0d�0d�d�;
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where the phase ˆ�;�;��;� .�; �; �; �
0; � 0/ is defined as follows,

ˆ�;�;��;� .�; �; �; �
0; � 0/ D ƒ.j�j/��ƒ.j���j/��ƒ.j��� j/��ƒ.j���0j/��ƒ.j�0�� 0j/��ƒ.j� 0j/;

and the symbol q�;�;��;� .�; �; �; �
0; � 0/ satisfies the following estimate for some absolute

constant C ,

kq�;�;��;� .�; �; �; �
0; � 0/ k.�/ k1

.� � �/ k2
.� � �/ k3

.� � �0/ k4
.�0 � � 0/ k5

.� 0/kS 1

� C22k1C6maxfk1;:::;k5gC :

For i 2 f0; 1; 2g, we define auxiliary function spaces as follows,
(7.9)
kf keZi

WD sup
k2Z

sup
j��k�

kf k eBi
k;j
; kf k eBi

k;j
WD 2.1�ı/kCkCC.20�5i/kCCijCıj k'kj .x/Pkf kL2 :

From the above definition and the definition of Zi -norm, i 2 f1; 2g, in (1.22) and (1.23), we
know that the following estimates hold for some absolute constant C ,

X

k2Z

2kC.20�5i/kCkri
�

bfk.t; �/kL2 � Ckf keZi
; kf kZl

� Ckf keZl
;

where i 2 f0; 1; 2g, l 2 f1; 2g.

L 7.3. – Let gi .t/ 2 HN0�10 \ Z1 \ Z2, i 2 f1; : : : ; 5g. Assume that the following
estimate holds for any t 2 Œ2m�1; 2m�, m 2 ZC,

2�ımkgi .t/kHN0�10 C kgi .t/kZ1
C 2�Qımkgi .t/kZ2

� �1 WD �
5=6
0 ; i 2 f1; : : : ; 5g;

then the following estimates hold for any t 2 Œ2m�1; 2m� and any �; �; �; �; � 2 fC;�g;

(7.10)X

iD0;1;2

2.3�i/mk F �1�
Q
�;�;�
k;�;�

.g1.t/; g2.t/; g3.t/; g4.t/; g5.t//.�/
�
keZi

� C2�m=2C190ˇm�20 ;

where C is some absolute constant.

Proof. – As usual, we rule out the very high frequency case and the very low frequency
case first. Without loss of generality, we assume that k5 � k4 � k3 � k2 � k1. From the
L2�L1�L1�L1�L1 type multilinear estimate and theL1 ! L2 type Sobolev estimate,
the following estimate holds for some absolute constant C ,

X

iD0;1;2

2.3�i/mk F �1
ŒQ

�;�;�
k;�;�

.g1;k1
.t/; g2;k2

.t/; g3;k3
.t/; g4;k4

.t/; g5;k5
.t//.�/�k eBi

k;j

� C23mC.2Cı/j 230k1;CC.1�ı/kCk5kgk1
kL2ke�itƒgk2

kL1(7.11)

� ke�itƒgk3
kL1ke�itƒgk4

kL1kgk5
kL2 :

From estimate (7.11), we can rule out the case when k1;C � .3m C 2j /=.N0 � 45/ or
k5 � �3m� 2.1C 2ı/j , or k � �3m� 2.1C 2ı/j . Hence it would be sufficient to consider
fixed k; k1; k2; k3; k4, and k5 in the following range,

(7.12) � 3m � 2.1C 2ı/j � k5; k � k1 C 2 � .3mC 2j /=.N0 � 45/:
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From now on, k; ki , i 2 f1; : : : ; 5g, are restricted inside the range (7.12). We first consider
the case when j � .1Cı/

�
mCk1;C

�
Cˇm. For this case, we do spatial localization for inputs

“gk1
” and “gk2

”. Note that the following estimate holds for the case we are considering,

2j�10 �
ˇ̌
r�

�
x � � C tˆ�;�;��;� .�; �; �; �

0; � 0/
�ˇ̌
'kj .x/ � 2jC10:

Therefore, by doing integration by parts in “�” many times, we can rule out the case when
minfj1; j2g � j � ıj � ım, where j1 and j2 are the spatial concentrations of gk1

and gk2

respectively. For the case when minfj1; j2g � j � ıj � ım, the following estimate holds from
the L2 � L1 � L1 � L1 � L1 type multilinear estimate,

X

minfj1;j2g�j�ıj�ım

X

iD0;1;2

2.3�i/mk F �1�
Q
�;�;�
k;�;�

.g1;k1;j1
.t/; g2;k2;j2

.t/;

g3;k3
.t/; g4;k4

.t/; g5;k5
.t//.�/

�
k eBi

k;j

�
X

iD0;1;2

X

minfj1;j2g�j�ıj�ım

C2.3�i/mCijCıjC3ˇmC.3�ı/k1C30k1;C

� kg1;k1;j1
kL22k2kg2;k2;j2

kL2ke�itƒg3;k3
kL1ke�itƒg4;k4

kL1ke�itƒg5;k5
kL1

� C2�m=2C50ˇm�20 ;

where C is some absolute constant.

It remains to consider the case when j � .1 C ı/
�
m C k1;C

�
C ˇm. Recall (7.12). Note

that j now is bounded, we have �6m � k5 � k1 � 5ˇm. We split into three cases based on
sizes of the difference between k1 and k2 and the difference between k2 and k3 as follows.

If k2 � k1 � 10. – For this case, we have a good lower bound for r�ˆ
�;�;�
�;� .�; �; �; �

0; � 0/.
Hence, we can do integration by parts in “�” many times to rule out the case when
maxfj1; j2g � m C k1;� � ˇm. From the L2 � L1 � L1 � L1 � L1 type multilinear
estimate, the following estimate holds for some absolute constant C ,

X

maxfj1;j2g�mCk1;��ˇm

X

iD0;1;2

2.3�i/mk F �1�
Q
�;�;�
k;�;�

.g1;k1;j1
.t/; g2;k2;j2

.t/;

g3;k3
.t/; g4;k4

.t/; g5;k5
.t//.�/

�
k eBi

k;j

�
X

j1�maxf�k1;�;j2;mCk1;��ˇmg

C23mC4ˇmC3k1C30k1;Ckg1;k1;j1
kL2ke�itƒg2;k2;j2

kL1

� ke�itƒg3;k3
kL1ke�itƒg4;k4

kL1ke�itƒg5;k5
kL1

C
X

j2�maxf�k2;�;j1;mCk1;��ˇmg

C23mC4ˇmC3k1C30k1;CCk4Ck5kg2;k2;j2
kL2

� ke�itƒg1;k1;j1
kL1ke�itƒg3;k3

kL1kg4;k4
kL2kg5;k5

kL2

� C2�m=2C180ˇm�20 :

If jk1 � k2j � 10 and k3 � k1 � 20. – Note that, r�ˆ
�;�;�
�;� .�; �; �; �

0; � 0/ has a good lower
bound for the case we are considering. Hence, by doing integration by parts in � , we can
rule out the case when maxfj2; j3g � m C k2;� � ˇm, where j2 and j3 are the spatial
concentrations of inputs gk2

and gk3
respectively. From the L2 � L1 � L1 � L1 � L1
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type multilinear estimate, the following estimate holds for some absolute constant C ,
X

maxfj2;j3g�mCk2;��ˇm

X

iD0;1;2

2.3�i/mk F �1�
Q
�;�;�
k;�;�

.g1;k1
.t/; g2;k2;j2

.t/; g3;k3;j3
.t/;

g4;k4
.t/; g5;k5

.t//.�/
�
k eBi

k;j

�
X

j2�maxf�k2;�;j3;mCk1;��ˇmg

C23mC4ˇmC3k1C30k1;Ckg3;k3;j3
kL2

� ke�itƒg2;k2;j2
kL1ke�itƒg1;k1

kL1ke�itƒg4;k4
kL1ke�itƒgk5

kL1

C
X

j3�maxf�k3;�;j2;mCk1;��ˇmg

C23mC4ˇmC3k1C30k1;CCk4Ck5kg3;k3;j3
kL2

� ke�itƒg2;k2;j2
kL1ke�itƒg1;k1

kL1kg4;k4
kL2kg5;k5

kL2

� C2�m=2C180ˇm�20 :

If jk1�k2j � 10 and jk2�k3j � 10. – This case is straightforward. By the L2�L1 �L1 �

L1 �L1 type multilinear estimate, the following estimate holds for some absolute constant
C ,

X

iD0;1;2

2.3�i/mk F �1�
Q
�;�;�
k;�;�

.g1;k1
.t/; g2;k2

.t/; g3;k3
.t/; g4;k4

.t/; g5;k5
.t//.�/

�
k eBi

k;j

� C23mC4ˇmC3k1C30k1;Ckg5;k5
.t/kL2ke�itƒg1;k1

.t/kL1ke�itƒg2;k2
.t/kL1

� ke�itƒg3;k3
.t/kL1ke�itƒg4;k4

.t/kL1

� C2�m=2C180ˇm�20 :

To sum up, our desired estimate (7.10) holds, hence finishing the proof.

With the multilinear estimate (7.10) in the above lemma, now we are ready to estimate the
Zi -norm of the quintic and higher order remainder term R1, i 2 f1; 2g.

L 7.4. – Under the bootstrap assumption (4.49), there exists some absolute
constant C such that the following estimate holds for the profile of the remainder term R1,

(7.13) sup
t2Œ2m�1;2m�

X

iD1;2

keitƒ R1kZi
� C2�3m=2C200ˇm�0:

Proof. – Recall the definition ofu D QƒhCi Q and the definition of v in (4.20). To estimate
the weighted norms of the reminder term eitƒ R1, from estimate (7.10) in Lemma 7.3,
we know that it would be sufficient to estimate the weighted norms of eitƒƒ�5ŒB.h/ � D

eitƒƒ�5Œ@z'�.t/jzD0
.

Recall the fixed point type formulation for rx;z' in (3.8). We decomposeƒ�5Œgi .z/� into
two parts: one of them doesn’t depend on ƒ�5Œrx;z'� while the other part does depend
(linearly depend) on ƒ�5Œrx;z'�. For the first part, estimating (7.10) in Lemma 7.3 is very
sufficient. Hence, it remains to estimate the second part. As usual, by doing integration by
parts in � many times, we can rule out the case when j � .1Cı/

�
maxfmCk1;C;�k�g

�
Cˇm.
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If j � .1C ı/
�

maxfmC k1;C;�k�g
�

C ˇm, from the estimate (7.10) in Lemma 7.3 and the
L2 �L1 type bilinear estimate, the following estimate holds for some absolute constant C ,
X

iD1;2

keitƒƒ�5Œrx;z'�.t/kL1
z Zi

� C2�3m=2C200ˇm�0

C C22mC3ˇm
�
kƒ�6Œrx;z'�.t; �/kL1

z H15ke�itƒgkW 20;0 C kgkH20kjrjƒ5Œrx;z'�kL1
z H15

�(7.14)

C C23ˇmkgkH20kƒ�5Œrx;z'�.t; �/kL1
z H20 :

Similar to the proof of (3.17) in Lemma 3.2, the following estimate holds for i 2 f5; 6g;

kƒ�i Œrx;z'�kL1
z H20

� C
�
k.h;  /kW 30;1k.h;  /ki�2

W 30;0k.h;  /kH30 C k.h;  /kW 30kƒ�i Œrx;z'�kL1
z H20

�
;

where C is some absolute constant. Under the bootstrap assumption (4.49), the above esti-
mate further implies the following estimate,

(7.15) kƒ�i Œrx;z'�kL1
z H20

� 2Ck.h;  /kW 30;1k.h;  /ki�2
W 30;0k.h;  /kH30 � C2�im=2Cˇm�20 ; i 2 f5; 6g:

Therefore, from the estimates (7.14) and (7.15) and the estimate (7.10) in Lemma 7.3, we
obtain the following estimate,

(7.16)
X

iD1;2

keitƒƒ�5Œrx;z'�.t/kL1
z Zi

� C2�3m=2C200ˇm�0;

where C is some absolute constant, hence finishing the proof of the desired estimate (7.13).
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QUADRIC RANK LOCI ON MODULI OF CURVES

AND K3 SURFACES

 G FARKAS  R RIMÁNYI

A. – Assuming that � W Sym2. E /! F is a morphism of vector bundles on a variety X ,
we compute the class of the locus in X where Ker.�/ contains a quadric of prescribed rank. Our
formulas have many applications to moduli theory: (i) we find a simple proof of Borcherds’ result that
the Hodge class on the moduli space of polarized K3 surfaces of fixed genus is of Noether-Lefschetz
type, (ii) we construct an explicit canonical divisor on the Hurwitz space parametrizing degree k covers
of P1 from curves of genus 2k � 1, (iii) we provide a closed formula for the Petri divisor on M g of
canonical curves which lie on a rank 3 quadric and (iv) we construct myriads of effective divisors of
small slope on M g .

R. – Étant donné deux fibrés vectoriels E et F sur une variété X et une application de
Sym2. E / dans F , nous calculons la classe de cohomologie du lieu en X où le kernel de cette application
contient une quadrique de rang donné. Nos formules ont plusieurs applications à la théorie d’espaces
des modules: (i) nous trouvons une preuve simple du théorème de Bocherds qui établit que la classe
de Hodge dans l’espace de modules de surfaces K3 polarisés avec genre fixé, est du type Noether-
Lefschetz, (ii) nous construisons un diviseur canonique explicite dans l’espace d’Hurwitz paramétrisant
les applications de degré k de courbes du genre 2k�1 sur la droite projective, (iii) nous fournissons une
formule fermée pour le diviseur de Petri dans l’espace de modules de courbes consistant de courbes
canoniques contenues d’une quadrique de rang 3 et (iv) nous construisons une myriade de diviseurs de
petite pente dans M g .

1. Introduction

Let X be an algebraic variety and let E and F be two vector bundles on X having ranks
e and f respectively. Assume we are given a morphism of vector bundles

� W Sym2. E /! F :

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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946 G. FARKAS AND R. RIMÁNYI

For a positive integer r � e, we define the subvariety of X consisting of points for which
Ker.�/ contains a quadric of corank at least r , that is,

†
r

e;f .�/ WD
n
x 2 X W 9 0 ¤ q 2 Ker.�.x// with rk.q/ � e � r

o
:

Since the codimension of the variety of symmetric e�e-matrices of corank r is equal to
�

rC1
2

�
,

it follows that the expected codimension of the locus †
r

e;f .�/ is equal to
�

rC1
2

�
�
�

eC1
2

�
Cf C1:

A main goal of this paper is to explicitly determine the cohomology class of this locus in
terms of the Chern classes of E and F . This is achieved for every e; f and r in Theorem 4.4,
using a localized Atiyah-Bott type formula. Of particular importance in moduli theory is the
case when this locus is expected to be a divisor, in which case our general formula has a very
simple form:

T 1.1. – We fix integers 0 � r � e and set f WD
�

eC1
2

�
�
�

rC1
2

�
. Suppose � W

Sym2. E / ! F is a morphism of vector bundles over X . The class of the virtual divisor
†

r

e;f .�/ is given by the formula

Œ†
r

e;f .�/� D Ar
e

�
c1. F / �

2f

e
c1. E /

�
2 H 2.X;Q/;

where

Ar
e WD

�
e
r

��
eC1
r�1

�
� � �
�

eCr�1
1

�
�

1
0

��
3
1

��
5
2

�
� � �
�

2r�1
r�1

� :

The quantity Ar
e is the degree of the variety of symmetric e� e-matrices of corank at least

r inside the projective space of all symmetric e � e matrices, see [31].

Before introducing a second type of degeneracy loci, we give a definition. If V is a vector
space, a pencil of quadrics ` � P.Sym2.V // is said to be degenerate if the intersection of `

with the discriminant divisor D.V / � P.Sym2.V // is non-reduced. We consider a morphism
� W Sym2. E / ! F such that all kernels are expected to be pencils of quadrics and impose
the condition that the pencil be degenerate.

T 1.2. – We fix integers e and f D
�

eC1
2

�
� 2 and let � W Sym2. E /! F be a

morphism of vector bundles. The class of the virtual divisor Dp WD fx 2 X W Ker.�.x// is a
degenerate pencilg equals

ŒDp� D .e � 1/
�
ec1. F / � .e2 C e � 4/c1. E /

�
2 H 2.X;Q/:

Theorems 1.1 and 1.2 are motivated by fundamental questions in moduli theory and in
what follows we shall discuss some of these applications, which are treated at length in the
paper.
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Tautological classes on moduli of polarized K3 surfaces. – Let F g be the moduli space of
quasi-polarized K3 surfaces ŒX; L� of genus g, that is, satisfying L2 D 2g � 2. We denote
by � W X ! F g the universal K3 surface and choose a polarization line bundle L on X .
We consider the Hodge class

� WD c1

�
��.!�/

�
2 CH 1. F g/:

Note that CH 1. F g/ Š H 2. F g ;Q/. Inspired by Mumford’s definition of the � classes
on M g , for integers a; b � 0, Marian, Oprea and Pandharipande [39] introduced the classes
�a;b 2 CH aC2b�2. F g/ whose definition we recall in Section 9. In codimension 1, there are
two such classes, namely

�3;0 WD ��

�
c1. L /3

�
and �1;1 WD ��

�
c1. L / � c2. T �/

�
2 CH 1. F g/:

Both these classes depend on the choice of L , but the following linear combination

 WD �3;0 �
g � 1

4
�1;1 2 CH 1. F g/

is intrinsic and independent of the polarization line bundle.
For a general element ŒX; L� 2 F g one has Pic.X/ D Z � L. Imposing the condition

that Pic.X/ be of rank at least 2, one is led to the notion of Noether-Lefschetz (NL) divisor
on F g . For non-negative integers h and d , we denote by Dh;d the locus of quasi-polarized
K3 surfaces ŒX; L� 2 F g such that there exists a primitive embedding of a rank 2 lattice

Z � L˚ Z �D � Pic.X/;

where D 2 Pic.X/ is a class such that D � L D d and D2 D 2h � 2. From the Hodge Index
Theorem Dh;d is empty unless d 2 � 4.g� 1/.h� 1/ > 0. Whenever non-empty, Dh;d is pure
of codimension 1.

Maulik and Pandharipande [40] conjectured that Pic. F g/ is spanned by the Noether-
Lefschetz divisors Dh;d . This has been recently proved in [6] using deep automorphic tech-
niques. Note that the rank of Pic. F g/ can become arbitrarily large and understanding all
the relations between NL divisors remains a daunting task. Borcherds [8] using automorphic
forms on O.2; n/ has shown that the Hodge class � is supported on NL divisors. A second
proof of this fact, via Gromov-Witten theory, is due to Pandharipande and Yin, see [46]
Section 7. Using Theorem 1.1, we find very simple and explicit Noether-Lefschetz represen-
tatives of both classes � and  . Our methods are within the realm of algebraic geometry and
we use no automorphic forms.

We produce relations among tautological classes on F g using the projective geometry of
embedded K3 surfaces of genus g. We study geometric conditions that single out only NL
special K3 surfaces. Let us first consider the divisor in F g consisting of K3 surfaces which
lie on a rank 4 quadric. We fix a K3 surface ŒX; L� 2 F g with g � 4 and let 'L W X ! Pg be
the morphism induced by the polarization L. One computes h0.X; L˝2/ D 4g�2. Assuming
that the image X � Pg is projectively normal (which holds under very mild genericity
assumptions, see again Section 9), we observe that the space IX;L.2/ of quadrics containing
X has the following dimension:

dim IX;L.2/ D dim Sym2H 0.X; L/ � h0.X; L˝2/ D

 
g � 2

2

!
:
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948 G. FARKAS AND R. RIMÁNYI

This equals the codimension of the space of symmetric .gC 1/� .gC 1/ matrices of rank 4.
Therefore the condition that X � Pg lie on a rank 4 quadric is expected to be divisorial
on F g . This expectation is easily confirmed in Proposition 9.1, and we are led to the divisor:

Drk4
g WD

n
ŒX; L� 2 F g W 9 0 ¤ q 2 IX;L.2/; rk.q/ � 4

o
:

T 1.3. – Set g � 4. The divisor Drk4
g is an effective combination of NL divisors

and its class is

ŒDrk4
g � D A

g�3
gC1

�
.2g � 1/�C

2

g C 1

�
2 CH 1. F g/:

In order to get a second relation between � and  , we distinguish depending on the parity
of g. For odd genus g, we obtain a second relation between � and  by considering the locus
of K3 surfaces ŒX; L� 2 F g for which the embedded surface 'L W X ! Pg has a non-trivial
middle linear syzygy. In terms of Koszul cohomology groups, we set

Koszg WD
n
ŒX; L� 2 F g W K g�1

2 ;1
.X; L/ ¤ 0

o
:

For instance Kosz3 consists of quartic K3 surfaces for which the map Sym2H 0.X; L/ !

H 0.X; L˝2/ is not an isomorphism. Voisin’s solution [52] of the generic Green Conjecture
on syzygies of canonical curves ensures that Koszg is a proper locus of NL type. She proved
that for a K3 surface ŒX; L� 2 F g with Pic.X/ D Z � L, the vanishing

K g�1
2 ;1

.X; L/ D 0

holds, or equivalently, ŒX; L� … Koszg . We realize Koszg as the degeneracy locus of a
morphism of two vector bundles of the same rank over F g , whose Chern classes can be
expressed in terms of �1;1; �3;0 and �. We then obtain the following formula (see Theorem 9.5)

(1) ŒKoszg � D
4

g � 1

 
g � 4

g�3
2

!� .g � 1/.g C 7/

2
�C 

�
C ˛ � ŒD1;1� 2 CH 1. F g/;

where recall that D1;1 is the NL divisor of K3 surfaces ŒX; L� for which the polarization L is
not globally generated. Theorems 1.3 and 9.5 then quickly imply (in the case of odd g):

T 1.4. – Both tautological classes � and  on F g are of Noether-Lefschetz type.

Theorem 1.4 is proved for even genus g � 8 in Section 10 using two further geometric
relations between tautological classes (in the spirit of Theorem 1.3) involving the geometry
of rank 2 Lazarsfeld-Mukai bundle EL one associates canonically to each NL-general polar-
ized K3 surface ŒX; L� 2 F g . The vector bundle EL satisfies det.EL/ D L and h0.X; EL/ D
g
2
C2 and has already been put to great use in [37], [42], or [52]. A direct proof of Theorem 1.4

when g � 10 has already appeared in [27].

In Section 11 we discuss an application of Theorem 1.3 to the Geometric Invariant Theory
of K3 surfaces. The second Hilbert point ŒX; L�2 of a suitably general polarized K3 surface
ŒX; L� is defined as the quotient

ŒX; H�2 WD
h
Sym2H 0.X; L/ �! H 0.X; L˝2/ �! 0

i
2 Gr

�
Sym2H 0.X; H/; 4g � 2

�
:

We establish the following result:
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T 1.5. – The second Hilbert point of a polarized K3 surface ŒX; L� 2 F g nD
rk4
g is

semistable.

Note that a similar result at the level of canonical curves has been obtained in [19].

The Petri class on M g . – A non-hyperelliptic canonical curve C � Pg�1 of genus g is
projectively normal and lies on precisely

�
g�2

2

�
quadrics. This number equals the codimension

of the locus of symmetric g � g-matrices of rank 3. The condition that C lies on a rank 3

quadric in its canonical embedding is divisorial and leads to the Petri divisor GPg of curves
ŒC � 2 M g , having a pencil A such that the Petri map

�.A/ W H 0.C; A/˝H 0.C; !C ˝ A_/! H 0.C; !C /

is not injective. Using Theorem 1.1, we establish the following result:

T 1.6. – The class of the compactified Petri divisor gGPg on M g is given by the
formula

ŒgGPg � D Ag�3
g

�7g C 6

g
� � ı

�
2 CH 1. M g/:

Here � is the Hodge class on M g and ı denotes the total boundary divisor. The Petri
divisor splits into components Dg;k , where bgC2

2
c � k � g � 1, depending on the degree

of the (base point free) pencil A for which the Petri map �.A/ is not injective. With a few
notable exceptions when k is extremal, the individual classes ŒDg;k � 2 CH 1. M g/ are not
known. However, we predict a simple formula for the multiplicities of Dg;k in the expression
of ŒgGPg �, see Conjecture 6.3.

Effective divisors on Hurwitz spaces. – We fix an integer k � 4 and denote by H k the
Hurwitz space parametrizing degree k covers Œf W C ! P1� from a smooth curve of
genus 2k � 1. The space H k admits a compactification H k by means of admissible covers,
which is defined to be the normalization of the space constructed by Harris and Mumford in
[30]. We refer to [1] for details. We denote by � W H k ! M 2k�1 the morphism assigning to
each admissible cover the stabilization of the source curve. The image �. H k/ is the divisor

M
1

2k�1;k consisting of k-gonal curves in M 2k�1, which was studied in great detail by Harris

and Mumford [30] in the course of their proof that M g is general for large genus. The
birational geometry of H k is largely unknown, see however [51] for some recent results.

Let us choose a general point Œf W C ! P1� 2 H k and denote by A WD f �. OP1.1// 2 W 1
k

.C /

the pencil inducing the cover. We consider the residual linear system L WD !C ˝ A_ 2 W k�1
3k�4

.C /

and denote by 'L W C ! Pk�1 the induced map. Under these genericity assumptions
L is very ample, H 1.C; L˝2/ D 0 and the image curve 'L.C / is projectively normal. In
particular,

dim IC;L.2/ D dim Sym2H 0.C; L/ � h0.C; L˝2/ D

 
k � 3

2

!
;

which equals the codimension of the space of symmetric k � k matrices of rank 4. Imposing
the condition that C � Pk�1 be contained in a rank 4 quadric, we obtain a (virtual) divisor

Hrk4
k WD

n
ŒC; A� 2 H k W 9 0 ¤ q 2 IC;!C ˝A_.2/; rk.q/ � 4

o
:
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950 G. FARKAS AND R. RIMÁNYI

The condition ŒC; A� 2 Hrk4
k

amounts to representing the canonical bundle !C as a sum

(2) !C D A˝ A1 ˝ A2

of three pencils, that is, h0.C; A1/ � 2 and h0.C; A2/ � 2. To show that Hrk4
k

is indeed a
divisor, it suffices to exhibit a point ŒC; A� 2 H k such that (2) cannot hold. To that end,
we take a general polarized K3 surface ŒX; L� 2 F 2k�1 carrying an elliptic pencil E with
E � L D k (that is, a general element of the NL divisor D1;k � F 2k�1). If C 2 jLj is a
smooth curve in the polarization class and A D OC .E/ 2 W 1

k
.C /, we check that one has an

isomorphism IC;!C ˝A_.2/ Š IX;L.�E/.2/ between the spaces of quadrics containing C and
X � Pk�1 respectively. Showing that this latter space contains no rank 4 quadric becomes a
lattice-theoretic problem inside Pic.X/, which we solve.

We summarize our results concerning Hrk4
k

. We denote by � WD ��.�/ the Hodge class

on H k and by D0 the boundary divisor on H k whose general point corresponds to a
1-nodal singular curve C of genus 2k � 1 and a locally free sheaf A of degree k with
h0.C; A/ � 2 (see Section 12 for details).

T 1.7. – For each k � 6, the locus Hrk4
k

is an effective divisor on H k . Away from
the union of the boundary divisors ��1.�i / where i D 1; : : : ; k � 1, one has the relation

KHk
D

k � 12

k � 6

�
7� � ŒD0�

�
C

k

.k � 6/Ak�4
k

ŒH
rk4

k �:

Theorem 1.7 follows from applying Theorem 1.1 in the context of Hurwitz spaces to

compute the class ŒH
rk4

k � in terms of certain tautological classes on H k , see Theorem 12.6,
then comparing with the formula we find for KHk

in terms of those same classes. Proving

that Hrk4
k

is indeed a genuine divisor on H k is achieved in Theorem 12.5.

We mention the following consequence to the birational geometry of H k .

T 1.8. – For k > 12, there exists an effective Q-divisor class E on H k supported
on the divisor

Pk�1
iD1 ��.�i / of curves of compact type, such that the class KHk

CE is big.

This result should be compared to the classical result [30] asserting that M 2k�1 is of
general type for k � 13, whereas the Kodaira dimension of M 23 is at least 2, see [14].
Assuming that the singularities of H k impose no adjunction conditions (something one
certainly expects), Theorem 1.8 should imply that for k > 12 the Hurwitz space H k is a
variety of general type.

Effective divisors of small slope on M g . – Theorem 1.1 has multiple applications to the
birational geometry of the moduli space of curves. Recall that if �; ı0; : : : ; ıb g

2 c denote the

standard generators of Pic. M g/, then the slope of an effective divisor D � M g such
that �i * supp.D/ for all i D 0; : : : ; bg

2
c, is defined as s.D/ WD a

mini bi
� 0, where

ŒD� D a� �
Pb g

2 c

iD0 bi ıi 2 Pic. M g/. The slope of the moduli space, defined as the quantity

s. M g/ WD inf
n
s.D/ W D is an effective divisor of M g

o

is a fundamental invariant encoding for instance the Kodaira dimension of the moduli space.
For a long time it was conjectured (see [29]) that s. M g/ � 6 C 12

gC1
, with equality if and
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only if g C 1 is composite and D is a Brill-Noether divisor on M g consisting of curves
ŒC � 2 M g having a linear series L 2 W r

d
.C / with Brill-Noether number �.g; r; d/ D �1.

This conjecture has been disproved in [15], [16] and [35], where for an infinite series of genera
g effective divisors of slope less than 6C 12

gC1
were constructed. At the moment there is no

clear conjecture concerning even the asymptotic behavior of s. M g/ as g is large, see also
[45]. For instance, it is not clear that liminfg!1s. M g/ > 0.

Imposing the condition that a curve C of genus g lies on a quadric of prescribed rank
in one of the embeddings 'L W C ,! Pr given by a linear system L 2 W r

d
.C / with Brill-

Noether number �.g; r; d/ WD g � .r C 1/.g � d C r/ D 0, we obtain an infinite sequence of
effective divisors on M g of very small slope (see condition (20) for the numerical condition g

has to satisfy). Theorems 7.1 and 7.2 exemplify two infinite subsequences of such divisors
on M .4`�1/.9`�1/ and M 4.3`C1/.2`C1/ respectively, where ` � 1. We mention the following

concrete example on M 24.

T 1.9. – The following locus defined as

D7;3 WD
n
ŒC � 2 M 24 W 9 L 2 W 7

28.C /; 9 0 ¤ q 2 IC;L.2/; rk.q/ � 6
o

is an effective divisor on M 24. The slope of its closure D7;3 in M 24 is given by s.D7;3/ D
34423
5320

< 6C 12
25

:

Theorem 7.3 establishes that D7;3 is a genuine divisor on M 24. We show using Macaulay
that there exists a smooth curve C � P7 of genus 24 and degree 28 which does not lie on a
quadric of rank at most 6 in P7. Using the irreducibility of the space of pairs ŒC; L�, where
C is a smooth curve of genus 24 and L 2 W 7

28.C /, we conclude that D7;3 ¤ M 24, hence
D7;3 is indeed a divisor on M 24.

Theorem 1.2 has applications to the slope of M 12. A general curve ŒC � 2 M 12 has a
finite number of embeddings C � P5 of degree 15. They are all residual to pencils of minimal
degree. The curve C � P5 lies on a pencil of quadrics and we impose the condition that one
of these pencils be degenerate.

T 1.10. – The locus of smooth curves of genus 12 having a degenerate pencil of
quadrics

Dp12 WD
n
ŒC � 2 M 12 W 9 L 2 W 5

15.C / with P
�
IC;L.2/

�
degenerate

o

is an effective divisor. The slope of its closureDp12 inside M 12 equals s.Dp12/ D 373
54

< 6C 12
13

.
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2. Equivariant fundamental classes, degeneracy loci

2.1. Equivariant fundamental class

We consider a connected algebraic group G acting on a smooth variety V , and let † be an
invariant subvariety. Then † represents a fundamental cohomology class—denoted by Œ†�

or Œ† � V �-–in the G-equivariant cohomology of V , namely

Œ†� 2 H
2codim.†�V /
G .V /:

Throughout the paper we use cohomology with complex coefficients. There are several equiv-
alent ways to define this fundamental cohomology class, see for example [34], [12], [22], [41,
8.5], [24] for different flavors and different cohomology theories.

A particularly important case is when V is a vector space and † is an invariant cone.
Then Œ†� is an element of H �

G.vector space/ D H �
G.point/ D H �.BG/, that is, Œ†� is a

G-characteristic class. This characteristic class has the following well known “degeneracy
locus” interpretation. Let E ! M be a bundle with fiber V and structure group G. Since
† is invariant under the structure group, the notion of belonging to † makes sense in every
fiber. Let †.E/ be the union of †’s of all the fibers. Let s be a sufficiently generic section. Then
the fundamental cohomology class Œs�1.†.E// �M � of the “degeneracy locus” s�1.†.E//

in the ordinary cohomology H �.M / is equal to Œ†� (as a G-characteristic class) of the bundle
E !M .

2.2. Examples

We recall two well known formulas for some equivariant cohomology classes. The second
one will be used in Sections 4 and 5.

D 2.1. – For variables ci and a partition � D .�1 � �2 � � � � � �r / let

s�.c/ D det.c�i Cj �i /i;j D1;:::;r

be the Schur polynomial. By convention c0 D 1 and c<0 D 0.

E 2.2. – The Giambelli-Thom-Porteous formula. Fix r � n, ` � 0 and let �r �

Hom.Cn;CnC`/ be the space of linear maps having an r-dimensional kernel. It is invariant
under the group GLn.C/ �GLnC`.C/ acting by .A; B/ � � D B ı � ı A�1. One has [47]

Œ�r � D s�.c/;

where

� D .r C `; : : : ; r C `„ ƒ‚ …
r

/; 1C c1t C c2t2 C � � � D
1C b1t C b2t2 C � � � C bnC`tnC`

1C a1t C a2t2 C � � � C antn
:

Here ai (respectively bi ) is the i th universal Chern class of GLn.C/ (respectively GLnC`.C/).

E 2.3. – Symmetric 2-forms. Let r � n and let †r D †r
n � Sym2.Cn/ be the

collection of symmetric 2-forms having a kernel of dimension r . It is invariant under the
group GLn.C/ acting by A �M D AMAT . One has [33, 49, 31] that

Œ†
r

n� D 2rs.r;r�1;:::;2;1/.c/;

where ci is the i th universal Chern class of GLn.C/.
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3. Affine, projective, and restricted projective fundamental classes

In this section we recall the formalism of comparing equivariant fundamental classes in
affine and projective spaces.

Consider the representation of the torus T D .C�/k acting by

.a1; : : : ; ak/ � .x1; : : : ; xn/ D .

kY

iD1

a
s1;i

i x1;

kY

iD1

a
s2;i

i x2; : : : ;

kY

iD1

a
sn;i

i xn/:

We will assume that the representation “contains the scalars”, that is, there exist integers
r1; : : : ; rk and r such that

kX

iD1

ri sj;i D r; for all j D 1; : : : ; n:

In other words, the action of .br1 ; : : : ; brk / 2 T (b 2 C�) on Cn is multiplication by br .

Under this assumption we have that the non-zero orbits of the linear representation, and
the orbits of the induced action on Pn�1 are in bijection. We will compare the (T -equivariant)
fundamental class of an invariant subvariety † � Cn with the (T -equivariant) fundamental
class of the projectivization P.†/ � Pn�1. For this we need some notation.

The fundamental class Œ†� of † is an element of H �
T .Cn/ D H �.BT / D CŒ˛1; : : : ; ˛k �,

where ˛i is the equivariant first Chern class of the C�-action corresponding to the i th factor.
Hence we can consider Œ†� as a polynomial in the ˛i ’s.

Let wj D
Pk

iD1 sj;i ˛i , j D 1; : : : ; n be the weights of the representation above. Then we
have

H �
T .Pn�1/ D H �.BT /Œ��=

nY

j D1

.� � wj /;

where � is the first Chern class of the tautological line bundle over Pn�1.

P 3.1. – [20, Thm. 6.1] Let † be a T -invariant subvariety of Cn. For the
T -equivariant fundamental class of P.†/ we have

ŒP.†/� D Œ†�j˛i 7!˛i �
ri
r �

2 H �
T .Pn�1/:

Here, and in the future, by p.˛i /j˛i 7!ˇi

we mean the substitution of ˇi into the variables

˛i of the polynomial p.˛i /.

We shall need a further twist on this notion. Let Fj be the j th coordinate line of Cn, which
is a fixed point of the T -action on Pn�1. We have the restriction map H �

T .Pn�1/! H �
T .Fj / D

H �.BT /, which we denote by p 7! pjFj

.

C 3.2. – We have

ŒP.†/�jFj
D Œ†�j˛i 7!˛i �

ri
r wj

2 H �.BT /:

Proof. – The restriction homomorphism H �
T .Pn�1/ ! H �

T .Fj / is given by substituting
wj for �.
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E 3.3. – Let .C�/3 act onC2 by .a1; a2; a3/�.x1; x2/ D .a3
1a�1

2 a3�x1; a1a2
2a2

3 �x2/.
The numbers r1 D 2; r2 D 1; r3 D 1; r D 6 prove that this action contains the scalars. Let
† be the x1-axis. Then Œ†� is the normal Euler class, that is Œ†� D ˛1C2˛2C2˛3. According
to Proposition 3.1 we have

ŒP.†/� D ˛1 C 2˛2 C 2˛3j˛1 7!˛1� 1
3 �;˛2 7!˛2� 1

6 �;˛3 7!˛3� 1
6 �
D ˛1 C 2˛2 C 2˛3 � �:

According to Corollary 3.2 the two fixed point restrictions of this class are

ŒP.†/�j.1W0/
D ˛1 C 2˛2 C 2˛3j˛1 7!˛1� 1

3 .3˛1�˛2C˛3/;˛2 7!˛2� 1
6 .3˛1�˛2C˛3/;˛3 7!˛3� 1

6 .3˛1�˛2C˛3/

D �2˛1 C 3˛2 C ˛3

and

ŒP.†/�j.0W1/
D ˛1 C 2˛2 C 2˛3j˛1 7!˛1� 1

3 .˛1C2˛2C2˛3/;˛2 7!˛2� 1
6 .˛1C2˛2C2˛3/;˛3 7!˛3� 1

6 .˛1C2˛2C2˛3/

D 0:

The vanishing of the second one is expected since the x2-axis is not in †, and the first one
can be verified by seeing that the action on P1 in the coordinate t D x2=x1 is

.a1; a2; a3/:t D
a1a2

2a2
3

a3
1a�1

2 a3

� t D a�2
1 a3

2a3 � t:

The calculations of this example were deceivingly simple caused by the fact that † was
smooth.

4. Loci characterized by singular vectors in the kernel

4.1. The †r
e;f

locus

For positive integers e; f , let E WD Ce and F WD Cf be the standard representations
of GLe.C/ and GLf .C/ respectively. Consider the induced action of G D GLe.C/�GLf .C/

on Hom.Sym2E; F /. Define the locus

†r
e;f D

n
� 2 Hom.Sym2E; F / W 9 q 2 Sym2E with dim.Ker q/ D r and �.q/ D 0

o
;

which is invariant under the G-action. Using the notation of Example 2.3 we have

†r
e;f D

n
� 2 Hom.Sym2E; F / W 9 0 6D q 2 †r

e \Ker.�/
o
:

We will assume that d WD
�

eC1
2

�
�f is positive, that is, the condition above is not that � has

a kernel, but rather that this kernel intersects †r
e � Sym2E. We shall also assume that this

intersection is generically at most 0-dimensional, that is, d � codim.†r
e � Sym2E/ D

�
rC1

2

�
.

In this section our goal is to find a formula for the G-equivariant fundamental class

Œ†r
e;f

� 2 H �
G

�
Hom.Sym2E; F /

�
D CŒ˛1; : : : ; ˛e; ˇ1; : : : ; f̌ �Se�Sf :

Here ˛i are the Chern roots of GLe.C/ (that is, their elementary symmetric polynomials are
the Chern classes), and ˇi are the Chern roots of GLf .C/ respectively.

The calculation—which will complete the proof of Theorem 1.1—is done via torus-
equivariant localization. To bypass complications caused by a complete resolution of †r

e;f
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we will use a method of [5, 23] which requires only a partial desingularization exhibited as a
vector bundle over a compact space.

4.2. A partial resolution

Let F be the partial flag manifold parametrizing chains of linear subspaces C � D �

Sym2E, where dim C D 1 and dim D D d . Recall that in Example 2.3 we defined the subset
†r D †r

e � Sym2E. Define

I D
n�

.C; D/; �
�
2 F �Hom.Sym2E; F / W C � †r and �jD D 0

o
and

Y D f.C; D/ 2 F W C � †rg

and let p W I ! Y be the map forgetting �. We have the commutative diagram

(3) I

p

��

�

�

i
//

�

))

F �Hom.Sym2E; F /

�1

��

�2

// Hom.Sym2E; F /

Y
�

�

j
// F ;

with i and j being natural inclusions and �1, �2 natural projections. The map � D �2 ı i is
birational to †r

e;f
. We have

dim Y D

 
e C 1

2

!
�

 
r C 1

2

!
�1C.d�1/f; dim I D

 
e C 1

2

!
�

 
r C 1

2

!
�1C.d�1/fCf 2:

Hence the codimension

codim
�
†r

e;f
� Hom.Sym2E; F /

�
D

 
r C 1

2

!
�

 
e C 1

2

!
C f C 1 D

 
r C 1

2

!
� d C 1;

which is thus the degree of the fundamental class Œ†r
e;f

� we are looking for.

4.3. Localization and residue formulas

Let W D f˛i C j̨ g1�i�j �e be the set of weights of Sym2E. Let hr .˛1; : : : ; ˛e/ be the
polynomial 2rs.r;r�1;:::;1/.c/, where 1C c1t C c2t2C � � � D

Qe
iD1.1C ˛i t / (cf. Example 2.3).

T 4.1. – Using the notations and assumption above we have

(4) Œ†r
e;f

� D
X

H�W

jH jDd

X

2H

hr j˛i 7!˛i �=2
�
Qf

j D1

Q
ı2H . ǰ � ı/

Q
ı2W �fg.ı � / �

Q
ı2H�fg

Q
�2W �H .� � ı/

:

Proof. – To calculate the fundamental class Œ†r
e;f

� it would be optimal to find an

equivariant resolution Q† ! Hom.Sym2E; F / of †r
e;f
� Hom.Sym2E; F /, with a well

understood Gysin map formula. While the description of such a full resolution is difficult,
in diagram (3) we constructed an equivariant partial resolution � W I ! Hom.Sym2E; F /

of the locus †r
e;f
� Hom.Sym2E; F /. Although � is only a partial resolution (since I is not
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smooth), it is of special form: I is a vector bundle over a (possibly singular) subvariety of a
compact space F .

In [5, Section 3.2] and [23, Section 5] it is shown that such a partial resolution reduces
the problem of calculating Œ†r

e;f
� to calculating the fundamental class ŒY � F � near

the fixed points of the maximal torus. Namely, [5, Proposition 3.2], or equivalently [23,
Proposition 5.1], applied to diagram (3) gives

(5) Œ†r
e;f

� D
X

q

ŒY � F �jq � ŒIq � Hom.Sym2E; F /�

e.Tq F /
;

where q runs through the finitely many torus fixed points of F and Iq D p�1.q/.

Let us start with the obvious ingredients of this formula. The fixed points of F are pairs
.C; D/ where C � D are coordinate subspaces of Sym2E of dimension 1 and d respectively.
The coordinate lines of Sym2E are in bijection with W , and hence the fixed points q are
parameterized by choices H � W (jH j D d ) and  2 H . Denoting the tautological rank 1
and rank d bundles over F by L and D we have

T F D Hom. L ; D= L /˚Hom. L ; Sym2E= D/˚Hom. D= L ; Sym2E= D/:

Hence, for a fixed point q corresponding to .H; / we have

— ŒIq � Hom.Sym2E; F /� D
Qf

j D1

Q
ı2H . ǰ � ı/,

— e.Tq F / D
Q

ı2W �fg.ı � / �
Q

ı2H�fg

Q
�2W �H .� � ı/,

both following from the fact that for a G-representation K and invariant subspace L � K

the fundamental class ŒL � K� is the product of the weights of K=L.

It remains to find the non-obvious ingredient of formula (5), the local fundamental class
ŒY � F �jq . However, this problem was essentially solved in Section 3. The space Y is the
complete preimage of P.†r / under the fibration z W F ! P.Sym2E/. Hence ŒY � F �jq D

ŒP.†r /�jz.q/
. We have Œ†r � D hr .˛1; : : : ; ˛e/ (see Example 2.3), and hence Corollary 3.2

calculates ŒP.†r /�jz.q/
to be hr j˛i 7!˛i �=2

. This completes the proof.

E 4.2. – We have

Œ†1
2;2� D

.ˇ1 � 2˛1/.ˇ2 � 2˛1/

˛2 � ˛1

C
.ˇ1 � 2˛2/.ˇ2 � 2˛2/

˛1 � ˛2

D �4.˛1 C ˛2/C 2.ˇ1 C ˇ2/:

More structure of the localization formula (4) will be visible if we rewrite it as a residue
formula, with the help of the following lemma, which we prepare by setting some notation.

Let 0 � k1 � k2 � � � � � kr be integers and let V be a vector bundle of rank kr on X . Let
p W F k1;:::;kr

.V /! X be the bundle whose fiber over x 2 X is the variety of chains of linear

subspaces V
k1

1 � V
k2

2 � � � � � V
kr

r D Vx ; where upper indices indicate dimension and Vx is
the fiber of V over x. The Chern roots of the tautological bundle of rank ki over F k1;:::;kr

.V /

will be denoted by �i;j for i D 1; : : : ; r and j D 1; : : : ; ki . The �r;j classes are the pullbacks
of the Chern roots of V . In notation we do not indicate the pullback, so �r;j will also denote
the Chern roots of V .
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L 4.3. – Consider the variables zi;j for i D 1; : : : ; r � 1, j D 1; : : : ; ki , and
let zr;j D �r;j . Let g.zi;j / be a polynomial symmetric in the sets of variables zi� for all i ,
and let D D

P
i<j .ki � ki�1/.kj � kj �1/ be the dimension of the fiber of p. We have

(6)

p�.g.�i;j // D .�1/D

8
<
:

g.zi;j /
Qr�1

iD1

Q
1�u<v�ki

�
1 �

zi;u

zi;v

�

Qr�1
iD1

Qki

j D1 z
kiC1�ki

i;j �
Qr�1

iD1

QkrC1

uD1

Qkr

vD1

�
1 �

ziC1;u

zi;v

�

9
=
;

z0
1�

���z0
k�1;�

;

where, by fP gz0
1�

���z0
k�1;�

we mean the constant term in the variables zi;j for i D 1; : : : ; k � 1

and j D 1; : : : ; ki , of the Laurent expansion of P in the region jz1;j1
j > jz2;j1

j > � � � > jzr;jr
j.

Proof. – First we prove the statement for r D 2. To that end, we temporarily rename
k1 D k, k2 D n; �1;j D �j , �2;j D �j ; z1;j D zj , and we shall use the abbreviations
� D .�1; : : : ; �k/, � D .�1; : : : ; �n/, z D .z1; : : : ; zk/. By [48, Lemma 2.5] we have

(7) p�.g.�; �// D
X

I

g.�I ; �/Q
j 62I

Q
i2I .�j � �i /

;

where the summation is over k-element subsets I D fs1; : : : ; skg of f1; : : : ; ng and
�I D .�s1

; : : : ; �sk
/. Define

H D .�1/k.n�k/g.z; �/
Y

1�i<j �k

.zj � zi / �
zk�1

1 zk�2
2 � � � zk�1Qn

j D1

Qk
iD1.zi � �j /

and consider the differential form ! D Hdz1 ^ � � � ^ dzk .

Let R D ReszkD1 Reszk�1D1 � � �Resz1D1.!/.

First we calculate R by applying the Residue Theorem (the sum of the residues of a
meromorphic form on the Riemann sphere is 0) for z1; z2; : : : ; zk . We obtain

R D .�1/k
X

sk

X

sk�1

� � �
X

s1

ReszkD�sk
Reszk�1D�sk�1

� � �Resz1D�s1
.!/:

The terms corresponding to choices with non-distinct sj ’s is 0, due to the factor
Q

.zj � zi /

in the numerator of !. Thus we have

R D .�1/k.n�k/Ck
X

I

X

w2Sk

g.�I ; �/
Q

i<j .�w.sj / � �w.si //�
k�1
w.s1/

�k�2
w.s2/

� � � �w.sk�1/

Q
i 6Dj .�w.sj / � �w.si //

Q
j 62I

Qk
iD1.�w.si / � �j /

;

where the summation is over k-element subsets I D fs1; : : : ; skg � f1; : : : ; ng. This further
equals

R D .�1/k
X

I

0
BBBBB@

g.�I ; �/Q
j 62I

Q
i2I .�j � �i /

X

w2Sk

�k�1
w.s1/

�k�2
w.s2/

� � � �w.sk�1/Q
i>j .�w.sj / � �w.si //

„ ƒ‚ …
.�/

1
CCCCCA

:

However, the sum marked by (*) is equal to 1—because of the well known product form
of a Vandermonde determinant—, and using (7) we obtain that p�.g.�; �// D .�1/kR.
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Calculating the residues at infinity as a coefficient of the Laurent expansion we get

p�.g.�; �// D .�1/kR D

(
H �

kY

iD1

zi

)

z0
1

���z0
k

;

where f gz0
1

���z0
k

means the constant term of the Laurent-expansion in the jzi j > j�j j (for all
i; j ) region. This proves (6) for r D 2.

For r > 2 the push-forward map p� can be factored as p1� ı p2� ı � � � ı pr� for the
Grassmanian fibrations

pi W F ki ;kiC1;:::;kr
.V /! F kiC1;:::;kr

.V /;

with the notation F ;.V / D X . The map pi is a special case of the construction in the
theorem for r D 2 and the tautological rank kiC1 bundle over F kiC1;:::;kr

.V /. Hence
pi� can be computed with the formula in the theorem (as it is proved for r D 2 above). The
iterated application of (6) for r D 2 gives the general (6), which completes the proof of the
theorem.

T 4.4. – We have

Œ†r
e;f

� D .�1/dC1

8
<
:

hr j˛i 7!˛i �z=2
�
Q

1�i<j �d .1 � ui

uj
/

zd�1
Qd

j D1.1 �
uj

z
/

�

dY

j D1

1X

iD0

ci .F
_ � Sym2E_/

ui
j

9
=
;

z0u0

;

where fP gz0u0 means the constant term in P with respect to z and u1; : : : ; ud .

Proof. – The formula (5) for Œ†r
e;f

� is the Atiyah-Bott localization formula for the equiv-
ariant push-forward p�.ŒY � F �e.Hom. D; F //, where D is the tautological rank d bundle
over F , and p W F !pt. Calculating the equivariant push-forward p� with the formula in
Lemma 4.3, we obtain
(8)

.�1/d.eC1
2 /�d2Cd�1

8
<
:

hr j˛i 7!˛i �z=2

Qf
iD1

Qd
j D1.ˇi � uj /

Q
1�i<j �d .1 � ui

uj
/

zd�1.u1 � � �ud /.
eC1

2 /�d
Qd

j D1.1 �
uj

z
/
Qd

j D1

Q
�2W .1 � �

uj
/

9
=
;

z0u0

:

Observing that

dY

j D1

Qf
iD1.ˇi � uj /Q

�2W .1 � �=uj /
D .�1/df

dY

j D1

u
f
j

dY

j D1

Qf
iD1.1 � ˇi =uj /Q
�2W .1 � �=uj /

D .�1/df

dY

j D1

u
f
j

1X

iD0

ci .F
_ � Sym2E_/

ui
j

;

and that f D
�

eC1
2

�
� d , we have that (8) further equals the formula in the theorem.
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4.4. The divisorial case

The residue formula of Theorem 4.4 is more manageable in case the codimension
of †r

e;f
is 1—the case relevant for most applications given in this paper. After two technical

lemmas we will provide a simple formula for the Œ†r
e;f

� in this case.

L 4.5. – For the z-expansion of the polynomial hr j˛i 7!˛i �z=2
we have

hr j˛i 7!˛i �z=2
D .�1/.

rC1
2 /

 
Ar

ez.rC1
2 / C Br

e �

eX

iD1

˛i � z
.rC1

2 /�1 C l:o:t:

!
(9)

where

Ar
e D 2�.r

2/ det
��

e
rC1�2iCj

��
i;j D1;:::;r

D

�
e
r

��
eC1
r�1

�
� � �
�

eCr�1
1

�
�

1
0

��
3
1

��
5
2

�
� � �
�

2r�1
r�1

� ;

Br
e D �

2

e

 
r C 1

2

!
Ar

e:

Proof. – The polynomial hr is a homogeneous degree
�

rC1
2

�
symmetric polynomial in the

˛1; : : : ; ˛e variables. Hence the expansion (9) must hold for some numbers Ar
e; Br

e . We will

calculate them via the substitution ˛1 D � � � D ˛e. Let D D det
��

e
rC1�2iCj

��
i;j D1;:::;r

. From

the definition of hr we see that hr .˛; : : : ; ˛„ ƒ‚ …
e

/ D 2rD˛.rC1
2 /, and hence, for the z-expansion

of hr .˛ � z
2
; : : : ; ˛ � z

2
/ we get

2rD

�
�

1

2

�.rC1
2 /

z.rC1
2 / C 2rD

 
r C 1

2

!�
�

1

2

�.rC1
2 /�1

1

e
.e˛/z.rC1

2 /�1 C l:o:t:;

which proves the first expression for Ar
e and the expression for Br

e . The equivalence of the
two displayed expressions for Ar

e is proved in [31, Proposition 12].

L 4.6. – We have

(10)
Y

1�i<j �d

�
1 �

ui

uj

�
D 1 �

d�1X

iD1

ui

uiC1

CQ;

where Q is the sum of u-monomials in which the degree of the denominator is at least two. Also,
 

dX

iD1

ui

!
�

Y

1�i<j �d

�
1 �

ui

uj

�
D ud C fractions;

where fractions stands for terms of monomials with at least one ui in the denominator.

For example, if d D 3 then we have
�

1 �
u1

u2

��
1 �

u1

u3

��
1 �

u2

u3

�
D 1 �

u1

u2

�
u2

u3

C

�
u1u2

u2
3

C
u2

1

u2u3

�
u2

1

u2
3

�

„ ƒ‚ …
Q

;

and .u1 C u2 C u3/
Q

i<j �3.1 � ui =uj / D u3Cfractions.
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Proof. – Arguing by induction on d we have that the left hand side of (10) is
 

1 �

d�2X

iD1

ui

uiC1

CQ0

!
d�1Y

iD1

�
1 �

ui

ud

�
D

 
1 �

d�2X

iD1

ui

uiC1

CQ1

! 
1 �

d�1X

iD1

ui

ud

CQ2

!

D 1 �

d�2X

iD1

ui

uiC1

�

d�1X

iD1

ui

ud

C

d�2X

iD1

ui

ud

CQ

D 1 �

d�1X

iD1

ui

uiC1

CQ;

where Q1 and Q2 are sums of terms that multiplied with anything in the other factor will
result in monomials with denominator degree at least 2.

The second statement of the lemma follows directly from the first one.

We now determine the class of †r
e;f

when it is a divisor, which leads to a proof of
Theorem 1.1.

T 4.7. – Assume that †r
e;f

is a divisor, that is,

(11)

 
r C 1

2

!
� d C 1 D

 
r C 1

2

!
�

 
e C 1

2

!
C f C 1 D 1:

Then

(12) Œ†r
e;f

� D Ar
e

�
c1.F / �

2f

e
c1.E/

�
:

Proof. – Under the assumption (11) Theorem 4.4 reads

Œ†r
e;f

� D �

8
<
:

 
Ar

ez1 C Br
e �

eX

iD1

˛i � z
0 C l.o.t.

!
�

Q
1�i<j �d

�
1 � ui

uj

�

Qd
j D1

�
1 �

uj

z

� �

dY

j D1

1X

iD0

ci .F
_ � Sym2E_/

ui
j

9
=
;

z0;u0

:

Looking at the z-exponents, this is further equal to

�

8
<
:

0
@Ar

e

dX

j D1

uj

Y

1�i<j �d

�
1 �

ui

uj

�
C Br

e

eX

iD1

˛i

Y

1�i<j �d

�
1 �

ui

uj

�
1
A �

dY

j D1

1X

iD0

ci .F
_ � Sym2E_/

ui
j

9
=
;

u0

:

Looking at u-exponents, and using Lemma 4.6, this is further equal to

�

8
<
:

 
Ar

e

�
ud C fractions

�
C Br

e

eX

iD1

˛i .1C fractions/

!
�

dY

j D1

1X

iD0

ci .F
_ � Sym2E_/

ui
j

9
=
;

u0

;

where the term fractions stands for terms with at least one uj variable in the denominator.
Hence the formula further equals

�Ar
ec1.F _ � Sym2E_/ � Br

e c1.E/:

Using that c1.F _�Sym2E_/ D c1.F _/�c1.Sym2E_/ D �c1.F /C.eC1/c1.E/, we obtain

Œ†r
e;f

� D Ar
ec1.F / �

�
Ar

e.e C 1/C Br
e

�
c1.E/:

Using the divisorial condition (11), this expression can be rewritten as (12).

4 e SÉRIE – TOME 53 – 2020 – No 4



QUADRIC RANK LOCI ON MODULI OF CURVES AND K3 SURFACES 961

E 4.8. – We have

Œ†1
2;2� D �4c1.E/C 2c1.F /; Œ†1

3;5� D �10c1.E/C 3c1.F /;

Œ†1
4;9� D �18c1.E/C 4c1.F /; Œ†2

3;3� D �8c1.E/C 4c1.F /;

Œ†2
4;7� D �35c1.E/C 10c1.F /; Œ†2

5;12� D �96c1.E/C 20c1.F /:

5. Loci defined by discriminant

Let e � 2 and use the short hand notation N D
�

eC1
2

�
� 2. Let E WD Ce be the standard

representations of GLe.C/. Consider the tautological exact sequence of GLe.C/-equivariant
bundles 0 ! S ! S2E ! Q ! 0 over the Grassmannian Gr.2; Sym2E/ of 2-planes
in Sym2E. Recall that we have introduced in Example 2.3 the GLe.C/-invariant subset
†1 � Sym2E as the set of degenerate symmetric 2-forms. Define

ˆe WD
n
W 2 Gr.2; Sym2E/ W P.W / is tangent to P.†1/

o
� Gr.2; Sym2E/:

Notice that we require P.W / to be tangent to P.†1/ (which is a smooth but not closed
subvariety of P.Sym2E/), that is we require that the projective line P.W / intersect the smooth
part of P.†1/, and the intersection be tangential. Our goal in this section is to calculate the
equivariant fundamental class Œˆe� 2 H 2.Gr.2; Sym2E//.

Denote the GLe.C/-equivariant Chern roots of S by 1; 2, those of E by ˛1; : : : ; ˛e, and
those of Q by ˇ1; : : : ; ˇN . The GLe.C/-equivariant cohomology ring of Gr.2; Sym2E/ can
be presented by one of

CŒ˛1; : : : ; ˛e; 1; 2�Se�S2=relations or CŒ˛1; : : : ; ˛e; ˇ1; : : : ; ˇN �Se�SN =relations:

Since in each case the relations have degree > 2, the class Œˆe� is a well-defined linear
polynomial f .˛1; : : : ; ˛e; 1; 2/ in the ˛ and  variables, or a well-defined linear polyno-
mial g.˛1; : : : ; ˛e; ˇ1; : : : ; ˇN / in the ˛ and ˇ variables. Using the short exact sequence
0! S ! Sym2E ! Q! 0, we obtain

(13)
2X

iD1

i C

NX

iD1

ˇi D
X

1�i�j �e

.˛i C j̨ /;

hence f .˛; / and g.˛; ˇ/ determine each other.

The polynomials f .˛; / and g.˛; ˇ/ have “degeneracy locus” interpretations as follows.

— Consider the GL2.C/ � GLe.C/ representation Hom.C2; Sym2E/ given by the
following action .A; B/ � � WD Sym2B ı � ı A�1, and the locus

ˆ0
e WD

n
� 2 Hom.C2; Sym2E/ W rk.�/ D 2 and P.Im.�// is tangent to P.†1/

o
:

Then

Œˆ0
e� D f .˛; / 2 H �

GL2.C/�GLe.C/.Hom.C2; Sym2E//

D CŒ1; 2; ˛1; : : : ; ˛e�S2�Se :
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— Consider the GLe.C/ � GLN .C/ representation Hom.Sym2E;CN / given by the
following action .A; B/ � � WD B ı � ı Sym2A�1, and the locus

ˆ00
e WD

n
� 2 Hom.Sym2E;CN / W dim Ker.�/ D 2 and P.Ker.�// is tangent to P.†1/

o
:

Then

Œˆ00
e � D g.˛; ˇ/ 2 H �

GLe.C/�GLN .C/

�
Hom.Sym2E;CN /

�

D CŒ˛1; : : : ; ˛e; ˇ1; : : : ; ˇN �Se�SN :

T 5.1. – We have

f .˛; / D .e � 1/

 
4

nX

iD1

˛i � e

2X

iD1

i

!
:

Proof. – For � 2 Hom.C2; Sym2E/ let �..1; 0// D K, �..0; 1// D L. The equation of
the hypersurface ˆ0

e in terms of the entries of K and L is the discriminant of the polynomial
det.�K C L/ D ae.K; L/�e C ae�1.K; L/�e�1 C � � � C a0.K; L/.

Consider the Sylvester matrix form of the discriminant

1

ae

det

0
BBBBBBBBBBBBBBBBBBB@

a0 a1 a2 � � � ae�1 ae

a0 a1 � � � ae�1 ae

: : :
: : :

: : :
: : :

a0 a1 � � � ae�1 ae

a1 2a2 � � � eae

a1 2a2 � � � eae

: : :
: : :

: : :

: : :
: : :

: : :

a1 2a2 � � � eae

1
CCCCCCCCCCCCCCCCCCCA

..e�1/Ce/�..e�1/Ce/

:

One of the terms of its expansion (the one coming from the main diagonal) is a non-zero
constant times .a0ae/e�1. We have ae.K; L/ D det.K/ and a0.K; L/ D det.L/. Hence one
of the monomials appearing in the discriminant is .

Qe
iD1 Ki i /

e�1.
Qe

iD1 Li i /
e�1. The weight

of this monomial is

(14) .e � 1/

 
eX

iD1

.2˛i � 1/

!
C .e � 1/

 
eX

iD1

.2˛i � 2/

!
:

Since ˆ0
e is invariant, all other terms must have the same weight, and this weight is the equiv-

ariant fundamental class of ˆ0
e. Expression (14) simplifies to the formula in the theorem.

R 5.2. – Instead of the Sylvester matrix we could have used specializations of
advanced equivariant formulas for more general discriminants, see for instance [21].

T 5.3. – We have

g.˛; ˇ/ D .e � 1/

 
e

NX

iD1

ˇi � .e2 C e � 4/

eX

iD1

˛i

!
:
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Proof. – The statement follows from Theorem 5.1 using relation (13).

This completes the proof of Theorem 1.2.

6. The Petri divisor on the moduli space of curves

An immediate application of the Theorem 1.1 concerns the calculation of the class of the
Petri divisor on M g consisting of genus g curves whose canonical model lies on a rank 3

quadric. We fix some notation. For 1 � i � bg
2
c, let �i � M g be the boundary divisor

of M g whose general point is a union of two smooth curves of genera i and g � i meeting
in one point. We denote by �0 the closure of the locus of irreducible stable curves of genus g.
As customary, we set ıi D Œ�i �Q 2 CH 1. M g/ for i D 0; : : : ; bg

2
c and denote by

ı WD ı0 C ı1 C � � � C ıb g
2 c

the class of the total boundary. Often we work with the partial compactification
gM g WD M g [�0, for which CH 1.gM g/ D Qh�; ı0i.

D 6.1. – For a projective variety X and a line bundle L 2 Pic.X/, for each
integer k � 0 we denote by IX;L.k/ WD Ker

˚
SymkH 0.X; L/ ! H 0.X; L˝k/

	
and set

IX;L WD
L

k�0 IX;L.k/.

We fix a smooth non-hyperelliptic curve C of genus g. From M. Noether’s Theorem [4]
the multiplication map Sym2H 0.C; !C / ! H 0.C; !˝2

C / is surjective. The space IC .2/ D

IC;!C
.2/ of quadrics containing the canonical curve C ,! Pg�1 has dimension

dim IC .2/ D

 
g � 2

2

!
:

We conclude that the locus GPg of curves whose canonical model lies on a rank 3 quadric is
expected to be a divisor. Via the Base Point Free Pencil Trick [4] p. 126, this expectation can
be confirmed.

P 6.2. – The locus GPg coincides set-theoretically with the divisor of curves
ŒC � 2 M g having a pencil A such that the Petri map �.A/ W H 0.C; A/˝H 0.C; !C ˝A_/!

H 0.C; !C / is not injective.

Proof. – Let A be a line bundle on C with h0.C; A/ D 2. Denote by F WD bs jAj its base
locus and set B WD A.�F /. Thus H 0.C; B/ Š H 0.C; A/. Applying the Base Point Free
Pencil Trick, we obtain

Ker.�.A// Š H 0.!C ˝ A�2.F // Š H 0.C; !C ˝ B�2.�F //:

Thus if �.A/ is not injective, by possibly enlarging the effective divisor F , we find there exists
a base point free pencil B on C and an effective divisor F , such that !C D B2.F /.

Assume the canonical curve C � Pg�1 lies on a rank 3 quadric Q. Denote by
F WD C � Sing.Q/, where Sing.Q/ Š Pg�4. Then if B is the pull back to C of the unique
ruling of Q, we obtain the relation !C D OC .1/ Š B2.F /. Setting A WD B.F /, we obtain
that �.A/ is not injective.
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To conclude that GPg is a divisor in M g , we invoke the Gieseker-Petri Theorem which
asserts that the Petri map �.A/ is injective for every line bundle A on a general curve C of
genus g.

The divisor GPg can be extended over M g . Let � W M g;1 ! M g the universal

curve of genus g. We denote by E WD ��.!�/ the Hodge bundle on M g , having fibers
EŒC � WD H 0.C; !C /. Let F WD ��.!˝2

� /. Both sheaves E and F are locally free over M g

and denote by
� W Sym2.E/! F

the morphism globalizing the multiplication maps �C W Sym2H 0.C; !C /! H 0.C; !˝2
C /, as

the curve ŒC � 2 M g varies in moduli. Set

gGPg WD
n
ŒC � 2 M g W 9 0 ¤ q 2 Ker.�C /; rk.q/ � 3

o
:

Clearly gGPg is a divisor on M g and gGPg \ M g D GPg . For a generic point
ŒC WD C1 [p C2� 2 �i , where C1 and C2 are smooth curves of genus i and g� i respectively
meeting at one point p, one has H 0.C; !C / Š H 0.C1; !C1

/ ˚ H 0.C2; !C2
/, that is, every

section from H 0.C; !C / vanishes at p. On the other hand,

H 0.C; !2
C / Š Ker

˚
H 0.C1; !2

C1
.2p//˚H 0.C2; !2

C2
.2p//! Cp

	
;

that is, there exists quadratic differentials on C not vanishing at p. It follows that the multi-
plication map �C is not surjective, hence for dimension reasons Ker.�C / contains quadrics
of rank 3, whenever ŒC � 2 �i . Thus �i �

gGPg , for i D 1; : : : ; bg
2
c. On the other hand,

�0 is not contained in gGPg . In fact, the generic g-nodal rational curve satisfies the Green-
Lazarsfeld property N

b g�3
2 c

, that is, a much stronger property than projective normality, see

[53]. Denoting by GPg the closure of the Petri divisor GPg inside M g , we thus have an

equality of effective divisors on M g

gGPg D GPg C

b g
2 cX

iD1

bi �i ;

where bi � 1, for all i � 1. The class of gGPg can now be easily determined.

Proof of Theorem 1.6. – We apply Theorem 1.1 in the case of the morphism
� W Sym2.E/! F over M g given by multiplication. We have c1.E/ D �, whereas by
the Grothendieck-Riemann-Roch calculation carried out in [43] Theorem 5.10, one has
c1.F/ D �C �1 D 13� � ı.

The Petri divisor decomposes into components depending on the degree of the pencil for
which the Petri Theorem fails. For bgC2

2
c � k � g � 1, we denote by Dg;k the locus of

curves ŒC � 2 M g for which there exists a base point free pencil A 2 W 1
k

.C / such that �.A/ is
not injective. It is shown in [17] that Dg;k has at least one divisorial component. In light of
Proposition 6.2, we have the decomposition

(15) GPg D

g�1X

kDb gC2
2 c

ag;kDg;k :
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It is an interesting open question to determine the classes ŒDg;k � 2 CH 1. M g/ and their
multiplicities ag;k . For birational geometry application, it is more relevant to compute the
slopes s.Dg;k/. Few of the individual divisors Dg;k are well understood.

By the proof of Proposition 6.2, the divisor Dg;g�1 consists of curves with an even theta-
characteristic # 2 Picg�1.C / such that h0.C; #/ � 2. The class of its compactification
in M g has been computed in [7] and we have:

(16) ŒDg;g�1� D 2g�3
�
.2g C 1/� � 2g�3ı0 �

b g
2 cX

iD1

.2g�i � 1/.2i � 1/ıi

�
:

When k is minimal, for odd g D 2k � 1, the locus Dg;k is the Hurwitz divisor of curves
of gonality at most k. Its compactification is the image of the space of admissible covers H k

defined in the Introduction. Harris and Mumford [30] computed its class, on their way to
show that M g is of general type for large odd genus g � 25:

(17) ŒD2k�1;k � D
1

.2k � 2/.2k � 3/

 
2k � 2

k � 1

!�
6.k C 1/� � kı0 �

k�1X

iD1

3i.2k � i � 1/ıi

�
:

For even genus g D 2k, the divisor D2k;kC1 can be viewed as the branch map of the
generically finite cover H 2k;kC1 ! M 2k from the space of admissible covers of degree kC1.
The calculation of its class in [13] Theorem 2 has been instrumental in proving that M g is
of general type for even genus g � 24:

(18) ŒD2k;kC1� D
2.2k � 2/Š

.k � 1/Š.k C 1/Š

�
.6k2C13kC1/��k.kC1/ı0�.2k�1/.3kC1/ı1�� � �

�
:

The only case when k is not extremal has been treated in [17] and it concerns the divisor
D2k�1;kC1. It is shown in [17] Corollary 0.6 that its slope equals

(19) s.D2k�1;kC1/ D
6k2 C 14k C 3

k.k C 1/
:

In the range g � 7, these known cases exhaust all Gieseker-Petri divisors and we can
compare Theorem 1.6 with the previously mentioned formulas (16), (17), (18). We denote
by eDg;k the closure of Dg;k in gM g . In order to determine the slope of Dg;k , it suffices to

compute the class ŒeDg;k � 2 CH 1.gM g/, for as in the case of GPg , the ı0-coefficient is smaller
in absolute value than the higher boundary coefficients in the expansion of ŒDg;k � in terms
of the generators of CH 1. M g/.

For g D 4, there is only one component and we obtain ŒgGP4� D ŒeD4;3� D 34� � 4ı0 2

CH 1.gM 4/. For g D 5, we obtain ŒgGP5� D ŒeD5;4� C 4ŒeD5;3� D 4.41� � 5ı0/, whereas
for g D 6, we find

ŒgGP6� D ŒeD6;5�C 4ŒeD6;4� D 8.112� � 14ı0/ 2 CH 1.gM 6/:

Finally, in the case g D 7, there are three Petri divisors and we obtain

ŒgGP7� D ŒeD7;6�C 4ŒeD7;5�C 16ŒeD7;4� D 96.55� � 7ı0/ 2 CH 1.gM 7/:

Based on this formulas for small genus, we make the following conjecture, though we
admit that the evidence for it is rather moderate.
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C 6.3. – One has ag;k D 4g�1�k for gC2
2
� k � g � 1, that is, the following

holds:

ŒgGPg � D

d g�2
2 eX

iD1

4i�1ŒeDg;g�i � 2 CH 1.gM g/:

7. Effective divisors of small slope on M g

We now present an infinite series of effective divisors on M g of slope less than 6C 12
gC1

,
which recall, is the slope of all the Brill-Noether divisors. We fix integers r � 3 and s � 1

and set
g WD rs C s and d WD rs C r:

Observe that �.g; r; d/ D g � .r C 1/.g � d C r/ D 0, hence by general Brill-Noether
Theory a general curve of genus g has a finite number of linear systems of type gr

d
.

Let M ]
g the open substack of M g classifying smooth genus g curves C such that

W r
d�1

.C / D ;, W rC1
d

.C / D ; and furthermore H 1.C; L˝2/ D 0, for every L 2 W r
d

.C /.

Then codim. M g � M ]
g ; M g/ � 2. For codimension one calculation, one makes no differ-

ence between M g and M ]
g . We denote by Gr

g;d
the stack parametrizing pairs ŒC; L�, with

ŒC � 2 M ]
g and L 2 W r

d
.C / is a necessarily complete and base point free linear system. Let

� W Gr
g;d ! M ]

g

be the natural projection. It is known from general Brill-Noether Theory that there exists a
unique irreducible component of Gr

g;d
which maps dominantly onto M g .

We pick a general point ŒC; L� 2 Gr
g;d

of the dominating component. It follows from
the Maximal Rank Conjecture proved in this case in [16] or [38] Theorem 1.4, that the
multiplication map

�C;L W Sym2H 0.C; L/! H 0.C; L˝2/

is surjective. Since H 1.C; L˝2/ D 0, by Riemann-Roch, the dimension of its kernel IC;L.2/

equals

dim IC;L.2/ D

 
r C 2

2

!
� .2d C 1 � g/:

We impose the condition that this number equal the codimension of the space

†r�a�1
rC1 � Sym2H 0.C; L/

of quadrics of rank at most aC 2 (that is, corank r � a � 1). Since codim.†r�a�1
rC1 / D

�
r�a

2

�
,

we obtain the following numerical constraint on s and r :

(20) s D
a.2r � 1 � a/

2.r � 1/
:

For each r and s such that the equation (20) is satisfied, we consider the locus

Zr;s WD
n
ŒC; L� 2 Gr

g;d W 9 0 ¤ q 2 IC;L.2/; rk.q/ � aC 2
o

and set Dr;s WD ��.Zr;s/. Then Dr;s is expected to be a divisor on M g , that is, either it is a
divisor in which case there exists a smooth curve ŒC � 2 M g such that IC;L.2/ contains no
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quadrics of rank at most aC2 for every L 2 W r
d

.C /, or else Dr;s D M g . We shall determine

the slope of the virtual class of its closure in M g .

Before moving further, we discuss some solutions to equation (20). If a D r � 1 (that
is, when one considers quadrics of maximal rank), then r D 2s and g D s.2s C 1/. In
this case D2s;s is the locus of curves ŒC � 2 M s.2sC1/ for which there exists a linear series
L 2 W 2s

2s.sC1/
.C / such that the multiplication map �C;L W Sym2H 0.C; L/! H 0.C; L˝2/ is

not an isomorphism. This series of divisors has been studied in detail in [16] Theorem 1.5, as
well as in [35] and shown to contradict the Harris-Morrison Slope Conjecture [29].

The first series of genuinely new examples is when for an integer ` � 1, we take

(21) s D 4` � 1; r D 9` � 2; a D 2.3` � 1/; and g D .4` � 1/.9` � 1/:

Specializing to the case ` D 1, we obtain the following effective (virtual) divisor on M 24:

D7;3 WD
n
ŒC � 2 M 24 W 9 L 2 W 7

28.C /; 9 0 ¤ q 2 IC;L.2/; rk.q/ � 6
o
:

A second series of examples is when for an integer ` � 1, we take the following values

(22) s D 3`C 1; r D 8`C 3; a D 4`C 1; and g D 4.3`C 1/.2`C 1/:

The first example in this series appears produces an effective (virtual) divisor on M 48:

D11;4 WD
n
ŒC � 2 M 48 W 9 L 2 W 11

55 .C /; 9 0 ¤ q 2 IC;L.2/; rk.q/ � 7
o
:

We now describe the (virtual) divisor structure of Dr;s and set up some notation that will
help compute the class of their closure in M g . We introduce the partial compactification
gM ]

g defined as the union of M ]
g and the open substack �

]
0 � �0 classifying 1-nodal

irreducible genus g curves C 0 D C=p � q, where ŒC; p; q� 2 M g�1;2 is a Brill-Noether
general 2-pointed curve in the sense of [13] Theorem 1.1, together with all their degenerations
consisting of unions of a smooth genus g�1 curve and a nodal rational curve. Note thatgM g

and gM ]

g agree outside a set of codimension 2 and we identify the Picard groups of the two

stacks. We denote by eGr
g;d

the parameter space of pairs ŒC; L�, where ŒC � 2 M ]
g and L is a

torsion free sheaf of rank 1 and degree d on C such that h0.C; L/ � r C 1. We still denote

by � W eGr
g;d
!gM ]

g the proper forgetful morphism.

We now consider the universal curve � W gM ]

g;1 !
gM ]

g and denote by L a universal

bundle on the fiber product gM ]

g;1 �gM ]

g

eGr
g;d

. If

p1 WgM
]

g;1 �gM ]

g

eGr
g;d !

gM ]

g;1 and p2 WgM
]

g;1 �gM ]

g

eGr
g;d !

eGr
g;d

are the natural projections, then E WD p2�. L / and F WD p2�. L
˝2

/ are locally free sheaves
of ranks r C 1 and 2d C 1 � g respectively. Finally, we denote by

� W Sym2. E /! F

the sheaf morphism given by multiplication of sections.
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T 7.1. – Set r D 9` � 2 and s D 4` � 1, therefore g D .4` � 1/.9` � 1/, where
` � 1. Then the virtual class of the closure of the divisor D9`�2;4`�1 inside M .4`�1/.9`�1/

equals

s.D9`�2;4`�1/ D
a

b
;

where

a WD 15116544`8 � 30233088`7 C 26605584`6 � 13594392`5 C 4419720`4 � 899433`3

C 105656`2 � 6101`C 122

and

b WD 2.9` � 2/.9` � 1/.15552`6 � 25920`5 C 17484`4 � 6102`3 C 1181`2 � 107`C 2/:

In particular, s.D9`�2;4`�1/ < 6C 12
gC1

.

If we look at the difference between the slope of D9`�2;4`�1 and that of the Brill-Noether
divisors we get a slightly simpler formula:

s.D9`�2;4`�1/ D 6C
12

g C 1

�
.13` � 2/.36` � 13/.27`2 � 19`C 2/.36`2 � 13` � 1/

2.9` � 2/.9` � 1/.15552`6 � 25920`5 C 17484`4 � 6102`3 C 1181`2 � 107`C 2/.36`2 � 13`C 2/
:

We now record the slope of the effective divisors in the second series of examples:

T 7.2. – Set r D 8`C 3 and s D 3`C 1, therefore g D 4.3`C 1/.2`C 1/. Then
the virtual class of the closure of the divisor D8`C3;3`C1 inside M 4.3`C1/.2`C1/ equals

s.D8`C3;3`C1/ D 6C
12

g C 1

�
.11`C 5/.2` � 1/.12`2 C 10`C 1/.24`2 C 20`C 3/

.3`C 2/.8`C 3/.2304`6 C 4128`5 C 2992`4 C 1128`3 C 248`2 C 41`C 5/.24`2 C 20`C 5/
:

Proof of Theorems 7.1 and 7.2. – We choose integers r � 3, s; a � 1 such that (20) holds.
Recall that d D rsC r and g D rsC s. We shall apply the techniques developed in [16] and
[35] in the context of Theorem 4.7. Recall that we have defined the vector bundle morphism
� W Sym2. E /! F over the parameter spaceeGr

g;d
. Applying Theorem 1.1, if Zr;s is a divisor

on Gr
g;d

, then the class of its closure eZr;s inside eGr
g;d

is given by the formula

(23) ŒeZr
g;d � D ˛

�
c1. F / �

2.2d C 1 � g/

r C 1
c1. E /

�
:

We call the right hand side of the formula (23) the virtual class ŒeZr
g;d

�virt of the virtual

divisor eZr
g;d

. Following [16] we introduce the following tautological divisor classes on eGr
g;d

:

a WD .p2/�

�
c2

1. L /
�
; b WD .p2/�

�
c1. L / � c1.!p2

/
�

and c WD .p2/�

�
c2

1.!p2
/
�
D ��.�1/;

where we recall that �1 D 12� � ı 2 CH 1. M g/ is Mumford’s class, see also [43].

Since R1.p2/�. L
˝2

/ D 0, applying Grothendieck-Riemann-Roch to p2, we compute

c1. F / D ��.�/ � bC 2a:
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The push-forwards of the tautological classes a; b and c1.E/ under the generically finite

proper morphism � W eGr
g;d
!gM ]

g are determined in [16] Section 2 and [35] Theorem 2.11
and we summarize the results: There exists an explicit constant ˇ 2 Z>0 such that

��.a/ D ˇ
d

.g � 1/.g � 2/

�
.dg2 � 2g2 C 8d � 8g C 4/� � .dg � 2g2 C 4d � 3g C 2/ı0

�
;

��.b/ D ˇ
d

g � 1

�
6� �

ı0

2

�

and

��.c1. E // D ˇ
�
�

r.r C 2/.r2s3 C 2rs3 � r2s C 6rs2 C s3 � 2rs C 6s2 � 8r C 3s � 8/

2.r C s C 1/.rs C s � 2/.rs C s � 1/
�

C
r.s � 1/.s C 1/.r C 2/.r C 1/.rs C s C 4/

12.r C s C 1/.rs C s � 2/.rs C s � 1/
ı0

�
:

We substitute these formulas in (23) and we obtain a closed formula for ŒeZr;s�. Substituting
the particular values in Theorems 7.1 and 7.2, we obtain the claimed formulas for the
slopes.

We expect the virtual divisors constructed in Theorems 7.1 and 7.2 to be actual divisors
for all `. We can directly confirm this expectation for all bounded `. We illustrate this in the
case ` D 1.

T 7.3. – The locus D7;3 is a divisor on M 24, that is, for a general curve C of
genus 24, the image curve 'L W C ,! P

7 lies on no quadric of rank at most 6, for any linear
system L 2 W 7

28.C /.

Proof. – By residuation, we have a birational isomorphismG7
24;28 Š G

2
24;18 of parameter

spaces over M 24. The latter space is a quotient of the Severi variety of plane curves of
genus 24 and degree 18 which is known to be irreducible [28], hence G7

24;28 is an irreducible,
generically finite cover of M 24. To show that D7;3 is a divisor, that is, D7;3 ¤ M 24, it suffices
to produce one smooth curve ŒC � 2 M 24 and one very ample linear system L 2 W 7

28.C / such
that the image curve 'L W C ,! P7 does not lie on any quadric of rank at most 6. The curve
we construct lies on a rational surface X in P7 and has the property that all the quadrics
containing C also contain X .

Precisely, we start with 16 general points p1; : : : ; p16 2 P2. We embed the surface
X WD Bl16.P2/ obtained by blowing-up these points in the space P7 via the linear system

H D 9h � 3E1 � 2

14X

iD2

Ei �E15 �E16 2 Pic.X/;

where h is the hyperplane class and Ei is the exceptional divisor corresponding to the
point pi , for i D 1; : : : ; 16. By direct computation we find

h0.X; OX .2// D h0
�
X; OX

�
18h � 6E1 � 4

14X

iD2

Ei � 2E15 � 2E16

��

D

 
20

2

!
�

 
7

2

!
� 13

 
5

2

!
� 2

 
3

2

!
D 33:
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By using Macaulay, we check that jH j embeds X into P7, the natural multiplication map
Sym2H 0. OX .1//! H 0. OX .2// is surjective, hence dimIX; OX .1/.2/ D 3 and
H 1.P7; I X=P7.2// D 0. We check furthermore with Macaulay that IX; OX .1/.2/ \ †2

8 D ;,

that is, X � P7 lies on no quadric of rank at most 6.

We construct a curve C � X as a general element of the linear system

C 2
ˇ̌
ˇ20h � 6E1 � 5

13X

iD2

Ei � 4E14 � 3E15 � 3E16

ˇ̌
ˇ:

Then C �H D 28 and we check by Macaulay that such a curve C is smooth. In particular, it
follows that g.C / D 1C 1

2
C � .C CKX / D 24. Furthermore, one has an exact sequence

0 �! IX; OX .1/.2/ �! IC; OC .1/.2/ �! H 0.X; OX .2H � C // �! 0;

induced by the exact sequence 0! I X=P7.2/! I C=P7.2/! OX .2H � C /! 0, where we

use once more that H 1.P7; I X=P7.2// D 0. Since H 0.X; OX .2H � C // D 0, this induces an

isomorphism IX; OX .1/.2/ Š IC; OC .1/.2/. This shows that the smooth curve C � P7 lies on
no quadric of rank at most 6, which finishes the proof (1).

8. The slope of M 12

We explain in this section how using Theorems 1.2 and 5.3 one can construct an effective
divisor on M 12 having slope less than 6C 12

gC1
.

A general curve ŒC � 2 M 12 has finitely many linear systems L 2 W 5
15.C /. As already

pointed out, the multiplication map �C;L W Sym2H 0.C; L/ ! H 0.C; L˝2/ is surjective for
each L 2 W 5

15.C /, in particular PL WD P
�
IC;L.2/

�
is a pencil of quadrics in P5 containing the

curve 'L W C ,! P5. By imposing the condition that the pencil PL be degenerate, we produce
a divisor on M 12, whose class we ultimately compute.

Proof of Theorem 1.10. – We retain the notation of the previous section and recall

that � W eG5
12;15 !

gM ]

12 denotes the proper forgetful morphism from the parameter space
of generalized linear series g5

15 onto (an open subset of) the moduli space of irreducible curves
of genus 12. Furthermore, we retain the same notation for the tautological bundles E and F

over eG5
12;15, as well as for the vector bundle morphism � W Sym2. E / ! F , globalizing the

multiplication maps �C;L, as ŒC; L� varies over eG5
12;15. In particular PL Š P

�
Ker.�C;L/

�
, for

every ŒC; L� 2 eG5
12;15. Noting that rk. E / D 6 and rk. F / D 19, we apply Proposition 5.3.

The virtual class of the locus Z of pairs ŒC; L� 2 eG5
12;15 such that PL is a degenerate pencil

equals

ŒZ�virt D 10
�
6c1. F / � 38c1. E /

�
2 CH 1.eG5

12;15/:

The pushforward classes ��.c1. E // and ��.c1. F // have been described in the proof of Theo-
rems 7.1 and 7.2. After easy manipulations, we compute the class ŒDp12�virt WD ��.ŒZ�virt/ 2

CH 1.gM ]

12/.

(1) The Macaulay file containing all the computations appearing in this proof can be found online at https://www.
mathematik.hu-berlin.de/~farkas/computations-gen24.m2.
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It remains to establish that Z is indeed a divisor inside eG5
12;15. To that end, we observe

that one has a birational isomorphism G5
12;15 Š G

1
12;7. The latter being the Hurwitz space

of degree 7 covers of P1, it is well-known to be irreducible, henceG5
12;15 is irreducible as well.

Therefore it suffices to exhibit one projectively normal smooth curve C � P5 of genus 12 and
degree 15, such that P OC .1/ is non-degenerate. This is achieved in a way similar to the proof
of Theorem 7.3, by choosing C to lie on a particular rational surface.

We pick 11 general points p1; : : : ; p11 2 P2. We embed the surface X WD Bl11.P2/

obtained by blowing-up these points in P5 via the linear system

H D 5h � 2E1 � 2E2 �

11X

iD3

Ei 2 Pic.X/;

where h is the hyperplane class and Ei is the exceptional divisor corresponding to the point
pi , for i D 1; : : : ; 11. We compute h0.X; OX .2// D 19 and dim IX; OX .1/.2/ D 2. We check
furthermore with Macaulay that the pencil P OX .1/ is non-degenerate.

We construct a curve C � X as a general element of the following linear system on X

C 2
ˇ̌
ˇ10h � 4E1 � 4E2 � 3E3 � 3E4 � 2

10X

iD5

Ei �E11

ˇ̌
ˇ:

Then C is a smooth curve of genus 12 with C � H D 15. Since H 0.X; OX .2H � C // D 0,
we have an isomorphism IX; OX .1/.2/ Š IC; OC .1/.2/, showing that the pencil P OC .1/ is non-
degenerate.

9. Tautological classes on the moduli space of polarized K3 surfaces

For a positive integer g, we denote by F g the moduli space of quasi-polarized K3 surfaces
of genus g classifying pairs ŒX; L�, where X is a smooth K3 surface and L 2 Pic.S/ is a
big and nef line bundle with L2 D 2g � 2. Via the Torelli Theorem for K3 surfaces, one
can realize F g as the quotient �g=�g of a 19-dimensional symmetric domain �g by an
arithmetic subgroup �g of SO.3; 19/.

We denote by � W X ! F g the universal polarized K3 surface of genus g and by
L 2 Pic. X / a universal polarization line bundle. Note that L is not unique, for it can be
twisted by the pull-back of any line bundle coming from F g . Recall that the Hodge bundle
on F g is defined by

� WD ��.!�/ 2 Pic. F g/:

Following [39], for non-negative integers a; b we also consider the � classes on F g , by setting

�a;b WD ��

�
c1. L /a � c2. T �/b

�
2 CH aC2b�2. F g/:

We shall concentrate on the codimension 1 tautological classes, that is, on �3;0 and �1;1.
Replacing L by eL WD L ˝ ��.˛/, where ˛ 2 Pic. F g/, the classes �3;0 and �1;1 change
as follows:

e�3;0 D �3;0 C 6.g � 1/˛ and e�1;1 D �1;1 C 24˛:
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It follows that the following linear combination of � classes

 WD �3;0 �
g � 1

4
�1;1 2 CH 1. F g/

is well-defined and independent of the choice of a Poincaré bundle on X .

9.1. K3 surfaces and rank 4 quadrics

Recall that in the Introduction we have introduced the Noether-Lefschetz divisors Dh;d

consisting of quasi-polarized K3 surfaces ŒX; L� 2 F g such that there exists a primitive
embedding of a rank 2 lattice Z � L ˚ Z � D � Pic.X/, where D 2 Pic.X/ is a class with
D �L D d and D2 D 2h�2. In what follows, we fix a quasi-polarized K3 surface ŒX; L� 2 F g

and consider the map

'L W X ! Pg

induced by the polarization. We recall a few classical results on linear systems on K3 surfaces.
Since L is big and nef, using [50] Proposition 2.6, we find that L is base point free unless there
exists an elliptic curve E � X with E � L D 1. In this case, L D gE C �, where �2 D �2

and E � � D 1. This case corresponds to the NL divisor D1;1. If L is base point free, then
L is not very ample if and only if there is a divisor E 2 Pic.X/ with E2 D �2 and E �L D 0

(which corresponds to the NL divisor D0;0), or there is a divisor E 2 Pic.X/ with E2 D 0

and E � L D 2, which corresponds to the NL divisor D1;2.

When ŒX; L� 2 D0;0, the morphism 'L contracts the smooth rational curve �. The NL
divisor D1;2 consists of hyperelliptic K3 surfaces, for in this case 'L maps X with degree 2

onto a surface of degree g� 1 in Pg . Furthermore, for ŒX; L� 2 F g �
�
D0;0 [D1;1 [D1;2

�
,

it is shown in [50] Theorem 6.1 that the multiplication map

�X;L W Sym2H 0.X; L/! H 0.X; L˝2/

is surjective. By Riemann-Roch, h0.X; L˝2/ D �.X; OX /C 2L2 D 4g � 2 and we obtain

dim IX;L.2/ D

 
g C 2

2

!
� .4g � 2/ D

 
g � 2

2

!
D codim.†

g�3
gC1/:

Recall that we have defined in the Introduction the locus Drk4
g of quasi-polarized K3

surfaces ŒX; L� 2 F g such that the image 'L.X/ � Pg lies on a rank 4 quadric.

P 9.1. – The locus Drk4
g is a Noether-Lefschetz divisor on F g . Set-theoretically,

it consists of the quasi-polarized K3 surfaces ŒX; L� 2 F g , for which there exists a decompo-
sition L D D1 CD2 in Pic.X/, with h0.X; Di / � 2, for i D 1; 2.

Proof. – Suppose the embedded K3 surface X ,! Pg lies on a quadric Q � Pg of rank
at most 4. Assume rk.Q/ D 4, hence Sing.Q/ Š Pg�4. Then Q is isomorphic to the inverse
image of P1�P1 under the projection pSing.Q/ W P

g
99K P3 with center Sing.Q/. Accordingly,

Q has two rulings which cut out line bundles D1 and D2 on X such that h0.X; Di / � 2 and
L D D1 CD2. The argument is clearly reversible.
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For n � 1, we introduce the following tautological bundles

U n WD ��. L
˝n

/

on F g . Note that Ri ��. L
˝n

/ D 0 for i D 1; 2, hence U n is locally free and rk. U n/ D

2C n2.g � 1/.

P 9.2. – The following formula holds for every n � 1:

c1. U n/ D
n

12
�1;1 C

n3

6
�3;0 �

�n2

2
.g � 1/C 1

�
� 2 CH 1. F g/:

Proof. – We apply Grothendieck-Riemann-Roch to the universal K3 surface � W X ! F g

and write:

ch
�
�Š L

˝n�
D ��

h�
1C nc1. L /C

n2

2
c2

1. L /C
n3

6
c3

1. L /C � � �
�

�
�
1 �

1

2
c1.!�/C

1

12

�
c2

1.!�/C c2.��/
�
�

1

24
c1.!�/c2.��/C � � �

�i
:

Note that �2;0 D ��.c2
1. L // D 2g � 2 2 CH 0. F g/, hence by looking at degree 2 terms in

this formula, we find �0;1 D 24. We now consider degree 3 terms that get pushed forward
under � , and use that c1.��/ D ��.�/, hence ��

�
c1. L / � c2

1.!�/
�
D 0. Collecting terms, we

obtained the desired formula.

We are now in a position to compute the class of the Noether-Lefschetz divisor Drk4
g .

Proof of Theorem 1.3. – On the moduli space F g we consider the vector bundle
morphism

� W Sym2. U 1/! U 2:

The divisor Drk4
g coincides with the locus where the kernel of � contains a rank 4 quadric.

Applying Theorem 4.7, we find the formula

ŒDrk4
g � D A

g�3
gC1

�
c1. U 2/ �

8g � 4

g C 1
c1. U 1/

�
:

In view of Proposition 9.2, c1. U 1/ D 1
12

�1;1C
1
6
�3;0�

gC1
2

� and c1. U 2/ D 1
6
�1;1C

4
3
�3;0�

.2g � 1/�. Substituting, we obtain the claimed formula.

9.2. Koszul cohomology of polarized K3 surfaces of odd genus

Theorem 1.3 shows that a certain linear combination of the classes � and  lies in the
span of NL divisors. To conclude that both � and  are of NL-type, we find another linear
combination of these two classes, that is guaranteed to be supported on NL divisors. To that
end, for odd genus, we use Voisin’s solution [52], [53] to the Generic Green’s Conjecture on
syzygies of canonical curves.

We fix a quasi-polarized K3 surface ŒX; L� 2 F g �D1;1, so that L is globally generated
and we consider the induced morphism 'L W X ! Pg . We introduce the coordinate ring

�X .L/ WD
M

n�0

H 0.X; L˝n/;
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viewed as a graded module over the polynomial algebra S WD Sym H 0.X; L/. In order to
describe the minimal free resolution of �X .L/, for integers p; q � 0, we introduce the Koszul
cohomology group

Kp;q.X; L/ D Torp
S .�X .L/;C/pCq

of p-th order syzygies of weight q of the pair ŒX; L�. We set bp;q.X; L/ WD dim Kp;q.X; L/.
For an introduction to Koszul cohomology in algebraic geometry, we refer to [26] and [3].

The graded minimal free S -resolution of �X .L/ has the following shape:

0 � �X .L/ � F0  � F1  � � � �  � Fg�3  � Fg�2  � 0;

where Fp D
L

q>0 S.�p � q/˝Kp;q.X; L/, for all p � g � 2.
The resolution is self-dual in the sense that Kp;q.X; L/_ Š Kg�2�p;3�q.X; L/, see [26]

Theorem 2.c.6. This shows that the linear strand of the Betti diagram of ŒX; L� corresponding
to the case q D 1 is dual to the quadratic strand corresponding to the case q D 2. In
[53], in her course of proving Green’s Conjecture for general curves [26], Voisin determined
completely the shape of the minimal resolution of a generic quasi-polarized K3 surface
ŒX; H� 2 F g of odd genus g D 2i C 3. We summarize in the following table the relevant
information contained in the rows of linear and quadratic syzygies of the Betti table.

T 1. The Betti table of a general polarized K3 surface of genus g D 2i C 3

1 2 � � � i � 1 i i C 1 i C 2 � � � 2i

b1;1 b2;1 � � � bi�1;1 bi;1 0 0 � � � 0

0 0 � � � 0 0 biC1;2 biC2;2 � � � b2i;2

The crux of Voisin’s proof is showing KiC1;1.X; L/ D 0, which implies Kp;1.X; L/ D 0

for p > i . Then by duality, the second row of the resolution has the form displayed above.
Our strategy is to treat this problem variationally and consider the locus of polarized K3

surfaces with extra syzygies, that is,

Koszg WD
n
ŒX; L� 2 F g W KiC1;1.X; L/ ¤ 0

o
:

We shall informally refer to Koszg as the Koszul divisor on F g , where g D 2i C 3. It is
shown in [3] Corollary 2.17 that the group KiC1;1.X; L/ of linear syzygies has the following
interpretation

KiC1;1.X; L/ Š Ki;2

�
IX;L; H 0.X; L/

�
;

where IX;L WD
L

k IX;L.k/ is the ideal of X � Pg , cf. Definition 6.1, viewed as a graded
Sym H 0.X; L/-module. Thus, one has the following identification

KiC1;1.X; L/ Š Ker
n î

H 0.X; L/˝ IX;L.2/!

i�1̂

H 0.X; L/˝ IX;L.3/
o

Š H 0
�

Pg ; �i
Pg .i C 2/˝ I X=Pg

�
;

(24)

where the map in question is given by the Koszul differential. The last identification in (24)
is obtained by taking global sections in the exact sequence on Pg

0 �!

î

MPg ˝ I X=Pg .2/ �!

î

H 0.Pg ; OPg .1//˝ I X=Pg .2/ �!

i�1̂

MPg ˝ I X=Pg .3/ �! 0;
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where MPg WD �Pg .1/. More generally, we introduce the Lazarsfeld bundle of ŒX; L� as the
kernel of the evaluation map of global sections, that is,

(25) 0 �!ML �! H 0.X; L/˝ OX �! L �! 0:

Note that ML D �Pg jX .1/. Via (24), ŒX; L� 2 Koszg if and only the restriction map is not
injective:

(26) H 0
�

Pg ;

î

MPg .2/
�
! H 0

�
X;

î

ML ˝ L2
�
:

The key observation is that the two spaces appearing in (26) have the same dimension, which
leads to representing Koszg as the degeneracy locus of a morphism between two vector
bundles of the same rank over F g .

We collect a few technical results that will come up in the following calculations:

L 9.3. – Let ŒX; L� 2 F 2iC3 be a quasi-polarized K3 surface such that L is base
point free.

(1) H 1
�
X;
Vj

ML ˝ LiC2�j
�
D 0, for j D 0; : : : ; i .

(2) h0
�
X;
Vi

ML ˝ L2
�
D h0

�
P

2iC3;
Vi

M
P

2iC3.2// D .i C 1/
�

2iC5
iC2

�
:

Proof. – It is proved in [9] Corollary 1 that under our assumption, the vector bundle ML is
�L-semistable. This implies that

Vj
ML ˝ L2Ci�j is �L-semistable for all i and j as well.

We take cohomology in the exact sequence

0 �!

j C1^
ML ˝ LiC1�j �!

j C1^
H 0.X; L/˝ LiC1�j �!

j^
ML ˝ LiC2�j �! 0:

Since H 1.X; LiC1�j / D 0 and H 2.X; LiC1�j / D 0 for j � i , we obtain the isomorphism

H 1
�
X;

j^
ML ˝ LiC2�j / Š H 2

�
X;

j C1^
ML ˝ LiC1�j

�
:

Since rk.ML/ D g and c1.ML/ D �L, by standard Chern class calculation, we find

�L

�j C1^
ML ˝ LiC1�j

�
D

i C 2

2i C 3
.2i � 2j C 1/ > 0;

which establishes H 2
�
X;
Vj C1

ML ˝ LiC1�j
�
D 0 by the stability of the vector bundle in

question.

The fact that h0
�
Pg ;

Vi
MP2iC3.2/

�
D h0

�
Pg ; �P2iC3.i C 2// D .i C 1/

�
2iC5
iC2

�
follows

directly from Bott’s formula on the cohomology of spaces of twisted holomorphic forms
on projective spaces, see e.g., [44] page 4. To compute the last quantity appearing, noting
that c2.ML/ D 2g � 2, after a Riemann-Roch calculation on X , we obtain

h0
�
X;

î

ML ˝ L2/ D �
�
X;

î

ML ˝ L2
�
D .i C 1/

 
2i C 5

i C 2

!
;

where we have used the standard formulas c1

�Vi
ML

�
D
�

2iC2
i�1

�
c1.ML/ and

c2

� î

ML

�
D

1

2

 
2i C 2

i � 1

!� 2i C 2

i � 1

!
� 1

�
c2

1.ML/C

 
2i C 1

i � 1

!
c2.ML/:
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Taking exterior powers in the short exact sequence (25) and using the first part of
Lemma 9.3, for j D 0; : : : ; i , we obtain the exact sequences, valid for ŒX; L� 2 F g �D1;1:

0 �! H 0
�
X;

j^
ML ˝ LiC2�j

�
�!

j^
H 0.X; L/˝H 0.X; LiC2�j /

�! H 0
�
X;

j �1^
ML ˝ LiC3�j

�
�! 0:

Globalizing these exact sequences over the moduli space, for j D 0; : : : ; i , we define
inductively the vector bundles Gj;iC2�j over F g via the exact sequences

(27) 0 �! Gj;iC2�j �!

j^
U 1 ˝ U iC2�j �! Gj �1;iC3�j �! 0;

starting from G 0;iC2 WD U iC2.

Similarly, taking exterior powers in the Euler sequence on Pg , we find the exact sequences

0 �! H 0
� j^

MPg .i C 2 � j /
�
�!

j^
H 0. OPg .1//˝H 0. OPg .i C 2 � j //

�! H 0
�j �1^

MPg .i C 3 � j /
�
�! 0;

which can also be globalizes to exacts sequences over F g . We define inductively the vector
bundles Hj;iC2�j for j D 0; : : : ; i , starting from H 0;iC2 WD SymiC2. U 1/ and then via the
exact sequences

(28) 0 �! Hj;iC2�j �!

j^
U 1 ˝ SymiC2�j . U 1/ �! Hj �1;iC3�j �! 0:

In particular, there exist restriction morphisms Hj;iC2�j ! Gj;iC2�j for all j D 0; : : : ; i .
Setting j D i , we observe that the second part of Lemma 9.3 yields rk. H i;2/ D rk. G i;2/,
and the degeneracy locus of the morphism

� W H i;2 ! G i;2

is precisely the locus Koszg of quasi-polarized K3 surfaces having extra syzygies.

P 9.4. – The locus Koszg is an effective divisor on F g of NL type.

Proof. – Let ŒX; L� 2 F g be a quasi-polarized K3 surface with Pic.X/ D Z � L and
choose a general curve C 2 jLj. Using the Koszul duality Ki;2.X; L/ Š KiC1;1.X; L/_, in
order to conclude, it suffices to show that Ki;2.X; L/ D 0. Using the main result of [53], we
have that Ki;2.X; L/ Š Ki;2.C; !C / D 0, for the genus g curve C 2 jLj is known to be
Brill-Noether general, in particular it has maximal Clifford index Cliff.C / D i C 1.

In what follows, we shall repeatedly use that if E is a vector bundle of rank r on a stack
X , then

(29) c1

� n̂

E
�
D

 
r � 1

n � 1

!
c1.E/ and c1

�
Symn.E/

�
D

 
r C n � 1

r

!
c1.E/:
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T 9.5. – Set g D 2i C 3. The class of the Koszul divisor of K3 surfaces with extra
syzygies is given by

ŒKoszg � D
2

i C 2

 
2i � 1

i

!�
2.i C 1/.i C 5/�C 

�
C ˛ � ŒD1;1� 2 CH 1. F g/;

for some coefficient ˛ 2 Z.

Proof. – As explained, off the divisor D1;1, the locus Koszg is the degeneracy locus of
the morphism � W H i;2 ! G i;2, therefore ŒKoszg � D c1. G i;2/ � c1. H i;2/C ˛ � ŒD1;1�, for a
certain integral coefficient ˛. Using repeatedly the exact sequences (27) and the formulas for
the ranks of the vector bundles U 2Cj , we find

c1. G i;2/ D

iX

j D0

.�1/j c1

�i�j^
U 1 ˝ U 2Cj

�

D

iX

j D0

.�1/j
��

2C .j C 2/2.g � 1/
�
 

g

i � j � 1

!
c1. U 1/C

 
g C 1

i � j

!
c1. U 2Cj /

�
:

Similarly, in order to compute the first Chern class of H i;2, we use the exact sequences (28):

c1. H i;2/ D

iX

j D0

.�1/j c1

�i�j^
U 1 ˝ Symj C2 U 1

�

D

iX

j D0

.�1/j
� g C j C 2

g

! 
g

i � j � 1

!
C

 
g C 1

i � j

! 
g C j C 2

g C 1

!�
c1. U 1/

D
i C 1

2

 
2i C 5

i C 2

!
c1. U 1/:

Substituting in these formulas the Chern classes computed in Proposition 9.2, after some
manipulations we obtain the claimed formula for ŒKoszg �.

10. Lazarsfeld-Mukai bundles on K3 surfaces of even genus and tautological classes

For even genus, in order to obtain a Noether-Lefschetz relation between the classes �

and  which is different than the one in Theorem 1.3, we use the geometry of the rank 2

Lazarsfeld-Mukai vector bundle one associates to a sufficiently general polarized K3 surface.
We denote by DNL � F g the Noether-Lefschetz divisor consisting of K3 surfaces ŒX; L�

of genus g, such that L D OX .D1 C D2/, with both D1 and D2 being non-trivial effective
divisors on X . We set F ]

g WD F g � DNL and slightly abusing notation, we denote by

� W X ]
! F ]

g the corresponding restriction of the universal K3 surface. Throughout this
subsection we fix an even genus g D 2i , with i � 4. Our aim is to show that the restriction
of both classes � and  to F ]

g is trivial. The geometric source of such a relation lies in
the geometry of Lazarsfeld-Mukai vector bundles that have proved to be instrumental in
Lazarsfeld’s proof [37] of the Petri Theorem.
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D 10.1. – For a polarized K3 surface ŒX; L� 2 F ]
g , we denote by EL the

unique stable rank 2 vector bundle on X , satisfying det.EL/ D L, c2.EL/ D i C 1 and
h0.X; EL/ D i C 2.

The vector bundle E WD EL, which we refer to as the Lazarsfeld-Mukai vector bundle
of ŒX; L� has been first considered in [42] and [37]. In order to construct it, one chooses a
smooth curve C 2 jLj and a pencil of minimal degree A 2 W 1

iC1.C /. By Lazarsfeld [37], it is
known that C verifies the Brill-Noether Theorem, in particular gon.C / D i C 1. We define
the dual Lazarsfeld-Mukai bundle via the following exact sequence on X

(30) 0 �! E_
L �! H 0.C; A/˝ OX

ev
�! ��A �! 0;

where � W C ,! X denotes the inclusion map. Dualizing the previous sequence, we obtain the
short exact sequence

0 �! H 0.C; A/_ ˝ OX �! EL �! !C ˝ A_ �! 0:

We summarize the properties of this vector bundle and refer to [37] for proofs:

P 10.2. – Let ŒX; L� 2 F ]
g and E D EL be the corresponding rank 2

Lazarsfeld-Mukai bundle. 1.1.

1. E is globally generated and H 1.X; E/ D H 2.X; E/ D 0.

2. h0.X; E/ D h0.C; !C ˝ A_/C h0.C; A/ D i C 2.

3. E is �L-stable, in particular h0.X; E ˝E_/ D 1 as well as rigid, that is,
H 1.X; E ˝E_/ D 0.

4. The vector bundle E is independent of the choice of C and of that of the pencil
A 2 W 1

iC1.C /.

In particular, Proposition 10.2 implies that E is the only �L-semistable sheaf on X having
Mukai vector v D v.E/ D .2; L; i/. We denote by det W

V2
H 0.X; E/ ! H 0.X; L/ the

determinant map.

Let E be the universal rank 2 Lazarsfeld-Mukai vector bundle over X ], that is,
E jX D EL, for every ŒX; L� 2 F ]

g . In this case L WD det. E / can be taken to be the

polarization line bundle, and apart from the classes �1;1 D ��

�
c1. E / � c2. T �/

�
and

�3;0 D ��

�
c1. E /3

�
, we also have a third tautological class

# WD ��

�
c1. E / � c2. E /

�
:

To show that both classes � and  D �1;1 �
g�1

4
�3;0 are of NL type, we need two further

sources of geometric relations in terms of Lazarsfeld-Mukai bundles. These provide two
relations involving �; �3;0, �1;1 and # , hence by eliminating # , one relation between � and
 , which turns out to be different than the one given by Theorem 1.3.
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10.1. The Chow form of the Grassmannian and Lazarsfeld-Mukai bundles.

One such source of relations is provided by the recent work [2], where among other things
a Schubert-theoretic description of the Cayley-Chow form of the Grassmannian Gr.2; n/ of
lines is provided.

Let V be an n-dimensional complex vector space and choose a linear subspace K �
V2

V .
Then K? �

V2
V _. It is shown in [2] Theorem 3.1 that the condition P

�
K?/\Gr.V; 2/ D ;,

the intersection being taken inside P
�V2

V _
�
, is equivalent to the exactness of the complex

K ˝ Symn�3.V /
ı2
�! V ˝ Symn�2.V /

ı1
�! Symn�1.V /;

where ıi W
Vi

V ˝Sym.V /!
Vi�1

V ˝Sym.V / denotes the Koszul differential, for i D 1; 2.

We apply this result for polarized K3 surfaces, when we take V WD H 0.X; E/_ and

K? WD Ker
n
det W

2̂

H 0.X; E/! H 0.X; L/
o

is the kernel of the determinant map. Note that det does not vanish on any element of rank 2,
see [53] page 380, for the existence of an element 0 ¤ s1 ^ s2 2

V2
H 0.X; E/ such

that det.s1 ^ s2/ D 0, would imply a splitting of L as a sum of two pencils. By dualizing,
we conclude that the complex

(31) SymiC1H 0.X; E/ �! H 0.X; E/˝Symi H 0.X; E/
ˇ
�! H 0.X; L/˝Symi�1H 0.X; E/

is exact for every point ŒX; L� 2 F ]
g . The map ˇ is obtained by composing the (dual) Koszul

differential

H 0.E/˝ Symi H 0.X; E/!

2̂

H 0.X; E/˝ Symi�1H 0.X; E/

with the map det ˝ id
Symi�1H 0.X;E/ W

V2
H 0.X; E/ ˝ Symi�1H 0.X; E/ ! H 0.X; L/ ˝

Symi�1H 0.X; E/.

We globalize this geometric fact. For n � 1, we introduce the vector bundle
Vn WD ��

�
Symn E

�
on F ]

g , where we observe that Ri ��

�
Symn E

�
D 0, for i D 1; 2.

We shall make use of the following formulas:

P 10.3. – The following formulas hold in CH 1. F ]
2i /:

c1. V1/ D
1

12
�1;1 C

1

6
�3;0 �

i C 2

2
� �

1

2
# and c1. V2/ D

1

4
�1;1 C

3

2
�3;0 �

6i � 3

2
� � 4#:

Proof. – We only discuss the calculation of c1. V2/. For any ŒX; L� 2 F ]
g , observe that

h0
�
X; Sym2.E/

�
D �

�
X; Sym2.E/

�
D

c2
1

�
Sym2.E/

�

2
� c2.Sym2.E//C3�.X; OX / D 6i �3;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



980 G. FARKAS AND R. RIMÁNYI

where we use the formulas c1

�
Sym2.E/

�
D 3c1.E/ and c2

�
Sym2.E/

�
D 2c2

1.E/C 4c2.E/.

Applying Grothendieck-Riemann-Roch to the universal family � W X ]
! F ]

g , we find:

c1. V2/ D c1

�
�Š

�
Sym2 E

�
/

D ��

h�
3C 3c1. E /C

5c2
1. E / � 8c2. E /

2
C

9c3
1. E / � 24c1. E /c2. E /

6

�

�
�
1 �

1

2
c1.!�/C

1

12

�
c2

1.!�/C c2.��/
�
�

1

24
c1.!�/c2.��/C � � �

�i
2
:

Expanding the product and using again that ��.c2.��// D 24, we obtain the claimed
formula.

In order to treat the complex (31) variationally, we consider the following vector bundles
over F ]

2i

A WD
V1 ˝ Symi . V1/

SymiC1. V1/
and B WD U 1 ˝ Symi�1. V1/:

Note that rk. A / D .i C 2/
�

2iC1
i

�
�
�

2iC2
iC1

�
D .2i C 1/

�
2i

i�1

�
D rk. B/ and there is a sheaf

morphism

ˇ W A ! B;

which over a point ŒX; L� 2 F ]
g is precisely the map

ˇX;L W
H 0.X; E/˝ Symi H 0.X; E/

SymiC1H 0.X; E/
! H 0.X; L/˝ Symi�1H 0.X; E/

induced by (31). As explained, the morphism ˇ is everywhere non-degenerate over F ]
g .

T 10.4. – One has the following formula

# D
i

8i C 4
�1;1 C

i

4i C 2
�3;0 �

i C 2

2
�:

Proof. – The morphism ˇ W A ! B being everywhere non-degenerate, we find
that c1. A / D c1. B/. Applying systematically the formulas (29), we write:

c1. A / D
� 2i C 1

i

!
C .i C 2/

 
2i C 1

i C 2

!
�

 
2i C 2

i C 2

!�
c1. V1/;

c1. B/ D

 
2i

i � 1

!
c1. U 1/C .2i C 1/

 
2i

i C 2

!
c1. V1/;

hence, after manipulations

0 D c1. B � A / D

 
2i

i � 1

!�
c1. U 1/ �

4i C 2

i C 2
c1. V1/

�
:

We then replace c1. U 1/ and c1. V1/ with their respective expressions provided by Propo-
sitions 9.2 and 10.3, clear denominators (our Chow groups are with Q-coefficients), then
conclude.
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10.2. Lazarsfeld-Mukai bundles and rank 6 quadrics

A second source of relations between the classes �, �1;1, �3;0 and # is obtained by studying
the kernel of the multiplication map

�E W Sym2H 0.X; E/! H 0
�
X; Sym2.E/

�

associated to the Lazarsfeld-Mukai bundle E D EL corresponding to an element ŒX; L� 2 F ]
2i .

We assume throughout that i � 4.

L 10.5. – One has H i
�
X; Sym2.E/

�
D 0, for i D 1; 2.

Proof. – We choose a general curve C 2 jLj and a minimal pencil A 2 W 1
iC1.C /.

Tensoring the exact sequence (30) by E_ and taking global sections implies that H 2
�
X; E˝

E
�
Š H 0.X; E_˝E_/ D 0. Similarly, we can prove that H 1.X; E˝E/ D 0, which implies

that H 1
�
X; Sym2.E/

�
D 0. We tensor again (30) by E_ and take cohomology. The vanishing

of H 1.X; E_ ˝ E_/ Š H 1.X; E ˝ E/_ is implied by H 0.C; A˝ Ej
_

C
/ D 0, which follows

because EjC
is stable on C and �

�
A˝Ej

_

C

�
D 4 � 2i < 0.

Using Lemma 10.5, we compute h0
�
X; Sym2.E/

�
D 6i � 3, then observe that

dim Sym2H 0.X; E/ � h0
�
X; Sym2.E/

�
D

 
i C 3

2

!
� .6i � 3/ D

 
i � 3

2

!
;

that is, the locus

Drk6
2i WD

n
ŒX; L� 2 F ]

2i W 9 0 ¤ q 2 Ker.�E /; rk.q/ � 6
o
;

is expected to be a divisor on F ]
2i . We confirm this expectation in a very precise form.

T 10.6. – For a polarized K3 surface ŒX; L� 2 F ]
2i , the kernel of the map �E

contains no non-zero elements of rank at most 6, that is, Drk6
2i D ;.

Proof. – We start with a K3 surface ŒX; L� 2 F ]
2i and assume we have an element

0 ¤ q 2 Ker.�E /, where rk.q/ D n � 6. We write q D s2
1 C � � � C s2

n, where si 2 H 0.X; E/.
Denoting by P.E/ ! X the projective bundle associated to E, we have the canonical
identifications

H 0.X; E/ Š H 0
�
P.E/; OP.E/.1/

�
and H 0

�
X; Sym2.E/

�
Š H 0

�
P.E/; OP.E/.2/

�
:

Let V WD hs1; : : : ; sni � H 0.X; E/. Since H 0.X; E.�L// D 0, the cokernel of the evaluation
map V ˝ OX ! E is supported along finitely many points and we denote by

'V W X 99K Gr.V; 2/ � P
� 2̂

V _
�

the induced rational map. Note that '�
V . O.1// D L. We further denote by Q � P

�
V _

�

the quadric given by the equation q D 0. The condition q 2 Ker.�E / can be interpreted
geometrically as saying that the image of P.E/ under the composition

P.E/
j O.1/j
�! P

�
H 0.E/_/ 99K P.V _/

lies on the quadric Q. This in turn, amounts to saying that 'V .X/ is contained in orthogonal
Grassmannian GrQ � Gr.V; 2/ of lines in P

�
V _/ contained in Q. The essential observation

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



982 G. FARKAS AND R. RIMÁNYI

is that for n � 6, the pull-back OGrQ
.1/ splits non-trivially as the sum of two effective

line bundles, which in turn, induces a decomposition of the polarization class L on X ,
contradicting the assumption that ŒX; L� is NL-general.

We discuss in detail the case n D 6, the situation for n � 5 being similar. Thus
Q � P

�
V _

�
D P5 is a rank 6 quadric and we may assume that Q D Gr.2; U / �

P
�V2

U
�
Š P.V _/ is the Grassmannian of lines in P3 Š P.U /, where U is a 4-dimensional

complex vector space such that
V2

U Š V _. Then every line inside GrQ is of the form
L`;H WD

˚
… 2 Gr.2; U / W ` � … � H

	
, where ` � U is 1-dimensional and H � U

is a 3-dimensional subspace. Accordingly, one has an isomorphism between GrQ and the
incidence correspondence † � P.U /� P.U _/, assigning to the pair .`; H/ 2 † with ` � H

the line L`;H defined above. Denoting by

P.U /
�1

 ����� GrQ Š † � P.U / � P.U _/
�2

�����! P.U _/

the two projections, we have OGrQ
.1/ Š ��

1

�
OP.U /.1/

�
˝ ��

2

�
OP.U _/.1/

�
: Let q1 WD �1 ı

'V W X 99K P.U / and q2 WD �2 ı 'V W X 99K P.U _/. It is now enough to observe
that h0.X; q�

i . O.1// � 2, for i D 1; 2. Indeed, else the image of one of the maps qi , say q1,
is a point, hence there exists `0 2 P.U /, such that Im.'V / � ��1

1 .`0/. But ��1
1 .`0/ Š

P2 � P
�V2

U
�
, that is, 'V .X/ � Gr.2; 3/, which is impossible, for V is 6-dimensional. We

conclude that L D q�
1

�
OP.U /.1/

�
˝ q�

2

�
OP.U _/.1/

�
is NL special.

We briefly mention the cases n � 5. For n D 4, we have Q � P3 and the variety of lines
GrQ consists of two copies of P1. For n D 5, when Q � P4 is a rank 5 quadric, the variety
of lines GrQ is identified with P3 in its second Veronese embedding P3 ,! P9 Š P

�V2
V _

�
.

The assumption that there exist 0 ¤ q 2 Ker.�E / with rk.q/ 2 f4; 5g implies that L is
non-primitive, a contradiction.

T 10.7. – The relation 1
2iC1

 C .i C 2/� D 0 holds in CH 1. F ]
2i /.

Proof. – We first use the fact that the divisor Drk6
2i is of Noether-Lefschetz type, that is,

by applying Theorem 1.1 coupled with Proposition 10.3, we obtain the relation

0 D ŒDrk6
2i � D c1. V2/�

2.6i � 3/

i C 2
c1. V1/ D

3

2
.2i�1/�C

2i � 11

i C 2
#�

i � 8

2i C 4
�3;0�

3i � 4

4i C 8
�1;1:

Substituting # obtained in this way in the formula provided by Theorem 10.4, we obtained
the desired relation between � and  .

Proof of Theorem 1.4 for even g. – Theorem 1.3 provides the relation .4i�1/�C 2
2iC1

 D

0 2 CH 1. F ]
2i /. Coupled with Theorem 10.7, we conclude that both classes � and  vanish

on F ]
2i , hence they are of Noether-Lefschetz type on F 2i .

11. Semistability of the second Hilbert point of a polarized K3 surface

A simple and somewhat surprising application of the techniques developed in Subsec-
tion 9.1 concerns the GIT semistability of polarized K3 surfaces. We fix once and for all a
vector space V Š CgC1.
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D 11.1. – For a polarized K3 surface ŒX; L� 2 F g such that Pic.X/ D Z � L,
we define its second Hilbert point to be the quotient

ŒX; H�2 WD
h
Sym2H 0.X; L/ �! H 0.X; L˝2/ �! 0

i
2 Gr

�
Sym2H 0.X; H/; 4g � 2

�
:

The group SL.V / acts linearly on the Grassmannian

Gr
�
Sym2V; 4g � 2

�
� P

�4g�2^
Sym2V _

�
;

where the last inclusion is given by the Plücker embedding. Let Hilbg be the closure inside
the quotient

P
�4g�2^

Sym2V _
�
==SL.V /

of the locus of semistable second Hilbert points ŒX; H�2 of quasi-polarized K3 surfaces of
genus g. Then the GIT quotient

F g WD Hilbss
g ==SL.V /

is a projective birational model of the moduli space F g , provided the locus Hilbss
g of

semistable second Hilbert points is not empty.

T 11.2. – Let ŒX; L� 2 F g be a polarized K3 surface with Pic.X/ Š Z �L. Then

the second Hilbert point ŒX; H�2 is semistable. In particular, F g , defined as above, exists.

Proof. – By definition of semistability, since the Grassmannian Gr.Sym2V; 4g � 2/

has Picard numer 1, it suffices to construct an SL.V /-invariant effective divisor D

of Gr.Sym2V; 4g � 2/ such that ŒX; L�2 … D. Theorem 1.3 provides such a divisor. We
take D to be the locus of .4g� 2/-dimensional quotients � W Sym2V ։ Q such that Ker.�/

contains a quadric of rank at most 4. The parameter count from Subsection 9.1 shows
that D is indeed a divisor. If ŒX; H� … Drk4

g , then IX;L.2/ contains no quadrics of rank at
most 4, in particular ŒX; L�2 … D, hence its second Hilbert point is semistable.

R 11.3. – By the analogy with the much studied case of the moduli space of
curves [32], we expect that, apart from smooth K3 surfaces, F g also parametrizes degenerate
K3 surfaces with various singularities. It is also likely that the 2nd Hilbert point of NL special
smooth K3 surfaces is not semistable, that is, the natural map F g 99K F g might not be
regular along NL special loci.

12. The geometry of the Hurwitz spaces of admissible covers

In what follows, for a Deligne-Mumford stack M , we shall denote by M its coarse moduli
space. If X � M is an irreducible subvariety, we denote by ŒX� 2 CH �

Q. M / its class in the
stack sense, that is, we divide by the order of the automorphism group of a general element
in X .

We denote by Ho

k the Hurwitz space of degree k covers f W C ! P1 with simple ramifica-
tion from a smooth curve C of genus 2k� 1, together with an ordering .p1; : : : ; p6k�4/ of its
branch points. Let H

o

k denote the compactification of Ho

k by admissible covers. By [1], the
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stack H
o

k (whose coarse moduli space is precisely H
o

k) is isomorphic to the stack of twisted
stable maps into the classifying stack BSk of the symmetric group Sk , that is,

H
o

k WDM 0;6k�4

�
BSk

�
:

Points of H
o

k are admissible covers Œf W C ! R; p1; : : : ; p6k�4�, where C and R are nodal
curves of genus 2k � 1 and 0 respectively, and p1; : : : ; p6k�4 2 Rreg are the branch points

of f . Let b W H
o

k ! M 0;6k�4 be the branch morphism. The symmetric group S6k�4 acts

on H
o

k by permuting the branch points of each cover. Denoting by

H k WD H
o

k=S6k�4

the quotient parametrizing admissible covers without an ordering of the branch points, the
projection q W H

o

k ! H k is a principal S6k�4-bundle. We denote by � W H k ! M 2k�1

the map assigning to an admissible cover the stable model of its source curve. We shall
use throughout the isomorphism CH 1

Q. H k/ Š H 2. H k ;Q/, see [10] Theorem 5.1 and
Proposition 2.2.

For i D 0; : : : ; 3k � 2, let Bi be the boundary divisor of M 0;6k�4 whose general point
is the union of two smooth rational curves meeting at one point, such that precisely i of the
marked points lie on one component. The boundary divisors of H

o

k are parametrized by the
following combinatorial data:

1. A partition I t J D f1; : : : ; 6k � 4g, such that jI j � 2, jJ j � 2.

2. Transpositions fwigi2I and fwj gj 2J in Sk , with
Q

i2I wi D u,
Q

j 2J wj D u�1, for
some u 2 Sk .

To this data, we associate the locus of admissible covers with labeled branch points
�
f W C ! R; p1; : : : ; p6k�4

�
2 H

o

k ;

where ŒR D R1 [p R2; p1; : : : ; p6k�4� 2 BjI j
� M 0;6k�4 is a pointed union of two smooth

rational curves R1 and R2 meeting at the point p. The marked points lying on R1 are precisely
those labeled by the set I . Let � WD .�1; : : : ; �`/ ` k be the partition induced by u 2 Sk and
denote by Ei W� the boundary divisor on H

o

k classifying twisted stable maps with underlying
admissible cover as above, with f �1.p/ having partition type �, and precisely i of the points
p1; : : : ; p6k�4 lying on R1. We denote by Di W� the reduced boundary divisor of H k pulling
back to Ei W� under the map q.

For i D 2; : : : ; 3k � 2, we have the following relation, see [30] p. 62, as well as [25]
Lemma 3.1:

(32) b�.Bi / D
X

�`k

lcm.�/Ei W�:

The class of the Hodge class � WD .� ı q/�.�/ on H
o

k has been determined in [36] and
[25]:

(33) � D

3k�2X

iD2

X

�`k

lcm.�/
� i.6k � 4 � i/

8.6k � 5/
�

1

12

�
k �

`.�/X

j D1

1

�j

��
ŒEi W�� 2 CH 1. H

o

k/:
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The sum is taken over partitions � that correspond to permutations that can be written
as products of i transpositions. Furthermore, `.�/ denotes the length of the partition � and
lcm.�/ is the lowest common multiple of the parts of �.

We now discuss in detail the divisors of H
o

k lying over the boundary divisor B2. We pick
a cover

Œf W C D C1 [ C2 ! R D R1 [p R2; p1; : : : ; p6k�4� 2 b�.B2/;

where Ci D f �1.Ri /. We assume I D f1; : : : ; 6k � 6g, thus p1; : : : ; p6k�6 2 R1 and
p6k�5; p6k�4 2 R2.

We denote by E2W.1k/ the closure in H
o

k of the set of admissible covers for which the trans-
positions w6k�5 and w6k�4 corresponding to the points p6k�5 and p6k�4 are equal. Let E0 be
the component of E2W.1k/ corresponding to the case when C1 is connected, which happens
precisely when hw1; : : : ; w6k�6i D Sk . Clearly E0 is irreducible. When w6k�5 and w6k�4

are distinct but not disjoint then � D .3; 1k�3/ ` k and one is led to the boundary divisor
E2W.3;1k�3/. We denote by E3 the (irreducible) subdivisor of E2W.3;1k�3/ corresponding to the
case hw1; : : : ; w6k�6i D Sk . Finally, the case when w6k�5 and w6k�4 are disjoint corre-
sponds to the boundary divisor E2W.2;2;1k�4/ and we denote by E2 the irreducible component
of E2W.2;2;1k�4/ parametrizing covers for which hw1; : : : ; w6k�6i D Sk .

We discuss the behavior of the divisors E0; E2 and E3 under the map q and we have

q�.D0/ D 2E0; q�.D2/ D E2 and q�.D3/ D 2E3:

Indeed the general point of both E0 and E3 has no automorphism that fixes all branch points,
but admits an automorphism of order two that fixes C1 and permutes the branch points
p6k�4 and p6k�5. The general admissible cover in E2 has an automorphism group Z2 � Z2

(each of the two components of C2 mapping 2 W 1 onto R2 has an automorphism of order 2).
In the stack H

o

k we have two points lying over this admissible cover and each of them has
an automorphism group of order 2. In particular the map H

o

k ! H
o

k from the stack to its
coarse moduli space is simply ramified along E2.

The Hurwitz formula applied to the finite ramified cover b W H
o

k ! M 0;6k�4,

coupled with the expression KM 0;6k�4
D

P3k�2
iD2

�
i.6k�4�i/

6k�5
� 2

�
ŒBi � for the canonical

class of KM 0;6k�4
, yields the following formula (on the stack!):

(34) K
H
o

k
D b�KM 0;6k�4

CRam.b/;

where Ram.b/ D
P

i;�.lcm.�/ � 1/Ei W�.

12.1. A partial compactification of the Hurwitz space

It turns out to be convenient to work with a partial compactification of H k . We denote
by fH k the (quasi-projective) parameter space of pairs ŒC; A�, where C is an irreducible
nodal curve of genus 2k � 1 and A is a base-point-free locally-free sheaf of degree k on C

with h0.C; A/ D 2. There exists a rational map H k 99K
fH k , well-defined on the general

point of each of the divisors D0; D2 and D3 respectively. Under this map, to the general
point Œf W C1 [ C2 ! R1 [p R2� of D3 (respectively D2) we assign the pair ŒC1; A1 WD

f � OR1
.1/� 2 fH k . Note that C1 is a smooth curve of genus 2k � 1 and A1 is a pencil with a

triple point (respectively with two ramification points in the fiber over p). The two partial
compactifications H k [ D0 [ D2 [ D3 and fH k differ outside a set of codimension at
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least 2 and for divisor class calculations they will be identified. Using this, formula (33) has
the following translation at the level of fH k :

(35) � D
3.k � 1/

4.6k � 5/
ŒD0� �

1

4.6k � 5/
ŒD2�C

3k � 7

12.6k � 5/
ŒD3� 2 CH 1.fH k/:

We now record the formula for the canonical class of fH k :

P 12.1. – One has KfHk
D 8�C 1

6
ŒD3� � 3

2
ŒD0�.

Proof. – We combine the equation (34) with the Hurwitz formula applied to q W H
o

k 99K
fH k

and write:

q�.KfHk
/ D K

H
o

k
�ŒE0��ŒE2��ŒE3� D q�

�
�

2

6k � 5
ŒD2��

6k � 3

2.6k � 5/
ŒD0�C

6k � 11

2.6k � 5/
ŒD3�

�
:

The divisors E0 and E3 lie in the ramification locus of q, so they are subtracted from K
H
0

k
.

Furthermore, the morphism H
o

k ! H
o

k is simply ramified along E2, so this divisor has to
be subtracted as well. We now use (35) to express ŒD2� in terms of �, ŒD0� and ŒD3� and reach
the claimed formula.

Let f W C k ! fH k be the universal curve and we choose a universal degree k line bundle
L on C k , that is, satisfying L jf �1ŒC;A�

D A, for every ŒC; A� 2 fH k . Just like in Section 7, we

define the following codimension one tautological classes:

a WD f�

�
c2

1. L /
�

and b WD f�

�
c1. L / � c1.!f /

�
2 CH 1.fH k/:

Note that V WD f� L is a vector bundle of rank two on fH k . Although L is not unique, the
class

(36)  WD b �
2k � 2

k
a 2 CH 1.fH k/

is well-defined and independent of the choice of L .

P 12.2. – We have that a D kc1. V/ 2 CH 1.fH k/.

Proof. – Recall that fH k has been defined to consist of pairs ŒC; A� such that A is a base
point free pencil of degree k. In particular, the image under f of the codimension 2 locus
in C k where the morphism of vector bundles f �. V/ ! L is not surjective is empty, hence
by Porteous’ formula

0 D f�

�
c2.f � V/ � c1.f � V/ � c1. L /C c2

1. L /
�
D �kc1. V/C a:

We now introduce the following locally free sheaves on fH k :

E WD f�.!f ˝ L
_

/ and F WD f �.!2
f ˝ L

�2
/

P 12.3. – The following formulas hold

c1. E / D � �
1

2
bC

k � 2

2k
a and c1. F / D 13�C 2a � 3b � ŒD0�:
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Proof. – We apply Grothendieck-Riemann-Roch twice to f . Since R1f�.!2
f
˝ L

�2
/ D 0,

we write:

c1. F / D f�

h�
1C 2c1.!f / � 2c1. L /C 2.c1.!f / � c1. L /2

�
�
�
1 �

c1.!f /

2
C

c2
1.�1

f
/C c2.�1

f
/

12

�i
2
:

Now use Proposition 12.2 as well as f�

�
c2

1.�1
f

/C c2.�1
f

/
�
D 12�, see [30] p. 49, in order to

conclude. To compute the first Chern class of E , note that c1

�
R1f�.!f ˝ L

_
/
�
D �c1. V/,

hence applying again Grothendieck-Riemann-Roch together with Proposition 12.2, we
write:

c1. E / D �kc1. V/

C f�

h�
1C c1.!f / � c1. L /C

.c1.!f / � c1. L /2

2

��
1 �

c1.!f /

2
C

c2
1.�1

f
/C c2.�1

f
/

12

�i
2
;

which quickly leads to the claimed formula.

We summarize the relation between the class  and the classes ŒD0�; ŒD2� and ŒD3� as
follows:

P 12.4. – One has the formula ŒD3� D 6 C 24� � 3ŒD0�:

Proof. – We form the fiber product of the universal curve f W C k ! fH k together with
its projections:

C k

�1
 ����� C k �fHk

C k

�2
�����! C k :

For ` � 1, we introduce the sheaf of principal parts P
`
f . L / WD .�2/�

�
��

1 . L /˝ I .`C1/�

�
.

Observe that P
`
f . L / is not locally free along the codimension 2 locus in C k where f is

not smooth. The jet bundle J `
f

. L / WD
�

P
`
f . L /

�__
, viewed as a locally free replacement

of P
`
f . L /, sits in a commutative diagram:

0 // �˝`
f
˝ L //

��

P
`
f . L /

��

// P
`�1
f . L /

��

// 0

0 // !˝`
f
˝ L // J `

f
. L / // J `�1

f
. L / // 0.

We introduce the vector bundle morphism �2 W f �. V/ ! J 2
f

. L /, which for points

ŒC; A; p� 2 C k such that p 2 Creg is just the evaluation morphism H 0.C; A/! H 0.A˝ O3p/.
We consider the codimension 2 locus Z � C k where �2 W f �. V/ ! J 2

f
. L / is not

injective. Over the locus of smooth curves, D3 is the set-theoretic image of Z. A simple local
analysis shows that the morphism �2 is simply degenerate for each point ŒC; A; p�, where
p 2 Csing, that is, the divisor D0 also appears (with multiplicity 1) in the degeneracy locus
of �2. Assuming this fact for a moment, via the Porteous formula we obtain:

ŒD3� D f�c2

 
J 2

f
. L /

f �. V/

!
� ŒD0� 2 CH 1.fH k/:
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One computes c1.J 2
f

. L // D 3c1. L / C 3c1.!f / and c2.J 2
f

. L // D 3c2
1. L / C 6c1. L / �

c1.!f /C 2c2
1.!f /, therefore

f�c2

 
J 2

f
. L /

f �. V/

!
D 3aC 6b � 3.5k � 4/c1. V/C 2�1 D 6 C 2�1:

Recalling that �1 D 12� � ŒD0� 2 CH 1.fH k/, the claimed formula follows by substitution.
We are left with concluding that D0 appears with multiplicity 1 in the degeneracy locus Z.

Let F W X ! B be a family of curves of genus 2k � 1 over a 1-dimensional base B, with
X smooth, such that there is a point b0 2 B with Xb WD F �1.b/ smooth for b 2 B n fb0g,
whereas Xb0

WD F �1.b0/ has a unique node u 2 X . Assume we are given A 2 Pic. X /

such that Ab WD A jXb
2 W 1

k
.Xb/, for each b 2 B. We pick a parameter t 2 OB;b0

and

x; y 2 O X ;u, such that xy D t represents the local equation of X around u. Then !F is
locally generated by the meromorphic differential � given by dx

x
outside the divisor x D 0

and by �dy
y

outside the divisor y D 0. We choose a CŒŒt ��-basis .s1; s2/ of H 0. X ; A/, where
s1.u/ ¤ 0, whereas s2 vanishes with order 1 at the node u of Xb0

, along both its branches.
Passing to germs at u, we may assume that s2;u D .x C y/s1;u. Denoting by @ W O X ! !F

the canonical derivation, we note that @.x/ D x� and @.y/ D �y� . Then Z is locally given
by the 2 � 2 minors of the matrix

 
1 0 0

x C y x � y x C y

!
;

which proves our claim, that D0 appears with multiplicity 1.

12.2. The divisor Hrk4
k

We fix a cover Œf W C ! P1� 2 H k and set A WD f �. OP1.1//. First we observe that by
choosing Œf � outside a subset of codimension 2 in H k , we may assume that !C ˝ A_ is
very ample. Otherwise by Riemann-Roch there exist points p; q 2 C such that A.p C q/ 2

W 2
kC1

.C /. The Brill-Noether number of this linear series equals �.2k � 1; 2; k C 1/

D �1 � k < �3 and it follows from [11] that the locus of curves ŒC � 2 M 2k�1 possessing
such a linear system has codimension at least 3 in moduli, which establishes the claim.

T 12.5. – Fix a general point ŒC; A� 2 H k . Then the embedded curve
'!C ˝A_ W C ,! P

k�1 lies on no quadrics of rank 4 or less. It follows that Hrk4
k

is a divisor
on H k .

Proof. – We choose a polarized K3 surface X such that Pic.X/ Š Z � L˚ Z � E, where
L2 D 4k � 4, the curve E is elliptic with E2 D 0 and L � E D k. First we observe that X

contains no .�2/-curves, hence an effective line bundle ˛ 2 Pic.X/ must necessarily be nef
and satisfy ˛2 � 0.

Since .L � 2E/2 D �4, we compute �.X; L.�2E// D 0. Furthermore, as we have
just pointed out H 0.X; L.�2E// D 0, whereas obviously H 2.X; L.�2E// D 0, which
implies that H 1.X; L.�2E// D 0, as well. We choose a general curve C 2 jLj and set
A WD OC .E/ 2 W 1

k
.C /. By taking cohomology in the exact sequence

0 �! L.�2E/ �! L˝2.�2E/ �! !˝2
C .�2A/ �! 0;
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we obtain an isomorphism H 0
�
X; L˝2.�2E/

�
Š H 0

�
C; !˝2

C .�2A/
�
. Since clearly, the

isomorphism H 0.X; L.�E// Š H 0.C; !C .�A// also holds, we obtain

IX;L.2/ Š IC;!C .�A/.2/;

so it suffices to show that the embedded surface 'L.�E/ W X ,! Pk�1 lies on no quadric of
rank 4. This amounts to showing that one cannot have a decomposition L�E D D1CD2,
where D1 and D2 are divisor classes on X with h0.X; Di / � 2, for i D 1; 2. Assume we have
such a decomposition and write Di D xi C C yi E, where x1 C x2 D 1 and y1 C y2 D �1.
Since E is nef, we obtain that both x1 and x2 have to be non-negative and we assume x1 D 0

and x2 D 1. Then D1 � y1E, therefore y1 � 1, yielding y2 � �2, which implies
that h0.X; D2/ � h0.X; L.�2E// D 0, which leads to a contradiction.

The divisorHrk4
k

decomposes into components, depending on the degrees of the pencils A1

and A2 for which the decomposition (2) holds. For instance, when deg.A1/ D deg.A/ D k,
we obtain the component denoted in [18] byBN and which consists of pairs ŒC; A� 2 H k ,
such that C carries a second pencil of degree k. It is shown in [18] that BN has a syzygy-
theoretic incarnation that makes reference only to the canonical bundle, being equal to the
Eagon-Northcott divisor on H k of curves for which bk�1;1.C; !C / � k. It is an interesting
question whether the remaining components of Hrk4

k
have a similar intrinsic realization.

We now compute the class of the closure of Hrk4
k

inside fH k :

T 12.6. – The following formula holds: ŒH
rk4

k � D Ak�4
k

�
5kC12

k
�C k�6

k
 � ŒD0�

�
:

Proof. – We are in a position to apply Theorem 1.1 and then ŒH
rk4

k � D

Ak�4
k

�
c1. F / � 4

k
.2k � 3/c1. E /

�
and we substitute these Chern classes with the formulas

provided in Proposition 12.3.

The proof of Theorem 1.7 from the Introduction now follows. We substitute the formula
for the class  obtained from Theorem 12.6 in the expression provided by Proposition 12.4,
then compare it to the formula for KfHk

.

Proof of Theorem 1.8. – It is enough to observe that for k � 12, the class 7� � ı0 is
big on M 2k�1 and there exists an effective divisor of this slope that does not contain

Im.�/ D M
1

2k�1;k as a component. This follows from results in [17] Corollary 0.6, where

it is proved that the divisor D2k�1;kC1 on M 2k�1 already considered in (19), has support

distinct from that of M
1

2k�1;k and slope 6k2C14kC3
k.kC1/

< 7.
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PSEUDOSPECTRAL AND SPECTRAL BOUNDS

FOR THE OSEEN VORTICES OPERATOR

 T LI, D WEI  Z ZHANG

A. – In this paper, we solve Gallay’s conjecture on the spectral lower bound and pseu-
dospectral bound for the linearized operator of the Navier-Stokes equations in R

2 around rapidly ro-
tating Oseen vortices. This shows that the linearized operator becomes highly non-selfadjoint in the
fast rotating limit, and the fast rotation has a strong stabilizing effect on vortices. The main difficulty
is to handle the nonlocal part of the linearized operator. By introducing the polar coordinate, the lin-
earized operator can be reduced to a family of one-dimensional operators fHk for jkj � 1. For the case
of jkj � 2, the nonlocal part could be treated as a perturbation by establishing some sharp coercive es-
timates. The case of jkj D 1 is critical in some sense. For this case, the nonlocal part is eliminated by
constructing a wave operator. After these reductions, the resolvent estimates can be proved by using
the multiplier method.

R. – Dans cet article, nous résolvons la conjecture de Gallay sur la borne inférieure spectrale
et la borne pseudospectrale pour l’opérateur linéarisé des équations de Navier-Stokes dans R2 autour
des tourbillons Oseen en rotation rapide. Cela montre que l’opérateur linéarisé devient très non auto-
jointif dans la limite de rotation rapide et que la rotation rapide a un fort effet stabilisant sur les tour-
billons. La principale difficulté est de gérer la partie non locale de l’opérateur linéarisé. En introduisant
la coordonnée polaire, l’opérateur linéarisé peut être réduit à une famille d’opérateurs unidimension-
nels fHk pour jkj � 1. Pour le cas de jkj � 2, la partie non locale pourrait être traitée comme une
perturbation en établissant des estimations coercitives précises. Le cas de jkj � 1 est critique dans un
certain sens. Dans ce cas, la partie non locale est éliminée en construisant un opérateur d’onde. Après
ces réductions, les estimations de résolution peuvent être prouvées en utilisant la méthode du multipli-
cateur.

1. Introduction

In this paper, we consider the Navier-Stokes equations in R
2

8
ˆ̂<
ˆ̂:

@tv � ��v C v � rv C rp D 0;

div v D 0;

v.0; x/ D v0.x/;

(1)
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994 T. LI, D. WEI AND Z. ZHANG

where v.t; x/ denotes the velocity, p.t; x/ denotes the pressure and � > 0 is the viscosity
coefficient. Let !.t; x/ D @2v

1 � @1v
2 be the vorticity. The vorticity formulation of (1) takes

@t! � ��! C v � r! D 0; !.0; x/ D !0.x/:(2)

Given the vorticity !, the velocity can be recovered by the Biot-Savart law

v.t; x/ D 1

2�

Z

R2

.x � y/?
jx � yj2 !.t; y/dy D KBS � !:(3)

It is well known that the Navier-Stokes Equation (2) has a family of self-similar solutions
called Lamb-Oseen vortices of the form

!.t; x/ D ˛

�t
G
� xp

�t

�
; v.t; x/ D ˛p

�t
vG
� xp

�t

�
;(4)

where the vorticity profile and the velocity profile are given by

G .�/ D 1

4�
e�j�j2=4; vG.�/ D 1

2�

�?

j�j2
�
1 � e�j�j2=4

�
:

It is easy to see that
R
R2 !.t; x/dx D ˛ for any t > 0. The parameter ˛ 2 R is called the

circulation Reynolds number.
To investigate the long-time behavior of (2), it is convenient to introduce the self-similar

variables

� D xp
�t
; � D log t;

and the rescaled vorticity w and the rescaled velocity u

!.t; x/ D 1

t
w
�

log t;
xp
�t

�
; v.t; x/ D

r
�

t
u
�

log t;
xp
�t

�
:

Then .w; u/ satisfies

@�w C u � rw D Lw;(5)

where the linear operator L is given by

L D �C �

2
� r C 1:(6)

For any ˛ 2 R, the Lamb-Oseen vortex ˛ G .�/ is a steady solution of (5). Gallay and Wayne
[14, 15] proved that for any integrable initial vorticity, the long-time behavior of the 2-D
Navier-Stokes equations can be described by the Lamb-Oseen vortex. More precisely, for any
initial data w0 2 L1.R2/, the solution of (5) satisfies

lim
�!C1

w.�/ � ˛ G


L1.R2/
D 0; ˛ D

Z

R2

w0.�/d�:

This result suggests that ˛ G is a stable equilibrium of (5) for any ˛ 2 R. This situation is
very similar to the Couette flow .y; 0/ in a finite channel, which is stable for any Reynolds
number [9]. Recently, there are many important works [2, 3, 1, 20, 30] devoted to the study
of long-time behavior of the Navier-Stokes(Euler) equations around the Couette flow.

To study the stability of ˛G, it is natural to consider the linearized equation of (5) around
˛ G .�/, which takes as follows

@�w D .L � ˛ƒ/w;(7)
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where ƒ is a nonlocal linear operator defined by

ƒw D vG � rw C u � r G D ƒ1w Cƒ2w; u D KBS � w:(8)

The operator L � ˛ƒ in the weighted space Y D L2.R2; G �1
dx/ defined in Section 2

has a compact resolvent. Thus, the spectrum of L � ˛ƒ in Y is a sequence of eigenvalues
f�n.˛/gn2N. Moreover, L � ˛ƒ is also dissipative, so Re�n.˛/ � 0 for any n; ˛(see [13] for
example). A very important problem is to study how the spectrum changes as j˛j ! C1,
which corresponds to the high Reynolds number limit(the most relevant regime for turbulent
flows).

The eigenvalues corresponding to the eigenfunctions in the kernel of ƒ do not change
as ˛ varies. Thus, we introduce two operators L? and ƒ?, which are the restriction of the
operators L and ƒ to the orthogonal complement of kerƒ in Y respectively. We define the
spectral lower bound

†.˛/ D inf
n
Re z W z 2 �

�
� L? C ˛ƒ?

�o
(9)

and pseudospectral bound

‰.˛/ D
�

sup
�2R

k
�
L? � ˛ƒ? � i�

��1kY !Y

��1

:(10)

It is easy to see that †.˛/ � ‰.˛/ for any ˛ 2 R. For selfadjoint operators, the spectral
and pseudospectral bounds are the same. Since L � ˛ƒ is a non-selfadjoint operator, †.˛/
and ‰.˛/ could be different. Let us mention that the pseudospectra has become an impor-
tant concept in understanding the hydrodynamic stability [27]. The spectral theory of non-
selfadjoint operator is also a current active topic [5, 6, 25, 26].

There are many works devoted to studying †.˛/ and ‰.˛/. Maekawa [22] proved
that †.˛/ and ‰.˛/ tend to infinity as j˛j ! C1. However, the proof does not provide
explicit bounds on †.˛/ and ‰.˛/. Numerical calculations performed by Prochazka and
Pullin [23, 24] indicate that †.˛/ D O.j˛j 1

2 / as j˛j ! C1. For the rigorous analysis,
the main difficulty comes from the nonlocal part ƒ2 of the linearized operator. In [10],
Gallagher, Gallay and Nier considered the following toy operator(see also Villani [29, 28]):

H˛ D �@2
x C x2 C i f̨ .x/:

Let†.˛/ be the infimum of the real part of �.H˛/ and‰.˛/�1 be the supremum of the norm
of the resolvent ofH˛ along the imaginary axis. Under the appropriate conditions on f , they
proved that†.˛/ and‰.˛/ go to infinity as j˛j ! C1, and presented the precise estimate of
the growth rate of‰.˛/. Their proof used the hypocoercive method, localization techniques,
and semiclassical subelliptic estimates.

For the simplified linearized operator L � ˛ƒ1, Deng [7] proved that ‰.˛/ D O.j˛j 1
3 /.

The same result was proved by Deng [8] for the full linearized operator restricted to a smaller
subspace than ker.ƒ/? by using the multiplier method and the Weyl calculus [18].

In this paper, we proved the following conjecture proposed by Gallay [11].

T 1.1. – There exists C > 0 independent of ˛ so that as j˛j ! C1,

†.˛/ � C�1j˛j 1
2 ; C�1j˛j 1

3 � ‰.˛/ � C j˛j 1
3 :

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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This result shows that the linearized operator L � ˛ƒ becomes highly non-selfadjoint in
the fast rotating limit, and the fast rotation has a strong stabilizing effect on vortices. This
effect is related to a well-known experiment fact in 2-D viscous flows, where the isolated
vortices relax to axisymmetry in a relatively shorter time than the diffusive time. Bernoff and
Lingevitch [4] proposed the following mixing hypothesis:

If the vorticity distribution is subject to a nonaxisymmetric linear perturbation that preserves
the first momentum of vorticity, this perturbation will decay on a time scaleO.Re1=3/, hereRe is
the Reynolds number.

Recently, Gallay [12] made significant progress on this hypothesis, and proved that the
vortex relaxes to axisymmetry in a time scale Re2=3. The key point is to derive the enhanced
dissipation rate of the semigroup et.L�˛ƒ/ from the resolvent estimate of L � ˛ƒ. The
pseudospectral bound may be helpful to understand other related problems such as the
stability of Burgers vortices [16, 21].

The hypocoercive method introduced by Villani [29] seems efficient for the linearized
operator without the nonlocal part. In this paper, we introduce two methods to handle the
nonlocal part of the linearized operator. One method is to eliminate the nonlocal part by
constructing a wave operator, which is motivated by the scattering theory. Another one is
to establish the sharp coercive estimates so that the nonlocal part could be treated as a
perturbation in some situations. After making these reductions, we can use the multiplier
method to establish the resolvent estimates. In [31] and [19], these two methods are applied
to study the linearized Navier-Stokes equations around the Kolmogorov flow.

2. Spectral analysis of the linearized operator

In this section, we recall some facts about the spectrum of the linearized operator L�˛ƒ
from [14, 15, 11, 13]. Although these facts will not be used in our proof, they will be helpful
to understand this spectral problem.

Let �.�/ be a nonnegative function. We introduce the weighted L2 space

L2.R2; �d�/ D
n
w 2 L2.R2/ W kwk2

L2.�/
D
Z

R2

jw.�/j2�.�/d� < C1
o
;

which is a (real) Hilbert space equipped with the scalar product

hw1; w2iL2.�/ D
Z

R2

w1.�/w2.�/�.�/d�:

In this paper, we will choose the Gaussian weight � D G �1 and denote Y D L2.R2; G �1
d�/.

Let us refer to [11] for more discussions on the choice of the weight.

L 2.1. – It holds that

1. the operator L is selfadjoint in Y with compact resolvent and purely discrete spectrum

�.L/ D
˚

� n

2
W n D 0; 1; 2; : : :

	
:(11)

2. the operator ƒ is skew-symmetric in Y.
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The first fact follows from the following observation:

L D � G � 1
2L G

1
2 D ��C j�j2

16
� 1

2
(12)

is a two-dimensional harmonic oscillator, which is self-adjoint in L2.R2/ with compact
resolvent and discrete spectrum given by ��.L/. Furthermore, we know that

1. �0 D 0 is a simple eigenvalue of L with the eigenfunction G ;

2. �1 D � 1
2

is an eigenvalue of L of multiplicity two with the eigenfunctions @1 G and
@2 G ;

3. �1 D �1 is an eigenvalue of L of multiplicity three with the eigenfunctions � G ,
.@2

1 � @2
2/ G and @1@2 G .

Now we consider the spectrum of L� ˛ƒ in Y for any fixed ˛ 2 R. Sinceƒ is a relatively
compact perturbation of L in Y , L � ˛ƒ has a compact resolvent in Y by the classical
perturbation theory [17]. So, the spectrum ofL�˛ƒ is a sequence of eigenvalues f�n.˛/gn2N.
Using the fact that

ƒw D 0 for w D G ; @1 G ; @2 G ; � G ;

we deduce that 0;� 1
2
;�1 are also eigenvalues of L� ˛ƒ for any ˛ 2 R. Let us introduce the

following subspaces of X :

Y0 D
n
w 2 Y W

Z

R2

w.�/d� D 0
o

D
˚

G
	?
;(13)

Y1 D
n
w 2 Y0 W

Z

R2

�w.�/d� D 0
o

D
˚

G ; @1 G ; @2 G
	?
;(14)

Y2 D
n
w 2 Y1 W

Z

R2

j�j2w.�/d� D 0
o

D
˚

G ; @1 G ; @2 G ; � G
	?
:(15)

These spaces are invariant under the linear evolution generated by L � ˛ƒ.
The following proposition shows that the Oseen vortex ˛ G is spectrally stable in Y for any

˛ 2 R; ˛ ¤ 0.

P 2.2 ([15]). – For any ˛ 2 R; ˛ ¤ 0, the spectrum of L � ˛ƒ satisfies

�.L � ˛ƒ/ �
˚
z 2 C W Re z � 0

	
in Y;

�.L � ˛ƒ/ �
˚
z 2 C W Re z � �1

2

	
in Y0;

�.L � ˛ƒ/ �
˚
z 2 C W Re z � �1

	
in Y1;

�.L � ˛ƒ/ �
˚
z 2 C W Re z < �1

	
in Y2:

The operator L � ˛ƒ is invariant under rotations with respect to the origin. Thus, it is
natural to introduce the polar coordinates .r; �/ in R

2. Let us decompose

Y D
M

n2N

Xn;(16)

where Xn denotes the subspace of all w 2 Y so that

w.r cos �; r sin �/ D a.r/ cos.n�/C b.r/ sin.n�/

for some radial functions a; b W RC ! R.
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L 2.3 ([22]). – kerƒ D X0 ˚
˚
˛@1 G C ˇ@2 G

	
. In particular, kerƒ? �

L
n>0Xn.

3. Reduction to one-dimensional operators

Following Deng’s work [8], we reduce the linearized operator to a family of one-
dimensional operators.

We conjugate the linearized operator L� ˛ƒ with G
1
2 , and then obtain a linear operator

H ˛ in L2.R2; d�/:

H ˛ D � G � 1
2L G

1
2 C ˛ G � 1

2ƒ G
1
2 D L C ˛M ;(17)

where L is defined by (12) and M is defined by

Mw D vG � rw � 1

2
G

1
2 � �

�
KBS � . G

1
2w/

�
:

Let us introduce some notations:

K k Œh� D 1

2jkj

Z C1

0

min.
r

s
;
s

r
/jkjsh.s/ds;(18)

�.r/ D 1 � e�r2=4

r2=4
; g.r/ D e�r2=8:(19)

Then for w D
P

k2Z� wk.r/e
ik� , we have

�
.H ˛ � i�/w

�
.r cos �; r sin �/ D

X

k2Z�

.H ˛;k;�wk/.r/e
ik� ;

where the operator H ˛;k;� acts on L2.RC; rdr/ and is given by

H ˛;k;� D �@2
r � 1

r
@r C k2

r2
C r2

16
� 1

2
C iˇk.�.r/ � �k/ � iˇkgK k Œg��;(20)

where

ˇk D ˛k

8�
; � D ˇk�k 2 R:(21)

Without loss of generality, we assume jˇkj � 1 for any jkj � 1.

We introduce the operator

fH ˛;k;� D r
1
2 H ˛;k;�r

� 1
2 WD fH k :(22)

Then fH k acts on L2.RC; dr/ and is given by

fH k D �@2
r C

k2 � 1
4

r2
C r2

16
� 1

2
C iˇk.�.r/ � �k/ � iˇkg

fK k Œg��;(23)

fK k Œh� D 1

2jkj

Z C1

0

min.
r

s
;
s

r
/jkj.rs/

1
2 h.s/ds;(24)

and C1
0 .RC/ is a core of the operator fH k with domain

D.fH k/ D
˚
w 2 H 2

loc
.RC; dr/ \ L2.RC; dr/ W fH kw 2 L2.RC; dr/

	
:(25)
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That is,

D D D.fH k/ D
n
w 2 L2.RC; dr/ W @2

rw;
w

r2
; r2w 2 L2.RC; dr/

o
jkj � 2;

D1 D D.fH k/ D
n
w 2 L2.RC; dr/ W r 1

2 @2
r .w=r

1
2 /; r

1
2 @r .w=r

3
2 /; r2w 2 L2.RC; dr/

o
jkj D 1:

Then the resolvent estimate is reduced to the following estimate
fH ku


L2.RC;dr/

& jˇkj 1
3

u


L2.RC;dr/
:

We also write

fH k D eAk C iˇk
eBk � i�;(26)

where

eAk D �@2
r C

k2 � 1
4

r2
C r2

16
� 1

2
;

eBk D �.r/ � gfK kŒg��:

It is easy to see that

Ker.eB1/ D span
˚
r

3
2 g.r/

	
; Ker.eBk/ D

˚
0
	

for jkj � 2:(27)

Thus, L � ˛ƒj.ker ƒ/?
is unitary equivalent to

L
jkjD1

fH kj.ker eB1/?
˚

L
jkj�2

fH k :

In the sequel, we denote by h�; �i the L2.RC; dr/ inner product, and by k � k the norm
of L2.RC; dr/, k � kLp the norm of Lp.RC; dr/. The notation a & b or a . b means that
there exists a constant C > 0 independent of ˛; k; � so that

a � C�1b or a � Cb:

4. Sketch of the proof and ideas

With the notations in Section 2 and Section 3, we are in a position to present some key
ideas in this paper. Recall that

fH k D eAk C iˇk
eBk � i�;(28)

where ˇk D ˛k
8�
; � D ˇk�k 2 R and

eAk D �@2
r C

k2 � 1
4

r2
C r2

16
� 1

2
; eBk D �.r/ � gfK k Œg��:

4.1. Resolvent estimate of fH k ; jkj � 2

First of all, we can establish the following key coercive estimates: for any jkj � 1 and
w 2 L2.RCI dr/

h.I � eBk/w;wi �
Z C1

0

.1 � �.r//jwj2dr;

heBkw;wi � .1 � 1

jkj /
Z C1

0

�.r/jwj2dr:
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In particular, when jkj � 2, this implies that

1

2
�.r/ � eBk � �.r/:

This fact ensures that the nonlocal operator gfK k Œg�� could be treated as a perturbation
of �.r/ for jkj � 2. Thus, we do not need to use the wave operator for jkj � 2.

According to the sign of �.r/ � �k , the resolvent estimate is split into two cases. When
�k � 1 or �k � 0, the sign of �.r/��k does not change. The resolvent estimate of fH k.k � 2/

could be proved by using the coercive estimates of eAk and eBk .

The case of 0 < �k < 1 is difficult. We will use the multiplier method to handle it. We
know that �.r/� �k has a unique zero point rk . Then we divide the proof into two subcases:

jˇkj � max
� jkj3

r4
k

; jkj3; r6
k

�
and jˇkj � max

� jkj3

r4
k

; jkj3; r6
k

�
:

The first case is simple. In fact, we know that jhfH kw;wij � heAkw;wi and eAk & k2

r2 C r2 & jkj,
thus the case of jˇkj � jkj3 is trivial. When jkj2 � jˇkj � max

�
jkj3

r4
k

; r6
k

�
, we need to use the

coercive estimate of eBk and some simple properties of �.r/.

The second case is highly nontrivial. It is natural to divide the integral interval into .0; rk/

and .rk ;C1/. We introduce the truncated integral operator fK .rk/

k (see (51)). For this, we
have the following important coercive estimate:

Re
Z rk

0

g.r/fK .rk/

k Œgw�.r/w.r/dr � 2

jkj C 1

Z rk

0

.�.s/ � �k/jw.s/j2ds:

This is another key point why the case of jkj � 2 is relatively simple. First of all, we choose
the multiplier like isgn.ˇk/.�.0;rk/ � �.rk ;C1// and make the following estimate

Re
˝fH kw; isgn.ˇk/.�.0;rk/ � �.rk ;C1//w

˛
;

from which and by integration by parts, we can obtain a good term like jˇkj
R C1

0
j� �

�kjjwj2dr . To handle the case when j� � �kj is small, it is natural to try another multiplier
isgn.ˇk/

�RC

���k
, which is however singular at rk . Thus, we use the multiplier

isgn.ˇk/
�RCn.rk �ı;rk Cı/

���k
. On the other hand, we just control kwk2

L2.B.rk ;ı//
by ıkwk2

L1 ,

and control kwk2
L1 in the following way

kwk2
L1 � kw0kkwk; kw0k2 � kwkkfH kwk:

The terms ıkwk2
L1 , ı2kw0k2, ı2kwkkfH kwk and ı4kfH kwk2 are of the same order. This

motivates us to introduce the energy functional

F .w/ D ıkwk2
L1 C ı2kw0k2 C ı2kwkkfH kwk C ı4kfH kwk2:(29)

It can be proved that

kwk2 � C F .w/ � C.ı2kfH kwk/2:

Then the resolvent estimate follows by a suitable choice of ı.
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4.2. Resolvent estimate of fH k ; jkj D 1 and wave operator

From the above arguments, the case of jkj D 1 is critical. To handle this case, we need to
use the wave operator method. More precisely, we will construct a partial unitary operator T
which satisfies the following important properties:

T eB1 D �.r/T; ŒT; eA1�w D T eA1w � eA1Tw D f .r/T w

for some f .r/ � 0. Then we conjugate fH 1 with T to obtain

TfH 1T
�1u D eA1uC f .r/uC iˇ1�.r/u � i�u D L 1u:

The operator L 1 is similar to the model operator. The resolvent estimate of L 1 can be
obtained by following similar arguments as in the case of jkj � 2.

This idea is motivated by the scattering theory. Let A;B be two selfadjoint operators in
the Hilbert space H . Let U.t/ D eitA and V.t/ D eitB be the strongly continuous groups of
unitary operators. The wave operator is defined by

W˙ D lim
t!˙1

W.t/; W.t/ D U.�t /V .t/:

Here the limit is understood as the strong convergence. Then it holds that

AW˙ D W˙B:(30)

In fact, we have

eisAe�itAeitB D e�i.t�s/Aei.t�s/BeisB ;

which gives by taking t ! ˙1 that

eisAW˙ D W˙e
isB :

Then the identity (30) follows by taking the derivative in s at s D 0.

Here the construction of the wave operator will follow a different procedure. The intuitive
origin of our construction comes from our work on the inviscid damping [30]. Let us present
some key details.

Let � be a simply connected domain including the spectrum �.eB1/ D Œ0; 1� of eB1. We
have the following representation formula of the semigroup eit eB1 :

eit eB1w D 1

2�i

Z

@�

eitc.c � eB1/
�1wdc;

fK 1Œge
it eB1w� D 1

2�i

Z

@�

eitcfK 1Œg.c � eB1/
�1w�dc:

Let ˆ 2 PH 1.RC/ be a solution of the inhomogeneous Rayleigh equation:

@2
rˆ � 3ˆ

4r2
C g2

� � cˆ D gw

� � c :

Then we find that

fK 1Œg.c � eB1/
�1w�.y/ D ˆ.y; c/:(31)
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Here we used the formula
�

� @2
r C k2� 1

4

r2

�fK k Œw�.r/ D w.r/ in (48). Moreover, the Rayleigh
equation can be written as

@r

�
.� � c/2r3@r

�
ˆ

.� � c/r3=2

��
D r

3
2 gw;

and hence the solution is given by

ˆ.r; c/ D �.�.r/ � c/r 3
2

Z C1

r

R u

0
s

3
2 g.s/w.s/ds

.�.u/ � c/2u3
du for c 2 C n Œ0; 1�:

The next step is to establish the limiting absorption principle: as " ! 0C,

ˆ.r; c ˙ i"/ ! ˆ˙.r; c/ for c 2 .0; 1/:

In fact, for c 2 .0; 1/, let rc 2 RC be so that �.rc/ D c. Then we find that

ˆ˙.r; c/ D �.�.r/ � c/r 3
2

Z C1

r

R u

0
s

3
2 g.s/w.s/ds

.�.u/ � c/2u3
du for r > rc :

The expression of ˆ˙.r; c/ for 0 < r < rc is more complicated. We write c" D c C i" and

ˆ.r; c"/ D �.�.r/ � c"/r
3
2

Z C1

r

R u

rc
s

3
2 g.s/w.s/ds

.�.u/ � c"/2u3
du

� .�.r/ � c"/r
3
2

Z rc

0

s
3
2 g.s/w.s/ds

Z C1

r

du

.�.u/ � c"/2u3
;

where
Z C1

r

du

.�.u/ � c"/2u3
D 1

r3
c �

0.rc/

�Z C1

r

� 0.u/du

.�.u/ � c"/2
�
Z C1

r

u3� 0.u/ � r3
c �

0.rc/

.�.u/ � c"/2u3
du

�
:

Using the method in [30, 31], we can prove the following limit (since � is decreasing)

lim
"!0˙

Z C1

r

F.u/du

.�.u/ � c"/2
D p:v:

Z C1

r

F.u/du

.�.u/ � c/2 � i�
F 0.rc/

� 0.rc/2
; for r 2 .0; rc/; F .rc/ D 0:

Then it follows that for r 2 .0; rc/;

ˆ˙.r; c/ D �.�.r/ � c/r 3
2 p:v:

Z C1

r

R u

rc
s

3
2 g.s/w.s/ds

.�.u/ � c/2u3
du

˙ i�.�.r/ � c/r 3
2
g.rc/w.rc/

r
3
2

c � 0.rc/2
� .�.r/ � c/r 3

2

r3
c �

0.rc/
I1Œw�.rc/

�
�

1

�.r/ � c C 1

c
� p:v:

Z C1

r

u3� 0.u/ � r3
c �

0.rc/

.�.u/ � c/2u3
du˙ i�

.r3
c �

0/0.rc/

r3
c �

0.rc/2

�
;

here I1Œw�.rc/ D
R rc

0
s

3
2 g.s/w.s/ds: Using this, we find that

ˆ�.r; c/ �ˆC.r; c/ D �.c/f .r; c/;
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where

f .r; c/ D �2i� .�.r/ � c/r3=2

r
3=2
c � 0.rc/2

for r 2 .0; rc/; f .r; c/ D 0 for r > rc ;

�.c/ D �Œw�.c/ D g.rc/w.rc/C I1Œw�.rc/
g.rc/

2

r
3=2
c � 0.rc/

;

here we used the fact that @r .r
3@r�/ D �r3g: Moreover, the operator w 7! �Œw� satisfies

�Œeit eB1w�.c/ D eitc�Œw�.c/. Now the operator w 7! �Œw� ı � plays a role of wave operator.
The operator T can be defined as Tw.r/ D g.r/�1�Œw�.�.r//: See also [31], where we
construct a wave operator by a similar procedure to handle the linearized Navier-Stokes
equations around the Kolmogorov flow.

5. Resolvent estimate of fH 1

As fH �1w D fH 1w, it is enough to prove the following resolvent estimate for fH 1 D fH ˛;1;�.

T 5.1. – For any � 2 R and w 2 fr 3
2 g.r/g? \D1, we have

kfH ˛;1;�wk & jˇ1j 1
3 kwk:

Moveover, there exist � 2 R and v 2 fr 3
2 g.r/g? \D1 so that

kfH ˛;1;�vk . jˇ1j 1
3 kvk:

5.1. Reduction to the model operator L 1

Let us introduce the operator T defined by

Tw.r/ D w.r/C I1Œw�.r/g.r/

� 0.r/r
3
2

;(32)

where

I1Œw�.r/ D
Z r

0

s
3
2 g.s/w.s/ds:(33)

It is easy to check thatT is a bounded linear operator inL2.RC; dr/. The adjoint operatorT �

is also a bounded linear operator in L2.RC; dr/ given by

T �w.r/ D w.r/C r
3
2 g.r/

Z C1

r

w.s/g.s/

s
3
2 � 0.s/

ds:(34)

L 5.2. – It holds that

1. kTwk2 D kwk2 � hw;r
3
2 gi2

kr
3
2 gk2

;

2. T �T D P , where P is the projection to fr 3
2 g.r/g? \ L2.RC; dr/;

3. T T � D IL2.RC;dr/.
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Proof. – The first one is equivalent to the second one. Thanks to

�.r3� 0.r//0 D r3g.r/2 and I1Œs
3
2 g.s/�.r/ D

Z r

0

s3g.s/2ds D �r3� 0.r/;

we find that

T .r
3
2 g/.r/ D r

3
2 g.r/C I1Œs

3
2 g.s/�.r/g.r/

� 0.r/r
3
2

D 0:

Thus, it suffices to check that for any w 2 fr 3
2 g.r/g? \ L2.RC; dr/; u 2 C1

0 .RC/,

hT �Tw; ui D hw; ui;
which is equivalent to verifying that

DI1Œw�.r/g.r/

� 0.r/r
3
2

; u
E

C
D
w;
I1Œu�.r/g.r/

� 0.r/r
3
2

E
C
DI1Œw�.r/g.r/

� 0.r/r
3
2

;
I1Œu�.r/g.r/

� 0.r/r
3
2

E
D 0:

Using the facts that for w 2
˚
r

3
2 g.r/

	?
,

I1Œw�.0/ D lim
r!C1

I1Œw�.r/ D 0;

and .r3� 0.r//0 D �r3g.r/2, we get by integration by parts that
DI1Œw�.r/g.r/

� 0.r/r
3
2

; u
E

D
Z C1

0

I1Œw�

� 0.r/r3
dI1Œu�

D �
Z C1

0

I1Œu�.
I1Œw�

� 0.r/r3
/0dr

D �
Z C1

0

I1Œu�
r

3
2 g.r/w.r/� 0.r/r3 � I1Œw�.�

0.r/r3/0

.� 0.r/r3/2
dr

D �
Z C1

0

w.r/
I1Œu�g.r/

� 0.r/r
3
2

dr �
Z C1

0

I1Œw�I1Œu�
g2.r/

.� 0.r/r
3
2 /2

dr:

This shows that T �T D P .
On the other hand, we have

jT �wj2 � jwj2 D �@r .r
3� 0.r/jf1j2/; f1.r/ D

Z C1

r

w.s/g.s/

s
3
2 � 0.s/

ds;

which gives kT �wk2 D kwk2, thus T T � D I .

We have the following important relationship between T and eB1.

L 5.3. – It holds that

T eB1 D �.r/T:

Proof. – Direct calculation gives

T eB1w D eB1w C I1ŒeB1w�g.r/

� 0.r/r
3
2

D �.r/w � gfK 1Œgw�C
I1Œ�w�g.r/

� 0.r/r
3
2

� I1Œg
fK 1Œgw��g.r/

� 0.r/r
3
2

:
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Thus, it suffices to show that

I1Œ�w� D � 0.r/r
3
2 fK 1Œgw�C I1Œg

fK 1Œgw��C �.r/I1Œw�:(35)

Direct calculation shows that

� 0.r/r
3
2 fK 1Œgw� D r

1
2 .e� r2

4 � �.r//
Z C1

0

min.
r

s
;
s

r
/.rs/

1
2 g.s/w.s/ds

D r
1
2 .e� r2

4 � �.r//Œ
Z r

0

r� 1
2 s

3
2 g.s/w.s/ds C

Z C1

r

r
3
2 s� 1

2 g.s/w.s/ds�

D .e� r2

4 � �.r//I1Œw�C r2.e� r2

4 � �.r//
Z C1

r

s� 1
2 g.s/w.s/ds;

and

I1Œg
fK 1Œgw��.r/ D

Z r

0

s
3
2 g2.s/fK 1Œgw�.s/ds

D
Z r

0

s
3
2 g2.s/ds

1

2

Z C1

0

min.
t

s
;
s

t
/.ts/

1
2 g.t/w.t/dt

D 1

2

Z r

0

se� s2

4 ds

Z s

0

t
3
2 g.t/w.t/dt C 1

2

Z r

0

s3e� s2

4 ds

Z C1

s

t�
1
2 g.t/w.t/dt

D 1

2

Z r

0

t
3
2 g.t/w.t/dt

Z r

t

se� s2

4 ds C 1

2

Z r

0

s3e� s2

4 ds

Z r

s

t�
1
2 g.t/w.t/dt

C 1

2

Z r

0

s3e� s2

4 ds

Z C1

r

t�
1
2 g.t/w.t/dt

D
Z r

0

t
3
2 g.t/w.t/.e� t2

4 � e� r2

4 /dt C 1

2

Z r

0

t�
1
2 g.t/w.t/dt

Z t

0

s3e� s2

4 ds

C Œ4.1 � e� r2

4 / � r2e� r2

4 �

Z C1

r

t�
1
2 g.t/w.t/dt

D �e� r2

4 I1Œw�C I1Œ�w�C r2.�.r/ � e� r2

4 /

Z C1

r

t�
1
2 g.t/w.t/dt;

which give (35).

L 5.4. – It holds that

ŒT; eA1�w D T eA1w � eA1Tw D f .r/T w;

where

f .r/ D 2
g.r/4

.� 0.r/2/
C g.r/2

� 0.r/

�6
r

� r
�

� 0:

Proof. – First of all, we have

ŒT; eA1�w D
I1Œ.�@2

r C 3
4

1
r2 C r2

16
/w�g.r/

� 0.r/r
3
2

�
�

� @2
r C 3

4

1

r2
C r2

16

��I1Œw�g.r/

� 0.r/r
3
2

�
:
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Using the facts that

I1Œ�@2
rw� D �r 3

2 g.r/w0.r/C .r
3
2 g.r//0w.r/ �

Z r

0

.s
3
2 g.s//00w.s/ds;

.�@2
r C 3

4

1

r2
C r2

16
/r

3
2 g.r/ D r

3
2 g.r/;

we deduce that

I1

�
.�@2

r C 3

4

1

r2
C r2

16
/w
�

D �r 3
2 g.r/w0.r/C .r

3
2 g.r//0w.r/C I1Œw�;

Direct calculation gives

@2
r

�I1Œw�g.r/

� 0.r/r
3
2

�
D w0.r/

g2.r/

� 0.r/
C w.r/

�g2.r/

� 0.r/

�0 C r
3
2 g.r/w.r/

� g.r/r 3
2

� 0.r/r3

�0 C I1Œw�
� g.r/r 3

2

� 0.r/r3

�00
:

Let F D r
3
2 g.r/ and G.r/ D � 0.r/r3. We have

F 0 D
�3
2

� 1
r

� r

4

�
F; F 00 D

�3
4

� 1
r2

� 1C r2

16

�
F; G0 D �F 2:

Summing up, we obtain

ŒT; eA1�w D
�F 0F

G
C .

F 2

G
/0 C F.

F

G
/0
�
w

C
�
1 � 3

4
� 1
r2

� r2

16

�I1Œw�F

G
C I1Œw�.

F

G
/00:

On the other hand, we have

�F
G

�00 D
�3
4

� 1
r2

� 1C r2

16

�F
G

C F

G

�
4
F 0F

G
C 2

.G0/2

G2

�
;

F 0F

G
C .

F 2

G
/0 C F

�F
G

�0 D 4
F 0F

G
C 2

.G0/2

G2
;

Then we infer that

ŒT; eA1�w D
�
4
F 0F

G
C 2

.G0/2

G2

�
.w C I1Œw�F

G
/

D
�
2
g4

.� 0/2
C g2

� 0.r/
.
6

r
� r/

�
Tw D f .r/T w:

It remains to prove that f .r/ � 0. We have

2
g4

.� 0/2
C g2

� 0.r/
.
6

r
� r/ D r6 C r2.6 � r2/.r2 C 4 � 4e r2

4 /

32. r2

4
C 1 � e r2

4 /2
;

while by Taylor expansion, we have

r6 C r2.6 � r2/.r2 C 4 � 4e r2

4 / D 2r4 C 24r2 � 24r2e
r2

4 C 4r4e
r2

4

D 2r2
h
r2 C 2r2

C1X

nD0

1

nŠ
.
r2

4
/n � 12

C1X

nD1

1

nŠ
.
r2

4
/n
i

D 2r2
h
8

C1X

nD2

1

.n � 1/Š .
r2

4
/n � 12

C1X

nD2

1

nŠ
.
r2

4
/n
i

� 0:
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This completes the proof.

It follows from Lemma 5.3 and Lemma 5.2 that for w 2 fr 3
2 g.r/g? \D1,

TfH 1w D T eA1w C iˇ1T eB1w � i�Tw
D T eA1T

�Tw C iˇ1�.r/T w � i�Tw:

Lemma 5.2 ensures that T W
˚
r

3
2 g.r/

	? ! L2.RC; dr/ is invertible and T �1 D T �.
Let w D T �1u. We infer from Lemma 5.4 that

TfH 1T
�1u D T eA1T

�1uC iˇ1�.r/u � i�u
D eA1uC f .r/uC iˇ1�.r/u � i�u D L 1u;(36)

where

f .r/ D 2
g.r/4

.�.r/0/2
C g.r/2

�.r/0

�6
r

� r
�
:(37)

So, the operator T plays a role of wave operator. Let

D. L 1/ D
˚
w 2 H 2

loc
.RC; dr/ \ L2.RC; dr/ W L 1w 2 L2.RC; dr/

	
:

Then u 2 D. L 1/ , T �u 2 D.H 1/ \
˚
r

3
2 g.r/

	?
; and D. L 1/ D D.fH 3/ D D:

Moreover, we have

hfH 1w;wi D hfH 1T
�1u; T �ui D h L 1u; ui:

On the other hand, kwk D kTwk D kuk for any w 2 fr 3
2 g.r/g? \D1. Thus, we reduce the

resolvent estimate of fH 1 to one of the model operator L 1.

5.2. Coercive estimates

L 5.5. – The operator eA1 can be represented as

� eA1 � 1

2

�
w D �r� 3

2 g�1@r

�
r3g2@r .r

� 3
2 g�1w/

�
:(38)

In particular, we have

eAk � 1

2
for jkj � 1:(39)

Proof. – Let F.r/ D r
3
2 g.r/. Then we have

�r� 3
2 g�1@r

�
r3g2@r .r

� 3
2 g�1w/

�
D �F �1@r

�
F 2@r .F

�1w/
�

D
�

� @2
r C F 00

F

�
w

D .�@2
r C 3

4
� 1
r2

� 1C r2

16
/w D

� eA1 � 1

2

�
w;

here we used F 00 D .3
4

� 1
r2 � 1C r2

16
/F .

Then for any w 2 D, we have

˝
.eA1 � 1

2
/w;w

˛
D �

˝
F �1@r

�
F 2@r .F

�1w/
�
; w
˛
D
F@r .F

�1w/
2 � 0:

This shows that eAk � eA1 � 1
2

.
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L 5.6. – It holds that

eA1 C f .r/ &
1

r2
C r2:(40)

Proof. – By the proof of Lemma 5.4, we know that

f .r/ D r2

n C1P
nD2

. 2
.n�1/Š

� 3
nŠ
/. r2

4
/n
o

4. r2

4
C 1 � er2=4/2

� r2

C1P
nD2

1
nŠ
. r2

4
/n

4. r2

4
C 1 � er2=4/2

� r2

4.e
r2

4 � 1 � r2

4
/
:

Let h.r/ D 3
4

� 1
r2 C r2

16
� 1

2
C r2

4.e
r2

4 �1� r2

4 /

. Then there exists "0 2 .0; 1/ so that h.r/ & 1
r2

for r < "0 and h.r/ & r2 for r > 1
"0
; and h.r/ can attain its minimum. Thus, if h.r/ > 0,

h.r/ has a positive lower bound. For this, let u D r2

4
. Then by Taylor’s expansion, we get

h.r/ D 3

16
� 1
u

C 1

4
u � 1

2
C u

eu � 1 � u

D

3
16

C1P
nD2

1
nŠ
un C 1

4
u2

C1P
nD2

1
nŠ
un � 1

2
u

C1P
nD2

1
nŠ
un C u2

u.eu � 1 � u/ D

C1P
nD2

anu
n

u.eu � 1 � u/ ;

where

a2 D 35

32
; a3 D � 7

32
; a4 D 19

384
; 2

p
a2a4 > ja3j;

an D 1

nŠ

� 3
16

C n.n � 1/
4

� n

2

�
> 0.n � 5/:

Hence, there exists c0 > 0 such that h.r/ � c0. So, there exists C > 0 such that for any
r 2 Œ"0;

1
"0
�, we have h.r/ � C. 1

r2 C r2/:

Summing up, we conclude that

eA1 C f .r/ � 3

4r2
C r2

16
� 1

2
C f .r/ � h.r/ &

1

r2
C r2:

The proof is completed.

5.3. Resolvent estimate of L 1

In this subsection, we prove Theorem 5.1. It suffices to show that for any u D Tw;w 2
fr 3

2 g.r/g? \D1,

k L 1uk & jˇ1j 1
3 kuk:(41)

The proof is split into three cases.
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Case 1. �1 � 1. – Be Lemma 5.6, we get

jh L 1u; uij � h. QA1 C f /u; ui C jˇ1jh.�1 � �.r//u; ui

& h. 1
r2

C r2/u; ui C jˇ1jh.1 � �.r//u; ui:

Using the fact that

1 � �.r/ D 1 � 1 � e� r2

4

r2=4
� r2.r ! 0/; lim

r!1
1 � �.r/ D 1;

we deduce that
Z 1

0

� 1
r2

C jˇ1j.1 � �.r//
�
juj2dr &

Z 1

0

.
1

r2
C jˇ1jr2/juj2dr &

Z 1

0

jˇ1j 1
2 juj2dr;

Z C1

1

� 1
r2

C r2 C jˇ1j.1 � �.r//
�
juj2dr &

Z C1

1

.1C jˇ1j/juj2dr &
Z C1

1

jˇ1j 1
2 juj2dr;

which show that for �1 � 1,

jh L 1u; uij & jˇ1j 1
2 kuk2:(42)

Case 2. �1 � 0. – In this case, we have by Lemma 5.6 that

jh L 1u; uij � h. QA1 C f /u; ui C jˇ1jh.�.r/ � �1/u; ui

& h. 1
r2

C r2/u; ui C jˇ1jh�.r/u; ui:

Thanks to lim
r!0

�.r/ D 1 and �.r/ � 1
r2 .r ! 1/, we infer that

Z 1

0

� 1
r2

C r2 C jˇ1j�.r/
�
juj2dr &

Z 1

0

.1C jˇ1j/juj2dr &
Z 1

0

jˇ1j 1
2 juj2dr;

Z C1

1

.r2 C jˇ1j�.r//juj2dr &
Z C1

1

.r2 C 1

r2
jˇ1j/juj2dr &

Z C1

1

jˇ1j 1
2 juj2dr;

which shows that for �1 � 0,

jh L 1u; uij & jˇ1j 1
2 kuk2:(43)

Case 3. 0 < �1 < 1. – Let �1 D �.r1/ for some r1 > 0. We split this case into two subcases:

jˇ1j � max
� 1
r4

1

; r6
1

�
and jˇ1j � max

� 1
r4

1

; r6
1

�
:

L 5.7. – If jˇ1j � max
�

1

r4
1

; r6
1

�
, then we have

k L 1uk & jˇ1j 1
3 kuk:

Proof. – If jˇ1j � 1, then 1
r2 C r2 � 1 � jˇ1j 1

3 . Lemma 5.6 gives

jh L 1u; uij &
˝
.r2 C 1

r2
/u; u

˛
� jˇ1j 1

3 kuk2:
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If 1 � jˇ1j � max. 1

r4
1

; r6
1 /, we only need to check the following cases

r1 � 1; 1 � jˇ1j � 1

r4
1

H) k L 1uk & jˇ1j 1
2 kuk;

r1 � 1; 1 � jˇ1j � r4
1 H) k L 1uk & jˇ1j 1

2 kuk;

r1 � 1; r4
1 � jˇ1j � r6

1 H) k L 1uk & jˇ1j 1
3 kuk:

By Lemma 5.6 again, we have

jh L 1u; uij &
˝
.r2 C 1

r2
/u; u

˛
C jˇ1jjh.�1 � �.r//u; uij;

which along with Lemma A.2 gives our results.

L 5.8. – If jˇ1j � max. 1

r4
1

; r6
1 /, then we have

k L 1uk & jˇ1j 1
3 kuk:

Proof. – Let ı > 0 be so that ı3jˇ1j min.r1; r�3
1 / D 1. Thanks to jˇ1j � max. 1

r4
1

; r6
1 /, we

get

jˇ1j� 1
2 � min

�
r2

1 ;
1

r3
1

�
:

Thus, we have

ı3jˇ1j 1
2 � r1 for r1 � 1; ı3jˇ1j 1

2 � 1 for r1 � 1;

which in particular give ı2jˇ1j 1
3 � 1. Also we have 0 < ı � min.r1; 1

r1
/. Hence, it suffices to

show that

kuk . ı2k L 1uk:(44)

Let us choose r� 2 .r1 � ı; r1/ and rC 2 .r1; r1 C ı/ so that

ju0.r�/j2 C ju0.rC/j2 �
u0
2

ı
:(45)

We get by integration by parts that

Re
˝
L 1u; isgn.ˇ1/.�.0;r�/ � �.rC;C1//u

˛

D Reh�@2
ruC iˇ1.� � �1/u; isgn.ˇ1/.�.0;r�/ � �.rC;C1//ui

D Re
�Z r�

0

.�isgn.ˇ1/j@ruj2 C jˇ1j.� � �1/juj2/dr C isgn.ˇ1/.u
0u/.r�/

�

C Re

 Z C1

rC

.isgn.ˇ1/j@ruj2 C jˇ1j.�1 � �/juj2/dr C isgn.ˇ1/.u
0u/.rC/

!

�
Z r�

0

jˇ1j.� � �1/juj2dr C
Z C1

rC

jˇ1j.�1 � �/juj2dr � j.u0u/.r�/j � j.u0u/.rC/j:
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Due to 0 < ı � min.r1; 1
r1
/, 0 < r1 � ı < r1 C ı � 2r1. Then we get by Lemma A.1 that

�.r/ � �1 � �.r1 � ı/ � �.r1/ & ıj� 0.r1/j 0 < r < r1 � ı;
�1 � �.r/ � �.r1/ � �.r1 C ı/ & ıj� 0.r1/j r > r1 C ı;

from which and (45), we infer that

Reh L 1u; isgn.ˇ1/.�.0;r�/ � �.rC;C1//ui

�
Z r�

0

jˇ1j.� � �1/juj2dr C
Z C1

rC

jˇ1j.�1 � �/juj2dr � j.u0u/.r�/j � j.u0u/.rC/j

� C�1jˇ1ı�
0.r1/j

u
2

L2.RCn.r1�ı;r1Cı//
� 2

ı
1
2

u0


L2

u


L1 :

Thanks to � 0.r/ D 2
r
.e� r2

4 � 1�e
� r2

4

r2=4
/, we have j� 0.r/j � 1

r3 .r ! 1/ and j� 0.r/j � r.r ! 0/.

Thus, j� 0.r/j � min.r; 1
r3 /. Recall that ı3jˇ1j min.r1; r�3

1 / D 1. Then jˇ1ı
3� 0.r1/j � 1. Thus,

we obtain

kuk2
L2.RCn.r1�ı;r1Cı//

. ı2kukk L 1ukL2 C ı
3
2 ku0kkukL1 :

On the other hand, it is obvious that

ku0k2 � kukk L 1ukL2 ; kukL1 � kuk 1
2 ku0k 1

2 :

Consequently, we deduce that

kuk2 D kuk2
L2.RCn.r1�ı;r1Cı//

C kuk2
L2.r1�ı;r1Cı/

. ı2kukk L 1uk C ı
3
2 ku0kkukL1 C ıkuk2

L1

. ı2kukk L 1uk C ı2ku0k2 C ıkuk2
L1

� ı2kuk
 L 1uk C ı2kukk L 1uk C ıku0kkuk

. kuk.ı2k L 1uk/C kuk 3
2 .ı2k L 1uk/ 1

2 ;

which implies (44).

5.4. Sharpness of pseudospectral bound

Finally, let us prove the sharpness of the pseudospectral bound of fH 1. That is, there exist
� 2 R and v 2 fr 3

2 g.r/g? \D1, such that

kfH 1vk � C jˇ1j 1
3 kvk:(46)

Take � 2 R so that jˇ1j D r6
1 � 1. We take u.r/ D �.r1.r � r1//, where �.r/ D r2.r � 1/2

for 0 < r < 1, �.r/ D 0 for r.r � 1/ � 0 . Then we have

kuk D r
� 1

2

1 k�k; k@2
ruk D r

3
2

1 k@2
r�k � Cr2

1 kuk:

By Lemma A.1, we have

jˇ1.�.r/ � �.r1//j � jˇ1�
0.r1/jjr � r1j � C

jˇ1j
r4

1

� Cr2
1 ; for jr � r1j � 1

r1
;
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and we also have that for 0 < r � r1 < 1
r1

,

ˇ̌
.
3

4r2
C r2

16
� 1

2
C f /u

ˇ̌
� Cr2

1 juj:

Thus, we can conclude that

k L 1uk � Cr2
1 kuk;

which along with Lemma 5.2 gives

kfH 1T
�uk D kTfH 1T

�uk D k L 1uk � C jˇ1j 1
3 kuk D C jˇ1j 1

3 kT �uk:

This gives (46) by taking v D T �u.

6. Resolvent estimate of fH k ; jkj � 2

In this section, we will prove the following resolvent estimate for fH k D fH ˛;k;�; jkj � 2.

T 6.1. – Let jkj � 2. For any � 2 R and w 2 D, we have

kfH ˛;k;�w
 & jˇkj 1

3 kwk:(47)

In this part, we don’t need to use the wave operator. The main reason comes from the
following key Lemma 6.2 and Lemma 6.5, where the estimates are better for jkj � 2.

6.1. Coercive estimates of eAk and eBk

L 6.2. – For any jkj � 1 and w 2 L2.RCI dr/, we have

h.I � eBk/w;wi �
Z C1

0

.1 � �.r//jwj2dr;

heBkw;wi � .1 � 1

jkj /
Z C1

0

�.r/jwj2dr:

Proof. – Let us first prove that the operator gfK k Œg�� is nonnegative. For this, we write

fK k Œw�.r/ D 1

2jkj

Z C1

0

min.
r

s
;
s

r
/jkj.rs/

1
2w.s/ds

D 1

2jkj

Z r

0

r
1
2 �jkjs

1
2 Cjkjw.s/ds C 1

2jkj

Z C1

r

r
1
2 Cjkjs

1
2 �jkjw.s/ds:

Then we find that

.fK k Œw�.r//
0 D

1
2

� jkj
2jkj

Z r

0

.
s

r
/jkjC 1

2w.s/ds C
1
2

C jkj
2jkj

Z C1

r

.
r

s
/jkj� 1

2w.s/ds;

.fK k Œw�.r//
00 D

k2 � 1
4

r2
QK k Œw�.r/ � w.r/:

In particular, we find that

�
� @2

r C
k2 � 1

4

r2

�fK k Œw�.r/ D w.r/:(48)
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Using the following pointwise estimates of fK k Œw�.r/

jfK k Œw�.r/j � 1

2jkj

Z C1

0

min.r; s/jw.s/jds � 1

2jkj min
�
rkwkL1 ; krwkL1

�
;

j@r .
fK k Œw�.r//j �

Z C1

0

min.r; s/

r
jw.s/jds � min

�
kwkL1 ;

1

r
krwkL1/;

we infer that

fK kŒw�.
fK k Œw�/

0jto1:5
r D 0;C1 D 0:

Then we get by using (48) and integration by parts that

hgfK k Œgw�; wi D hfK k Œgw�; gwi D hfK k Œgw�; .�@2
r C

k2 � 1
4

r2
/fK k Œgw�i

D k@r .
fK k Œgw�/k2 C .k2 � 1

4
/k
fK k Œgw�

r
k2 � 0:

Next we give a upper bound for gfK k Œg��.
ˇ̌
ˇ̌
Z C1

0

gfK k Œgw�w.r/dr

ˇ̌
ˇ̌ � 1

2jkj

Z C1

0

Z C1

0

min.
r

s
;
s

r
/jkj.rs/

1
2 jg.r/w.s/jjg.s/w.r/jdsdr

� 1

4jkj

Z C1

0

Z C1

0

min.
r

s
;
s

r
/.rs/

1
2 Œ.
r

s
/

3
2 g2.r/jw.s/j2 C .

s

r
/

3
2 g2.s/jw.r/j2�dsdr

D 1

jkj

Z C1

0

fK 1Œr
3
2 g2.r/�.s/

jw.s/j2

s
3
2

ds D 1

jkj

Z C1

0

�.s/jw.s/j2ds;

which gives

0 � gfK kŒg�� � 1

jkj�.r/:

As a consequence, we deduce that

h.1 � eBk/w;wi D h.1 � �/w C gfK k Œgw�; wi � h.1 � �/w;wi;

heBkw;wi D h�w;wi � hg QK k Œgw�; wi � .1 � 1

jkj /h�w;wi:

The proof is completed.

The following lemma gives a sharper lower bound of eAk than Lemma 5.5.

L 6.3. – Let jkj � 2. Then for any w 2 D, we have

heAkw;wi &
˝
.
k2

r2
C r2/w;w

˛
:

Proof. – For jkj � 2, we have

eAk �
k2 � 1

4

r2
C r2

16
� 1

2

� .
2

r2
C r2

32
� 1

2
/C .

k2

2
� 1

4

r2
C r2

32
/

�
k2

2
� 1

4

r2
C r2

32
� k2

r2
C r2;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1014 T. LI, D. WEI AND Z. ZHANG

which gives our result.

6.2. Resolvent estimate for �k � 1 or �k � 0

In this subsection, we prove Theorem 6.1 for the case of �k � 1 or �k � 0.

First of all, for �k � 1, we infer from Lemma 6.2 that

jhfH kw;wij � heAkw;wi C jˇkjh.�k � eBk/w;wi
� heAkw;wi C jˇkjh.1 � eBk/w;wi

&
˝
.
1

r2
C r2/w;w

˛
C jˇkjh.1 � �.r//w;wi:

Thanks to 1 � �.r/ D 1 � 1�e
� r2

4

r2=4
� r2.r ! 0/ and lim

r!1
1 � �.r/ D 1, we get

Z 1

0

� 1
r2

C jˇkj.1 � �.r//
�
jw.r/j2dr &

Z 1

0

.
1

r2
C jˇkjr2/jw.r/j2dr

&

Z 1

0

jˇkj 1
2 jw.r/j2dr;

Z C1

1

� 1
r2

C r2 C jˇkj.1 � �.r//
�
jw.r/j2dr &

Z C1

1

.1C jˇkj/jw.r/j2dr

&

Z C1

1

jˇkj 1
2 jw.r/j2dr;

which yield that for �k � 1,

jhfH kw;wij &
˝
.
1

r2
C r2/w;w

˛
C jˇkjh.1 � �.r//w;wi & jˇkj 1

2 kwk2(49)

For �k � 0, we infer from Lemma 6.2 that

jhfH kw;wij � heAkw;wi C jˇkjh.eBk � �k/w;wi
& heAkw;wi C jˇkjheBkw;wi

&
˝
.
1

r2
C r2/w;w

˛
C jˇkjh�.r/w;wi:

Thanks to lim
r!0

�.r/ D 1 and �.r/ � 1
r2 .r ! 1/, we get

Z 1

0

� 1
r2

C r2 C jˇkj�.r/
�
jw.r/j2dr &

Z 1

0

.1C jˇkj/jw.r/j2dr &
Z 1

0

jˇkj 1
2 jw.r/j2dr;

Z C1

1

.r2 C jˇkj�.r//jw.r/j2dr &
Z C1

1

.r2 C 1

r2
jˇkj/jw.r/j2dr

&

Z C1

1

jˇkj 1
2 jw.r/j2dr;

which show that for �k � 0

jhfH kw;wij &
˝
.
1

r2
C r2/w;w

˛
C jˇkjh�.r/w;wi & jˇkj 1

2 kwk2:(50)
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6.3. Resolvent estimate for 0 < �k < 1

In this subsection, we prove Theorem 6.1 for the case of 0 < �k < 1.

Let �k D �.rk/ for some rk > 0. We again divide the proof into two cases:

jˇkj � max
� jkj3

r4
k

; jkj3; r6
k

�
and jˇkj � max

� jkj3

r4
k

; jkj3; r6
k

�
:

6.3.1. Case 1. jˇkj � max
�

jkj3

r4
k

; jkj3; r6
k

�
. It suffices to prove the following lemma.

L 6.4. – If jˇkj � max
�

jkj3

r4
k

; jkj3; r6
k

�
, then we have

kfH kwk & jˇkj 1
3 kwk:

Proof. – If jˇkj � jkj3, then k2

r2 C r2 � jkj � jˇkj 1
3 . Thus,

jhfH kw;wij &
˝
.
k2

r2
C r2/w;w

˛
� jˇkj 1

3 kwk2:

If k3 � jˇkj � max. jkj3

r4
k

; r6
k
/, then rk � 1 or rk �

p
k. Thus, we only need to check the

following cases

rk � 1; jkj3 � jˇkj � jkj3

r4
k

H) kfH kwk & jˇkj 1
2 kwk;

rk �
p
k; jkj3 � jˇkj � r4

k H) kfH kwk & jˇkj 1
2 kwk;

rk �
p
k; r4

k � jˇkj � r6
k H) kfH kwk & jˇkj 1

3 kwk;

which can be deduced from the following fact

jhfH kw;wij &
˝
.r2 C k2

r2
/w;w

˛
C jˇkjmax.h.�k � �.r//w;wi; h.�.r/=2 � �k/w;wi; 0/

and Lemma A.3.

6.3.2. Case 2. jˇkj � max. jkj3

r4
k

; jkj3; r6
k
/. Let us introduce the operator

fK .rk/

k Œf �.r/ D
Z rk

0

eK.rk/

k
.r; s/f .s/ds;(51)

where for 0 � r; s � rk ,

eK.rk/

k
.r; s/ D 1

2jkj min.
r

s
;
s

r
/jkj.rs/

1
2 � 1

2jkj .
rs

r2
k

/jkj.rs/
1
2 � 0:

Let u.r/ D fK .rk/

k Œw�.r/. Then u 2 H 1
0 .0; rk/ is the unique solution to

�
� @2

r C
k2 � 1

4

r2

�
u D w in .0; rk/:

L 6.5. – It holds that

Re
Z rk

0

g.r/fK .rk/

k Œgw�.r/w.r/dr � 2

jkj C 1

Z rk

0

.�.s/ � �k/jw.s/j2ds:
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Proof. – As .r3� 0.r//0 D �r3g.r/2 and g2 is decreasing, we have �r3� 0.r/ � r4g2.r/=4;

and
�

� @2
r C

k2 � 1
4

r2

��
r jkjC 1

2 .�.r/ � �k/
�

D r jkjC 1
2 .�@2

r� � .2jkj C 1/r�1@r�/

D r jkjC 1
2 .g2 � .2jkj � 2/r�1@r�/

� r jkjC 1
2 .g2 C jkj � 1

2
g2/

D r jkjC 1
2

jkj C 1

2
g2;

which implies that

r jkjC 1
2 .� � �k/ D fK .rk/

k

�
r jkjC 1

2 .g2 � .2jkj � 2/@r�

r
/
�

� jkj C 1

2
fK .rk/

k

�
r jkjC 1

2 g2
�
:

Therefore, we obtain

Re
Z rk

0

gfK .rk/

k Œgw�.r/w.r/dr

�
Z rk

0

Z rk

0

eK.rk/

k
.r; s/jg.r/w.s/jjg.s/w.r/jdsdr

� 1

2

Z rk

0

Z rk

0

eK.rk/

k
.r; s/

��r
s

�jkjC 1
2

g2.r/jw.s/j2 C
� s
r

�jkjC 1
2

g2.s/jw.r/j2
�
dsdr

D
Z rk

0

fK .rk/

k Œr jkjC 1
2 g2�.s/

jw.s/j2

sjkjC 1
2

ds � 2

jkj C 1

Z rk

0

.�.s/ � �k/jw.s/j2ds:

This completes the proof.

To proceed, we introduce the following decomposition: let  D fK k Œgw� and decompose

 .r/ D  1.r/C  2.r/;(52)

where  2.r/ is given by

 2.r/ D

8
<̂

:̂

.
r

rk
/jkjC 1

2 .rk/; 0 < r < rk ;

.
r

rk
/�jkjC 1

2 .rk/; r > rk :

Then we find that  1.r/ 2 H 1
0 .0; rk/ and solves

�
� @2

r C
k2 � 1

4

r2

�
 1 D gw; r 2 RCnfrkg:(53)

Thus,  1.r/ D fK .rk/

k Œgw�.r/ in .0; rk/.

Let ı > 0 be such that

ı3jˇkj min.rk ; r
�3
k / D 1:
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Due to jˇkj � max.k3

r4
k

; jkj3; r6
k
/, we have

0 < ı � min.
rk

jkj ;
1

rk
/:(54)

Due to j� 0.r/j � min.r; 1
r3 /, we also have

jˇkı
3� 0.rk/j � 1:(55)

We denote

E .w/ D kw0kkwkL1

jˇkı
3
2 � 0.rk/j

C kfH kwkkwk
jˇkı� 0.rk/j

C
kw0wkL1.rk�ı;rkCı/

jˇkı� 0.rk/j
C ıkwk2

L1

C j .rk/J.rk/j
min.1; r2

k
/

C g.rk/
2j .rk/j2

ıj� 0.rk/j2
C j .rk/j2

r5
k

C 1
D E 1.w/C � � � C E 7.w/;

where

J.r/ D
Z r

0

.
s

r
/jkjC 1

2 g.s/w.s/ds �
Z C1

r

.
r

s
/jkj� 1

2 g.s/w.s/ds:

It is easy to see that

@r D �J
2

C  

2r
:(56)

L 6.6. – It holds that for any w 2 D,

kwk2 � C E .w/:

Proof. – Recall that

fH kw D �@2
rw C

�k2 � 1=4
r2

C r2

16
� 1

2

�
w C iˇk..� � �k/w � g /:

Then we get by integration by parts that

RehfH kw; isgn.ˇk/.�.0;rk/ � �.rk ;C1//wi
D Reh�@2

rw C iˇk..� � �k/w � g /; isgn.ˇk/.�.0;rk/ � �.rk ;C1//wi

D Re
�Z rk

0

.�isgn.ˇk/j@rwj2 C jˇkj.� � �k/jwj2 � jˇkjg w/dr C isgn.ˇk/w
0w.rk/

�

C Re
�Z C1

rk

.isgn.ˇk/j@rwj2 C jˇkj.�k � �/jwj2 C jˇkjg w/dr C isgn.ˇk/w
0w.rk/

�

� jˇkj
Z C1

0

j� � �kjjwj2dr � jˇkjRe
�Z rk

0

g wdr �
Z C1

rk

g wdr

�
� 2jw0w.rk/j:
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Using (52), we write
Z rk

0

g wdr �
Z C1

rk

g wdr

D
Z rk

0

g 1wdr �
Z C1

rk

g 1wdr C
Z rk

0

g 2wdr �
Z C1

rk

g 2wdr

D
Z rk

0

g 1wdr �
Z C1

rk

 1.�@2
r C .k2 � 1=4/r�2/ 1dr

C  .rk/

Z rk

0

�
r

rk

�jkjC 1
2

gwdr �  .rk/
Z C1

rk

�
r

rk

��jkjC 1
2

gwdr

D
Z rk

0

g 1wdr �
Z C1

rk

�
j@r 1j2 C .k2 � 1=4/r�2j 1j2

�
dr C  .rk/J .rk/:

By (53), we have
Z rk

0

g 1wdr D
Z rk

0

 1.�@2
r C k2 � 1=4

r2
/ 1dr D

Z rk

0

�
j@r 1j2 C k2 � 1=4

r2
j 1j2

�
dr:

We get by Lemma 6.5 that
Z rk

0

g 1wdr D
Z rk

0

gfK .rk/

k Œgw�.r/wdr � 2

jkj C 1

Z rk

0

.�.s/ � �k/jw.s/j2ds:

Then we conclude that

RehfH kw; isgn.ˇk/.�.0;rk/ � �.rk ;C1//wi

� jˇkj
� jkj C 1

2

Z rk

0

g 1wdr �
Z rk

0

g 1wdr C
Z C1

rk

.j@r 1j2 C k2 � 1=4
r2

j 1j2/dr
�

� jˇk .rk/J.rk/j � 2jw0w.rk/j

D jˇkj
� jkj � 1

2

Z rk

0

g 1sdr C
Z C1

rk

.j@r 1j2 C k2 � 1=4
r2

j 1j2/dr
�

� jˇk .rk/J.rk/j � 2jw0w.rk/j

D jˇkj
� jkj � 1

2

Z rk

0

.j@r 1j2 C k2 � 1=4
r2

j 1j2/dr C
Z C1

rk

.j@r 1j2 C k2 � 1=4
r2

j 1j2/dr
�

� jˇk .rk/J.rk/j � 2jw0w.rk/j

� jˇkjA1

2
� jˇk .rk/J.rk/j � 2jw0w.rk/j;

where

A1 D
Z C1

0

.j@r 1j2 C .k2 � 1=4/r�2j 1j2/dr:

This shows that

A1 � 2j .rk/J.rk/j C 1

jˇkj
�
4jw0w.rk/j C 2kwkkfH kwk

�
:(57)
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Similarly, we have

RehfH kw; isgn.ˇk/
�RCn.rk�ı;rkCı/

� � �k

wi

D Re
˝
� @2

rw C iˇk..� � �k/w � g /; isgn.ˇk/
�RCn.rk�ı;rkCı/

� � �k

w
˛

D Re
Z

RCn.rk�ı;rkCı/

�
�i sgn.ˇk/jw0j2

� � �k

C i
sgn.ˇk/w

0w� 0

.� � �k/2
C jˇkjjwj2 � jˇkjg w

� � �k

�
dr

C Re
�
isgn.ˇk/

w0w

� � �k

.rk � ı/ � isgn.ˇk/
w0w

� � �k

.rk C ı/
�

� �kw0kkwkL1


� 0

.� � �k/2


L2.RCn.rk�ı;rkCı//

C jˇkj
Z

RCn.rk�ı;rkCı/

jwj2dr

� jˇkj
2

Z

RCn.rk�ı;rkCı/

�
jwj2 C g2j j2

.� � �k/2

�
dr

� kw0wkL1.rk�ı;rkCı/

� 1

�.rk � ı/ � �k

C 1

�k � �.rk C ı/

�

D jˇkj
2

Z

RCn.rk�ı;rkCı/

�
jwj2 � g2j j2

.� � �k/2

�
dr � kw0kL2kwkL1


� 0

.� � �k/2


L2.RCn.rk�ı;rkCı//

� kw0wkL1.rk�ı;rkCı/

� 1

�.rk � ı/ � �k

C 1

�k � �.rk C ı/

�
;

which gives

kwk2
L2.RCn.rk�ı;rkCı//

� 2

jˇkj k
fH kwkkwk


1

� � �k


L1.RCn.rk�ı;rkCı//

C
Z

RCn.rk�ı;rkCı/

g2j j2
.� � �k/2

dr C 2

jˇkj kw
0kkwkL1


� 0

.� � �k/2


L2.RCn.rk�ı;rkCı//

C 2

jˇkj kw
0wkL1.rk�ı;rkCı/

� 1

�.rk � ı/ � �k

C 1

�k � �.rk C ı/

�
:

By Lemma A.1, we have


1

� � �k


L1.RCn.rk�ı;rkCı//

� C

j� 0.rk/jı
;

and


� 0

.� � �k/2


2

L2.RCn.rk�ı;rkCı//

�


� 0

� � �k


L1.RCn.rk�ı;rkCı//


� 0

.� � �k/3


L1.RCn.rk�ı;rkCı//

� C

ı

�
1

.�.rk � ı/ � �k/2
C 1

.�k � �.rk C ı//2

�

� C

ı.� 0.rk/ı/2
:
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Thus, we obtain

kwk2 �kwk2
L2.RCn.rk�ı;rkCı//

C kwk2
L2..rk�ı;rkCı//

�
Z

RCn.rk�ı;rkCı/

g2j j2
.� � �k/2

dr C Ckw0kkwkL1

jˇkı
3
2 � 0.rk/j

C
Ckw0wkL1.rk�ı;rkCı/

jˇkı� 0.rk/j
C CkfH kwkkwk

jˇkı� 0.rk/j
C 2ıkwk2

L1

�
Z

RCn.rk�ı;rkCı/

g2j j2
.� � �k/2

dr C C E .w/:

It remains to estimate the first term, which is bounded by
Z

RCn.rk�ı;rkCı/

g2j j2
.� � �k/2

dr � 2

Z

RC

g2j 1j2
.� � �k/2

dr C 2

Z

RCn.rk�ı;rkCı/

g2j 2j2
.� � �k/2

dr:

Let us first consider the case of 0 < rk � 1. By Lemma A.1, we have

j�.r/ � �kj � C�1jr � rkjj� 0.rk/j � C�1jr � rkjrk ; 0 < r < rk C 1;

j�.r/ � �kj � C�1; r � rk C 1:

Due to  1.rk/ D 0; we get by Hardy’s inequality that
Z rkC1

0

g2j 1j2
.� � �k/2

dr � C

Z rkC1

0

j 1j2

jr � rkj2r2
k

dr � C

r2
k

Z rkC1

0

j@r 1j2dr � CA1

r2
k

;

and by Lemma A.1,
Z C1

rkC1

g2j 1j2
.� � �k/2

dr � C

Z C1

rkC1

g2j 1j2dr � C

Z C1

rkC1

j 1j2
r2

dr � CA1:

Thanks to 0 < ı < rk and j 2.r/j � j .rk/j; we have
Z

.0;rkC1/n.rk�ı;rkCı/

g2j 2j2
.� � �k/2

dr � C

Z

.0;rkC1/n.rk�ı;rkCı/

j .rk/j2

jr � rkj2r2
k

dr � C j .rk/j2

r2
k
ı

;

and
Z C1

rkC1

g2j 2j2
.� � �k/2

dr � C j .rk/j2
Z C1

rkC1

g2.r/dr � C j .rk/j2:

Therefore, we obtain
Z

RCn.rk�ı;rkCı/

g2j j2
.� � �k/2

dr �CA1

r2
k

C C j .rk/j2

r2
k
ı

� C E .w/;

where we used (57) and the facts that j� 0.rk/j � rk , g.rk/ � C�1 and jı� 0.rk/j � Cr2
k

.

Next we consider the case of rk � 1. By Lemma A.1, we have

j�.r/ � �kj � C�1jr � rkjj� 0.rk/j � C�1jr � rkjr�3
k ; jr � rkj < 1;

j�.r/ � �kj � C�1.1C r/�4; jr � rkj � 1=rk ;
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and g.r/ � Cg.rk/ for jr � rkj < 1=rk . Thanks to  1.rk/ D 0 and g.rk � 1/2r6
k

� C , we get
by Hardy’s inequality that

Z rkC1

rk�1

g2j 1j2
.� � �k/2

dr � C

Z rkC1

rk�1

g2j 1j2r6
k

jr � rkj2 dr � C

Z rkC1

rk�1

j@r 1j2dr � CA1;

and
Z

RCnB.rk ;1/

g2j 1j2
.� � �k/2

dr � C

Z

RC

g2.r/.1C r/8j 1j2dr � C

Z

RC

j 1j2
r2

dr � CA1;

where we denote B.a; b/ D .a � b; a C b/: Since 0 < ı < 1=rk and j 2.r/j � j .rk/j, we
have
Z

B.rk ;1=rk/nB.rk ;ı/

g2j 2j2
.� � �k/2

dr � C

Z

B.rk ;1=rk/nB.rk ;ı/

g2.rk/j .rk/j2
jr � rkj2� 0.rk/2

dr � Cg2.rk/j .rk/j2
� 0.rk/2ı

;

and due to j 2.r/j � .r=rk/
5
2 j .rk/j, we have

Z

RCnB.rk ;1=rk/

g2j 2j2
.� � �k/2

dr � C

Z

RC

.r=rk/
5g2.r/j .rk/j2.1C r/8dr � C j .rk/j2

r5
k

:

Therefore, we obtain
Z

RCnB.rk ;ı/

g2j j2
.� � �k/2

dr � CA1 C Cg2.rk/j .rk/j2
� 0.rk/2ı

C C j .rk/j2

r5
k

� C E .w/;

where we used (57) and the facts that C�1r�3
k

� j� 0.rk/j � Cr�3
k

and jı� 0.rk/j � C .

This completes the proof of the lemma.

Now we are in a position to show that for jˇkj � max
�

jkj3

r4
k

; jkj3; r6
k

�
,

kfH kwk & jˇkj 1
3 kwk:(58)

By Lemma 6.6, we have

kwk � C E .w/ D C
�

E 1.w/C � � � C E 7.w/
�
:

In the following, we handle each E i .w/. Using the fact that

jJ.r/j �
Z r

0

jw.s/jds C
Z C1

r

�r
s

� 3
2 jw.s/jds � CrkwkL1 ;(59)

jJ.r/j �
Z C1

0

� s
r

� 5
2 jgwj.s/ds � Cr� 5

2 min.kwkL1 ; kwk/;(60)

we deduce that

E 5.w/ � C

rk
j .rk/jkwkL1 � E 4.w/C C

1

ı

j .rk/j2

r2
k

� E 4.w/C C E 6.w/; 0 < rk � 1;

(61)

E 5.w/ � C
1

r
5=2

k

j .rk/jkwk � C E 7.w/
1
2 kwk; rk � 1:

(62)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1022 T. LI, D. WEI AND Z. ZHANG

Using the fact that

j .r/j � r

Z r

0

jw.s/jds C
Z C1

r

�r
s

�2

.rs/
1
2 jw.s/jds � Cr2kwkL1 ;(63)

j .r/j �
Z C1

0

� s
r

�2

.rs/
1
2 jgwj.s/ds � Cr� 3

2 min.kwkL1 ; kwk/;(64)

we deduce that

E 7.w/ � Cr�8
k kwk2;(65)

As ı < 1; j� 0.rk/j < C , we also have

E 7.w/ � C E 6.w/g.rk/
�2:(66)

We introduce

F .w/ D ıkwk2
L1 C ı2kw0k2 C ı2kwkkfH kwk C ı4kfH kwk2:(67)

It is easy to see that

E 4.w/ � F .w/;(68)

and by (55), we have

E 1.w/C E 2.w/ � C F .w/:(69)

To proceed, we need the following L1 estimate of w0 and  .

L 6.7. – It holds that

ı3kw0k2
L1.B.rk ;ı// C 1

.� 0.rk//2ı
kg k2

L1.B.rk ;ı// � C F .w/:

Proof. – Let

u D fH kw; u1 D g ; u2 D
�k2 � 1=4

r2
C r2

16
� 1

2

�
w C iˇk.� � �k/w:

Then we have

�w00 C u2 � iˇku1 D u:(70)

Due to 0 < ı � min. rk

jkj
; 1

rk
/ and Lemma A.1, we have

ku2kL1.B.rk ;ı// �
k

2 � 1=4
r2

C r2

16
� 1

2


L1.B.rk ;ı//

kwkL1 C kˇk.� � �k/kL1.B.rk ;ı//kwkL1

� C
�k2

r2
k

C r2
k C jˇkı�

0.rk/j
�
kwkL1

� C.ı�2 C jˇkı�
0.rk/j/kwkL1 � Cı�2kwkL1 :(71)

By (63), (59) and (56), we get

j =r j C j@r j � CrkwkL1 ;

which gives

j@ru1j � gj@r j C j@rgjj j � g.j@r j C r j j/
� Cg.r/.r C r3/kwkL1 � C j� 0.r/jkwkL1 :
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In particular, for r; s 2 B.rk ; ı/,

ju1.r/ � u1.s/j � Cıj� 0.rk/jkwkL1 :(72)

Choose r� 2 .rk � ı; rk/ such that

jw0.r�/j2 C jw0.r� C ı/j2 � 1

ı
kw0k2;

which along with (70) gives
ˇ̌
ˇ̌
ˇ

Z r�Cı

r�

.u2 � iˇku1 � u/dr
ˇ̌
ˇ̌
ˇ D jw0.r� C ı/ � w0.r�/j � 2ı� 1

2 kw0k;

from which and (71), we infer that
ˇ̌
ˇ̌
ˇ

Z r�Cı

r�

u1dr

ˇ̌
ˇ̌
ˇ � jˇkj�1.ku2kL1.r�;r�Cı/ C kukL1.r�;r�Cı/ C 2ı� 1

2 kw0k/

� jˇkj�1.ıku2kL1.r�;r�Cı/ C ı
1
2 kuk C 2ı� 1

2 kw0k/

� jˇkj�1.Cı�1kwkL1 C ı
1
2 kfH kwk C 2ı� 1

2 kw0k/

� C jˇkj�1ı� 3
2 F .w/

1
2 :

For s 2 B.rk ; ı/; we get by (72) that
ˇ̌
ˇ̌
ˇıu1.s/ �

Z r�Cı

r�

u1dr

ˇ̌
ˇ̌
ˇ �

Z r�Cı

r�

ju1.s/ � u1.r/jdr � Cı2j� 0.rk/jkwkL1 ;

which gives

ju1.s/j � C.ı
1
2 j� 0.rk/j C jˇkj�1ı� 5

2 /A
1
2 � Cı

1
2 j� 0.rk/j F .w/

1
2 ;(73)

that is,

kg kL1.B.rk ;ı// D ku1kL1.B.rk ;ı// � Cı
1
2 j� 0.rk/j F .w/

1
2 :

Using (70), (71) and (73), we infer that

kw0kL1.B.rk ;ı// � jw0.r�/j C kw00kL1.B.rk ;ı//

� ı� 1
2 kw0k C ku2kL1.B.rk ;ı// C jˇkjku1kL1.B.rk ;ı// C kukL1.B.rk ;ı//

� ı� 1
2 kw0k C 2ıku2kL1.B.rk ;ı// C 2jˇkjıku1kL1.B.rk ;ı// C 2ı

1
2 kuk

� ı� 1
2 kw0k C Cı�1kwkL1 C C jˇkjı 3

2 j� 0.rk/j F .w/
1
2 C 2ı

1
2 kuk

� Cı� 3
2 F .w/

1
2 :

This completes the proof of the lemma.

Now we infer from Lemma 6.7 that

E 6.w/ � C F .w/;(74)
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and by (55),

E 3.w/ � 1

jˇkı� 0.rk/j
kw0kL1.B.rk ;ı//kwkL1

� Cı2kw0kL1.B.rk ;ı//kwkL1 � C F .w/:(75)

If 0 < rk � 1; we deduce from (69), (75), (68), (61), (74), (66) that

kwk2 � C F .w/:

If rk � 1; we similarly have

kwk2 � C
�

F .w/C E 7.w/
1
2 kwk C E 7.w/

�
� C0

�
F .w/C E 7.w/

�
:

Now if kwk2 < 2C0 E 7.w/; we get by (65) that

kwk2 < 2Cr�8
k kwk2

L2 ;

which implies that rk � C , thus, g.rk/�2 � C . Hence,

E 7.w/ � C E 6.w/ � C F .w/ H) kwk2 � C F .w/:

While, if kwk2 � 2C0 E 7.w/, we have

kwk2 � 2C F .w/:

Thanks to kwk2
L1 � kw0kkwk and kw0k2 � kwkkfH kwk, we have

F .w/ � ıkw0kkwk C 2ı2kwkkfH kwk C ı4kfH kwk2

� kwk 3
2

�
ı2kfH kwk

� 1
2 C 2kwkL2

�
ı2kfH kwk

�
C
�
ı2kfH kwk

�2
;

which along with kwk2 � C F .w/ implies that

kwk � Cı2kfH kwk:

As jˇkj � max
�

jkj3

r4
k

; jkj3; r6
k

�
� max

�
r�1

k
; r3

k

�2
; 1 D ı3jˇkj min.rk ; r�3

k
/ � ı3jˇkjjˇkj� 1

2 ;

we have ı2 � jˇkj� 1
3 and that

kfH kwk & jˇkj 1
3 kwk:

7. Spectral lower bound

Recall that

fH ˛;k;0 D �@2
r C

k2 � 1
4

r2
C r2

16
� 1

2
C iˇk�.r/ � iˇkg

fK kŒg��:

We know that for jkj D 1, fH ˛;k;0 in fr 3
2 g.r/g? \ L2.RC; dr/ is isometric with

TfH ˛;k;0T
�1 D �@2

r C 3
4r2 C r2

16
� 1

2
C f .r/ C iˇk�.r/ in L2.RC; dr/. Hence, we just

consider fH ˛;k in the form

fH ˛;k D

8
ˆ̂<
ˆ̂:

� @2
r C 3

4r2
C r2

16
� 1

2
C f .r/C iˇk�.r/; jkj D 1;

� @2
r C

k2 � 1
4

r2
C r2

16
� 1

2
C iˇk�.r/ � iˇkg

QK k Œg��; jkj � 2:
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Notice that

�.L � ˛ƒj.ker ƒ/?
/ D

[

k2Znf0g

�.fH ˛;k/:

Then we define

†.˛; k/ D inf Re �.fH ˛;k/; †.˛/ D inf
k2Znf0g

†.˛; k/:

Our main result is the following spectral lower bound.

T 7.1. – For any jkj � 1, we have

†.˛; k/ � C�1jˇkj 1
2 ; †.˛/ � C�1j˛j 1

2 :

Motivated by [10], we will use the complex deformation method.

7.1. Complex deformation

We introduce the group of dilations

.U�w/.r/ D e�=2w.e�r/;

which are unitary operators for � 2 R. We consider

fH .�/

˛;k D U�
fH ˛;kU

�1
� :(76)

Then we have

fH .�/

˛;k D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

� e�2�@2
r C

 
3e�2�

4r2
C r2e2�

16
� 1

2
C f .re� /

!
C iˇk�.re

� /; jkj D 1;

�e�2�@2
r C

 
k2 � 1=4
4r2e2�

C r2e2�

16
� 1

2

!
C iˇk.�.re

� / � e2�g.re� /fK k Œg.re
� /��/; jkj � 2:

Now we consider the analytic continuation of fH .�/

˛;k . For this, we first consider the analytic
continuation of the functions f; �; g. Let

F0.z/ D ez � z � 1; F1.z/ D .1 � e�z/=z;

F2.z/ D e�z=2; F3.z/ D
�
2z2

F0.z/
� 3C 2z

�
z

F0.z/
:

Then F0; F1; F2 are holomorphic in C (0 is a removable singularity of F1) and F3 is
meromorphic in C, and we have

f .r/ D F3.r
2=4/; �.r/ D F1.r

2=4/; g.r/ D F2.r
2=4/:

The poles of F3 are the zeros of F0: If F0.z/ D 0; z D x C iy; x; y 2 R; x > 0; then

e2x D jezj D j1C zj2 D .1C x/2 C y2;

y2 D e2x � .1C x/2 > 1C 2x C .2x/2=2 � .1C x/2 D x2 H) jyj > x;

hence, F3.z/ is holomorphic in a neighborhood of �, which is defined as

� D
˚
x C iyjx > 0;�x � y � x

	
D
˚
rei� jr > 0;��=4 � � � �=4

	
:
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Let F4.z/ D F3.z/ � 2
z

. As lim
z!0

zF3.z/ D 2, F4.z/ is holomorphic in a neighborhood

of � [ f0g. We have

jF0.z/j � jezj � jzj � 1 � ejzj=2 � jzj � 1; z 2 �;

and

lim
z!1;z2�

z2

F0.z/
D 0; lim

z!1;z2�
F3.z/ D 0; lim

z!1;z2�
F4.z/ D 0;

thus jF4.z/j � C in �. We also have

F2.z/ � C.1C jzj/�1:

Now we rewrite fH .�/

˛;kw as follows, for jkj D 1,

fH .�/

˛;kw D �e�2�@2
rw C

 
35e�2�

4r2
C r2e2�

16
� 1

2
C F4.

r2e2�

4
/

!
w C iˇkF1.

r2e2�

4
/w;

and for jkj � 2,

fH .�/

˛;kw D �e�2�@2
rw C

 
k2 � 1=4
r2e2�

C r2e2�

16
� 1

2

!
w C iˇk.F1.

r2e2�

4
/w

� e2�F2.
r2e2�

4
/fK k ŒF2.

r2e2�

4
/w�/:

Thanks to the properties of Fi .z/.i D 0; 1; : : : ; 4/ which are shown above, ffH .�/

˛;kg are
defined as an analytic family of type (A)(see [17]) in the strip �1 D

˚
� 2 C

ˇ̌
jIm„j < ı

8

	
with

common domain D D
˚
w 2 H 2.RC/; w=r

2; r2w 2 L2.RC/
	
. In particular, the spectrum

of fH .�/

˛;k is always discrete and depends holomorphically on � . Since the eigenvalues of fH .�/

˛;k

are constant for � 2 R, they are also constant for � 2 �1:

Now we have

†.˛; k/ D inf Re�.fH .�/

˛;k/ � inf
w2D;kwkD1

RehfH .�/

˛;kw;wi:(77)

7.2. Proof of Theorem 7.1

We need the following lemma.

L 7.2. – For r > 0; 0 < � < �
4

, we have

�ImF1.re
i� / � C�1 sin � min

�
r;
1

r

�
:

Proof. – Thanks to

F1.re
i� / D 1 � e�rei�

rei�
D e�i� � e�rei� �i�

r
;

we have

�ImF1.re
i� / D F5.r; �/

r
;
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where

F5.r; �/ D �Im.e�i� � e�rei� �i� /

D sin � � e�r cos � sin.r sin � C �/:

Using the inequality

j sin.r sin � C �/j � j sin.r sin �/ cos � j C j cos.r sin �/ sin � j
� r sin � cos � C sin �;

we get

F5.r; �/ � sin �.1 � e�r cos � .1C r cos �//:(78)

This shows that

F5.r; �/ � C�1 min..r cos �/2; 1/ sin � � C�1 min.r2; 1/ sin �;

thus,

�ImF1.re
i� / D F5.r; �/

r
� C�1 min.r;

1

r
/ sin �:

This completes the proof.

Now we are in a position to prove Theorem 7.1.

Let us first consider the case of jkj D 1: It follows from Lemma 5.5 that

RehfH ˛;kw;wi � kwk2

2
;

which gives

†.˛; k/ � 1=2:(79)

For � 2 .��=8; �=8/; sgn� D sgnˇk , we have

ImF1.
r2e2i�

4
/ D sgn�ImF1.

r2e2i j� j

4
/;

from which and Lemma 7.2, we infer that

RehfH .i�/

˛;k w;wi D
Z

RC

Re

 
35e�2i�

4r2
C r2e2i�

16
� 1

2
C F4.

r2e2i�

4
/C iˇkF1.

r2e2i�

4
/

!
jwj2dr

C cos 2�k@rwk2

�
Z

RC

 
35 cos.2�/

4r2
C r2 cos.2�/

16
� 1

2
� C � jˇkjImF1.

r2e2i j� j

4
/

!
jwj2dr

�
Z

RC

�
C�1.

1

r2
C r2/ � C C jˇkjC�1 sin j� j min.r2;

1

r2
/

�
jwj2dr

�
Z

RC

�
C�1jˇk sin � j 1

2 � C
�

jwj2dr D
�
C�1jˇk sin � j 1

2 � C
�

kwk2;

which shows that

†.˛; k/ � C�1jˇk sin � j 1
2 � C � C�1jˇkj 1

2 � C;
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if we take � D .sgnˇk/
�
12

. Then by (79), we get

†.˛; k/ � max.C�1jˇkj 1
2 � C; 1=2/ � C�1jˇkj 1

2 :

Next we consider the case of jkj � 2: We still assume � 2 .� �
8
; �

8
/; sgn� D sgnˇk . Then

we have

RehfH .i�/

˛;k w;wi D cos 2�k@rwk2
L2

C
Z

RC

Re

 
k2 � 1=4
r2e�2i�

C r2e2i�

16
� 1

2
C iˇkF1.

r2e2i�

4
/

!
jwj2dr

C
Z

RC

Z

RC

Kk.r; s/Re.�iˇke
2i�F2.

r2e2i�

4
/F2.s

2e2i�=4//w.s/w.r/drds;

here Kk.r; s/ D 1

2jkj min
�r
s
;
s

r

�jkj

.rs/
1
2 : Notice that

Re
�

� iˇke
2i�F2.

r2e2i�

4
/F2.

s2e2i�

4
/
�

D Re
�

� iˇke
2i�e�.r2Cs2/ e2i�

8

�

D ˇke
�.r2Cs2/ cos.2�/

8 sin.2� � .r2 C s2/ sin.2�/

8
/

D ˇk

sin.2�/
e�.r2Cs2/ cos.2�/

8

�
sin.2� � r2 sin.2�/

8
/ sin.2� � s2 sin.2�/

8
/

� sin.
r2 sin.2�/

8
/ sin.

s2 sin.2�/

8
/
�

D jˇkj
j sin.2�/j .g2.r/g2.s/ � g3.r/g3.s//;

where

g2.r/ D e�r2 cos.2�/
8 sin

�
2� � r2 sin.2�/

8

�
; g3.r/ D e�r2 cos.2�/

8 sin
�r2 sin.2�/

8

�
;

and here we used the fact that

sin.a � b � c/ sin a D sin.a � b/ sin.a � c/ � sin b sin c:

Thus, we obtain

RehfH .i�/

˛;k w;wi D cos 2�k@rwk2
L2

C
Z

RC

 
k2 � 1=4
r2

cos.2�/C r2

16
cos.2�/ � 1

2
� jˇkjIm�kF1.

r2e2i j� j

4
/

!
jwj2dr

C jˇkj
j sin.2�/j

�
hfK k Œg2w�; g2wi � hfK k Œg3w�; g3wi

�
:

By the proof of Lemma 6.2, we know that

hfK k Œg2w�; g2wi � 0:
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Due to 0 < Kk.r; s/ � K2.r; s/, we have

hfK k Œg3w�; g3wi �
Z C1

0

Z C1

0

Kk.r; s/jg3w.s/jjg3w.r/jdsdr

� 1

2

Z C1

0

Z C1

0

K2.r; s/

��r
s

� 1
2

g3.r/
2jw.s/j2 C

� s
r

� 1
2

g3.s/
2jw.r/j2

�
dsdr

D
Z C1

0

fK 2Œr
1
2 g2

3 �.s/
jw.s/j2

s
1
2

ds:

Therefore, we obtain

RehfH .i�/

˛;k w;wi �
Z

RC

�
k2 � 1=4
r2

cos.2�/C r2

16
cos.2�/ � 1

2

�
jwj2dr

C jˇkj
Z

RC

 
�ImF1.

r2e2i j� j

4
/ �

fK 2Œr
1
2 g2

3 �

j sin.2�/jr 1
2

!
jwj2dr:

Due to 0 � g2
3.r/ � e�r2 cos.2�/

4 j r2 sin.2�/
8

j2; we have

fK 2Œr
1
2 g2

3 �

j sin.2�/jr 1
2

� j sin.2�/j
64r

1
2

fK 2Œr
9
2 e�r2 cos.2�/

4 �

D j sin.2�/j
64r

1
2

1

4

�Z r

0

� s
r

�2

.rs/
1
2 s

9
2 e�s2 cos.2�/

4 ds C
Z C1

r

�r
s

�2

.rs/
1
2 s

9
2 e�s2 cos.2�/

4 ds

�

D j sin.2�/j
256r2

�Z r

0

s7e�s2 cos.2�/=4ds C r4

Z C1

r

s3e�s2 cos.2�/=4ds

�

D j sin.2�/j
2r2j cos.2�/j4

 Z a

0

�3e��d�C r4

�
cos.2�/

4

�2 Z C1

a

�e��d�

!

D j sin.2�/j
2r2j cos.2�/j4

�
6 � .6C 6aC 3a2 C a3/e�a C a2.1C a/e�a

�

D
j sin.2�/j

�
3 � .3C 3aC a2/e�a

�

r2j cos.2�/j4 ;

here a D r2 cos.2�/
4

and we used the change of variable � D s2 cos.2�/
4

: On the other hand,

thanks to �ImF1.
r2e2ij�j

4
/ D F5. r2

4 ;2j� j/

r2=4
, we get by (78) that

�ImF1.
r2e2i j� j

4
/ � j sin.2�/j

1 � e�r2 cos 2�
4 .1C r2 cos 2�

4
/

r2=4

D 4j sin.2�/j1 � e�a.1C a/

r2
:

Then we have

fK 2Œr
1
2 g2

3 �

j sin.2�/jr 1
2

�
�3ImF1.

r2e2ij�j

4
/

4j cos.2�/j4 :
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Now we take � D .sgnˇk/
�
24

, then we have j cos.2�/j4 > 3=4, and

k2 � 1=4
r2

cos.2�/C r2

16
cos.2�/ � 1

2
� C�1

� 1
r2

C r2
�
:

Then we conclude that

RehfH .i�/

˛;k w;wi �C�1

Z

RC

�
1

r2
C r2

�
jwj2dr

C jˇkj
Z

RC

 
�ImF1.

r2e2i j� j

4
/C

3ImF1.
r2e2ij�j

4
/

4j cos.2�/j4

!
jwj2dr

�C�1

Z

RC

 
1

r2
C r2 � jˇkjImF1.

r2e2i j� j

4
/

!
jwj2dr

�C�1

Z

RC

�
1

r2
C r2 C jˇkjj sin.2�/j min.r2;

1

r2
/

�
jwj2dr

�C�1

Z

RC

jˇkj 1
2 jwj2dr D C�1jˇkj 1

2 kwk2;

which shows that for jkj � 2,

†.˛; k/ � C�1jˇkj 1
2 :

Appendix

In this appendix, let us present some properties of the function �.r/ D 1�e�r2=4

r2=4
.

L A.1. – It holds that

1. for any r0 > 0,

j� 0.r/j � j� 0.r0/j;
r0

2
� r � 2r0;

j�.r/ � �.r0/j & jr � r0jj� 0.r0/j; 0 < r � 2r0I

2. for 0 < r0 < 1 and r0=2 < r � 2r0 C 1,

j� 0.r/j & j� 0.r0/j; j�.r/ � �.r0/j & jr � r0jj� 0.r0/jI

3. for r0 � 1 and jr � r0j � 1
r0

,

j�.r/ � �.r0/j &
1

.1C r/4
:

Here a � b means ca � a � c�1b and a & b means a � cb, where c and C are constants
independent of r0.

Proof. – Let us prove the first property. Thanks to � 0.r/ D 2
r
.e� r2

4 � 1�e
� r2

4

r2=4
/; we have

j� 0.r/j � min
�
r;
1

r3

�
;(80)
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which shows that if r0 � 1, i.e r � 1
2

, then

j� 0.r/j � 1

r3
� 1

r3
0

� j� 0.r0/j;

and if r0 � 1, i.e r � 2, then

j� 0.r/j � r � r0 � j� 0.r0/j:

Thus, j� 0.r/j � j� 0.r0/j for r0

2
� r � 2r0.

If r0

2
� r � 2r0, j� 0.� r C .1 � �/r0/j � j� 0.r0/j.0 � � � 1/. Thus, for some � 2 .0; 1/,

j�.r/ � �.r0/j D jr � r0jj� 0.� r C .1 � �/r0/j � jr � r0jj� 0.r0/j:

While, if 0 < r � r0

2
, we get by � 0.r/ < 0 that

j�.r/ � �.r0/j � �.
r0

2
/ � �.r0/ � r0

2
j� 0.r0/j � jr � r0jj� 0.r0/j:

The second property could be proved similarly.

Now we prove the third property. If r0 � 1 and r � r0 C 1
r0

, we get by (80) that

j�.r/ � �.r0/j � �.r0/ � �.r0 C 1

r0
/ &

1

r0
j� 0.r0/j � 1

r4
0

&
1

.1C r/4
;

and if r0 � 1, 0 < r � r0 � 1, then

j�.r/ � �.r0/j � �.r/ � �.r C 1/ & j� 0.r C 1/j & 1

.1C r/4
;

and if r0 � 1, r0 � 1 < r � r0 � 1
r0

, then

j�.r/ � �.r0/j � �.r0 � 1

r0
/ � �.r0/ &

1

r0
j� 0.r0/j � 1

r4
0

&
1

.1C r/4
:

This shows the third property of �.r/.

L A.2. – Let 0 < �1 < 1 and �.r1/ D �1. There exist constants ci � 1

.i D 1; : : : ; 4/, such that for any r > 0, we have

1. if r1 � 1 and 1 � jˇ1j � 1

r4
1

, then

c1

1

r2
C c2jˇ1j.�1 � �.r// � jˇ1j 1

2 I

2. if r1 � 1 and 1 � jˇ1j � r4
1 , then

c3.1C r2/C c4jˇ1j.�.r/ � �1/ � jˇ1j 1
2 I

3. if r1 � 1 and r4
1 � jˇ1j � r6

1 , then

c3.1C r2/C c4r
4
1 .�.r/ � �1/ � jˇ1j 1

3 :
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Proof. – We consider the first case. LetF.r/ D c1
1
r2 Cc2jˇ1j.�.r1/��.r//; r0 D jˇ1j� 1

4 .
Then we have r1 � r0 � 1 and

F 0.r/ D �c2jˇ1j� 0.r/ � 2c1

r3
:

If we choose 2c1 D �c2jˇ1j� 0.r0/r
3
0 ; due to �� 0.r/ � min.r; 1

r3 /, we have c1 � c2 and
F 0.r0/ D 0: As �.r3� 0.r//0 D r3g2.r/ > 0, we conclude that

F 0.r/ < 0 for 0 < r < r0 and F 0.r/ > 0 for r > r0;

which implies that

min
r>0

F.r/ D F
�
r0
�

� c1

r2
0

D c1jˇ1j 1
2 :

That is, for c1 D 1 we have,

F.r/ � jˇ1j 1
2 :

Next we consider the second case. Let G.r/ D c3.1C r2/C c4jˇ1j.�.r/ � �.r1//. Then

G.r/ � c3.1C r2/C c4jˇ1j
C.1C r2/

� Cc4jˇ1j
r2

1

� C�1.c3c4jˇ1j/ 1
2 � Cc4jˇ1j

jˇ1j 1
2

:

We can choose constants c3; c4 > 0 such that C�1.c3c4/
1
2 � Cc4 D 1. Then

G.r/ � jˇ1j 1
2 :

Finally, we prove the third case. Let H.r/ D c3.1C r2/C c4r
4
1 .�.r/� �1/. Then we have

H.r/ � c3.1C r2/C c4r
4
1

C.1C r2/
� Cc4r

4
1

r2
1

� C�1.c3c4/
1
2 r2

1 � Cc4r
2
1 D r2

1 � jˇ1j 1
3 :

The proof is finished.

Similar to Lemma A.2, we have

L A.3. – Let 0 < �k < 1 and �.rk/ D �k . There exist constants ci � 1

.i D 1; : : : ; 4/ such that for any r > 0, we have

1. if rk � 1 and jkj3 � jˇkj � jkj3

r4
k

, then

c1

k2

r2
C c2min.jˇkj; jkj2

r4
k

/.�k � �.r// � jˇkj 1
2 I

2. if rk �
p
k and jkj3 � jˇkj � r4

k
, then

c3.1C r2/C c4jˇkj.�.r/=2 � �k/ � jˇkj 1
2 I

3. if rk �
p
k and r4

k
� jˇkj � r6

k
, then

c3.1C r2/C c4r
4
k .�.r/=2 � �k/ � jˇkj 1

3 :
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Proof. – We consider the first case. Due to 1 � min. jˇk j

jkj2
; 1

r4
k

/ � 1

r4
k

, by Lemma A.2, we

have

c1

1

r2
C c2min.

jˇkj
jkj2 ;

1

r4
k

/.�k � �.r// � min.
jˇkj
jkj2 ;

1

r4
k

/
1
2 D min.

jˇkj 1
2

jkj ;
1

r2
k

/;

which implies that

c1

k2

r2
C c2 min.jˇkj; jkj2

r4
k

/.�k � �.r// � jkj2 min.
jˇkj 1

2

jkj ;
1

r2
k

/ � min.jˇkj 1
2 ;

jkj 3
2

r2
k

/ � jˇkj 1
2 :

Next we consider the second case. Let G.r/ D c3.1C r2/C c4jˇkj.�.r/=2� �.rk//. Then

G.r/ � c3.1C r2/C c4jˇkj
C.1C r2/

� Cc4jˇ1j
r2

k

� C�1.c3c4jˇkj/ 1
2 � Cc4jˇkj

jˇkj 1
2

:

We can choose constants c3; c4 > 0 such that C�1.c3c4/
1
2 � Cc4 D 1. Then

G.r/ � jˇkj 1
2 :

Finally, we prove the third case. Let H.r/ D c3.1C r2/ C c4r
4
k
.�.r/=2 � �k/. Then we

have

H.r/ � c3.1C r2/C
c4r

4
k

C.1C r2/
� Cc4r1k

4

r2
k

� C�1.c3c4/
1
2 r2

k � Cc4r
2
k D r2

k � jˇkj 1
3 :

The proof is finished.
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PSEUDO-SPLIT FIBERS

AND ARITHMETIC SURJECTIVITY

 D LOUGHRAN, A N. SKOROBOGATOV
 A SMEETS

A. – Let f W X ! Y be a dominant morphism of smooth, proper and geometrically
integral varieties over a number field k, with geometrically integral generic fiber. We give a necessary
and sufficient geometric criterion for the induced map X.kv/ ! Y.kv/ to be surjective for almost all
places v of k. This generalizes a result of Denef which had previously been conjectured by Colliot-
Thélène, and can be seen as an optimal geometric version of the celebrated Ax-Kochen theorem.

R. – Soit f W X ! Y un morphisme dominant de variétés lisses, propres et géométrique-
ment intègres définies sur un corps de nombres k, dont la fibre générique est géométriquement intègre.
Nous donnons un critère géometrique, à la fois nécessaire et suffisant, pour que l’application induite
X.kv/ ! Y.kv/ soit surjective pour presque toute place v de k. Ceci généralise un résultat de Denef
précédemment conjecturé par Colliot-Thélène. Notre résultat peut être vu comme une version géomé-
trique optimale du célèbre théorème de Ax-Kochen.

1. Introduction

1.1. – A famous theorem of Ax-Kochen [6] states that any homogeneous polynomial over Qp

of degree d in at least d2C1 variables has a non-trivial zero, provided that p avoids a certain
finite exceptional set of primes depending only on d . This was originally proved using model
theory. Denef recently found purely algebro-geometric proofs [12, 13]. In [13], he did so by
proving a more general conjecture of Colliot-Thélène [8, §3, Conjecture].

The essential notion (first introduced by the second author in [32, Definition 0.1])
appearing in this conjecture is that of a split scheme:

D 1.1. – Let k be a perfect field. A schemeX of finite type over k is called split
if X contains an irreducible component of multiplicity 1 which is geometrically irreducible.

Here the multiplicity of an irreducible component Z of X is the length of the local ring
ofX at the generic point ofZ. In particular, it has multiplicity 1 if and only if it is generically
reduced. Denef’s result [13, Theorem 1.2] is the following.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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1038 D. LOUGHRAN, A. SKOROBOGATOV AND A. SMEETS

T 1.2 (Denef). – Let f W X ! Y be a dominant morphism of smooth, proper,
geometrically integral varieties over a number field k, with geometrically integral generic fiber.
Assume that for every modification f 0 W X 0 ! Y 0 of f with X 0 and Y 0 smooth such that
the generic fibers of f and f 0 are isomorphic, the fiber .f 0/�1.D/ is a split �.D/-variety for
every D 2 .Y 0/.1/.

Then Y.kv/ D f .X.kv// for all but finitely many places v of k.

Here kv denotes the completion of k at the place v, .Y 0/.1/ denotes the set of points of
codimension 1 in Y 0, and �.D/ is the residue field ofD. A modification of f is a commutative
diagram

X 0 ˛X
//

f 0

��

X

f

��

Y 0 ˛Y
// Y;

(1.1)

where f 0 W X 0 ! Y 0 is a dominant morphism of proper and geometrically integral varieties
over k, and ˛X W X 0 ! X and ˛Y W Y 0 ! Y are birational morphisms.

One obtains the Ax-Kochen theorem by applying Theorem 1.2 to the universal family of
all hypersurfaces of degree d in Pn with n � d2; that the hypotheses of the theorem are
satisfied in this case was shown by Colliot-Thélène (see [8, Remarque 4]).

1.2. – In this paper we strengthen Denef’s result, by determining conditions which are both
necessary and sufficient for the map f W X.kv/ ! Y.kv/ to be surjective for almost all
places v. Our result uses the following weakening of Definition 1.1 (in §2.2 we also give a
more general definition over arbitrary ground fields).

D 1.3. – Let k be a perfect field with algebraic closure Nk. A scheme X of
finite type over k is called pseudo-split if every element of Gal. Nk=k/ fixes some irreducible
component of X �k Nk of multiplicity 1.

It is clear that pseudo-splitness is weaker than splitness, the latter meaning that a single
irreducible component of X �k Nk of multiplicity 1 is fixed by all of Gal. Nk=k/. With this
terminology, we can state our generalization of Denef’s result as follows:

T 1.4. – Let k be a number field. Let f W X ! Y be a dominant morphism
of smooth, proper, geometrically integral varieties over k with geometrically integral generic
fiber. Then Y.kv/ D f .X.kv// for all but finitely many places v of k if and only if for every
modification f 0 W X 0 ! Y 0 of f , with X 0 and Y 0 smooth, and for every point D 2 .Y 0/.1/, the
fiber .f 0/�1.D/ is a pseudo-split �.D/-variety.

In the notation introduced by the first and third named authors in their recent work [25,
§3], the morphisms f W X ! Y satisfying the conclusion of the theorem are exactly the
morphisms such that �.f 0/ D 0 for every modification f 0 of f .

4 e SÉRIE – TOME 53 – 2020 – No 4



PSEUDO-SPLIT FIBERS AND ARITHMETIC SURJECTIVITY 1039

1.3. – Theorem 1.4 will be deduced from finer results. With f W X ! Y as in Theorem 1.2,
Colliot-Thélène asked in [9, §13.1] how the geometry of f relates to the surjectivity of the
mapX.kv/ ! Y.kv/, for a possibly infinite collection of places v. He called this phenomenon
“surjectivité arithmétique” (note that this is different from the notion of arithmetic surjec-
tivity studied in [16]). We develop general criteria which allow one to decide whether, for an
individual (but large) place v, the map X.kv/ ! Y.kv/ is surjective. They involve certain
invariants which we call “s-invariants,” defined in §3—local versions of the ı-invariants intro-
duced in [25, §3]; their definition is given in terms of the geometry of f and does not involve
model theory.

The following result is proved in §6 using tools from logarithmic geometry, in particular,
a logarithmic version of Hensel’s lemma and “weak toroidalisation”. It should be viewed as
the main theorem of the paper and is a geometric criterion, in the style of Colliot-Thélène’s
conjecture, for surjectivity of the map X.kv/ ! Y.kv/.

T 1.5. – Let k be a number field. Let f W X ! Y be a dominant morphism of
smooth, proper, geometrically integral varieties over k, with geometrically integral generic fiber.
Then there exist a modification f 0 W X 0 ! Y 0 of f with X 0 and Y 0 smooth, and a finite set of
places S of k such that for all v … S the following are equivalent:

(1) the map X.kv/ ! Y.kv/ is surjective;

(2) for every codimension 1 point D0 2 .Y 0/.1/, we have sf 0;D0.v/ D 1.

The invariants sf 0;D0.v/ appearing in the statement will be defined in §3. They are defined
in terms of the Galois action on the irreducible components of the fiber of f 0 over D0.
One benefit of our approach is that it yields a single model for f which can be used to test
arithmetic surjectivity using a finite list of criteria.

A simple consequence of Theorem 1.5 is the following:

T 1.6. – Let f W X ! Y be a dominant morphism of smooth, proper and
geometrically integral varieties over a number field k, with geometrically integral generic fiber.
The set of places v such that Y.kv/ D f .X.kv// is Frobenian.

Here we use the term “Frobenian” in the sense of Serre [31, §3.3] (see §3.1). Frobenian
sets of places have a density, but being Frobenian is much stronger than just having a
density; for example, an infinite Frobenian set has positive density. It is also possible to prove
Theorem 1.6 using model-theoretic results and techniques such as quantifier elimination
[5, 28]; our method avoids these and is completely algebro-geometric. However, we know
of no model-theoretic proof of the finer Theorems 1.4 and 1.5. (From a model-theoretic
perspective, one may view Theorem 1.5 as an explicit instance of quantifier elimination).

1.4. – Some of the ingredients of our proof are already present in the work of Denef [12, 13],
e.g., the use of the weak toroidalisation theorem [4, 3]. We need more ingredients from
logarithmic geometry, cf. §5—essentially a few basic properties of log smooth morphisms
and log blow-ups. The choice of a log smooth model for the morphism makes some of its
arithmetic properties more transparent, and can be seen as a convenient way to come up with
a Galois stratification, in the sense of Fried and Sacerdote [14]. On the other hand, we also
use work of Serre [31] on Frobenian functions, expanding upon what was done in [25].
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Let us finally give an overview of the structure of our paper. In §2 we introduce the class of
pseudo-split varieties and discuss their elementary properties; this section also includes some
examples involving torsors under coflasque tori. In §3, we introduce the “s-invariants”. These
allow us to prove in §4 that our geometric conditions are necessary for arithmetic surjectivity.
To prove that this criterion is also sufficient, we introduce the necessary logarithmic tools in
§5. We finish the proof of our main result in §6.

1.5. Notation

A variety over a field k is a separated k-scheme of finite type.
Let k be a number field. We denote by �k;f the set of finite places of k. Given a place v

of k, we write kv for the completion of k at v. If v is non-archimedean, then we denote by Ov
the ring of integers of kv, by Fv its residue field, and by N.v/ D #Fv its norm.

For a variety X over a number field k, a model of X is a scheme X of finite type over Ok
together with a choice of isomorphism X Š X � Ok

k. For a morphism f W X ! Y

of k-varieties, a model of f is a morphism f W X ! Y of finite type over Ok , again denoted
by f , of models of X and Y , such that the induced map on generic fibers is identified with
the original morphism X ! Y via the isomorphisms X � Ok

k Š X and Y � Ok
k Š Y .
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Mathematik in Bonn. The third named author acknowledges the support of FWO Vlaan-
deren (postdoctoral fellowship) and NWO (Veni grant), and is grateful to the Max Planck
Institut für Mathematik in Bonn for its hospitality.

2. Pseudo-split varieties

In this section, we collect some observations on the characterisation and properties of
pseudo-split algebras and pseudo-split varieties.

2.1. Pseudo-split algebras

Let k be a field, with algebraic closure k, and let A be a finite étale k-algebra; then
A D

Qn
iD1 ki for some finite separable field extensions ki=k. Write di D Œki W k�. LetKi=k be

the Galois closure of ki=k in Nk. Let K be the compositum of K1; : : : ; Kn, i.e., the smallest
subfield of Nk containing these fields.

Write G D Gal.K=k/, Gi D Gal.Ki=k/ and Hi D Gal.Ki=ki /: The index of Hi
in Gi is equal to di . By the normal basis theorem the G-module A ˝k K is identified withLn
iD1KŒGi=Hi �, where G acts on Gi=Hi through the natural homomorphism G ! Gi . We

have .SpecA/.k/ D .SpecA/.K/ D
`n
iD1Gi=Hi .
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D 2.1. – The following conditions are equivalent:

(1) A D k ˚ A0 for some k-algebra A0,

(2) the natural morphism SpecA ! Spec k has a section,

(3) at least one point of .SpecA/. Nk/ is fixed by G.

If these conditions are satisfied, we say that A is split. For example, a separable polynomial
p.X/ 2 kŒX� has a root in k if and only if kŒX�=.p.X// is a split k-algebra.

D 2.2. – The following conditions are equivalent:

(1) A˝k F is split for each field F such that k � F � K and K=F is cyclic,

(2) each element of G fixes at least one point of .SpecA/.k/.

If these conditions are satisfied, we say that A is pseudo-split.

Condition (2) in the above definition can be rephrased by saying that G is the union of
the stabilizers of points of

`n
iD1Gi=Hi . Let eHi � G be the inverse image of Hi under the

surjective homomorphism G ! Gi . Then Gi=Hi D G= eHi with its natural G-action. Thus
condition (2) is equivalent to the equality

(2.1) G D
[
g eHig�1;

where the union is taken over all g 2 G and i D 1; : : : ; n.

R 2.3. – Pseudo-split algebras naturally arise in the study of the Hasse principle
for finite schemes over a number field (see e.g., [20, Lemma 2.2] and [33, Proposition 1]).

R 2.4. – By Jordan’s theorem [30, Theorem 4], any transitive subgroup of a
permutation group contains a permutation without fixed points. Hence ifA is a pseudo-split
k-algebra such that SpecA is connected, then A D k.

R 2.5. – One immediately sees that if a k-algebra A is pseudo-split, then for any
field extension L=k the L-algebra A˝k L is pseudo-split.

R 2.6. – If G is cyclic, then any pseudo-split k-algebra is in fact split.

The following gives a description of pseudo-split algebras over number fields. The proof
is an exercise using the Chebotarev density theorem; we omit it as the result will not be used
in the sequel (it is also a special case of Proposition 2.11).

P 2.7. – Let k be a number field. Then a finite étale k-algebra is pseudo-split if
and only if it is split over almost all completions of this field. In particular, a separable polynomial
p.x/ 2 kŒx� has a root in almost all completions of k if and only if kŒx�=.p.x// is a pseudo-split
k-algebra.

See Lemma 3.11 for a variant of this for finitely generated fields over Q. Returning to a
general field k one can classify all pseudo-split non-split k-algebras as follows.
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P 2.8. – Let K=k be a Galois extension. Let E1; : : : ; En be subgroups of
G D Gal.K=k/ such that G is the union of gEig�1 for all g 2 G and i D 1; : : : ; n. ThenLn
iD1K

Ei is a pseudo-split k-algebra, and all pseudo-split k-algebras A such that A ˝k K is
isomorphic toKdimA are obtained in this way. Under this bijection, the non-split k-algebras are
those for which E1; : : : ; En are proper subgroups of G.

Proof. – Write A D
Ln
iD1K

Ei . Then .SpecA/.k/ is the set
`n
iD1G=Ei . The subgroups

gEig
�1 � G are precisely theG-stabilizers of points of this set. This shows thatA is pseudo-

split. Conversely, each pseudo-split k-algebra A can be written in our previous notation as
the direct sum of ki D K

fHi , where the subgroups eHi satisfy (2.1). It is clear that A is split if
and only if Ei D G for some i .

Any non-cyclic Galois extension K=k gives rise to at least one pseudo-split non-split
k-algebra: take E1; : : : ; En to be all cyclic subgroups of Gal.K=k/.

E 2.9. – Let K=k be a Galois extension such that G D Gal.K=k/ Š Dn is the
dihedral group of degree n, where n is odd. Then Dn D Z=n ⋊ Z=2, and Dn is the union
of E1 D Z=n and the conjugates of E2 D Z=2. Hence we obtain a pseudo-split non-split
algebra A D k1 ˚ k2, where Œk1 W k� D 2 and Œk2 W k� D n. For n D 3, we obtain
a 5-dimensional pseudo-split non-split k-algebra; this is the smallest possible dimension of
such an algebra. If k D Q and K D Q.

p
�3; 3

p
2/, then .X2 C 3/.X3 � 2/ is solvable in all

completions of Q except Q2 and Q3.

2.2. Pseudo-split varieties

Let k be a field (not necessarily perfect). For a k-varietyX , we denote byXsm the maximal
open subscheme of X which is smooth over k. We let Xsm;1; : : : ; Xsm;n be the irreducible
components of Xsm. Let ki be the algebraic closure of k in the function field k.Xsm;i /, for
i D 1; : : : ; n. Consider the finite k-algebra

(2.2) AX D
nM

iD1

ki :

We call SpecAX the scheme of irreducible components of geometric multiplicity 1 of X . The
map Xsm ! Spec k factors as Xsm ! SpecAX ! Spec k, where Xsm ! SpecAX has
geometrically integral fibers. Moreover, SpecAX is smooth over k by [1, Lemma 34.11.5, Tag
05B5], thus SpecAX is finite and étale over k.

D 2.10. – We say that X is split if the finite étale k-algebra AX is split in the
sense of Definition 2.1. Similarly, we say thatX is pseudo-split if the finite étale k-algebraAX
is pseudo-split in the sense of Definition 2.2.

If Xsm D ;, then (2.2) is the empty direct sum, hence AX is the zero ring and SpecAX is
the empty scheme. In this case it follows easily from the definitions that X is both non-split
and non-pseudo-split.

The definitions in Definition 2.10 are easily checked to be equivalent to Definitions 1.1
and 1.3 over a perfect field. In this case, in the notation of [25, §3.2], being pseudo-split is
equivalent to having ı.X/ D 1. In the case where k is a number field, we obtain the following
characterisation.
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P 2.11. – Let k be a number field. A k-variety is pseudo-split if and only if it
has a smooth kv-point for almost all completions kv of k.

Proof. – This follows immediately from [25, Lemma 3.9].

Another immediate consequence of the results in [25, §3.2] is the following.

P 2.12. – Let R be a discrete valuation ring with a perfect residue field k.
Let X1 and X2 be regular schemes which are proper over R, and whose generic fibers are
birational. Then the special fiber of X1 is pseudo-split if and only if the special fiber of X2 is
pseudo-split.

Proof. – This is a special case of [25, Lemma 3.11].

2.3. Pseudo-split algebras and coflasque tori

We make some observations in the style of Colliot-Thélène’s paper [10]. Given any finite
étale k-algebra A D

Ln
iD1 ki , one defines the associated multinorm k-torus R1

A=k Gm by the
exact sequence

(2.3) 1 ! R1
A=k Gm !

nY

iD1

Rki=k Gm ! Gm ! 1;

where the third map is induced by the norms from ki to k. In [10], Colliot-Thélène studied
the special case A D k.

p
a/˚ k.

p
b/˚ k.

p
ab/, where a; b 2 k� are such that none of a, b

and ab is a square and char.k/ ¤ 2; this algebra is clearly pseudo-split.

P 2.13. – IfA is a pseudo-split k-algebra, then R1
A=k Gm is a coflasque k-torus.

If k is a local field, then H1.k;R1
A=k Gm/ D 0.

We refer to [11, §1] for the definition of (and some background on) coflasque tori.

Proof. – LetM be the module of characters of R1
A=k Gm and letG be as in §2.1. To prove

that R1
A=k Gm is coflasque we need to show that H1.H;M/ D 0 for each subgroup H � G.

By Remark 2.5, we can assume without loss of generality that H D G.

Consider the exact sequence of Galois-modules dual to (2.3)

0 ! Z !
nM

iD1

ZŒG= eHi � ! M ! 0;

where we use the notation of (2.1). The Galois action factors through the action of G,
and H1.G;ZŒG= eHi �/ D 0. To prove that H1.G;M/ D 0, we must therefore show that
any element of the group Hom.G;Q=Z/ D H2.G;Z/ which vanishes when restricted to
each eHi , is zero. This follows from (2.1), proving the first statement. The second statement
is a general property of coflasque tori, as over the local field k the finite abelian groups
H1.k;R1

A=k Gm/ and H1.k;M/ D H1.G;M/ are dual to each other by Tate-Nakayama
duality [26, Corollary I.2.4, Thm. I.2.13].
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Let k be a number field and let A D
Ln
iD1 ki be a pseudo-split k-algebra such that the

extensions ki=k satisfy gcd.Œk1 W k�; : : : ; Œkn W k�/ ¤ 1. The family of torsors for R1
A=k Gm

(2.4)
nY

iD1

Nki=k.xi / D t 6D 0

can be compactified to a smooth, proper, geometrically integral variety with a morphism
� W X ! P1

k
extending the projection to the coordinate t .

The map X.kv/ ! P1.kv/ is surjective for all places v of k. For smooth fibers this
follows from Proposition 2.13. However since � is proper, the image �.X.kv// is closed,
hence �.X.kv// D P1.kv/ as claimed. The singular fibers are pseudo-split, but non-split.
That they are pseudo-split is clear; that they are non-split follows from [25, Lemma 5.4]. In
particular, this surjectivity is not implied by Denef’s result (Theorem 1.2), but is implied by
our Theorem 1.4—at least Theorem 1.4 gives surjectivity for all but finitely many v. It was
this family of examples which in fact originally motivated Definition 1.3.

3. Splitting densities

Let k be a number field. In this section we will introduce the “s-invariants”; these are
certain explicit Frobenian functions which, for a morphism of k-varieties f W X ! Y ,
measure the “density” of the split fibers of Xkv

! Ykv
as v varies.

3.1. Frobenian functions

We first recall some of the theory of Frobenian functions, following Serre’s treatment in
[31, §3.3]. Recall that a function ' W � ! C on a group � is called a class function if it is
constant on each conjugacy class. We denote by �k;f the set of finite places of k.

D 3.1. – A Frobenian function is a map s W �k;f ! C satisfying the following
properties. There exist a finite Galois extension K=k with Galois group �, a finite set of
places S � �k;f and a class function ' W � ! C such that:

(1) K=k is unramified outside of S ;

(2) s.v/ D '.Frobv/ for all v … S .

A subset of �k;f is called Frobenian if its indicator function is Frobenian.

Given v 2 �k;f and a place w 2 �K;f above v, we denote by Frobw=v 2 � the associated
Frobenius element. In Definition 3.1, we adopt a common abuse of notation (see [31, §3.2.1]),
and denote by Frobv 2 � the choice of such an element for some w. Note that '.Frobv/ is
well-defined as ' is a class function.

E 3.2. – LetE=k be a finite extension of number fields. Then the set of all prime
ideals of Ok which split completely in E is Frobenian: in Definition 3.1, one takes K to be
the Galois closure ofE=k with Galois group �, S the set of primes which ramify inK=k and
' W � ! C the indicator of the identity element of �.
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For any function s W �k;f ! C, we define its density to be

dens.s/ D lim
B!1

P
v2�k;f;N.v/�B

s.v/

B= logB
;

if the limit exists. The density of a subset of �k;f is defined to be the density of its indicator
function. If s is Frobenian with associated class function ' W � ! C, then we define its mean
to be

m.s/ D 1

j�j
X

2�

'./

(this does not depend on the choice of '). A simple application of the Chebotarev density
theorem (see [31, §3.3.3.5]) shows that in this case dens.s/ exists and

(3.1) m.s/ D dens.s/:

In particular, a Frobenian set has positive density if and only if it is infinite.

3.2. s-invariants

We now define our s-invariants and study their properties.

3.2.1. Set-up. – Let k be a number field, let K be a finitely generated field extension of k
and let I be a non-empty finite étale K-scheme. We associate to this situation some group
theoretic data as follows.

The K-algebra K.I/ is finite étale over K. Let L be a finite Galois extension of K such
that K.I/˝K L Š Ld for some d 2 N. The Galois group G D Gal.L=K/ acts on I.L/ in a
natural way. We let kL (resp. kK) be the algebraic closure of k in L (resp. K).

If kL=k is not Galois then we change L as follows: letM be a Galois closure of kL=k and
let LM WD L ˝kL

M . Note that LM is a field as kL is algebraically closed in L. Moreover
LM is clearly still Galois over K and the algebraic closure of kL in LM is M . In conclusion,
replacing L by LM if necessary, we may assume that kL=k is Galois.

Let N be the normal subgroup of G which acts trivially on kL. Define � D Gal.kL=kK/
andƒ D Gal.kL=k/. Note thatG=N D � � ƒ. We summarize this set-up with the following
commutative diagram of field extensions and Galois groups.

k K
G

L

k

ƒ

kK
�DG=N

kL:

(3.2)

D 3.3. – With the above set-up, let v 2 �k;f.

— If v ramifies in kL or there is no place w of kK of degree 1 over v, then sI .v/ WD 1.

— Otherwise, we set

sI .v/ WD

X
w2�kK
NwDNv
wjv

1

jN j#

(
g 2 G W

g mod N D Frobw and

g acts with a fixed point on I.L/

)

#fw 2 �kK
W w j v;Nw D N vg :

(3.3)
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Note that as

#

(
g 2 G W

g mod N D Frobw and

g acts with a fixed point on I.L/

)
� jN j;

we see that Definition 3.3 yields a well-defined function sI W �k;f ! Œ0; 1� \ Q.

3.2.2. Basic properties. – Let us first give a purely group-theoretic formula for the invariant
which we introduced in Definition 3.3. For a subset Z � H of a group H , we denote
by CH .Z/ the smallest subset of H that is stable under conjugacy and contains Z, and
by ClH .Z/ the set of conjugacy classes in CH .Z/.

L 3.4. – If v ramifies in kL or Cƒ.Frobv/ \ � D ;, then sI .v/ D 1. Otherwise

(3.4) sI .v/ D

X
C

1

jC j � jN j#

(
g 2 G W

g mod N 2 C and

g acts with a fixed point on I.L/

)

# Cl�.Cƒ.Frobv/ \ �/ ;

where the sum is over C 2 Cl�.Cƒ.Frobv/ \ �/.

Proof. – We claim that

(3.5) Cƒ.Frobv/ \ � D
G

w2�kK
NwDNv
wjv

C�.Frobw/:

Indeed, let u be a finite place of kL over v and let w be its restriction to kK . Then

Frobu=w D FrobŒFw WFv �

u=v
2 �:

It follows that if ŒFw W Fv� D 1, then Frobu=w 2 Cƒ.Frobv/, so the left hand side of (3.5)
contains the right hand side. Conversely, if Frobu=v 2 �, then Frobu=v leaves kK invariant,
hence fixes w. Therefore Nw D N v and Frobu=w D Frobu=v, whence (3.5).

Using (3.5) we find that

(3.6) #fw 2 �kK
W w j v;Nw D N vg D # Cl�.Cƒ.Frobv/ \ �/:

This shows that sI .v/ D 1 if Cƒ.Frobv/ \ � D ; or if v ramifies in kL, by definition. So
assume that we are not in these cases. By (3.6) we see that the denominators in (3.3) and (3.4)
agree. As for the numerators, using (3.5) we obtain

X

w2�kK
NwDNv
wjv

1

jN j#

(
g 2 G W

g mod N D Frobw and

g acts with a fixed point on I.L/

)

D
X

C2Cl� .Cƒ.Frobv/\�/

X

2C

1

jC j � jN j#

(
g 2 G W

g mod N D  and

g acts with a fixed point on I.L/

)

D
X

C2Cl� .Cƒ.Frobv/\�/

1

jC j � jN j#

(
g 2 G W

g mod N 2 C and

g acts with a fixed point on I.L/

)

as required.
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C 3.5. – The function

sI W �k;f ! Œ0; 1� \ Q; v 7! sI .v/;

is Frobenian.

Proof. – This follows from Lemma 3.4, which shows that sI .v/ only depends on the
conjugacy class of Frobv 2 ƒ for all v which are unramified in kL.

The invariant sI .v/ simplifies in special cases.

E 3.6. – Let v be unramified in kL.

1. Assume that k D kK , i.e., K is geometrically irreducible. Then

sI .v/ D
#

(
g 2 G W

g mod N D Frobv and

g acts with a fixed point on I.L/

)

jN j :

2. Assume that N D 0, e.g., K is a number field. If there is no place of kK of degree 1
over v then sI .v/ D 1. Otherwise

sI .v/ D
#

(
w 2 �kK

W
w j v;Nw D N v; and

Frobw acts with a fixed point on I.L/

)

#fw 2 �kK
W w j v;Nw D N vg :

In special cases, one can relate the s-invariants to the ı-invariants from [25].

L 3.7. – Assume that k D kK . Then

dens.sI / D #fg 2 G W g acts with a fixed point on I.L/g
#G

:

In particular dens.sI / D ı.I / in the notation of [25, §3.2].

Proof. – Since k D kK , we have ƒ D � D G=N . Therefore Example 3.6 and the
Chebotarev density Theorem (3.1) imply that the density in question equals

1

j�j
X

2�

#fg 2 G W g mod N D  and g acts with a fixed point on I.L/g
jN j

D 1

j�j � jN j
X

g2G
g acts with a fixed point on I.L/

#f 2 � W g mod N D g

D #fg 2 G W g acts with a fixed point on I.L/g
#G

;

as required.

E 3.8. – In general, one can have dens.sI / ¤ ı.I / when k ¤ kK . Indeed, let
a; b 2 k� be such that a; b; ab … k�2. TakeK D k.

p
b/ and I D Spec k.

p
a;

p
b/ overK. In

this case we haveG D Z=2Z,� D G D Z=2Z,ƒ D .Z=2Z/2 andN D 0. Using Example 3.6,
one easily checks that 3=4 D dens.sI / ¤ ı.I / D 1=2:
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3.2.3. Determining when sI .v/ D 1. – Of particular interest to us will be the set of places
with sI .v/ D 1. Here we have the following criterion.

L 3.9. – Let v be a place of k which is unramified in kL. Then sI .v/ < 1 if and only
if there exists some g 2 G such that

(1) g does not act with a fixed point on I.L/,

and such that g satisfies one of the following equivalent conditions.

(2) There is a place w of kK of degree 1 over v such that g mod N D Frobw .

(3) g mod N 2 Cƒ.Frobv/ \ �.

Proof. – This follows immediately from Definition 3.3 and Lemma 3.4

L 3.10. – The set

(3.7) fv 2 �k;f W sI .v/ D 1g

is Frobenian; its density is equal to

1

jƒj#

(
� 2 ƒ W

each g 2 G with g mod N 2 Cƒ.�/ \ �
acts with a fixed point on I.L/

)
:

Proof. – That (3.7) is Frobenian follows immediately from Corollary 3.5. The density is
easily calculated using the Chebotarev density Theorem (3.1) and Lemma 3.9.

We now relate the s-invariants to the notion of pseudo-splitness introduced in §2.

L 3.11. – With notation as in §3.2.1, the finite étale K-scheme I is pseudo-split
over K if and only if sI .v/ D 1 for all but finitely many places v of k.

Proof. – It follows easily from Lemma 3.10 that the set (3.7) has density 1 if and only if
every element of G acts with a fixed point of I.L/, i.e., if and only if I is pseudo-split. As
(3.7) is Frobenian, this completes the proof.

3.3. s-invariants in families

We now consider s-invariants in families and give an application to splitting densities over
finite fields. We begin with some formalities concerning irreducible components in families.

3.3.1. Irreducible components. – For a morphism of schemes X ! Y we denote by IrrX=Y
the functor of open irreducible components of X over Y , defined by Romagny in [29, Défini-
tion 2.1.1]. We call Irr1X=Y WD IrrXsm=Y the subfunctor of open irreducible components of X
over Y of geometric multiplicity 1, where Xsm denotes the maximal open subscheme of X
which is smooth over Y . This parametrises those components of the fibers of f which are
geometrically generically reduced.

L 3.12. – Let X ! Y be a morphism of schemes of finite presentation, with Y
irreducible. Then there exists a dense open subset U � Y such that the restrictions of IrrX=Y
and Irr1X=Y to U are representable by finite étale U -schemes.
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Proof. – It clearly suffices to prove the result for I WD IrrX=Y . By [29, Lemmes 2.1.2 et
2.1.3], there exists a dense open U � Y such that I jU is representable by a quasi-compact
algebraic space étale over U . Moreover by [29, Proposition 2.1.4], the generic fiber of I is
a finite affine scheme. In particular the generic fiber is separated. As being separated is a
constructible property (for schemes this is [18, Proposition 9.6.1]; the case of algebraic spaces
follows from similar arguments to those given in [29, §A]), on shrinking U we may assume
that I jU ! U is separated. Thus I is a scheme by Knutson’s criterion [23, Corollary II.6.17].
Finally, as the generic fiber of I jU ! U is finite, we may again shrink U further to assume
that I jU ! U is finite étale, as required.

3.3.2. Definition. – We can now define s-invariants in families. Let f W X ! Y be a
morphism of schemes of finite type over a number field k. Let y 2 Y be an arbitrary point.
The residue field �.y/ is a finitely generated extension of k. By Lemma 3.12, the functor
Irr1
f �1.y/=�.y/

of irreducible components of multiplicity 1 of the fiber f �1.y/ is representable
by a finite étale �.y/-scheme. If this scheme happens to be empty, define sf;y.v/ D 0 for all
v 2 �k;f. Otherwise, we are in the set-up of §3.2.1, with K D �.y/ and I D Irr1

f �1.y/=�.y/
.

Hence, given v 2 �k;f, we define

(3.8) sf;y.v/ WD sIrr1

f �1.y/=�.y/

.v/

using the notation of Definition 3.3.

3.3.3. Splitting densities over finite fields. – Our next proposition is the main result of this
section, and shows how s-invariants arise “in nature”.

P 3.13. – Let f W X ! Y be a morphism of schemes of finite type over a
number field k, with Y integral. Let f W X ! Y be a model ofX ! Y over Ok . Let n D dimY

and let � be the generic point of Y . Then

#fy 2 Y .Fv/ W f �1.y/ is splitg D sf;�.v/# Y .Fv/CO..N v/n�1=2/; as N v ! 1;

where the implied constant depends on f and the choice of the model.

Proof. – The key analytic ingredient for this result is [31, Prop. 9.15], which is a version
of the Chebotarev density theorem for arithmetic schemes.

Choose a finite set S of finite places of k, which we will enlarge throughout the proof. Let
I WD Irr1X=Y and I WD Irr1X=Y . First, by Lemma 3.12, the restriction of I to an open dense
subset of Y is representable by a finite étale cover. However, by the Lang-Weil estimates [24],
strict closed subsets contribute to the error term only. We may therefore replace Y by a dense
open subset, if necessary, to assume that � W I ! Y is finite étale. Similarly, we may assume
that Y is normal and that Y Fv

is normal for all v … S .

Our next step is to obtain a version of the diagram (3.2) over Ok;S . Let kY denote the
algebraic closure of k inside �.Y /. AsY is normal and integral, the ring OY .Y / is an integrally
closed domain. In particular kY � OY .Y /, hence the structure morphism Y ! Spec k
factors through a morphism Y ! Spec kY . As in §3.2.1 we choose a common Galois closure
for the connected components of I over Y (for the existence of the Galois closure of a
connected finite étale cover, see [34, Prop. 5.3.9]). This yields a finite étale Galois morphism
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L ! Y with L integral such that, enlarging S if necessary and choosing L appropriately as
in §3.2.1, we obtain a commutative diagram

Spec Ok;S Y Ok;S

oo oo
G

��

L Ok;S

��

Spec Ok;S
jj

ƒ

Spec OkY ;S
oo oo

�DG=N
Spec OkL;S ;

(3.9)

which recovers the diagram (3.2) on the level of function fields. Here L D �. L / and kL is
the algebraic closure of k in L. We denote by Y Ok;S

and L Ok;S
the base change to Ok;S , and

abuse notation by denoting OkY ;S and OkL;S the localisations of OkY
and OkL

respectively
at those places which lie above places of S . We also choose S sufficiently large so that each
morphism in the bottom row is finite étale.

Let v be a finite place of k not in S . We now give an asymptotic formula for # Y .Fv/.
Enlarging the set S if necessary, we may assume that all fibers of Y Ok;S

! Spec OkY ;S

are geometrically integral. Therefore the irreducible components of Y Fv
are in bijection

with those places w of kY which divide v. We denote the corresponding component by Yw ;
this is geometrically irreducible over Fv if and only if Nw D N v. The Yw are disjoint
as Y Fv

is normal [1, Tag 033M] and, again by normality, any non-geometrically-irreducible
component has no Fv-point. Thus if there is no w with Nw D N v, then the proposition
trivially holds. So assume that there is a place w of kY with Nw D N v. The Lang-Weil
estimates now yield

(3.10) # Y .Fv/ D
X

w2�kY
NwDNv
wjv

# Yw.Fw/ D .N v/n
X

w2�kY
NwDNv
wjv

1CO..N v/n�1=2/:

Next let w be a place of kY with w j v. For y 2 Yw.Fw/, we let Froby 2 G denote
the choice of some Frobenius element of y (well-defined up to conjugacy; see [31, §9.3.1]).
Note that f �1.y/ is split if and only if Froby acts with a fixed point on I.L/. We therefore
let F W G ! f0; 1g be the indicator function of those elements of G which act with a fixed
point on I.L/, which is a class function on G. We obtain

#fy 2 Yw.Fw/ W f �1.y/ is splitg D
X

y2 Y w.Fw/

F.Froby/:

We are now in the set-up of [31, Prop. 9.15]. Hence we may apply loc. cit. to obtain

#fy 2 Yw.Fw/ W f �1.y/ is splitg D FN .Frobw/.Nw/n CO..Nw/n�1=2/;

where for  2 � we define

FN ./ D 1

jN j
X

g mod ND

F.g/
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(cf. [31, §5.1.4]). As in the proof of (3.10) we obtain

#fy 2 Y .Fv/ W f �1.y/ is splitg

D .N v/n

jN j
X

w2�kY
NwDNv
wjv

#

(
g 2 G W

g mod N D Frobw and

g acts with a fixed point on I.L/

)
CO..N v/n�1=2/:

Combining this with (3.10) and recalling Definition 3.3 completes the proof.

C 3.14. – Letf W X ! Y be a morphism of schemes of finite type over a number
field k, with Y integral. Let f W X ! Y be a model of X ! Y over Ok .

There exists a finite set of places S of k such that for all v … S with sf;�.v/ < 1, there exists
y 2 Y .Fv/ such that f �1.y/ is non-split.

Proof. – As sf;�.v/ < 1, Definition 3.3 implies that there is a place w of kY of degree 1
over v; hence Ykv

is split. The Lang-Weil estimates [24] show that Y .Fv/ ¤ ; for all v 62 S ,
for a suitably large set of places S . Enlarging S if necessary, Proposition 3.13 implies that
there exists y 2 Y .Fv/ for which f �1.y/ is non-split, as required.

C 3.15. – Letf W X ! Y be a morphism of schemes of finite type over a number
field k, with Y normal and integral. Assume that Irr1X=Y is representable by a finite étale scheme
over Y . Let f W X ! Y be a model of X ! Y over Ok .

There exists a finite set of places S of k such that for all v … S , the fiber over every point
y 2 Y .Fv/ is split if and only if sf;�.v/ D 1.

Proof. – By Lemma 3.12 there is a dense open subset U � Y such that Irr1X U =U is

representable by a finite étale scheme over U . The restriction Irr1X=Y of the functor Irr1X=Y

to Y is representable by a finite étale scheme over Y , by assumption. As Irr1X=Y is an étale
sheaf [29, Lemme 2.1.2] we may glue these representations together. Thus we may assume
that the generic fiber of U ! Spec Ok is Y . Spreading out we see that there is a finite set of
places S of k such that Irr1X Ok;S

=Y Ok;S

is representable by a finite étale scheme.

To continue, we use some of the techniques from the proof of Proposition 3.13 and keep
the notation of that proof. We will use the diagram (3.9); this is valid on enlarging S , because
Irr1X=Y ! Y is finite étale and Y is normal.

If sf;�.v/ < 1 then, enlarging S , the result follows from Corollary 3.14. So let v … S ,
assume that sf;�.v/ D 1 and let y 2 Y .Fv/. Let w be the place of kY lying below y in (3.9);
this has degree 1 over v as y 2 Y .Fv/. Let l 2 L be a closed point lying above y and let u be
the place of kL lying below l in (3.9). Let Fw ;Fu;Fl and Fy be the respective residue fields.
From (3.9) we obtain the tower of extensions of finite fields

Fy D Fw � Fu � Fl :

The functoriality of Frobenius elements in extensions of finite fields implies that

(3.11) Frobl=w modN D Frobu=w ;
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where Frobl=w 2 Gal.Fl=Fw/ D Gal.Fl=Fy/ � G and Frobu=w 2 Gal.Fu=Fw/ � � denote
the associated Frobenius elements. However, as sf;�.v/ D 1, Lemma 3.9 and (3.11) imply
that Frobl=w D Frobl=y 2 G acts with a fixed point on I.L/. Thus f �1.y/ is split.

4. Non-surjectivity

Using the material developed in §3, we now prove one implication of Theorem 1.4,
namely that our geometric conditions are necessary for arithmetic surjectivity. We require
the following criterion for non-existence of an Ov-point in a fiber.

P 4.1. – Let k be a number field. Let f W X ! Y be a dominant morphism
of smooth and geometrically integral k-varieties and let f W X ! Y be a model over Ok . Let
T be a reduced divisor in Y such that the restriction of X ! Y to Y n T is smooth.

There exist a finite set S � �k;f and a closed subset Z � T Ok;S
containing the singular

locus of T Ok;S
, of codimension 2 in Y Ok;S

, such that for all finite places v … S the following
holds:

Let P 2 Y . Ov/ be such that the image of P W Spec Ov ! Y meets T Ok;S
transversally

outside of Z and such that the fiber above P mod v 2 T .Fv/ is non-split. Then
.X �Y P/. Ov/ D ;.

Proof. – For rational points this is proved in [25, Thm. 2.8]. The adaptation to integral
points is straightforward.

Here is the main result of this section.

T 4.2. – Let k be a number field. Let f W X ! Y be a dominant morphism
of smooth and geometrically integral k-varieties and let f W X ! Y be a model over Ok .
Let D 2 Y .1/. Then there exists a finite set S of finite places of k such that for all finite places
v … S , the following holds: if sf;D.v/ < 1 then X . Ov/ ! Y . Ov/ is not surjective.

Proof. – Let D be the closure of D inside Y . Enlarge S so that Proposition 4.1 may be
applied, and let T and Z be as in the statement of that proposition. Enlarging S further if
necessary, we may assume that Y Ok;S

is smooth over Ok;S .

Note that sf;D.v/ only depends on f �1.D/, i.e., on the generic fiber of D. In particular,
enlarging S further if necessary, we may apply Corollary 3.14 to the restriction of f to Dn Z .
Thus if v … S and sf;D.v/ < 1, then there exists a point y 2 D.Fv/ n Z .Fv/ such
that f �1.y/ is non-split.

Therefore, by Proposition 4.1, to prove the result it suffices to show that we may lift y
to a point P 2 Y . Ov/ which meets D transversally at y. This is well-known; let us give a
short geometric proof of this statement. Let  W Y 0 ! Y be the blow-up of Y at y. The
exceptional divisor E D P.TY ;y/ is the projectivisation of the tangent space to Y at y (since
Y is smooth at y). The linear subvariety P.TD;y/ of E is strictly smaller (since D is smooth
at y). Choose any y0 2 E.Fv/which does not lie in this linear subvariety. By Hensel’s lemma,
y0 can be lifted to an Ov-point P 0 2 Y 0

. Ov/. The image P D  .P 0
/ 2 Y . Ov/ now satisfies

the requirements.

The following result (see [13, Observation 2.2]) follows from Greenberg’s theorem [17].
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L 4.3. – LetR be an excellent henselian discrete valuation ring with fraction fieldK.
Let f W X ! Y be a dominant morphism of integral schemes which are separated and of finite
type over R, with X �R K and Y �R K smooth over K. Let f 0 W X 0 ! Y 0 be a modification
of f , i.e., a commutative diagram as in (1.1); here ˛X W X 0 ! X and ˛Y W Y 0 ! Y are proper
birational morphisms over R, and f 0 W X 0 ! Y 0 is a dominant morphism of integral separated
schemes over of finite type over R, with smooth generic fiber. Then X.R/ ! Y.R/ is surjective
if and only if X 0.R/ ! Y 0.R/ is surjective.

We now prove one implication of Theorem 1.4.

C 4.4. – Let f W X ! Y be a dominant morphism of smooth, geometrically
integral varieties over a number field k. Assume that there exists a modification f 0 W X 0 ! Y 0

of f , with X 0 and Y 0 smooth, and a point D 2 .Y 0/.1/ such that the fiber .f 0/�1.D/ is not
pseudo-split over �.D/. Let f W X ! Y be a model of X ! Y over Ok . Then there exists a
set of places v of positive density such that the map X . Ov/ ! Y . Ov/ is not surjective.

Proof. – Ignoring finitely many places, by Lemma 4.3 we may assume that X D X 0,
Y D Y 0, f D f 0. By Lemmas 3.10 and 3.11, there exists a set of places v of positive density
such that sf;D.v/ < 1. The result then follows from Theorem 4.2.

5. Logarithmic geometry

5.1. Preliminaries

The results and proofs in this section are written in the language of logarithmic geom-
etry. Although it would be possible to use the older language of toroidal embeddings, the
logarithmic framework is a convenient and flexible language, which makes arguments more
conceptual and transparent. A good reference for basic terminology on log schemes is Kato’s
foundational paper [21]. Let us briefly recall the notions which are most essential for us. We
work exclusively with Zariski log schemes:

D 5.1. – A Zariski log scheme is a pair .X; MX /, where X is a scheme and
MX is a sheaf of monoids onX (for the Zariski topology), equipped with a homomorphism
of sheaves of monoids ˛X W MX ! . OX ; �/ inducing an isomorphism

˛�1
X . O�

X / Š O�
X :

The fundamental example for the purpose of this paper is the situation where the log
structure ˛X W MX ! OX on X is divisorial, i.e., induced by a divisor on X :

E 5.2. – Let X be any scheme and let D be a divisor on X . Denote the corre-
sponding open immersion by j W X nD ,! X . Then the monoid

MX D j� O�
XnD \ OX

(together with the natural inclusion ˛X W MX ,! OX ) defines a log structure on X , the
divisorial log structure induced by D. This yields a Zariski log scheme .X; MX /, which we
will sometimes denote by .X;D/ depending on the context.
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Zariski log schemes form a category, with morphisms defined in the obvious way, cf. [21,
§1.1]. We will almost always work with a full subcategory: the category of fine log schemes
[21, Definition 2.9], or the category of fs (“fine and saturated”) log schemes.

5.1.1. Log regular schemes and their fans. – Given an arbitrary monoid P , we write P � for
the subgroup of invertible elements, P ] D P=P � for the associated sharp monoid and P gp

for the group envelope of P . (A monoid is sharp if 0 is the only invertible element.)

D 5.3. – A log regular scheme is a Zariski log scheme which is log regular.

Recall that a Zariski log scheme X is said to be log regular if it is fs and the following
property is satisfied for every x 2 X : if I.x; MX / is the ideal of OX;x generated by MX;x n O�

X;x ,
then OX;x=I.x; MX / is a regular local ring and

dim OX;x D dim OX;x=I.x; MX /C rkZ .M ]
X;x/

gp:

Log regular schemes are normal and Cohen-Macaulay by [22, Theorem 4.4]. Moreover, they
admit the following description by [22, Theorem 11.6].

R 5.4. – Let .X; MX / be a log regular scheme. Let U be the largest open subset
of X on which the log structure MX is trivial, i.e., coincides with the sheaf O�

X of invertible
functions. Let j W U ,! X be the corresponding open immersion. Then X n U is a divisor
and MX D j� O�

U \ OX , as in Example 5.2.

To a log regular scheme .X; MX / one can associate a useful combinatorial object, its fan.
This notion has been introduced by Kato [22, §9.1, §9.3]:

D 5.5. – A fan is a locally monoidal space .F; M F / which admits an open
covering by affine monoidal spaces SpecP , where P is an fs monoid. A fan is called smooth
if it has an open covering by monoidal spaces of the form Spec Nr ; see [2, Definition 4.11].

An affine fan SpecP is sometimes called a Kato cone, cf. [2, §4]. The definition of the
sheaf of monoids M SpecP is motivated by the definition of an affine scheme. The stalks
of M SpecP are sharp, hence the stalks of M F are sharp too.

To an arbitrary log regular scheme, Kato associates a fan as follows:

D 5.6. – Let .X; MX / be a log regular scheme. Consider the monoidal space
F.X/ with underlying set fx 2 X W I.x; MX / D mxg; here I.x; MX / is defined as above,
and mx denotes the maximal ideal of OX;x . The topology on F.X/ is the subspace topology
induced by the Zariski topology on X . The sheaf of monoids on F.X/ is the restriction
to F.X/ of the sheaf M ]

X of (sharp) monoids on X .

Kato proves that F.X/ is indeed a fan [22, Theorem 10.1]. IfX is quasi-compact, then the
underlying set of F.X/ is finite. If X is a regular scheme and if the log structure on X is the
divisorial log structure associated to a divisor onX with strict normal crossings, thenF.X/ is
smooth (see [2, §4] and the references given there).

There exists a continuous, open morphism of monoidal spaces � W .X; M ]
X / ! F.X/

[22, §10.2]. This allows one to stratify the scheme X into locally closed subsets:
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D 5.7. – Given a log regular scheme .X; MX / and given x 2 F.X/, denote
U.x/ D ��1.x/, with � W .X; MX / ! F.X/ as above. When equipped with its reduced
subscheme structure, this is a locally closed subscheme of X . This yields the so-called loga-
rithmic stratification .U.x//x2F.X/ of X into locally closed subsets.

With notation as above, we denote by U.x/ the Zariski closure of U.x/. Since � is contin-
uous and open, U.x/ is the inverse image under � of the closure of x in F.X/. Any stratum
U.x/ is regular and irreducible, but its closure U.x/ may very well be singular.

The points of a Kato fanF are in a natural bijection with the Kato subcones of .F; M F /:
every subcone has a unique closed point and can be recovered as the smallest open affine
neighborhood of this point, see [2, Lemma 4.6].

Let F.N/ D Hom.Spec N; F /. For a smooth fan F we define the height of a morphism
g W Spec N ! F as follows. The morphism g sends the closed point N>0 of Spec N to the
closed point of a unique Kato subcone Spec Nr , so g factors through Spec N ! Spec Nr .
The dual map is a morphism of monoids Nr ! N; we define the height hF .g/ 2 N to be
the image of the sum of the canonical generators of Nr . It is clear that for any m 2 N the set
F.N/�m D fP 2 F.N/ W hF .P / � mg is finite.

5.1.2. Log smooth morphisms and log blow-ups. – Log smooth morphisms can be defined in
many different ways. We recall the definition which is usually called Kato’s criterion, stated
and proven for étale log structures in [21, Theorem 3.5]. The appropriate version for Zariski
log structures seems to be folklore and can be found in [15, Corollary 12.3.37].

T 5.8. – Let f W .X; MX / ! .Y; M Y / be a morphism of Zariski fs log schemes.
Then f is log smooth (resp. log étale) if and only if the following condition is satisfied. Given
any point x 2 X , an affine open neighborhood V D SpecB of f .x/ in Y , and a chart Q ! B

for the log structure around y, there exist

� an étale affine neighborhood g W U D SpecA ! X of x,

� a chart P ! A for the log structure g� MX on U , and

� a homomorphism ' W Q ! P yielding a chart for .U; g� MX / ! .V; M V /;

such that both of the following conditions are satisfied:

� ker'gp and the torsion of coker'gp (resp. ker'gp and coker'gp) are finite abelian
groups, the orders of which are invertible on U ;

� the induced morphism U ! V �Spec ZŒQ� Spec ZŒP � is classically smooth.

In fact, an equivalent version of the criterion says that U ! V �Spec ZŒQ� Spec ZŒP � can
even be taken to be étale instead of smooth (see [21, Theorem 3.5]).

An important basic fact is that any fs log scheme which is log smooth over a log regular
scheme is again a log regular scheme (this is [22, Theorem 8.2]).

An essential class of log smooth and log étale morphisms is the class of log blow-ups. They
are constructed in terms of subdivisions. A subdivision of a fan F as in Definition 5.5 is a
morphism of fans ' W F 0 ! F satisfying the properties in [22, Definition 9.6]. The following
key example will be used in the proof of Theorem 1.4.
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E 5.9. – The barycentric subdivision B.F / of a fan F is defined as follows. The
barycenter of a Kato cone Spec P is a canonical morphism Spec N ! SpecP which,
under the canonical isomorphism Hom.Spec N; Spec P / D Hom.P;N/, corresponds to
the map sending the generator of each 1-dimensional face of P to 1. One constructs B.F /
by performing the so-called star subdivision of each cone of F along its barycenter, in
decreasing order of dimension. See [2, Example 4.10 (ii)] for details.

To a subdivision ' W F 0 ! F.X/ of the fan of a log regular scheme .X; MX / one
associates a log regular scheme .X 0; M 0

X / with F.X 0/ D F 0 and a morphism, called a log
blow-up,

Bl' W .X 0; M 0
X / ! .X; MX /;

such that the induced map F.X 0/ ! F.X/ is exactly '. The morphism Bl' is log étale
and birational [22, Proposition 10.3]. If ' is proper [22, Definition 9.7], then the natural
map '� W F 0.N/ ! F.X/.N/ is bijective; in this case Bl' is a proper morphism [22, Proposi-
tion 9.11].

Log blow-ups can be used to resolve singularities of log regular schemes, as explained by
Kato in [22, §10.4]. They are stable under base change in the category of fs log schemes [27,
Corollary 4.8] and under composition [27, Corollary 4.11].

L 5.10. – Let F be a smooth quasi-compact Kato fan. Let m be a positive integer.
Then there exists a smooth, proper subdivision ' W F 0 ! F such that for every point
f 2 F.N/�m the induced point '�1

� f 2 F 0.N/ lies in F 0.N/�1.

Proof. – It is enough to iterate the barycentric subdivision m � 1 times.

5.1.3. Weak toroidalisation. – We now briefly recall the weak toroidalisation theorem of
Abramovich-Karu in the language of log geometry; this will be a major tool for us in §6,
and figured already prominently in [12] and [13].

T 5.11 (Abramovich-Karu, Denef). – Let f W X ! Y be a dominant morphism
of integral varieties over a field k of characteristic zero.

Then there exist a dominant morphism f 0 W X 0 ! Y 0 of smooth integral k-varieties, proper
birational morphisms ˛X W X 0 ! X and ˛Y W Y 0 ! Y , and strict normal crossings divisors
D0 � X 0 and E 0 � Y 0 such that

(1) the diagram

X 0 ˛X
//

f 0

��

X

f

��

Y 0 ˛Y
// Y

commutes;

(2) f 0 induces a log smooth morphism of log regular schemes .X 0;D0/ ! .Y 0; E 0/;

(3) .f 0/�1.Y 0 nE 0/ D X 0 nD0.
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This result was first proved over C in [4] and subsequently over arbitrary fields of char-
acteristic zero in [3]. For an alternative treatment by Gabber and Illusie-Temkin in a more
general setting, see [19, §3.8].

We work with Zariski log schemes instead of étale log schemes; Theorem 5.11 is true in
both settings, but the statement for Zariski log schemes is slightly stronger. This corresponds
to the fact that in [3, Theorem 1.1], the toroidal embeddings can be taken to be strict. The
following example illustrates the difference between both settings:

E 5.12. – Let k be a field of characteristic zero such that �1 is not a square in k.
Consider the conic bundle X � P2

k
� A1

k
given by x2 C y2 D tz2. Let � W X ! A1

k
be

the natural projection to the coordinate t . Here the total space X is smooth, but the fiber
��1.0/ is irreducible and singular. Hence, when equipped with the log structure induced
by ��1.0/, the log scheme .X; ��1.0// is not log regular in our sense, i.e., as a Zariski log
scheme (it is however log regular as an étale log scheme).

However, the normalization of��1.0/ is smooth. If W X 0 ! X is the blow-up ofX at the
point x D y D t D 0, z D 1, then .X 0; .� ı /�1.0// is log smooth, and .X 0; .� ı /�1.0// !
.A1
k
; 0/ satisfies the requirements of Theorem 5.11.

5.2. Logarithmic Hensel’s lemma

In [12, §3.2], Denef proved a logarithmic version of Hensel’s lemma. We will present a
reformulation of this result, with a different proof, written down by Cao in his unpublished
MSc thesis [7].

P 5.13. – Let f W .X; MX / ! .Y; M Y / be a log smooth morphism of fs log
schemes. Let R be a complete discrete valuation ring. Let S D SpecR and let j W s ,! S be
the inclusion of the closed point. Given a commutative diagram

s�
u
//

j

��

.X; MX /

f

��

S�
t
//

g

;;

.Y; M Y /

of fs log schemes, there is a morphism g W S� ! .X; MX / of fs log schemes such that gj D u

and fg D t .

Here S� denotes the scheme S equipped with the divisorial log structure induced by the
closed point s. If � is a uniformiser of R, a chart for the log structure is given by the map
N ! R which sends 1 to � . Similarly, s� denotes the log point, i.e., Spec k equipped with the
pullback of the log structure on S� to s (with a chart N ! k sending 1 to 0).

Proof. – Let m D .�/ be the maximal ideal of R. Write Rn D R=mn and Sn D SpecRn.
In particular, s D S1. We have strict closed immersions

in W S�n ! S�; in�1;n W S�n�1 ! S�n

for all n � 1. The definition of a log smooth morphism in terms of infinitesimal liftings [21,
§3.2, §3.3] implies that for any n � 1 one can find a morphism

gn W S�n ! .X; MX /;
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such that g1 D u and such that for any n � 1 both triangles in the diagram

S
�
n�1

gn�1
//

in�1;n

��

.X; MX /

f

��

S
�
n

tıin
//

gn

::

.Y; M Y /

commute. Since the ring R D lim�!Rn is complete, the morphisms gn induce a well-defined
morphism of schemes g W S ! X . It is then easy to see that g actually defines a morphism
of log schemes g W S� ! .X; MX / satisfying all requirements.

5.3. Log smooth morphisms and irreducible components

The goal of this section is to prove a basic result (probably well-known to experts)
concerning the variation of the (geometric) irreducible components of the fibers of a proper,
log smooth morphism of log regular schemes.

If f W .X; MX / ! .Y; M Y / is a log smooth morphism of log regular schemes, then
f induces a morphism of the associated Kato fans F.f / W F.X/ ! F.Y /. The morphisms
f and F.f / are compatible with the characteristic morphisms �X W .X; M ]

X / ! F.X/ and

�Y W .X; M ]
Y / ! F.Y /. Hence, given x 2 F.X/ and y D F.f /.x/ 2 F.Y /, we get induced

morphisms U.x/ ! U.y/ and U.x/ ! U.y/.
We recall the localisation procedure in [22, §7]. If .X; MX / is a log regular scheme, then

the “boundary” @U.x/ D U.x/ n U.x/ of the closed subscheme U.x/ is a divisor, inducing
a log structure (cf. Example 5.2). Kato proves that the resulting log scheme .U .x/; @U.x// is
again log regular; the locus of triviality of this log structure is U.x/.

The following lemma establishes a “relative” version of this localisation procedure; we are
not aware of a published account of this basic statement.

L 5.14. – Let f W .X; MX / ! .Y; M Y / be a log smooth morphism of log regular
schemes. Let x 2 F.X/ and let y D F.f /.x/ 2 F.Y /. Then

(5.1) .U .x/; @U.x// ! .U .y/; @U.y//

is again a log smooth morphism of log regular schemes.

Proof. – The log regularity is taken care of by [22, Proposition 7.2]; what we really need
to prove is log smoothness. To do so, we will use Kato’s criterion (Theorem 5.8).

Choose an affine open W D SpecB of Y containing y and a compatible affine scheme
V D SpecA, equipped with an étale map g W V ! X such that g.V / contains x, on which
there exists a chart for .V; g� MX / ! .W; MW / given by homomorphisms of fs monoids

P ! A; Q ! B and ' W Q ! P

compatible with the homomorphism of rings B ! A. We can assume that the monoid Q is
toric, i.e., that Qgp is torsion free [22, Lemma 1.6]. Kato’s criterion says that we can then
choose P such that the following conditions are satisfied:

(1) the induced morphism V ! W �Spec ZŒQ� Spec ZŒP � is classically smooth, and

(2) the induced homomorphism of abelian groups 'gp W Qgp ! P gp is injective, and the
torsion part of the cokernel has order invertible on V .
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Localizing further if needed, we may assume that x has a unique preimage v under g. Now
v corresponds to an ideal p 2 SpecP , and y corresponds to q D '�1.p/ 2 SpecQ. Moreover,
g�1.U .x// D Spec A=.p/, with log structure given by P n p ! A=.p/ induced by the map
P ! A. Here .p/ is the ideal of A generated by the elements of p via P ! A. Similarly,
U.y/ \W D Spec B=.q/, with log structure given by Q n q ! B=.q/. We have an induced
morphism e' W Q n q! P n p giving a chart for the morphism

�
g�1.U .x//; g�1.@U .x//

�
! .U .y/ \W; @U .y/ \W /:

It suffices to check that this chart satisfies Kato’s criterion, i.e., that

(10) the induced morphism

SpecA=.p/ ! SpecB=.q/ �Spec ZŒQnq� Spec ZŒP n p�

is classically smooth;

(20) the induced homomorphism of abelian groups e'gp W .Q n q/gp ! .P n p/gp is injective,
and the torsion part of the cokernel has order invertible on g�1.U .x//.

Now (10) follows immediately from the fact that smooth morphisms are stable under base
change, since V ! W �Spec ZŒQ� Spec ZŒP � is already smooth.

Concerning (20), the injectivity of e'gp is trivial. Consider the commutative diagram of
short exact sequences

0 // .Q n q/gp //
� _

��

.P n p/gp //
� _

��

coker e'gp //

��

0

0 // Qgp // P gp // coker 'gp // 0.

The fact that the order of the torsion part of the cokernel of e'gp is invertible on g�1.U .x//

follows from the same statement for the cokernel of 'gp, together with the snake lemma and
the observation that the cokernel of .Qnq/gp ! Qgp is torsion free—indeed, the fs monoidQ
is toric, and Q n q is one of its faces. This finishes the proof.

The following lemma concerns the fibers of log smooth families over a base with trivial
log structure. In this setting, the functor IrrX=Y from §3.3.1 becomes rather simple.

L 5.15. – Let f W .X; MX / ! .Y; O�
Y / be a proper, log smooth morphism of log

regular schemes, where Y is given the trivial log structure. Then f W X ! Y is flat, and IrrX=Y is
represented by a finite étale scheme over Y .

Proof. – Since the log structure on Y is trivial, f is integral [21, Corollary 4.4(ii)]. Log
smooth, integral morphisms are flat [21, Corollary 4.5], hence f is flat.

The fibers of f are log regular, being log smooth over a field with trivial log structure [22,
Theorem 8.2], and hence normal. Moreover, as log smooth morphisms are preserved by base
change, the fibers are geometrically normal, hence geometrically reduced.

Let X ! StX=Y ! Y be the Stein factorisation of X ! Y . As f is flat and the
fibers are geometrically reduced, it follows from [1, Tag 0BUN] that StX=Y is finite étale
over Y . The result now follows from the fact that IrrX=Y and StX=Y are isomorphic under the
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assumptions of the lemma. Indeed, the fibers of f are normal, so the connected components
of the geometric fibers are precisely the irreducible components.

Another important property of proper, log smooth morphisms is that the multiplicities of
the fibers are “constant along strata”. Such a result is well-known (and easy to check) for
toric morphisms, and readily extends to the log smooth setting.

P 5.16. – Let f W .X; MX / ! .Y; M Y / be a proper, log smooth morphism
of log regular schemes. Let y0 2 Y , and let y 2 F.Y / be the unique point with the property
that y0 2 U.y/. Let x0 be one of the generic points of the fiber f �1.y0/, and let x 2 F.X/ be
the unique point such that x0 2 U.x/.

Then f .x/ D y and the multiplicity of x in f �1.y/ is equal to the multiplicity of x0

in f �1.y0/, that is, the lengths of the Artinian local rings Of �1.y/;x and Of �1.y0/;x0 are equal.

Proof. – Choose a chart for f around x0. This involves choosing

— a Zariski open j W V ,! Y such that y0 2 V together with a chart cV W V ! Spec ZŒQ�

for j � M Y ,

— an étale morphism h W U ! X such that x0 2 h.U / and .f ı h/.U / � V together with
a chart cU W U ! Spec ZŒP � for h� MX ,

— a homomorphism ' W Q ! P compatible with f ı h W U ! V , cU and cV ,

such that the induced map

 W U ! V �Spec ZŒQ� Spec ZŒP �

is étale. Let

�1 W V �Spec ZŒQ� Spec ZŒP � ! V

�2 W V �Spec ZŒQ� Spec ZŒP � ! Spec ZŒP �

be the natural projections. Choose a point z0 2 h�1.x0/.
Since h and  are étale, the lengths of the Artinian local rings

Of �1.y0/;x0 ; O.f ıh/�1.y0/;z0 and O��1
1
.y0/; .z0/

are equal. Since the projection �1 is obtained by base change from the toric morphism
Spec ZŒ'� W Spec ZŒP � ! Spec ZŒQ�, the length of the local ring O��1

1
.y0/; .z0/ only depends

on the toric strata of Spec ZŒP � and Spec ZŒQ� which contain �2. .z0// D cU .z
0/ and

cV .y
0/ D .Spec ZŒ'�/.cU .z

0//, respectively, i.e., on the prime ideals of P and Q which
correspond to x and to y, respectively. This gives the desired result.

We will need the following elementary lemma.

L 5.17. – Let f W X ! Y be a morphism of schemes of finite presentation. Let
Z � X be a closed subset such thatZjf �1.y/ contains no irreducible component of f �1.y/, for
all points y 2 Y . Then the natural morphism of functors

Irr.XnZ/=Y ! IrrX=Y

is an isomorphism.
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Proof. – Our assumptions imply that removing Z does not change the open irreducible
components of the fibers; the result follows. (See also [29, Corollary 2.6.2].)

From the previous results we will now deduce the final statement of this section.

P 5.18. – Let f W .X; MX / ! .Y; M Y / be a proper, log smooth morphism
of log regular schemes. For each point y 2 F.Y /, the functors

Irrf �1.U.y//=U.y/ and Irr1
f �1.U.y//=U.y/

are representable by finite étale schemes over U.y/.

Proof. – The set f �1.U.y// is the disjoint union of locally closed subsets U.x/, where
x 2 F.X/ is such that f .x/ D y. For each such x consider the induced morphism

.U .x/; @U.x// ! .U .y/; @U.y//:

By Lemma 5.14, this is again a proper and log smooth morphism of log regular schemes.
Let fx be the restriction of this morphism to U.y/ equipped with the trivial log structure.
The scheme U.x/ �U.y/ U.y/ has a natural log structure, obtained from the divisorial log

structure on .U .x/; @U.x// by restriction, making

fx W U.x/ �U.y/ U.y/ ! U.y/

a proper and log smooth morphism of log regular schemes. The log structure on U.y/ is
trivial, so by Lemma 5.15 the morphism fx is flat. The fibers of a proper flat morphism
of irreducible varieties have the same pure dimension; therefore all fibers of fx have pure
dimension dim.U.x// � dim.U.y//.

The stratum U.x/ is a dense open subset of U.x/ �U.y/ U.y/, whose complement is

the union of closed subsets U.x0/ � U.x/, where x0 2 F.X/ is a specialization of x,
f .x0/ D y and x0 ¤ x. In particular, dim.U.x0// < dim.U.x//. Thus for any t 2 U.y/ the
intersection f �1

x .t/ \ U.x/ � f �1
x .t/ is the complement of the union of the closed subsets

f �1
x .t/ \ U.x0/ D f �1

x0 .t/, with x0 as above. We have seen that f �1
x0 .t/ has pure dimension

dim.U.x0// � dim.U.y// < dim.U.x// � dim.U.y//;

hence f �1
x .t/\U.x/ is a dense open subset of f �1

x .t/. It now follows from Lemma 5.17 that
there is a natural isomorphism of functors

(5.2) IrrU.x/=U.y/ D IrrU.x/�
U .y/

U.y/=U.y/ :

Now let x1; : : : ; xn 2 F.X/ be the minimal elements of f �1.y/ with respect to the partial
ordering given by the topology on F.X/. Then f �1.U.y// is the union of the closed subsets
U.xi / �U.y/ U.y/, where i D 1; : : : ; n. Hence the fiber f �1.t/ is the union of the closed
subsets f �1

xi
.t/. For each i D 1; : : : ; n, the intersection f �1

xi
.t/ \ U.xi / is open and dense

in f �1
xi
.t/, hence

Sn
iD1.f

�1
xi
.t/\U.xi // is open and dense in f �1.t/. Therefore Lemma 5.17

yields a natural isomorphism of functors

Irrf �1.U.y//=U.y/ D Irr�Sn
iD1 U.xi /

�
=U.y/

D
na

iD1

IrrU.xi /=U.y/

as the U.xi / are pairwise disjoint.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1062 D. LOUGHRAN, A. SKOROBOGATOV AND A. SMEETS

By (5.2) the result for the functor Irrf �1.U.y//=U.y/ now follows from Lemma 5.15. Next,
Irr1
f �1.y/=y

D Irrf �1.y/sm=y
represents the irreducible components of f �1.y/ of geometric

multiplicity 1. By Proposition 5.16, the functor Irr1
f �1.U.y//=U.y/

D Irrf �1.U.y//sm=U.y/

represents the Zariski closure of its generic fiber, which is represented by Irr1
f �1.y/=y

. This is
the union of some of the irreducible components of the finite étale U.y/-scheme represented
by Irrf �1.U.y//=U.y/, and hence is also finite and étale over U.y/.

6. Surjectivity

In this section we prove Theorem 1.5, and explain how to use this and other results from
the paper to prove Theorems 1.4 and 1.6.

6.1. Notation and hypotheses

Let f W X ! Y be a dominant morphism of smooth, proper, geometrically integral
varieties over a number field k with geometrically integral generic fiber. By Lemma 4.3 and
Theorem 5.11 we can assume that f gives rise to a log smooth morphism f W .X;D/ ! .Y;E/

of log regular schemes.

Let U D X nD and V D Y nE. By condition (3) of Theorem 5.11 we have f �1.V / D U .
Thus f W U ! V is a smooth proper morphism with geometrically integral generic fiber.
By [18, Corollaire 15.5.4] all fibers of f W U ! V are geometrically connected. Since
connected noetherian normal schemes are integral [1, Lemma 27.7.6, Tag 033H], all fibers
of f W U ! V are geometrically integral.

Recall that we are working with Zariski log structures; in particular, D and E are strict
normal crossing divisors, so their irreducible components are smooth. Let F.f / W FX ! FY
be the attached morphism of smooth Kato fans. We have the height hY W FY .N/ ! N

introduced at the end of §5.1.1.

Let Ei be an irreducible component of E and let Dj be an irreducible component of D.
Since X and Y are smooth, each of the local rings OEi ;Y and ODj ;X is a discrete valuation
ring. Let valEi

W OEi ;Y ! N and valDj
W ODj ;X ! N be the respective discrete valuations.

There is an mij 2 N such that the restriction of valDj
to OEi ;Y is mij valEi

.

Let S be a finite set of primes of k, such that f W X ! Y extends to a morphism of
smooth and proper OS -schemes f W X ! Y . For each irreducible component D0 � D let
k0 be the algebraic closure of k in the field of functions �.D0/. We assume that S contains all
the primes of k ramified in any of the fields k0.

Let v be a prime of k which is not in S . We denote by valv W Ov n f0g ! Z the valuation
at v and by �v a generator of the maximal ideal of Ov, so that Fv D Ov=.�v/. We write
Y v D Y �Spec OS

Spec Ov and E v D E �Spec OS
Spec Ov.

Let D � X and E � Y be the Zariski closures ofD and E in X and Y , respectively. By
adding finitely many primes toS we can assume that E and D are strict normal crossing divi-
sors, so each of their irreducible components is smooth over Spec OS . We can also assume
that .X ; D/ and .Y ; E / are log regular schemes with Kato fansFX andFY , respectively, and
that there is a log smooth morphism f W .X ; D/ ! .Y ; E / inducing the given morphism
.X;D/ ! .Y;E/ on the generic fibers.
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By the valuative criterion of properness any point P 2 Y.kv/ extends to a local section
P W Spec Ov ! Y of the structure morphism Y ! Spec OS . We write P mod �v
for P.Spec Fv/, which is an Fv-point of the closed fiber Y �Spec OS

Spec Fv.

For any point P 2 V.kv/ the local section P W Spec Ov ! Y gives rise to a morphism
of log schemes P W .Spec Ov/� ! .Y ; E /; where .Spec Ov/� is equipped with the natural
(divisorial) log structure. The associated morphism of Kato fans is F.P/ W Spec N ! FY .
It sends the closed point N>0 of Spec N to F.P mod �v/.

6.2. A surjectivity criterion

The following intermediate result is an adaptation of Denef’s “surjectivity criterion” [13,
4.2] in the language of log geometry.

P 6.1. – There exists an integer m � 1 such that whenever v … S , we have
f .X.kv// D Y.kv/ if and only if f .X.kv// contains all P 2 V.kv/ with hY .F.P// � m.

Proof. – For each s 2 FX let F sX be the open Kato subcone of FX defined by s. Similarly,
for each t 2 FY let F tY be the open Kato subcone of FY defined by t . The morphism
F.f / W FX ! FY induces a map F.f /� W FX .N/ ! FY .N/. For each t 2 FY define

mt D minfhY .r/ j r 2 F tY .N/; r … F.f /�.FX .N//g:

(If the set in the right hand side is empty, we take mt D 0.)

For each s 2 FX mapping to t 2 FY define

ms;t D minfhY .r/ j r 2 F.f /�.F sX .N// � F tY .N/g:

Finally, let

m D maxfmt ; ms;tg;
where t 2 FY and where s 2 FX maps to t 2 FY .

Let us prove thatm satisfies the conclusion of the proposition. One implication is obvious,
so we prove the other one: if everyP 2 V.kv/with hY .F.P// � m is contained in f .X.kv//,
we need to show that Y.kv/ D f .X.kv//.

It suffices to show that V.kv/ � f .U.kv//. Indeed, for the topology of kv the set V.kv/ is
dense Y.kv/, whereas f .X.kv// is closed in Y.kv/ because f is proper.

Take any P 2 V.kv/. There exists an r 2 FY .N/, hY .r/ � m, such that the images
ofF.P/ and r are both contained in someF tY and, furthermore, either both are in the image
of some F sX .N/ or neither is contained in F.f /�.FX .N//.

Let .Ei /i2I be the irreducible components of E, such that the stratum U.t/ defined by
t 2 FY is a connected component of the locally closed subscheme (with reduced structure)

 \

i2I

Ei

!
n

0
@[

i…I

Ei

1
A � Y:

Write r D
P
i2I riui , where ri is a non-negative integer and ui 2 FY .N/ is the primitive

generator of the one-dimensional cone corresponding to Ei , so that ri 6D 0 if and only if
i 2 I . The height of r is then given by the formula hY .r/ D

P
i2I ri .
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We now construct a commutative diagram of log schemes

(6.1) .Spec Fv/
� //

��

.Y v; E v/

��

.Spec Ov/� // .Spec Ov/tr:

Here .Spec Ov/tr stands for the scheme Spec Ov equipped with the trivial log struc-
ture O�

v ! Ov. The morphism .Spec Ov/� ! .Spec Ov/tr is the forgetful morphism
defined by the identity morphism of the underlying schemes and by the natural morphism
of monoids O�

v ! Ov n f0g. The right hand vertical arrow is induced by the structure
morphism Y v ! Spec Ov. Next, .Spec Fv/

� is the standard log point defined by the monoid
. Ov n f0g/=.1C�v Ov/. The left hand vertical arrow is the natural morphism of log schemes.
On the underlying schemes the top horizontal arrow sends Spec Fv to P mod �v. The
commutativity of (6.1) as a diagram of schemes is clear.

We need to define the top horizontal arrow as a morphism of log schemes. Let A be an
Ov-algebra such that Spec A is an affine neighborhood of P mod �v in Y v. We can assume
that A contains a local equation �i for the Zariski closure of Ei in Y v, where i 2 I . Let
S � A be the multiplicative system generated by the �i and let S�1A be the localisation
of A with respect to S . The log scheme .Y ; E / is defined by the subsheaf of O Y consisting
of functions invertible outside E . Hence the log scheme .SpecA;A \ .S�1A/�/ is an open
subscheme of .Y ; E /. Locally the diagram of monoids attached to (6.1) is

(6.2) . Ov n f0g/=.1C �v Ov/ A \ .S�1A/�oo

Ov n f0g
'

OO

O�
v :

oo

OO

Here ' is the canonical surjective morphism of monoids (1)

' W Ov n f0g �! . Ov n f0g/=.1C �v Ov/ Š F�
v ˚ N;

where the isomorphism depends on the choice of �v. Let us denote by ' the composition of '
with the projection to F�

v . The choice of �i , i 2 I , gives an isomorphism

A \ .S�1A/� Š A� � NI :

To complete the definition of .Spec Fv/
� ! .Y v; E v/ we define

A� � NI �! F�
v ˚ N

as the morphism of monoids that sends ˛ 2 A� to .˛.P mod �v/; 0/ and sends the canonical
generator 1i 2 NI to .'.�i .P//; ri /: Checking the commutativity of the diagram (6.2) is
straightforward. The factor '.�i .P// is irrelevant for the commutativity of this diagram,
but will play a role later in the proof.

(1) This is related to Denef’s notion of multiplicative residue [13, Definition 3.2]. The projection to F�

v is called the
angular component in [13, Definition 3.5].
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Since Y ! Spec OS is smooth, the morphism of log schemes .Y ; E / ! .Spec Ov/tr is
log smooth. Applying Proposition 5.13 to (6.1) produces a morphism .Spec Ov/� ! .Y ; E /
such that the two resulting triangles commute. This gives a point Q 2 V.kv/ such that

Q mod �v D P mod �v; F .Q/ D r; '.�i .P// D '.�i .Q//; i 2 I:
Since hY .F.Q// � m, our assumptions imply that Q D f .R/ for some R 2 U.kv/. In
particular, P mod �v D f .R mod �v/ and F.P/ D F.f /�.a/ for some a 2 F sX .N/, where
s 2 FX maps to t 2 FY and F.R / 2 F sX .N/. Let .Dj /j2J be the irreducible components
of D such that the stratum U.s/ defined by s 2 FX is a connected component of

�\

j2J

Dj
�

n
�[

j…J

Dj
�

� X:

Write a D
P
j2J aju

0
j , where aj is an integer and u0

j 2 FX .N/ is the primitive generator of
the one-dimensional cone corresponding to Dj , so that aj 6D 0 if and only if j 2 J .

Let us now construct a commutative diagram of log schemes

(6.3) .Spec Fv/
� //

��

.X ; D/

��

.Spec Ov/� // .Y ; E /:

Here the vertical arrows are the obvious morphisms, and the lower horizontal arrow is
given by P 2 Y v. Ov/. The upper horizontal arrow sends Spec Fv to R mod �v. The
commutativity of (6.3) as a diagram of schemes is clear since P mod �v D f .R mod �v/.

Choose an A-algebra B such that Spec B is an affine neighborhood of R mod �v in X v.
We can assume thatB contains a local equation$j for the closure ofDj in X v, where j 2 J .
Define .Spec Fv/

� ! .X ; D/ via the morphism of monoids

B \ .S�1B/� Š B� ˚ NJ �! F�
v ˚ N;

such that ˇ 2 B� goes to .ˇ.R mod �v/; 0/ and

1j 7! .'.$j .R //; aj /:

To check the commutativity of (6.3) as a diagram of log schemes we need to check the
commutativity of the diagram of monoids

F�
v ˚ N B� ˚ NJoo

Ov n f0g
'
OO

A� ˚ NI :

OO

oo

For .˛; 0/ 2 A� ˚ NI the commutativity follows from P mod �v D f .R mod �v/. Write

�i D bi
Y

$
mij

j ;

where bi 2 B�. The right hand vertical map sends the element .0; 1i / 2 A� ˚ NI to the
element .bi ;

P
j2J mij 1j / of B� ˚ NJ , which then goes to

(6.4)
�
bi .R mod �v/

Y

j2J

'.$j .R //mij ;
X

j2J

mijaj
�
:

The lower horizontal arrow sends 1i to �i .P/ and then the left hand vertical arrow gives
.'.�i .P//; valv.�i .P///. This coincides with (6.4). Indeed, on the one hand, valv.�i .P// is
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the i -th coordinate of F.P/ D F.f /�.a/, which equals
P
j2J mijaj . On the other hand,

'.�i .P// D '.�i .Q// and Q D f .R/. This proves the commutativity of (6.3).
The morphism .X ; D/ ! .Y ; E / is log smooth, hence we can apply Proposition 5.13

to the diagram (6.3). We deduce that there is a morphism .Spec Ov/� ! .X ; D/ whose
composition with f W .X ; D/ ! .Y ; E / is the morphism .Spec Ov/� ! .Y ; E / given by P .
Therefore P 2 f .X.kv//. This proves that Y.kv/ D f .X.kv//.

6.3. Further modifications of the log smooth model

We now use the bound obtained in Proposition 6.1 to construct a specific modification of
the morphism f .

P 6.2. – Let f W X ! Y and m � 1 be as above. There exists a commutative
diagram of morphisms of log regular schemes

(6.5) .X 0;D0/
�X
//

f 0

��

.X;D/

f
��

.Y 0; E 0/
�Y
// .Y;E/;

whereX 0 and Y 0 are smooth, proper and geometrically integral, f 0 is dominant and log smooth,
�X and �Y are log blow-ups and the following holds: ifP 2 V.kv/ satisfies 1 � hY .F.P// � m,
then ��1

Y .P / mod �v is a smooth point of the reduction of E 0.

The last statement of the proposition implies that ��1
Y .P / mod �v belongs to exactly one

geometric irreducible component of E 0.

Proof. – We let �Y W .Y 0; E 0/ ! .Y;E/ be the log blow-up defined by the subdivision of
the Kato fan of .Y;E/ as in Lemma 5.10. We see that Y 0 is smooth and proper and E 0 is a
strict normal crossings divisor (so .Y 0; E 0/ is log regular).

Recall that in the category of fs log schemes, log blow-ups are stable under composition
[27, Corollary 4.11] and under base change [27, Proposition 4.5, Corollary 4.8].

Indeed, Nizioł shows in [27, Corollary 4.8] that the fs fibered product of .X;D/ and
.Y 0; E 0/ over .Y;E/ is a log blow-up �X W .X 0;D0/ ! .X;D/ making (6.5) commute. More
precisely, if .Y 0; E 0/ is the log blow-up of .Y;E/ in a coherent ideal I � M Y , then .X 0;D0/ is
the log blow-up of .X;D/ in the inverse image ideal I MX .

We note that .X 0;D0/ is a log regular scheme by [22, Theorem 8.2]. Since log smooth
morphisms are stable under base change, the morphism f 0 W .X 0;D0/ ! .Y 0; E 0/ is log
smooth. There is a further log blow-up .X;00D00/ ! .X 0;D0/ such that X 00 is smooth as a
scheme (see [22, (10.4)] or [27, Theorem 5.8]). The composition .X;00D00/ ! .Y 0; E 0/ is still
log smooth. Therefore replacing .X 0;D0/ by .X;00D00/ yields the result.

Recall that the codimension 1 strata of .Y 0; E 0/ are precisely the irreducible components
of the smooth locus of E 0. The morphisms �X and �Y in Proposition 6.2 are log blow-ups,
so they induce isomorphisms X 0 nD0 Š U D X nD and Y 0 nE 0 Š V D Y nE.

C 6.3. – Let f 0 W .X 0;D0/ ! .Y 0; E 0/ be as in Proposition 6.2. Then there
exists a finite set S � �k;f such that for v … S we have f .X.kv// D Y.kv/ if and only if
sf 0;�.Z/.v/ D 1 for each codimension 1 stratum Z of .Y 0; E 0/.
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Proof. – Let f 0 W .X 0
; D0

/ ! .Y 0
; E 0

/ be a model of .X 0;D0/ ! .Y 0; E 0/ over Ok;S .
We enlarge the finite set of places S to ensure that f 0 W .X 0

; D0
/ ! .Y 0

; E 0
/ is a proper,

log smooth morphism of log regular schemes over Ok;S such that the induced morphism of
Kato fans is the same as for .X 0;D0/ ! .Y 0; E 0/.

Let W D Y 0 n E 0
sing and let W � Y 0 be the complement to the Zariski closure of E 0

sing

in Y 0. For a codimension 1 stratum Z of .Y 0; E 0/ we denote by Z the Zariski closure of Z
in W. We now further enlarge S to ensure that the following properties hold.

(1) For any v … S and for any x 2 W.Fv/ such that the fiber .f 0/�1.x/ is split, there is a
smooth Fv-point in .f 0/�1.x/. This is arranged via the Lang-Weil inequality.

(2) For each codimension 1 stratum Z of .Y 0; E 0/, for any v … S such that sf 0;�.Z/.v/ D 1

and for any x 2 Z .Fv/ the fiber .f 0/�1.x/ is split. This is achieved by applying
Corollary 3.15 to the morphism .f 0/�1.Z/ ! Z. Indeed, in this case the assumption
of this corollary is satisfied by Proposition 5.18.

(3) For any v … S , if there exists a codimension 1 stratum Z of .Y 0; E 0/ such that
sf 0;�.Z/.v/ < 1, then Y.kv/ 6D f .X.kv//. This follows from Theorem 4.2.

Let us now prove the statement of the corollary. Fix any v … S . One implication is
immediate: if there exists a codimension 1 stratum Z of .Y 0; E 0/ with sf 0;�.Z/.v/ < 1, then
(3) implies that Y.kv/ 6D f .X.kv//.

Conversely, assume that sf 0;Z.v/ D 1 for each codimension 1 stratum Z of .Y 0; E 0/. By
Propositions 6.1 and 6.2, it suffices to prove that if P 2 V.kv/ is such that P mod �v is
in W �Spec OS

Spec Fv, then P 2 f .X.kv//. Write U D X 0 n D0 and V D Y 0 n E 0.
Let us first consider the case when P mod �v 2 V.Fv/. The morphism f 0jU W U ! V

is smooth and proper, with geometrically integral generic fiber. This implies that all fibers
of f 0jU are smooth and geometrically integral; in particular, such is .f 0/�1.P mod �v/. By
(1) this fiber has a smooth Fv-point, which is clearly also a smooth point of f 0.

In the case when P mod �v 2 Z .Fv/ for some codimension 1 stratum Z of .Y 0; E 0/, a
combination of (1) and (2) implies that the fiber .f 0/�1.P mod �v/ has a smooth Fv-point.
But a smooth point in this fiber is actually a smooth point of the morphism f 0 as well, since
f 0j.f 0/�1.W/ is a flat morphism, by [21, Corollary 4.4.(ii), Corollary 4.5].

An application of the classical version of Hensel’s lemma now allows one to lift such an
Fv-point to a kv-point of X 0 over P in both of the cases considered above, as required.

6.4. Proofs of the main theorems

Theorem 1.5 now follows immediately from Corollary 6.3, and Theorem 1.4 follows from
Lemma 3.11, Corollary 4.4 and Theorem 1.5. Finally, Theorem 1.6 is a formal consequence
of Lemma 3.10 and Theorem 1.5, because the intersection of finitely many Frobenian sets is
Frobenian (see [31, §3.3.1]).

R 6.4. – Let us finish by explaining how to recover Denef’s result (Theorem 1.2)
from our Theorem 1.4. The subtlety is the following. Denef imposes a condition on modi-
fications f 0 W X 0 ! Y 0 of f such that the generic fibers of f and f 0 are isomorphic. We
consider arbitrary modifications f 0 W X 0 ! Y 0 of f , since using Theorem 5.11 forces us
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to consider modifications for which the generic fiber changes birationally, and we impose a
weaker condition for these modifications (pseudo-splitness instead of splitness).

But in fact we could just as well have imposed our pseudo-splitness condition only for
the modifications f 0 W X 0 ! Y 0 with generic fiber isomorphic to the generic fiber of f , as
does Denef. It turns out that this is enough to guarantee that the same condition holds for
arbitrary modifications, as we will now explain.

The argument is the following. Let f W X ! Y be a dominant morphism of smooth,
proper, geometrically integral varieties over k, with geometrically integral generic fiber.
Assume that for every modification f 0 W X 0 ! Y 0 of f with X 0 and Y 0 smooth such that the
generic fibers of f and f 0 are isomorphic and for every D 2 .Y 0/.1/, the fiber .f 0/�1.D/ is
a pseudo-split �.D/-variety. Let us check that the same property then holds for an arbitrary
modification f 0 W X 0 ! Y 0 of f with X 0 and Y 0 smooth.

So let f 0 W X 0 ! Y 0 be such an arbitrary modification. Let Z be the unique irreducible
component of X �Y Y 0 which dominates X , equipped with the natural morphism Z ! Y 0.
Note that the generic fiber of Z ! Y 0 is the same as the generic fiber of f . Choose a
desingularisation eZ ! Z such that the composition eZ ! Y 0 still has the same generic
fiber as f . Let D 2 .Y 0/.1/ and let R D OY 0;D be the corresponding discrete valuation ring.
Consider the R-scheme eZ �Y 0 SpecR. This is a regular scheme with the same generic fiber
as f . The assumptions imply that its special fiber is pseudo-split.

However the R-scheme X 0 �Y 0 SpecR is regular and its generic fiber is smooth and
birational to the generic fiber of f . Therefore Lemma 2.12 implies that its special fiber is
pseudo-split as well, which proves our claim.

R 6.5. – Yongqi Liang observed that exactly the same proofs yield in fact a
slightly stronger version of Theorem 1.4. Indeed, the conclusion that f .X.kv// D Y.kv/

for almost all places v (assuming the pseudo-splitness assumption) may be replaced by the
following stronger conclusion: there exists a finite set of places S of k such that if K=k is a
finite field extension and if w is a place ofK which does not lie above any of the places in S ,
then f .X.Kw// D Y.Kw/.
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MIXED HODGE STRUCTURES AND FORMALITY

OF SYMMETRIC MONOIDAL FUNCTORS

 J CIRICI  G HOREL

A. – We use mixed Hodge theory to show that the functor of singular chains with rational
coefficients is formal as a lax symmetric monoidal functor, when restricted to complex varieties whose
weight filtration in cohomology satisfies a certain purity property. This has direct applications to the
formality of operads or, more generally, of algebraic structures encoded by a colored operad. We also
prove a dual statement, with applications to formality in the context of rational homotopy theory. In the
general case of complex varieties with non-pure weight filtration, we relate the singular chains functor
to a functor defined via the first term of the weight spectral sequence.

R. – Nous utilisons la théorie de Hodge mixte pour montrer que le foncteur des chaînes
singulières à coefficients rationnels est formel, comme foncteur symétrique monoïdal lax, lorsqu’on le
restreint aux variétés complexes dont la filtration par le poids en cohomologie satisfait une certaine pro-
priété de pureté. Ce résultat a des applications directes à la formalité d’opérades ou plus généralement
à des structures algébriques encodées par une opérade colorée. Nous prouvons aussi le résultat dual,
avec des applications à la formalité dans le contexte de la théorie de l’homotopie rationnelle. Dans le cas
général d’une variété dont la filtration par le poids n’est pas pure, nous relions le foncteur des chaînes
singulières à un foncteur défini par la première page de la suite spectrale des poids.

1. Introduction

There is a long tradition of using Hodge theory as a tool for proving formality results.
The first instance of this idea can be found in [18] where the authors prove that compact
Kähler manifolds are formal (i.e., the commutative differential graded algebra of differential
forms is quasi-isomorphic to its cohomology). In the introduction of that paper, the authors
explain that their intuition came from the theory of étale cohomology and the fact that the
degree n étale cohomology group of a smooth projective variety over a finite field is pure

Cirici would like to acknowledge financial support from the DFG (SPP-1786) and AGAUR (Beatriu de Pinós
Program) and partial support from the AEI/FEDER, UE (MTM2016-76453-C2-2-P). Horel acknowledges support
from the project ANR-16-CE40-0003 ChroK.
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1072 J. CIRICI AND G. HOREL

of weight n. This purity is what heuristically prevents the existence of non-trivial Massey
products. In the setting of complex algebraic geometry, Deligne introduced in [16, 17] a
filtration on the rational cohomology of every complex algebraic varietyX , called the weight
filtration, with the property that each of the successive quotients of this filtration behaves
as the cohomology of a smooth projective variety, in the sense that it has a Hodge-type
decomposition. Deligne’s mixed Hodge theory was subsequently promoted to the rational
homotopy of complex algebraic varieties (see [35], [27], [36]). This can then be used to make
the intuition of the introduction of [18] precise. In [22] and [12], it is shown that purity of the
weight filtration in cohomology implies formality, in the sense of rational homotopy, of the
underlying topological space. However, the treatment of the theory in these references lacks
functoriality and is restricted to smooth varieties in the first paper and to projective varieties
in the second.

In another direction, in the paper [26], the authors elaborate on the method of [18] and
prove that operads (as well as cyclic operads, modular operads, etc.) internal to the category
of compact Kähler manifolds are formal. Their strategy is to introduce the functor of de
Rham currents which is a functor from compact Kähler manifolds to chain complexes that
is lax symmetric monoidal and quasi-isomorphic to the singular chain functor as a lax
symmetric monoidal functor. Then they show that this functor is formal as a lax symmetric
monoidal functor. Recall that, if C is a symmetric monoidal category and A is an abelian
symmetric monoidal category, a lax symmetric monoidal functor F W C �! Ch�.A / is said
to be formal if it is weakly equivalent to H ı F in the category of lax symmetric monoidal
functors. It is then straightforward to see that such functors send operads in C to formal
operads in Ch�.A /. The functoriality also immediately gives us that a map of operads in C
is sent to a formal map of operads or that an operad with an action of a group G is sent to
a formal operad with a G-action. Of course, there is nothing specific about operads in these
statements and they would be equally true for monoids, cyclic operads, modular operads, or
more generally any algebraic structure that can be encoded by a colored operad.

The purpose of this paper is to push this idea of formality of symmetric monoidal functors
from complex algebraic varieties in several directions in order to prove the most general
possible theorem of the form “purity implies formality”. Before explaining our results more
precisely, we need to introduce a bit of terminology.

Let X be a complex algebraic variety. Deligne’s weight filtration on the rational n-th
cohomology vector space of X is bounded by

0 D W�1H
n.X;Q/ � W0H

n.X;Q/ � � � � � W2nH
n.X;Q/ D Hn.X;Q/:

If X is smooth thenWn�1H
n.X;Q/ D 0, while if X is projectiveWnH

n.X;Q/ D Hn.X;Q/.
In particular, if X is smooth and projective then we have

0 D Wn�1H
n.X;Q/ � WnH

n.X;Q/ D Hn.X;Q/:

In this case, the weight filtration on Hn.X;Q/ is said to be pure of weight n. More generally,
for ˛ a rational number and X a complex algebraic variety, we say that the weight filtration
on H�.X;Q/ is ˛-pure if, for all n � 0, we have

GrW
p Hn.X;Q/ WD

WpH
n.X;Q/

Wp�1Hn.X;Q/
D 0 for all p ¤ ˛n:
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MIXED HODGE STRUCTURES AND FORMALITY OF FUNCTORS 1073

The bounds on the weight filtration tell us that this makes sense only when 0 � ˛ � 2. Note
as well that if we write ˛ D a=b with .a; b/ D 1, ˛-purity implies that the cohomology is
concentrated in degrees that are divisible by b, and that H bn.X;Q/ is pure of weight an.

Aside from smooth projective varieties, some well-known examples of varieties with
1-pure weight filtration are: projective varieties whose underlying topological space is a
Q-homology manifold ([17, Theorem 8.2.4]) and the moduli spaces M Dol and M dR

appearing in the non-abelian Hodge correspondence ([28]). Some examples of varieties with
2-pure weight filtration are: complements of hyperplane arrangements ([33]), which include
the moduli spaces M 0;n of smooth projective curves of genus 0 with n marked points,
and complements of toric arrangements ([22]). As we shall see in Section 8, complements
of codimension d subspace arrangements are examples of smooth varieties whose weight
filtration in cohomology is 2d=.2d � 1/-pure. For instance, this includes configuration
spaces of points in Cd .

Our main result is Theorem 7:3. We show that, for a non-zero rational number ˛, the
singular chains functor

S�.�;Q/ W VarC �! Ch�.Q/

is formal as a lax symmetric monoidal functor when restricted to complex varieties whose
weight filtration in cohomology is ˛-pure. Here VarC denotes the category of complex alge-
braic varieties (i.e the category of schemes over C that are reduced, separated and of finite
type). This generalizes the main result of [26] on the formality of S�.X;Q/ for any operadX
in smooth projective varieties, to the case of operads in possibly singular and/or non-compact
varieties with pure weight filtration in cohomology.

As direct applications of the above result, we prove formality of the operad of singular
chains of some operads in complex varieties, such as the noncommutative analog of the
(framed) little 2-discs operad introduced in [19] and the monoid of self-maps of the complex
projective line studied by Cazanave in [11] (see Theorems 7:4 and 7:7). We also reinterpret in
the language of mixed Hodge theory the proofs of the formality of the little disks operad and
Getzler’s gravity operad appearing in [38] and [23]. These last two results do not fit directly in
our framework, since the little disks operad and the gravity operad do not quite come from
operads in algebraic varieties. However, the action of the Grothendieck-Teichmüller group
provides a bridge to mixed Hodge theory.

In Theorem 8.1 we prove a dual statement of our main result, showing that Sullivan’s
functor of piecewise linear forms

A �
PL W Varop

C �! Ch�.Q/

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight
filtration in cohomology is ˛-pure, where ˛ is a non-zero rational number.

This gives functorial formality in the sense of rational homotopy for such varieties, gener-
alizing both “purity implies formality” statements appearing in [22] for smooth varieties and
in [12] for singular projective varieties. Our generalization is threefold: we allow ˛-purity
(instead of just 1-and 2-purity), we obtain functoriality and we study possibly singular and
open varieties simultaneously.

Theorems 7:3 and 8:1 deal with situations in which the weight filtration is pure. In the
general context with mixed weights, it was shown by Morgan [35] for smooth varieties and
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1074 J. CIRICI AND G. HOREL

in [13] for possibly singular varieties, that the first term of the multiplicative weight spectral
sequence carries all the rational homotopy information of the variety. In Theorem 7:8 we
provide the analogous statement for the lax symmetric monoidal functor of singular chains.
A dual statement for Sullivan’s functor of piecewise linear forms is proven in Theorem 8:11,
enhancing the results of [35] and [13] with functoriality.

We now explain the structure of this paper. The first four sections are purely algebraic. In
Section 2 we collect the main properties of formal lax symmetric monoidal functors that we
use. In particular, in Theorem 2.3 we recall a recent theorem of rigidification due to Hinich
that says that, over a field of characteristic zero, formality of functors can be checked at
the level of1-functors. We also introduce the notion of ˛-purity for complexes of bigraded
objects in a symmetric monoidal abelian category and show that, when restricted to ˛-pure
complexes, the functor defined by forgetting the degree is formal.

The connection of this result with mixed Hodge structures is done in Section 3, where
we prove a symmetric monoidal version of Deligne’s weak splitting of mixed Hodge struc-
tures over C. Such splitting is a key tool towards formality. In Section 4 we study lax
symmetric monoidal functors to vector spaces over a field of characteristic zero equipped
with a compatible filtration. We show, in Theorem 4:3, that the existence of a lax symmetric
monoidal splitting for such functors can be verified after extending the scalars to a larger
field. As a consequence, we obtain splittings for the weight filtration over Q. This result
enables us to bypass the theory of descent of formality for operads of [26], which assumes
the existence of minimal models. Putting the above results together we are able to show that
the forgetful functor

Ch�.MHSQ/ �! Ch�.Q/

induced by sending a rational mixed Hodge structure to its underlying vector space is formal
when restricted to those complexes whose mixed Hodge structure in homology is ˛-pure.

In order to obtain a symmetric monoidal functor from the category of complex varieties
to an algebraic category encoding mixed Hodge structures, we have to consider more flexible
objects than complexes of mixed Hodge structures. This is the content of Section 5, where
we study the category MHCk of mixed Hodge complexes. In Theorem 5:4 we construct
an equivalence of symmetric monoidal1-categories between mixed Hodge complexes and
complexes of mixed Hodge structures. This result is a lift of Beilinson’s equivalence of
triangulated categories Db.MHSk/ �! ho.MHCk/ (see also [20], [9]).

The geometric character of this paper comes in Section 6, where we construct a symmetric
monoidal functor from complex varieties to mixed Hodge complexes. This is done in two
steps. First, for smooth varieties, we dualize Navarro’s construction [36] of functorial mixed
Hodge complexes to obtain a symmetric monoidal1-functor

D� W N.SmC/ �!MHCQ

such that its composite with the forgetful functor MHCQ �! Ch�.Q/ is naturally weakly
equivalent to S�.�;Q/ as a symmetric monoidal 1-functor (see Theorem 6:5). Note that
in order to obtain monoidality, we move to the world of1-categories, denoted in boldface
letters. In the second step, we extend this functor from smooth, to singular varieties, by
standard cohomological descent arguments.
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The main results of this paper are stated and proven in Section 7, where we also explain
several applications to operad formality. Lastly, Section 8 contains applications to the
rational homotopy theory of complex varieties.
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Notations

As a rule, we use boldface letters to denote 1-categories and normal letters to denote
1-categories. For C a 1-category, we denote by N. C / its nerve seen as an1-category.

For A an additive category, we will denote by Ch‹
�.A / the category of (homologically

graded) chain complexes in A , where “‹” denotes the boundedness condition: nothing for
unbounded, b for bounded below and above and � 0 (resp. � 0) for non-negatively (resp.
non-positively) graded complexes. We denote by Ch‹

�.A / the 1-category obtained from
Ch‹

�.A / by inverting the quasi-isomorphisms.

2. Formal symmetric monoidal functors

The main result of this section is a “purity implies formality” statement in the setting of
symmetric monoidal functors.

Let .A ;˝; 1/ be an abelian symmetric monoidal category with infinite direct sums. The
homology functor H W Ch�.A / �!

Q

n2Z A is a lax symmetric monoidal functor, via the
usual Künneth morphism. In the cases that will interest us, all the objects of A will be flat
and the homology functor is in fact strong symmetric monoidal. We will also make the small
abuse of identifying the category

Q

n2Z A with the full subcategory of Ch�.A / spanned by
the chain complexes with zero differential.

We recall the following definition from [26].

D 2.1. – Let C be a symmetric monoidal category and F W C �! Ch�.A /

a lax symmetric monoidal functor. Then F is said to be a formal lax symmetric monoidal
functor if F and H ı F are weakly equivalent in the category of lax symmetric monoidal
functors: there is a string of natural transformations of lax symmetric monoidal functors

F
ˆ1

 �� F1 �! � � �  � Fn

ˆn

��! H ı F;

such that for every object X of C , the morphisms ˆi .X/ are quasi-isomorphisms.

D 2.2. – Let C be a symmetric monoidal category and F W N. C /! Ch�.A /

a lax symmetric monoidal functor (in the 1-categorical sense). We say that F is a formal
lax symmetric monoidal1-functor if F and H ı F are equivalent in the1-category of lax
symmetric monoidal functors from N. C / to Ch�.A /.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1076 J. CIRICI AND G. HOREL

Clearly a formal lax symmetric monoidal functor C ! Ch�.A / induces a formal lax
symmetric monoidal1-functor N. C /! Ch�.A /. The following theorem and its corollary
give a partial converse.

T 2.3 (Hinich). – Let k be a field of characteristic 0. Let C be a small symmetric
monoidal category. Let F and G be two lax symmetric monoidal functors C ! Ch�.k/. If F
and G are equivalent as lax symmetric monoidal1-functors N. C / �! Ch�.k/, then F and G
are weakly equivalent as lax symmetric monoidal functors.

Proof. – This theorem is true more generally if C is a colored operad. Indeed recall
that any symmetric monoidal category has an underlying colored operad whose category of
algebras is equivalent to the category of lax symmetric monoidal functors out of the original
category.

Now since we are working in characteristic zero, the operad underlying C is homotopi-
cally sound (following the terminology of [29]). Therefore, [29, Theorem 4.1.1] gives us an
equivalence of1-categories

N.Alg C .Ch�.k//
�
�! Alg C .Ch�.k//

where we denote by Alg C (resp. Alg C ) the category of lax symmetric monoidal functors (resp.
the 1-category of lax symmetric monoidal functors) out of C . Now, the two functors F
and G are two objects in the source of the above map that become weakly equivalent in the
target. Hence, they are already equivalent in the source, which is precisely saying that they
are connected by a zig-zag of weak equivalences of lax symmetric monoidal functors.

C 2.4. – Letk be a field of characteristic 0. Let C be a small symmetric monoidal
category. Let F W C ! Ch�.k/ be a lax symmetric monoidal functor. If F is formal as
lax symmetric monoidal 1-functor N. C / �! Ch�.k/, then F is formal as a lax symmetric
monoidal functor.

Proof. – It suffices to apply Theorem 2.3 to F and H ı F .

The following proposition whose proof is trivial is the reason we are interested in formal
lax monoidal functors.

P 2.5 ([26], Proposition 2.5.5). – If F W C �! Ch�.A / is a formal lax
symmetric monoidal functor then F sends operads in C to formal operads in Ch�.A /.

In rational homotopy, there is a criterion of formality in terms of weight decompositions
which proves to be useful in certain situations (see for example [6] and [5]). We next provide
an analogous criterion in the setting of symmetric monoidal functors.

Denote by gr A the category of graded objects of A . It inherits a symmetric monoidal
structure from that of A , with the tensor product defined by

.A˝ B/n WD
M

p

Ap ˝ Bp�n:

The unit in gr A is given by 1 concentrated in degree zero. The functor U W gr A �! A
obtained by forgetting the degree is strong symmetric monoidal. The category of graded
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MIXED HODGE STRUCTURES AND FORMALITY OF FUNCTORS 1077

complexes Ch�.gr A / inherits a symmetric monoidal structure via a graded Künneth
morphism.

D 2.6. – Given a rational number ˛, denote by Ch�.gr A /˛-pure the full
subcategory of Ch�.gr A / given by those graded complexes A D

L

A
p
n with ˛-pure

homology:
Hn.A/

p D 0 for all p ¤ ˛n:

Note that if ˛ D a=b, with a and b coprime, then the above condition implies thatH�.A/

is concentrated in degrees that are divisible by b, and in degree kb, it is pure of weight ka:

Hkb.A/
p D 0 for all p ¤ ka:

P 2.7. – Let A be an abelian category and ˛ a non-zero rational number. The
functor U W Ch�.gr A /˛-pure �! Ch�.A / defined by forgetting the degree is formal as a lax
symmetric monoidal functor.

Proof. – We will define a functor � W Ch�.gr A / �! Ch�.gr A / together with natural
transformations

ˆ W U ı � ) U and ‰ W U ı � ) H ı U

giving rise to weak equivalences when restricted to chain complexes with ˛-pure homology.

Consider the truncation functor � W Ch�.gr A / �! Ch�.gr A / defined by sending a
graded chain complex A D

L

A
p
n to the graded complex given by:

.�A/pn WD

8

ˆ

ˆ

<

ˆ

ˆ

:

A
p
n n > dp=˛e;

Ker.d W Ap
n ! A

p
n�1/ n D dp=˛e;

0 n < dp=˛e;

where dp=˛e denotes the smallest integer greater than or equal to p=˛. Note that for each p,
�.A/

p
� is the chain complex given by the canonical truncation ofAp

� at dp=˛e, which satisfies

Hn.�.A/
p
� / Š Hn.A

p
� / for all n � dp=˛e:

To prove that � is a lax symmetric monoidal functor it suffices to see that

�.A/pn ˝ �.B/
q
m � �.A˝ B/

pCq
nCm

for allA;B 2 Ch�.gr A /. By symmetry inA andB, it suffices to consider the following three
cases :

1. If n > dp=˛e andm � dq=˛e then nCm > dp=˛eC dq=˛e � d.pC q/=˛e. Therefore
we have �.A˝ B/pCq

nCm D .A˝ B/
pCq
nCm and the above inclusion is trivially satisfied.

2. If n D dp=˛e and m D dq=˛e then n C m D dp=˛e C dq=˛e � d.p C q/=˛e.
Now, if n C m > d.p C q/=˛e then again we have �.A ˝ B/

pCq
nCm D .A ˝ B/

pCq
nCm.

If nCm D d.p C q/=˛e then the above inclusion reads

Ker.d W Ap
n ! A

p
n�1/˝Ker.d W Bq

m ! B
q
m�1/ � Ker.d W .A˝ B/pCq

nCm ! .A˝ B/
pCq
nCm�1/:

This is verified by the Leibniz rule.

3. Lastly, if n < dp=˛e then �.A/pn D 0 and there is nothing to verify.
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1078 J. CIRICI AND G. HOREL

The projection Ker.d W Ap
n ! A

p
n�1/։ Hn.A/

p defines a morphism �A! H.A/ by

.�A/pn 7!

(

0 n ¤ dp=˛e;

Hn.A/
p n D dp=˛e:

This gives a symmetric monoidal natural transformation ‰ W U ı � ) H ı U D U ı H .
Likewise, the inclusion �A ,! A defines a symmetric monoidal natural transformation
ˆ W U ı � ) U .

Let A be a complex of Ch�.gr A /˛-pure. Then both morphisms

‰.A/ W � ı U.A/! H ı U.A/ and ˆ.A/ W U ı �.A/! U.A/

are clearly quasi-isomorphisms.

For graded chain complexes whose homology is pure up to a certain degree, we obtain a
result of partial formality as follows.

D 2.8. – Let q � 0 be an integer. A morphism of chain complexes f W A! B

is called a q-quasi-isomorphism if the induced morphism in homology Hi .f / W Hi .A/! Hi .B/

is an isomorphism for all i � q.

R 2.9. – There is a notion of q-quasi-isomorphism in rational homotopy which
asks in addition that the map induced in degree .q C 1/-cohomology is a monomor-
phism. Dually, for chain complexes one could ask to have an epimorphism in degree
.qC 1/-homology. Note that we don’t consider this extra condition here, since we work with
possibly negatively and positively graded complexes and such a condition would break the
symmetry. In addition, in our subsequent work on formality with torsion coefficients [15],
the notion of partial formality as defined below plays a fundamental role.

D 2.10. – Let q � 0 be an integer. A functor F W C �! Ch�.A / is a q-formal
lax symmetric monoidal functor if there are natural transformations ˆi as in Definition 2:1
such that ˆi .X/ are q-quasi-isomorphisms for all X 2 C and all 1 � i � n.

P 2.11. – Let A be an abelian category. Given a non-zero rational number ˛
and an integer q � 0, denote by Ch�.gr A /

˛-pure
q the full subcategory of Ch�.gr A / given by

those graded complexes A D
L

A
p
n whose homology in degrees � q is ˛-pure: for all n � q,

Hn.A/
p D 0 for all p ¤ ˛n:

Then the functor U W Ch�.gr A /
˛-pure
q �! Ch�.A / defined by forgetting the degree is

q-formal.

Proof. – The proof is parallel to that of Proposition 2.7 by noting that, ifHn.A/ is ˛-pure
for n � q C 1, then the morphisms

‰.A/ W � ı U.A/! H ı U.A/ and ˆ.A/ W U ı �.A/! U.A/

are q-quasi-isomorphisms.
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3. Mixed Hodge structures

We next collect some main definitions and properties on mixed Hodge structures and
prove a symmetric monoidal version of Deligne’s splitting for the weight filtration.

Denote by F A the category of filtered objects of an abelian symmetric monoidal cate-
gory .A ;˝; 1/. All filtrations will be assumed to be of finite length and exhaustive. With the
tensor product

Wp.A˝ B/ WD
X

iCj Dp

Im.WiA˝WjB �! A˝ B/;

and the unit given by 1 concentrated in weight zero, F A is a symmetric monoidal category.
The functor U fil W gr A �! F A defined by A D

L

Ap 7! WmA WD
L

q�mA
q is strong

symmetric monoidal. The category of filtered complexes Ch�.F A / inherits a symmetric
monoidal structure via a filtered Künneth morphism and we have a strong symmetric
monoidal functor

U fil W Ch�.gr A / �! Ch�.F A /:

Let k � R be a subfield of the real numbers.

D 3.1. – A mixed Hodge structure on a finite dimensional k-vector space V
is given by an increasing filtration W of V , called the weight filtration, together with a
decreasing filtration F on VC WD V ˝ C, called the Hodge filtration, such that for all m � 0,
each k-vector space GrW

m V WD WmV=Wm�1V carries a pure Hodge structure of weight m
given by the filtration induced byF on GrW

m V˝C, that is, there is a direct sum decomposition

Grm
W V ˝ C D

M

pCqDm

V p;q where V p;q D F p.GrW
m V ˝ C/ \ F

q
.GrW

m V ˝ C/ D V
q;p
:

Morphisms of mixed Hodge structures are given by morphisms f W V ! V 0 of k-vector
spaces compatible with filtrations: f .WmV / � WmV

0 and f .F pVC/ � F pV 0
C. Denote

by MHSk the category of mixed Hodge structures over k. It is an abelian category by [16,
Theorem 2.3.5].

R 3.2. – Given mixed Hodge structures V and V 0, then V ˝ V 0 carries a mixed
Hodge structure with the filtered tensor product. This makes MHSk into a symmetric
monoidal category. Also, Hom.V; V 0/ carries a mixed Hodge structure with the weight
filtration given by

WpHom.V; V 0/ WD ff W V ! V 0If .WqV / � WqCpV
0; 8qg

and the Hodge filtration defined in the same way. In particular, the dual of a mixed Hodge
structure is again a mixed Hodge structure.

Let k � K be a field extension. The functors

…K WMHSk �! VectK and …W
K WMHSk �! F VectK

defined by sending a mixed Hodge structure .V;W; F / to VK WD Vk ˝ K and .VK; W /
respectively, are strong symmetric monoidal functors.

Deligne introduced a global decomposition of VC WD V ˝ C into subspaces Ip;q , for
any mixed Hodge structure .V;W; F / which generalizes the decomposition of pure Hodge
structures of a given weight. In this case, one has a congruence Ip;q � I

q;p
moduloWpCq�2.
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From this decomposition, Deligne deduced that morphisms of mixed Hodge structures are
strictly compatible with filtrations and that the category of mixed Hodge structures is abelian
(see [16, Section 1], see also [37, Section 3.1]). We next study this decomposition in the context
of symmetric monoidal functors.

L 3.3 (Deligne’s splitting). – The functor …W
C admits a factorization

MHSk
G

//

…W
C

##

grVectC

U fil

��

F VectC

into strong symmetric monoidal functors. In particular, there is an isomorphism of functors

U fil ı gr ı…W
C Š …

W
C ;

where gr W F VectC �! grVectC is the graded functor given by gr.VC; W /p D GrW
p VC.

Proof. – Let .V;W; F / be a mixed Hodge structure. By [16, 1.2.11] (see also [25, Lemma
1.12]), there is a direct sum decomposition VC D

L

Ip;q.V / where

Ip;q.V / D .F pWpCqVC/ \

 

F
q
WpCqVC C

X

i>0

F
q�i
WpCq�1�iVC

!

:

This decomposition is functorial for morphisms of mixed Hodge structures and satisfies

WmVC D
M

pCq�m

Ip;q.V /:

Define G by letting G.V;W;F /n WD
L

pCqDn I
p;q.V / for any mixed Hodge structure. Since

f .Ip;q.V // � Ip;q.V 0/ for every morphism f W .V;W; F / ! .V 0; W; F / of mixed Hodge
structures, G is functorial. To see that G is strong symmetric monoidal it suffices to use the
definition of Ip;q together with the tensor product mixed Hodge structure defined via the
filtered tensor product, to obtain isomorphisms

X

pCqDn
p0Cq0Dn0

Ip;q.V /˝ Ip0;q0

.V 0/ Š
X

iCj DnCn0

I i;j .V ˝ V 0/

showing that the splittings I �;� are compatible with tensor products (see also [35, Proposition
1.9]).

The functor U fil W grVect �! F Vect is the strong symmetric monoidal functor given by
M

n

V n 7! .V;W /; with WmV WD
M

n�m

V n:

Therefore we have U fil ıG D …W
C . In order to prove the isomorphism U fil ı gr ı…W

C Š …
W
C

it suffices to note that there is an isomorphism of functors gr ı U fil Š Id:
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4. Descent of splittings of lax symmetric monoidal functors

In this section, we study lax symmetric monoidal functors to vector spaces over a field
of characteristic zero k equipped with a compatible filtration. More precisely, we are inter-
ested in lax symmetric monoidal maps C �! F Vectk. Our goal is to prove that the
existence of a lax symmetric monoidal splitting for such a functor (i.e., of a lift of this
map to C �! grVectk) can be checked after extending the scalars to a larger field. Our
proof follows similar arguments to those appearing in [13, Section 2.4], see also [26] and
[40]. A main advantage of our approach with respect to these references is that, in proving
descent at the level of functors, we avoid the use of minimal models (and thus restrictions
to, for instance, operads with trivial arity 0).

It will be a bit more convenient to study a more general situation where C is allowed to be a
colored operad instead of a symmetric monoidal category. Indeed recall that any symmetric
monoidal category can be seen as an operad whose colors are the objects of C and where
a multimorphism from .c1; : : : ; cn/ to d is just a morphism in C from c1 ˝ � � � ˝ cn to d .
Then, given another symmetric monoidal category D, there is an equivalence of categories
between the category of lax symmetric monoidal functors from C to D and the category of
C -algebras in the symmetric monoidal category D.

We fix .V;W / a map of colored operads C �! F Vectk such that for each color c of C , the
vector space V.c/ is finite dimensional. We denote by AutW .V / the set of its automorphisms
in the category of C -algebras in F Vectk and by Aut.GrW V / the set of automorphisms
of GrW V in the category of C -algebras in grVectk. We have a morphism gr W AutW .V / !

Aut.GrW V /.

Let k! R be a commutative k-algebra. The correspondence

R 7! AutW .V /.R/ WD AutW .V ˝k R/

defines a functor AutW .V / W Algk �! Gps from the category Algk of commutative
k-algebras, to the category Gps of groups. Clearly, we have AutW .V /.k/ D AutW .V /. We
define in a similar fashion a functor Aut.GrW V / from Algk to Gps.

We recall the following properties:

P 4.1. – Let .V;W / be as above. 1.1.

1. AutW .V / is a group scheme whose group of k-points is AutW .V /.

2. The functor GrW induces a morphism gr W AutW .V /! Aut.GrW V / of group schemes.

3. The kernel U WD Ker
�

gr W AutW .V /! Aut.GrW V /
�

is a unipotent group scheme

over k.

Proof. – We first observe that there is an isomorphism

AutW .V / Š limS AutW .VS /;

in which the limit is taken over the poset of finite sets S of objects of C and VS denotes
the restriction of V to those objects. We can write the groups AutW .V / and Aut.GrW V / as
similar limits. Therefore we may restrict to the case when C has finitely many objects and
prove that in this case, the above objects live in the category of algebraic groups.
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Let N be such that the vector space
L

c2 C V.c/ can be linearly embedded in kN . Then
AutW .V / is the closed subgroup of GLN .k/ defined by the polynomial equations that express
the data of a filtration preserving C -algebra automorphism. Similarly, inside the functor of
linear automorphisms

L

c2 C V.c/˝k R �!
L

c2 C V.c/˝k R, let F.R/ be those preserving
the structure of V as a C -algebra in filtered vector spaces. The condition of preserving the
filtration and the algebra structure is given by polynomial equations in the matrix entries and
so F is representable (this is also explained in Section 7.6 of [41]). It follows that AutW .V / is
an algebraic group and its group of k-points is AutW .V /. Hence (1) is satisfied.

For every commutative k-algebra R, the map

AutW .V /.R/ D AutW .V ˝k R/ �! Aut.GrW .V ˝k R// D Aut.GrW V /.R/

is a morphism of groups which is natural inR. Thus (2) follows and hence the kernel U is an
algebraic group. It now suffices to take a basis of

L

c2 C V.c/ compatible with W . Then we
may viewU as a subgroup of the group of upper-triangular matrices with 1’s on the diagonal.
Hence (3) is satisfied.

L 4.2. – Let .V;W / be as above. The following assertions are equivalent: 1.1.

1. The pair .V;W / admits a lax symmetric monoidal splitting: WpV Š
L

q�p GrW
q V .

2. The morphism gr W AutW .V /! Aut.GrW V / is surjective.

3. There exists ˛ 2 k� which is not a root of unity together with an automorphism
ˆ 2 AutW .V / such that gr.ˆ/ D  ˛ is the grading automorphism of GrW V associated
with ˛, defined by

 ˛.a/ D ˛
pa; for a 2 GrW

p V:

Proof. – The implications .1/ ) .2/ ) .3/ are trivial. We show that (3) implies
(1). Let ˆ 2 AutW .V / be such that grˆ D  ˛. We will first produce a decomposition
ˆ D ˆs :ˆu which is such that for any object c of C , the restrictions .ˆs.c/; ˆu.c// is a Jordan
decomposition for ˆ.c/. In order to do that, recall that we have an isomorphism

AutW .V / D limS AutW .VS /

where the limit is taken over the poset of finite subsets S of objects of C and VS denotes
the restriction of V to the subset S . For each of the groups AutW .VS / we can find a Jordan
decomposition of the image ofˆ in each of them. The transition maps between those groups
preserve this decomposition and it follows that this decomposition induces a decomposition
of ˆ with the desired property.

By [7, Theorem 4.4], there is a decomposition of the form V.c/ D V 0.c/˚ V 00.c/, where

V 0.c/ D
M

Vp.c/ with Vp.c/ WD Ker.ˆs.c/ � ˛
pI /

and V 00.c/ is the complementary subspace corresponding to the remaining factors of
the characteristic polynomial of ˆs.c/. By assumption, GrW V.c/ contains nothing but
eigenspaces of eigenvalue ˛p. Therefore we have GrW V 00.c/ D 0 and one concludes that
V 00.c/ D 0.
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In order to show thatWpV D
L

i�p Vp it suffices to prove it objectwise. Let c be an object
of C . For x 2 Vp.c/, let q be the smallest integer such that x 2 WqV.c/. Then x defines a class
x CWqC1V.c/ 2 grV.c/, and

 ˛.x CWq�1V.c// D ˛
qx CWq�1V.c/ D ˆ.x/CWq�1V.c/ D ˛

px CWq�1V.c/:

Then .˛q � ˛p/x 2 Wq�1V.c/. Since x … Wq�1V.c/ we have q D p, hence x 2 WpV .

We may now state and prove the main theorem of this section.

T 4.3. – Let .V;W / be a map of colored operads C �! F Vectk such that for each
color c of C , the vector space V.c/ is finite dimensional. Let k � K be a field extension. Then V
admits a lax symmetric monoidal splitting if and only if VK WD V ˝k K W C �! VectK admits
a lax symmetric monoidal splitting.

Proof. – We may assume without loss of generality that K is algebraically closed. If VK
admits a splitting, the map

AutW .V /.K/ �! Aut.GrW V /.K/

is surjective by Lemma 4:2. Our goal is to prove surjectivity of

AutW .V /.k/ �! Aut.GrW V /.k/:

As in Proposition 4.1, we can write those groups as filtered limits. Since an inverse limit of
surjections is a surjection, it is enough to prove the result when C has finitely many objects.

From [41, Section 18.1] there is an exact sequence of groups

1 �! U.k/ �! AutW .V /.k/ �! Aut.GrW V /.k/ �! H 1.K=k; U / �! � � �

where U is a unipotent algebraic group by Proposition 4:1 and our assumption that C has
finitely many objects. Since k has characteristic zero the groupH 1.K=k; U / is trivial (see [41,
Example 18.2.e]) and we deduce the desired surjectivity.

From this theorem we deduce that Deligne’s splitting holds over Q. We record this fact in
the following Lemma.

L 4.4 (Deligne’s splitting over Q). – The forgetful functor …W
Q WMHSQ �! F VectQ

given by .V;W; F / 7! .V;W / admits a factorization

MHSQ
G

//

…W
Q

##

grVectQ

U fil

��

F VectQ

into lax symmetric monoidal functors. In particular, there is an isomorphism of functors

U fil ı gr ı…W
Q Š …

W
Q ;

where gr W F VectQ �! grVectQ is the graded functor given by gr.VQ; W /p D GrW
p VQ.
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Proof. – We apply Theorem 4.3 to the lax symmetric monoidal functor…W
Q using the fact

that …W
Q ˝Q C admits a splitting by Lemma 3.3.

R 4.5. – We want to emphasize that Theorem 4.3 does not say that the splitting
of the previous lemma recovers the splitting of Lemma 3.3 after tensoring with C. In fact,
it can probably be shown that such a splitting cannot exist. Nevertheless, the existence of
Deligne’s splitting over C abstractly forces the existence of a similar splitting over Q which is
all this Lemma is saying. Note as well that these are not splittings of mixed Hodge structures,
but only of the weight filtration. They are also referred to as weak splittings of mixed Hodge
structures (see for example [37, Section 3.1]). As is well-known, mixed Hodge structures do
not split in general.

The above splitting over Q yields the following “purity implies formality” statement in
the abstract setting of functors defined from the category of complexes of mixed Hodge
structures. Given a rational number ˛, denote by Ch�.MHSQ/

˛-pure the full subcate-
gory of Ch�.MHSQ/ of complexes with pure weight ˛ homology: an object .K;W;F / in
Ch�.MHSQ/

˛-pure is such that Grp
WHn.K/ D 0 for all p ¤ ˛n:

C 4.6. – The restriction of the functor …Q W Ch�.MHSQ/ �! Ch�.Q/ to the
category Ch�.MHSQ/

˛-pure is formal for any non-zero rational number ˛.

Proof. – This follows from Proposition 2.7 together with Lemma 4.4.

5. Mixed Hodge complexes

In this section, we construct an equivalence of symmetric monoidal1-categories between
mixed Hodge complexes and complexes of mixed Hodge structures, lifting Beilinson’s equiv-
alence of triangulated categories.

We first recall the notion of mixed Hodge complex introduced by Deligne in [17] in its
chain complex version (with homological degree). Note that, in contrast with the classical
setting of mixed Hodge theory, in the homological version of a mixed Hodge complex, the
weight filtration W will be decreasing while the Hodge filtration F will be increasing.

Let k � R be a subfield of the real numbers.

D 5.1. – A mixed Hodge complex over k is given by a filtered chain complex
.Kk; W / over k, a bifiltered chain complex .KC; W; F / over C, together with a finite string of
filtered quasi-isomorphisms of filtered complexes of C-vector spaces

.Kk; W /˝ C
˛1

�! .K1; W /
˛2

 � � � �
˛l�1

���! .Kl�1; W /
˛l

�! .KC; W /:

We call l the length of the mixed Hodge complex. The following axioms must be satisfied:

(MH0) The homology H�.Kk/ is bounded and finite-dimensional.

(MH1) The differential of Grp
WKC is strictly compatible with F .

(MH2) The filtration onHn.Grp
WKC/ induced by F makesHn.Grp

WKk/ into a pure Hodge
structure of weight p C n.

Such a mixed Hodge complex will be denoted by K D f.Kk; W /; .KC; W; F /g, omitting
the data of the comparison morphisms ˛i .
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The above axioms imply that for all n � 0 the triple .Hn.Kk/;W Œn�; F / is a mixed Hodge
structure over k, where W Œn� is the shifted weight filtration given by

W Œn�pHn.Kk/ WD W
p�nHn.Kk/:

Morphisms of mixed Hodge complexes are given by levelwise bifiltered morphisms of
complexes making the corresponding diagrams commute. Denote by MHCk the category
of mixed Hodge complexes of a certain fixed length, which we omit in the notation. The
tensor product of mixed Hodge complexes is again a mixed Hodge complex (see [37, Lemma
3.20]). This makes MHCk into a symmetric monoidal category, with a filtered variant of the
Künneth formula.

D 5.2. – A morphism f W K ! L in MHCk is said to be a weak equivalence
if H�.fk/ is an isomorphism of k-vector spaces.

Since the category of mixed Hodge structures is abelian, the homology of every complex
of mixed Hodge structures is a graded mixed Hodge structure. We have a functor

T W Chb
�.MHSk/ �!MHCk

given on objects by .K;W;F / 7! f.K; T W /; .K ˝ C; T W;F /g, where T W is the shifted
filtration .T W /pKn WD W

pCnKn. The comparison morphisms ˛i are the identity. Also, T
is the identity on morphisms. This functor clearly preserves weak equivalences.

L 5.3. – The shift functor T W Chb
�.MHSk/ �! MHCk is strong symmetric

monoidal.

Proof. – It suffices to note that given filtered complexes .K;W / and .L;W /, we have:

T .W ˝W /p.K ˝ L/n D .T W ˝ T W /
p.K ˝ L/n:

Beilinson [2] gave an equivalence of categories between the derived category of mixed
Hodge structures and the homotopy category of a shifted version of mixed Hodge complexes.
We will require a finer version of Beilinson’s equivalence, in terms of symmetric monoidal
1-categories. Denote by MHCk the1-category obtained by inverting weak equivalences of
mixed Hodge complexes, omitting the length in the notation. As explained in [20, Theorem
2.7.], this object is canonically a symmetric monoidal stable 1-category. Note that in loc.
cit., mixed Hodge complexes have fixed length 2 and are polarized. The results of [20] as well
as Beilinson’s equivalence, are equally valid for the category of mixed Hodge complexes of
an arbitrary fixed length.

T 5.4. – The shift functor induces an equivalence Chb
�.MHSk/ �! MHCk of

symmetric monoidal1-categories.

Proof. – A proof in the polarizable setting appears in [20]. Also, in [9], a similar statement
is proven for a shifted version of mixed Hodge complexes. We sketch a proof in our setting.

We first observe as in Lemma 2.6 of [9] that both1-categories are stable and that the shift
functor is exact. The stability of MHCk follows from the observation that this1-category is
the Verdier quotient at the acyclic complexes of the1-category of mixed Hodge complexes
with the homotopy equivalences inverted. This last1-category underlies a dg-category that
can easily be seen to be stable. The stability of Chb

�.MHSk/ follows in a similar way. Since
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a complex of mixed Hodge structures is acyclic if and only if the underlying complex of
k-vector spaces is acyclic, and T is the identity on the underlying complexes of k-vector
spaces, it follows that T is exact. Therefore, in order to prove that T is an equivalence of
1-categories, it suffices to show that it induces an equivalence of homotopy categories

Db.MHSk/ �! ho.MHCk/:

In [2, Lemma 3.11], it is proven that the shift functor T W Chb
�.MHSp

k / �! MHCp
k

induces an equivalence at the level of homotopy categories. Here the superindex p indicates
that the mixed Hodge objects are polarized. One may verify that Beilinson’s proof is equally
valid if we remove the polarization (see also [14, Theorem 4.10] where Beilinson’s equivalence
is proven in the non-polarized version via other methods). The fact that T can be given
the structure of a strong symmetric monoidal 1-functor follows from the work of Drew
in [20].

6. Logarithmic de Rham currents

The goal of this section is to construct a strong symmetric monoidal 1-functor from
algebraic varieties over C to mixed Hodge complexes which computes the correct mixed
Hodge structure after passing to homology. The construction for smooth varieties is rela-
tively straightforward. It suffices to take a functorial mixed Hodge complex model for the
cochains as constructed for instance in [36] and dualize it. The monoidality of that functor
is slightly tricky as one has to move to the world of1-categories for it to exist. Once one has
constructed this functor for smooth varieties, it can be extended to more general varieties
by standard descent arguments.

We denote by VarC the category of complex schemes that are reduced, separated and of
finite type. We use the word variety for an object of this category. We denote by SmC the
subcategory of smooth schemes. Both of these categories are essentially small (i.e., there is a
set of isomorphisms classes of objects) and symmetric monoidal under the cartesian product.

We will make use of the following very simple observation.

P 6.1. – Let C and D be two categories with finite products seen as symmetric
monoidal categories with respect to the product. Then any functorF W C �! D has a preferred
oplax symmetric monoidal structure.

Proof. – We need to construct comparison morphisms F.c � c0/ �! F.c/ � F.c0/. By
definition of the product, there is a unique such functor whose composition with the first
projection is the map F.c � c0/ �! F.c/ induced by the first projection c � c0 �! c and
whose composition with the second projection is the map F.c � c0/ �! F.c0/ induced by
the second projection c�c0 �! c0. Similarly, one has a unique map F.�/ �! �. One checks
easily that these two maps give F the structure of an oplax symmetric monoidal functor.
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6.1. For smooth varieties

In this section, we construct a lax symmetric monoidal functor

D� W N.SmC/ �!MHCQ

such that its composition with the forgetful functor MHCQ �! Ch�.Q/ is naturally weakly
equivalent to S�.�;Q/ as a lax symmetric monoidal functor.

We will adapt Navarro-Aznar’s construction of mixed Hodge diagrams [36]. Let X be a
smooth projective complex variety and j W U ,! X an open subvariety such thatD WD X�U
is a normal crossing divisor. Denote by A �

X the analytic de Rham complex of the underlying
real analytic variety of X and let A �

X .logD/ denote the subsheaf of j� A �
U of logarithmic

forms inD. Note that in Deligne’s approach to mixed Hodge theory, the sheaf��
X .logD/ of

holomorphic forms onX with logarithmic poles alongD is used instead. As explained in 8.5
of [36], the main advantage to consider analytic forms is the natural real structure obtained,
together with a decomposition of the form

A n
X .logD/˝ C D

M

pCqDn

A p;q
X .logD/:

Also, there is an inclusion��
X .logD/ ,! A �

X .logD/˝C which is a quasi-isomorphism and
A �

X .logD/ may be naturally endowed with a multiplicative weight filtration W (see 8.3 of
[36]). Proposition 8.4 of loc. cit. gives a string of quasi-isomorphisms of sheaves of filtered
cdga’s over R:

.RTWj�QU
; �/˝ R

�
�! .RTWj� A �

U ; �/
�
 � .A �

X .logD/; �/
�
�! .A �

X .logD/;W /;

where � is the canonical filtration. In this diagram,

RTWj� W Sh.U;Ch�0
� .k// �! Sh.X;Ch�0

� .k//

is the functor defined by

RTWj� WD sTW ı j� ıG
C

where

GC W Sh.X;Ch�0
� .k// �! �Sh.X;Ch�0

� .k//

is the Godement canonical cosimplicial resolution functor and

sTW W �Sh.X;Ch�0
� .k// �! Sh.X;Ch�0

� .k//

is the Thom-Whitney simple functor introduced by Navarro in Section 2 of loc. cit. Both
functors are lax symmetric monoidal and hence RTWj� is a lax symmetric monoidal functor
(see [39, Section 3.2]).

The complex A �
X .logD/ ˝ C carries a natural multiplicative Hodge filtration F (see

8.6 of [36]). The above string of quasi-isomorphisms gives a commutative algebra object
in (cohomological) mixed Hodge complexes after taking global sections. Specifically, the
composition

RTW�.X;�/ WD sTW ı �.X;�/ ıG
C

gives a derived global sections functor

RTW�.X;�/ W Sh.X;Ch�0
� .Q// �! Ch�0

� .Q/
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which again is lax symmetric monoidal. There is also a filtered version of this functor
defined via the filtered Thom-Whitney simple (see Section 6 of [36]). Theorem 8.15 of loc.
cit. asserts that by applying the (bi)filtered versions of RTW�.X;�/ to each of the pieces of
the above string of quasi-isomorphisms, one obtains a commutative algebra object in mixed
Hodge complexes Hdg .X;U /whose cohomology gives Deligne’s mixed Hodge structure on
H�.U;Q/ and such that

Hdg .X;U /Q D RTW�.X;RTWj�QU
/

is naturally quasi-isomorphic to S�.U;C/ (as a cochain complex). This construction is func-
torial for morphisms of pairs f W .X;U / ! .X 0; U 0/. The definition of Hdg .f / follows as
in the additive setting (see [32, Lemma 6.1.2] for details), by replacing the classical additive
total simple functor with the Thom-Whitney simple functor.

Now we wish to get rid of the dependence on the compactification. For this purpose, we
define for U a smooth variety over C, a category RU whose objects are pairs .X;U / where
X is smooth and proper variety containing U as an open subvariety and X �U is a normal
crossing divisor. Morphisms in RU are morphisms of pairs. We then define D�.U / by the
formula

D
�.U / WD colimR

op

U

Hdg .X;U /

By theorems of Hironaka and Nagata, the category Rop

U is a non-empty filtered category.
Note that we have to be slightly careful here as the category of mixed Hodge complexes
does not have all filtered colimits. However, we can form this colimit in the category of
pairs .KQ; W /; .KC; W; F / having the structure required in Definition 5.1 but not neces-
sarily satisfying the axioms MH0, MH1 and MH2. Since taking filtered colimit is an exact
functor, we deduce from the classical isomorphism between sheaf cohomology and singular
cohomology that there is a quasi-isomorphism

D
�.U /Q ! S�.U;Q/

This shows that the cohomology of D�.U / is of finite type and hence, that D�.U / satisfies
axiom MH0. The other axioms are similarly easily seen to be satisfied. Moreover, filtered
colimits preserve commutative algebra structures, therefore the functor D� is a functor from
Smop

C to commutative algebras in MHCQ.
Since the coproduct in commutative algebras is the tensor product, we deduce from the

dual of Proposition 6.1 that D� is canonically a lax symmetric monoidal functor from Smop

C

to MHCQ. But since the comparison map

D
�.U /Q ˝Q D

�.V /Q �! D
�.U � V /Q

is a quasi-isomorphism, this functor extends to a strong symmetric monoidal1-functor

D
� W N.SmC/

op �!MHCQ:

R 6.2. – A similar construction for real mixed Hodge complexes is done in [10,
Section 3.1]. There is also a similar construction in [20] that includes polarizations.

Now, the category MHCQ is equipped with a duality functor. It sends a mixed Hodge
complex f.KQ; W /; .KC; W; F /g to the linear duals f.K_

Q ; W
_/; .K_

C ; W
_; F _/g where the

dual of a filtered complex is defined as in 3.2. One checks easily that this dual object satisfies
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the axioms of a mixed Hodge complex. Moreover, the duality functor MHCop

Q �! MHCQ

is lax symmetric monoidal and preserves weak equivalences of mixed Hodge complexes,
therefore it induces a lax symmetric monoidal1-functor

MHC
op

Q �!MHCQ;

but in fact, we have the following proposition.

P 6.3. – The dualization1-functor

MHC
op

Q �!MHCQ

is strong symmetric monoidal.

Proof. – It suffices to observe that the canonical map

K_ ˝ L_ �! .K ˝ L/_

is a weak equivalence. This follows from the fact that mixed Hodge complexes are assumed
to have finite type cohomology.

Composing the duality functor with D�, we get a strong symmetric monoidal1-functor

D� W N.SmC/ �!MHCQ:

R 6.4. – One should note that D� comes from a lax symmetric monoidal functor
from Smop

C to MHCQ. On the other hand, D� is induced by a strict functor which is neither
lax nor oplax. Indeed, it is obtained as the composition of .D�/op which is an oplax
symmetric monoidal functor SmC �! .MHCQ/

op and the duality functor which is a lax
symmetric monoidal functor. Thus, the symmetric monoidal structure on D� only exists at
the1-categorical level.

To conclude this construction, it remains to compare the functor D�.�/Q with the singular
chains functor. These two functors are naturally quasi-isomorphic as shown in [36] but we
will need to know that they are quasi-isomorphic as symmetric monoidal 1-functors. We
denote by S�.�; R/ the singular chain complex functor from the category of topological
spaces to the category of chain complexes over a commutative ring R. The functor S�.�; R/

is lax symmetric monoidal. Moreover, the natural map

S�.X;R/˝ S�.Y;R/! S�.X � Y;R/

is a quasi-isomorphism. This implies that S�.�; R/ induces a strong symmetric monoidal
1-functor from the category of topological spaces to the 1-category Ch�.R/ of chain
complexes over R. We still use the symbol S�.�; R/ to denote this1-functor.

T 6.5. – The functors D�.�/Q and S�.�;Q/ are weakly equivalent as strong
symmetric monoidal1-functors from N.SmC/ to Ch�.Q/.

Proof. – We introduce the category Man of smooth real manifolds. We consider the
1-category PSh.Man/ of presheaves of spaces on the 1-category N.Man/. This is a
symmetric monoidal1-category under the product. We can consider the reflective subcate-
gory T spanned by presheaves G satisfying the following two conditions:
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1. Given a hypercover U� !M of a manifold M , the induced map

G .M/! lim� G .U�/

is an equivalence.

2. For any manifold M , the map G .M/! G .M � R/ induced by the projection
M � R!M is an equivalence.

The presheaves satisfying these conditions are stable under product, hence the1-category T

inherits the structure of a symmetric monoidal locally presentable 1-category. It has a
universal property that we now describe.

Given another symmetric monoidal locally presentable 1-category D, we denote by
FunL;˝.T;D/ the 1-category of colimit preserving strong symmetric monoidal functors
T! D. Then, we can consider the composition

FunL;˝.T;D/! FunL;˝.PSh.Man/;D/! Fun˝.NMan;D/

where the first map is induced by precomposition with the left adjoint to the inclusion
T! PSh.Man/ and the second map is induced by precomposition with the Yoneda embed-
ding. We claim that the above composition is fully faithful and that its essential image is the
full subcategory of Fun˝.NMan;D/ spanned by the functors F that satisfy the following
two properties:

1. Given a hypercover U� !M of a manifold M , the map

colim�op F.U�/! F.M/

is an equivalence.

2. For any manifold M , the map F.M � R/! F.M/ induced by the projection
M � R!M is an equivalence.

This statement can be deduced from the theory of localizations of symmetric monoidal
1-categories (see [30, Section 3]).

In particular, there exists an essentially unique strong symmetric monoidal and colimit
preserving functor from T to S (the 1-category of spaces) that is determined by the fact
that it sends a manifold M to the simplicial set Sing.M/. This functor is an equivalence of
1-categories. This is a folklore result. A proof of a model category version of this fact can
be found in [21, Proposition 8.3.].

The 1-category S is the unit of the symmetric monoidal 1-category of presentable
1-categories. It follows that it has a commutative algebra structure (which corresponds to
the symmetric monoidal structure coming from the cartesian product) and that it is the
initial symmetric monoidal presentable1-category. Since T is equivalent to S as a symmetric
monoidal presentable 1-category, we deduce that, up to equivalence, there is a unique
functor T �! Ch�.Q/ that is strong symmetric monoidal and colimit preserving. But, using
the universal property of T, we easily see thatS�.�;Q/ and D�.�/Q can be extended to strong
symmetric monoidal and colimits preserving functors from T to Ch�.Q/. It follows that they
must be equivalent.
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6.2. For varieties

In this subsection, we extend the construction of the previous subsection to the category
of varieties.

We have the site .VarC/pro of varieties over C with the proper topology and the site
.SmC/pro which is the restriction of this site to the category of smooth varieties (see [4, Section
3.5] for the definition of the proper topology).

P 6.6 (Blanc). – Let C be a symmetric monoidal presentable1-category. We
denote by Fun˝

pro.VarC;C/ the1-category of strong symmetric monoidal functors from VarC
to C whose underlying functor satisfies descent with respect to proper hypercovers. Similarly, we
denote by Fun˝

pro.SmC;C/ the1-category of strong symmetric monoidal functors from SmC to
C whose underlying functor satisfies descent with respect to proper hypercovers. The restriction
functor

Fun˝
pro.VarC;C/ �! Fun˝

pro.SmC;C/

is an equivalence.

Proof. – We have the categories Fun.Varop

C ; sSet/ and Fun.Smop

C ; sSet/ of presheaves of
simplicial sets over VarC and SmC respectively. These categories are related by an adjunction

�� W Fun.Smop

C ; sSet/⇆ Fun.Varop

C ; sSet/ W ��

where the right adjoint �� is just the restriction of a presheaf to smooth varieties. Both sides
of this adjunction have a symmetric monoidal structure by taking objectwise product. The
functor �� is obviously strong symmetric monoidal. We can equip both sides with the local
model structure with respect to the proper topology. We obtain a Quillen adjunction

�� W Funpro.Smop

C ; sSet/⇆ Funpro.Varop

C ; sSet/ W ��

between symmetric monoidal model categories in which the right adjoint is a strong
symmetric monoidal functor. In [4, Proposition 3.22], it is proved that this is a Quillen
equivalence. The model category Funpro.Smop

C ; sSet/ presents the1-topos of hypercomplete
sheaves over the proper site on SmC and similarly for model category Funpro.Varop

C ; sSet/.
Therefore, this Quillen equivalence implies that these two 1-topoi are equivalent. More-
over, as in the proof of 6.5, these topoi, seen as symmetric monoidal presentable 1-cate-
gories under the cartesian product, represent the functor C 7! Fun˝

pro.SmC;C/ (resp.
C 7! Fun˝

pro.VarC;C/). The result immediately follows.

T 6.7. – Up to weak equivalences, there is a unique strong symmetric monoidal
functor

D� W N.VarC/ �!MHCQ

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D� constructed in the previous subsection.

There is also a unique strong symmetric monoidal functor

D
� W N.VarC/op �!MHCQ

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D� constructed in the previous subsection.
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Proof. – Let Ind.MHCQ/ be the Ind-category of the 1-category of mixed Hodge
complexes. This is a stable presentable1-category. We first prove that the composite

D� W N.SmC/ �!MHCQ �! Ind.MHCQ/

satisfies descent with respect to proper hypercovers. Let Y be a smooth variety and X� ! Y

be a hypercover for the proper topology. We wish to prove that the map

˛ W colim�op D�.X�/ �! D�.Y /

is an equivalence in Ind.MHCQ/. By [4, Proposition 3.24] and the fact that taking singular
chains commutes with homotopy colimits in spaces, we see that the map

ˇ W colim�op S�.X�;Q/ �! S�.Y;Q/

is an equivalence. On the other hand, writing Ch�.Q/
! for the 1-category of chain

complexes whose homology is finite dimensional, the forgetful functor

U W Ind.MHCQ/ �! Ind.Ch�.Q/
!/ ' Ch�.Q/

preserves colimits and by Theorem 6.5, the composite U ı D� is weakly equivalent to
S�.�;Q/. Therefore, the map ˇ is weakly equivalent to the map U.˛/ in particular, we
deduce that the source of ˛ is in MHCQ (as opposed to Ind.MHCQ/). And since the functor
U WMHCQ ! Ch�.C/ is conservative, it follows that ˛ is an equivalence as desired.

Hence, by Proposition 6.6, there is a unique extension of D� to a strong symmetric
monoidal functor N.VarC/ �! Ind.MHCQ/ that has proper descent. Moreover, by the first
paragraph of this proof, if Y is an object of VarC and X� �! Y is a proper hypercover by
smooth varieties, then colim�op D�.X�;Q/ has finitely generated homology. It follows that
this unique extension of D� to VarC lands in MHCQ � Ind.MHCQ/.

For the case of D�, we know from Proposition 6.3 that dualization induces a strong
symmetric monoidal equivalence of 1-categories MHC

op

Q ' MHCQ (we emphasize that,
as a functor, dualization is only lax symmetric monoidal but as an 1-functor it is strong
symmetric monoidal). Thus, we see that we have no other choice but to define D� as the
composite

N.Var/op .D�/op

����!MHC
op

Q

.�/_

���!MHCQ

and this will be the unique strong symmetric monoidal functor

D
� W N.VarC/op �!MHCQ;

which satisfies descent with respect to proper hypercovers and whose restriction to SmC is
equivalent to the functor D� constructed in the previous subsection.

P 6.8. – 1. There is a weak equivalence D�.�/Q ' S�.�;Q/ in the cate-
gory of strong symmetric monoidal1-functors N.VarC/ �! Ch�.Q/.

2. There is a weak equivalence A �
PL.�/ ' D�.�/Q ' S�.�;Q/ in the 1-category of

strong symmetric monoidal1-functors N.VarC/op �! Ch�.Q/.
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Proof. – We prove the first claim. By construction D�.�/Q is a symmetric monoidal
functor that satisfies proper descent. By [4, Proposition 3.24], the same is true for S�.�;Q/.
Since these two functors are moreover weakly equivalent when restricted to SmC, they are
equivalent by Proposition 6.6.

The linear dual functor is strong symmetric monoidal when restricted to chain complexes
whose homology is of finite type. Moreover, both S�.�;Q/ and D�.�/Q land in the1-cate-
gory of such chain complexes. Therefore, the equivalence S�.�;Q/ ' D�.�/Q follows from
the first part. The equivalence A �

PL.�/ ' S
�.�;Q/ is classical.

7. Formality of the singular chains functor

In this section, we prove the main results of the paper on the formality of the singular
chains functor. We also explain some applications to operad formality.

D 7.1. – Let X be a complex variety and let ˛ be a rational number. We say
that the weight filtration on H�.X;Q/ is ˛-pure if for all n � 0 we have

GrW
p Hn.X;Q/ D 0 for all p ¤ ˛n:

R 7.2. – Note that since the weight filtration on Hn.�;Q/ has weights in the
interval Œ0; 2n� \ Z, the above definition makes sense only for ˛ 2 Œ0; 2� \ Q. For ˛ D 1 we
recover the purity property shared by the cohomology of smooth projective varieties. A very
simple example of a variety whose filtration is ˛-pure, with ˛ not integer, is given by C2 nf0g.
Its reduced cohomology is concentrated in degree 3 and weight 4, so its weight filtration is
4=3-pure. We refer to Proposition 8:6 in the following section for more elaborate examples.

Here is our main theorem.

T 7.3. – Let ˛ be a non-zero rational number. The singular chains functor

S�.�;Q/ W VarC �! Ch�.Q/

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight filtration
in cohomology is ˛-pure.

Proof. – By Corollary 2.4, it suffices to prove that this functor is formal as an 1-lax
symmetric monoidal functor. By Proposition 6.8, it is equivalent to prove that D�.�/Q is
formal. We denote by ND� the composite of D� with a strong symmetric monoidal inverse
of the equivalence of Theorem 5.4. Because of that theorem, D�.�/Q is weakly equivalent to
…Q ı ND�. The restriction of ND� to Var˛-pure

C lands in Ch�.MHSQ/
˛-pure, the full subcategory

of Ch�.MHSQ/ spanned by chain complexes whose homology is ˛-pure. By Corollary 4.6,
the1-functor…Q from Ch�.MHSQ/

˛-pure to Ch�.Q/ is formal and hence so is…Qı ND�.

We now list a few applications of this result.
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7.1. Noncommutative little disks operad

The authors of [19] introduce two nonsymmetric topological operads A sS1 and
A sS1 ⋊ S1. In each arity, these operads are given by a product of copies of C � f0g

and the operad maps can be checked to be algebraic maps. It follows that the operads A sS1

and A sS1 ⋊ S1 are operads in the category SmC and that the weight filtration on their
cohomology is 2-pure. Therefore, by 7.3 we have the following result.

T 7.4. – The operads S�.A sS1 ;Q/ and S�.A sS1 ⋊ S1;Q/ are formal.

R 7.5. – The fact that the operad S�.A sS1 ;Q/ is formal is proved in [19, Propo-
sition 7] by a more elementary method and it is true even with integral coefficients. The other
formality result was however unknown to the authors of [19].

7.2. Self-maps of the projective line

We denote by Fd the algebraic variety of degree d algebraic maps from P1
C to itself

that send the point 1 to the point 1. Explicitly, a point in Fd is a pair .f; g/ of degree d
monic polynomials without any common roots. Sending a monic polynomial to its set of
coefficients, we may see the variety Fd as a Zariski open subset of A2d

C . See [31, Section 5]
for more details.

P 7.6. – The weight filtration on H�.Fd ;Q/ is 2-pure.

Proof. – The variety Fd is denoted Polyd;2
1 in [24, Definition 1.1.]. It is explained in

Step 4 of the proof of Theorem 1.2 in that paper, that the variety Fd is the quotient of
the complement of a hyperplane arrangement H in A2d

C by the group †d � †d acting by
permuting the coordinates. The quotient map

� W A2d
C �H ! Fd

is algebraic and thus induces a morphism of mixed Hodge structures �� W H�.Fd ;Q/ !

H�.A2d
C �H;Q/. Moreover, it is classical that �� is injective (see e.g., [8, Theorem III.2.4]).

Since the mixed Hodge structure of H k.A2d
C � H;Q/ is pure of weight 2k (by Proposition

8.6 or by [33]), the desired result follows.

In [11, Proposition 3.1.], Cazanave shows that the variety
F

d Fd has the structure of a
graded monoid in SmC. The structure of a graded monoid can be encoded by a colored
operad. Thus the following result follows from Theorem 7.3.

T 7.7. – The graded monoid in chain complexes
L

d S�.Fd ;Q/ is formal.
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7.3. The little disks operad

In [38], Petersen shows that the operad of little disks D is formal. The method of proof is
to use the action of a certain group GT.Q/ on S�.PABQ;Q/ which follows from work of
Drinfeld. Here the operad PABQ is rationally equivalent to D and GT.Q/ is the group of
Q-points of the pro-algebraic Grothendieck-Teichmüller group. We can reinterpret this proof
using the language of mixed Hodge structures. Indeed, the group GT receives a map from
the group Gal.MT.Z//, the Galois group of the Tannakian category of mixed Tate motives
over Z (see [1, 25.9.2.2]). Moreover there is a map Gal.MHTSQ/ ! Gal.MT.Z// from the
Tannakian Galois group of the abelian category of mixed Hodge Tate structures (the full
subcategory of MHSQ generated under extensions by the Tate twists Q.n/ for all n) which is
Tannaka dual to the tensor functor

MT.Z/ �!MHTSQ

sending a mixed Tate motive to its Hodge realization. This map of Galois group allows us
to view S�.PABQ;Q/ as an operad in Ch�.MHSQ/ which moreover has a 2-pure weight
filtration (as follows from the computation in [38]). Therefore by Corollary 4.6, the operad
S�.PABQ;Q/ is formal and hence also S�.D;Q/.

7.4. The gravity operad

In [23], Dupont and the second author prove the formality of the gravity operad of
Getzler. It is an operad structure on the collection of graded vector spaces fH��1.M 0;nC1/; n 2 Ng.
It can be defined as the homotopy fixed points of the circle action on S�.D;Q/. The method
of proof in [23] can also be interpreted in terms of mixed Hodge structures. Indeed, a model
Grav W 0

of gravity is constructed in 2.7 of loc. cit. This model comes with an action of
GT.Q/ and a GT.Q/-equivariant map � W Grav W 0

�! S�.PABQ;Q/ which is injective on

homology. As in the previous subsection, this action of GT.Q/ allows us to interpret Grav W 0

as an operad in Ch�.MHSQ/. Moreover, the injectivity of � implies that Grav W 0

also has a
2-pure weight filtration. Therefore by Corollary 4.6, we deduce the formality of Grav W 0

. In
fact, we obtain the stronger result that the map

� W Grav W 0

�! S�.PABQ;Q/

is formal as a map of operads (i.e., it is connected to the induced map in homology by a zig-
zag of maps of operads).

7.5. E1-formality

The above results deal with objects whose weight filtration is pure. In general, for mixed
weights, the singular chains functor is not formal, but it is E1-formal as we now explain.

The r-stage of the spectral sequence associated to a filtered complex is an r-bigraded
complex with differential of bidegree .�r; r � 1/. By taking its total degree and considering
the column filtration we obtain a filtered complex. Denote by

Er W Ch�.F Q/ �! Ch�.F Q/

the resulting strong symmetric monoidal1-functor. Denote by

Q…W
Q WMHCQ �! Ch�.F Q/
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the forgetful functor defined by sending a mixed Hodge complex to its rational component
together with the weight filtration. Note that, since the weight spectral sequence of a mixed
Hodge complex degenerates at the second stage, the homology of E1 ı Q…W

Q gives the weight
filtration on the homology of mixed Hodge complexes. We have:

T 7.8. – Denote by Sfil
� W N.VarC/ �! Ch�.Q/ the composite functor

N.VarC/
D�

��!MHCQ

Q…W
Q

���! Ch�.F Q/:

There is an equivalence of strong symmetric monoidal1-functors E1 ı Sfil
� ' S

fil
� :

Proof. – It suffices to prove an equivalence Q…W
Q ' E1 ı Q…W

Q . We have a commutative
diagram of strong symmetric monoidal1-functors.

Ch�.MHSQ/

…W
Q

��

T
// MHCQ

Q…W
Q

��

Ch�.F Q/
T
//

E0

��

Ch�.F Q/

E1

��

Ch�.F Q/
T
// Ch�.grQ/.

The commutativity of the top square follows from the definition of T . We prove that the
bottom square commutes. Recall that T .K;W / is the filtered complex .K; T W / defined by
T W pKn WD W pCnKn. It satisfies d.T W pKp/ � T W pC1Kn�1. In particular, the induced
differential on GrT WK is trivial. Therefore we have:

E1
�p;q.K; T W / Š Hq�p.Grp

T WK/ Š Grp
T WKq�p D Grq

WKq�p D E
0
�q;2q�p.K;W /:

This proves that the above diagram commutes.

Since T is an equivalence of1-categories, it is enough to prove that E1 ı Q…W
Q ı T is

equivalent to Q…W
Q ı T . By the commutation of the above diagram it suffices to prove that

there is an equivalenceE0 ı…W
Q Š …

W
Q . This follows from Lemma 4.4, sinceE0 D U fil ı gr.

8. Rational homotopy of varieties and formality

For X a space, we denote by A �
PL.X/, Sullivan’s algebra of piecewise linear differential

forms. This is a commutative dg-algebra over Q that captures the rational homotopy type
of X . A contravariant version of Theorem 7:3 gives:

T 8.1. – Let ˛ be a non-zero rational number. The functor

A �
PL W Varop

C �! Ch�.Q/

is formal as a lax symmetric monoidal functor when restricted to varieties whose weight filtration
in cohomology is ˛-pure.
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Proof. – The proof is the same as the proof of Theorem 7:3 using D� instead of D� and
using the fact that D�.�/Q is quasi-isomorphic to A �

PL as a lax symmetric monoidal functor
(see [36, Théorème 5.5]).

Recall that a topological space X is said to be formal if there is a string of quasi-
isomorphisms of commutative dg-algebras from A �

PL.X/ to H�.X;Q/, where H�.X;Q/ is
considered as a commutative dg-algebra with trivial differential. Likewise, a continuous map
of topological spaces f W X �! Y is formal if there is a string of homotopy commutative
diagrams of morphisms

A �
PL.Y /

f �

��

�oo

��

� � �oo // �

��

// H�.Y;Q/

H �.f /

��

A �
PL.X/ �oo � � �oo // � // H�.X;Q/;

where the horizontal arrows are quasi-isomorphisms. Note that if f W X ! Y is a map of
topological spaces and X and Y are both formal spaces, then it is not always true that f is
a formal map. Also, in general, the composition of formal morphisms is not formal.

Theorem 8:1 gives functorial formality for varieties with pure weight filtration in coho-
mology, generalizing both “purity implies formality” statements appearing in [22] for smooth
varieties and in [12] for singular projective varieties. We also get a result of partial formality
as done in these references, via Proposition 2.11. Our generalization is threefold, as explained
in the following three subsections.

8.1. Rational purity

To our knowledge, in the existing references where ˛-purity of the weight filtration is
discussed, only the cases ˛ D 1 and ˛ D 2 are considered, whereas we obtain formality
for varieties with ˛-pure cohomology, for ˛ an arbitrary non-zero rational number. We now
show that certain complements of subspace arrangements give examples of such varieties.

D 8.2. – Let V be a finite dimensional C-vector space. We say that a finite set
fHigi2I of subspaces of V is a good arrangement of codimension d subspaces if

(i) For each i 2 I , the subspace Hi is of codimension d .

(ii) For each i 2 I , the set of subspaces fHi \Hj gj ¤i of Hi form a good arrangement of
codimension d subspaces.

R 8.3. – In particular the empty set of subspaces is a good arrangement of codi-
mension d subspaces. By induction on the size of I , we see that this condition is well-defined.

E 8.4. – Recall that a set of subspaces of codimension d of an n-dimensional
space is said to be in general position if the intersection of k of those subspaces is of
codimension min.n; dk/. One easily checks that a set of codimensions d subspaces in general
position is a good arrangement. However, the converse does not hold as shown in the
following example.
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E 8.5. – Take V D .Cd /m and define, for .i; j / an unordered pair of distinct
elements in f1; : : : ; mg, the subspace

W.i;j / D f.x1; : : : ; xn/ 2 .C
d /m; xi D xj g:

This collection of codimension d subspaces of V is a good arrangement. However, these
subspaces are not in general position if m is at least 3. Indeed, the codimension of W.1;2/ \

W.1;3/ \ W.2;3/ is 2d . The complement V �
S

.i;j /W.i;j / is exactly Fm.C
d /, the space of

configurations of m points in Cd .

P 8.6. – Let H D fH1; : : : ;Hkg be a good arrangement of codimension d
subspaces of Cn. Then the mixed Hodge structure on H�.Cn �

S

i Hi ;Q/ is pure of weight
2d=.2d � 1/.

Proof. – We proceed by induction on k. This is obvious for k D 0. Now, we consider the
variety X D Cn �

Sk�1
i Hi , It contains an open subvariety U D Cn �

Sk
i Hi and its closed

complement Z D Hk �
Sk�1

i Hi \Hk which has codimension d . Therefore the purity long
exact sequence on cohomology groups has the form

� � � �! H r�2d .Z/.�d/ �! H r .X/ �! H r .U / �! H rC1�2d .Z/.�d/ �! � � �

By the induction hypothesis, the Hodge structures on H rC1�2d .Z/.�d/ and on H r .X/ are
pure of weight 2dr=.2d � 1/ and hence it is also the case for H r .U / as desired.

R 8.7. – This proposition is well-known for d D 1 and is proved for instance
in [33]. Note that the space Fm.C

d / of configurations of m points in Cd fits in the above
proposition, so we recover formality of these spaces by purely Hodge theory arguments.

8.2. Functoriality

Every morphism of smooth complex projective varieties is formal. However, if f W X ! Y

is an algebraic morphism of complex varieties (possibly singular and/or non-projective), and
both X and Y are formal, the morphism f need not be formal.

E 8.8. – Consider the algebraic Hopf fibration f W C2 n f0g �! P1
C defined by

.x0; x1/ 7! Œx0 W x1�. Both spaces C2 n f0g ' S3 and P1
C ' S2 are formal. The morphism

induced by f in cohomology is trivial in all positive degrees. Therefore, if f were formal,
this would mean that f is nullhomotopic. However, it is well-known that f generates the
one dimensional vector space �3.S

2/˝Q. Note in fact, that P1
C has 1-pure weight filtration

while C2 n f0g has 4=3-pure weight filtration.

Theorem 8:1 tells us that if f W X �! Y is a morphism of algebraic varieties and
both X and Y have ˛-pure cohomology, with ˛ a non-zero rational number (the same ˛
for X and Y ), then f is a formal morphism. This generalizes the formality of holomorphic
morphisms between compact Kähler manifolds of [18] and enhances the results of [22] and
[12] by providing them with functoriality. In fact, we have:

P 8.9. – Let f W X �! Y be a morphism between connected complex
varieties. Assume that the weight filtration on the cohomology of X (resp. Y ) is ˛-pure (resp.
ˇ-pure). Then:
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1. If ˛ D ˇ, then f is formal.

2. If ˛ ¤ ˇ, then f is formal only if it is rationally nullhomotopic.

Proof. – Let us first give the precise definition that we will use of a rationally nullhomo-
topic map. We say that a map g W U �! V between topological spaces is rationally nullho-
motopic if the induced map

APL.g/ W A �
PL.V / �! A �

PL.U /

is equal in the homotopy category of cdga’s to a map that factors through the initial cdga Q.

When ˛ D ˇ, Theorem 8:1 ensures that f is formal.

If ˛ ¤ ˇ, then we claim that H�.f / is zero in positive degree. Indeed, since H�.f / is
strictly compatible with the weight filtration, it suffices to show that the morphism

GrW
p Hn.Y;Q/ �! GrW

p Hn.X;Q/

is trivial for all p 2 Z and all n > 0 which follows from the purity conditions. Therefore, if f
is formal, the map A �

PL.f / coincides with H�.f / in the homotopy category of cdga’s and
the latter map factors through Q.

8.3. Non-projective singular varieties

The following result of formality of non-projective singular complex varieties with pure
Hodge structure seems to be a new result.

E 8.10. – LetX be an irreducible singular projective variety of dimension n > 0
with 1-pure weight filtration in cohomology. Let p 2 X be a smooth point of X . Then, we
claim that the complementX�p has 1-pure weight filtration in cohomology. Indeed, we can
consider the long exact sequence of cohomology groups for the pair .X;X � p/.

� � � ! H i�1.X � p/! H i .X;X � p/! H i .X/! H i .X � p/! H iC1.X;X � p/! � � �

Since p is a smooth point, there exists a neighborhood U of p that is homeomorphic to R2n,
therefore excision gives us an isomorphism

H k.X;X � p/ Š H k.U; U � p/:

Since H k.U; U � p/ is non-zero only when k D 2n, we deduce that the map H k.X/ !

H k.X � p/ is an isomorphism for all k < 2n � 1. Moreover, since X is irreducible, we have
H 2n.X/ D Q and this vector space has a generator, the fundamental class, which is in the
image of H 2n.X;X � q/! H 2n.X/ for any smooth point q. Together with the above long
exact sequence, this implies that H 2n�1.X � p/ Š H 2n�1.X/ and H 2n.X � p/ D 0. To
summarize, we have proved that the inclusion X � p ! X induces an isomorphism on all
cohomology groups except on the top one whereH 2n.X/ D Q whileH 2n.X �p/ D 0. This
proves that the weight filtration of X � p is 1-pure. As a consequence, the space X � p is
formal and the inclusion X � p ,! X is formal.
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8.4. E1-formality

We also have a contravariant version of Theorem 7:8.

T 8.11. – Denote by A �
fil W N.VarC/op �! Ch�.F Q/ the composite functor

N.VarC/op D�

��!MHCQ

Q…W
Q

���! Ch�.F Q/:

Then

1. The lax symmetric monoidal1-functors A �
fil and E1 ı A �

fil are weakly equivalent.

2. Let U W Ch�.F Q/ �! Ch�.Q/ denote the forgetful functor. The lax symmetric
monoidal 1-functor U ı E1 ı A �

fil W N.VarC/op ! Ch�.Q/ is weakly equivalent to
Sullivan’s functor A �

PL of piecewise linear forms.

3. The lax symmetric monoidal functorU ıE1ıA �
fil W Smop

C ! Ch�.Q/ is weakly equivalent
to Sullivan’s functor A �

PL of piecewise linear forms.

Proof. – The first part is proven as Theorem 7.8 replacing D� by D�. The second part
follows from the first part and the fact that A �

PL.�/ is naturally weakly equivalent to
D�.�/Q ' U ı A �

fil (Proposition 6.8). The third part follows from the second part and
Theorem 2.3, using the fact that both functors are ordinary lax symmetric monoidal functors
when restricted to smooth varieties.

R 8.12. – In [35] it is proven that the complex homotopy type of every smooth
complex variety is E1-formal. This is extended to possibly singular varieties and their
morphisms in [13]. Then, a descent argument is used to prove that for nilpotent spaces (with
finite type minimal models), this result descends to the rational homotopy type. Theorem
8:11 enhances the contents of [13] in two ways: first, since descent is done at the level of
functors, we obtain E1-formality over Q for any complex variety, without nilpotency condi-
tions (the only property needed is finite type cohomology). Second, the functorial nature
of our statement makes E1-formality at the rational level, compatible with composition of
morphisms.

8.5. Formality of Hopf cooperads

Our main theorem takes two dual forms, one covariant and one contravariant. The
covariant theorem yields formality for algebraic structures (like monoids, operads, etc.),
the contravariant theorem yields formality for coalgebraic structure (like the comonoid
structure coming from the diagonal X ! X � X for any variety X ). One might wonder if
there is a way to do both at the same time. For example, if M is a topological monoid, then
H�.M;Q/ is a Hopf algebra where the multiplication comes from the diagonal of M and
the comultiplication comes from the multiplication of M . One may ask whether S�.M;Q/

is formal as a Hopf algebra. This question is not well-posed because S�.M;Q/ is not a
Hopf algebra on the nose. The problem is that there does not seem to exist a model for
singular chains or cochains that is strong symmetric monoidal: the standard singular chain
functor S�.�;Q/ is lax symmetric monoidal and Sullivan’s functor A �

PL is oplax symmetric
monoidal functor from Top to Ch�.Q/

op.
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Nevertheless, the functor A �
PL is strong symmetric monoidal “up to homotopy”. It

follows that, if M is a topological monoid, A �
PL.M/ has the structure of a cdga with a

comultiplication up to homotopy and it makes sense to ask if it has formality as such an
object. In order to formulate this more precisely, we introduce the notion of an algebraic
theory. The following is inspired by Section 3 of [34].

D 8.13. – An algebraic theory is a small category T with finite products.
For C a category with finite products, a T -algebra in C is a finite product preserving
functor T �! C .

There exist algebraic theories for which the T -algebras are monoids, groups, rings,
operads, cyclic operads, modular operads etc.

R 8.14. – Definitions of algebraic theories in the literature are usually more
restrictive. This definition will be sufficient for our purposes.

D 8.15. – Let T be an algebraic theory. Let k be a field. Then a dg Hopf
T -coalgebra over k is a finite coproduct preserving functor from T op to the category of cdga’s
over k.

R 8.16. – Recall that the coproduct in the category of cdga’s is the tensor
product. It follows that a dg Hopf T -coalgebra for T the algebraic theory of monoids is a
dg Hopf algebra whose multiplication is commutative. A dg Hopf T -coalgebra for T the
theory of operads is what is usually called a dg Hopf cooperad in the literature.

D 8.17. – Let T be an algebraic theory and C a category with products and
with a notion of weak equivalences. A weak T -algebra in C is a functor F W T �! C such
that for each pair .s; t/ of objects of T , the canonical map

F.t � s/ �! F.t/ � F.s/

is a weak equivalence. A weak T -algebra in the opposite category of CDGAk is called a weak
dg Hopf T -coalgebra.

Observe that if X W T �! Top is a T -algebra in topological spaces (or even a weak
T -algebra), then A �

PL.X/ is a weak dg Hopf T -coalgebra. Our main theorem for Hopf
T -coalgebras is the following.

T 8.18. – Let ˛ be a rational number different from zero. Let X W T �! VarC be
a T -algebra such that for all t 2 T , the weight filtration on the cohomology of X.t/ is ˛-pure.
Then A �

PL.X/ is formal as a weak dg Hopf T -coalgebra.

Proof. – Being a weak T -coalgebra is a property of a functor T op ! CDGAk that is
invariant under quasi-isomorphism. Thus the result follows immediately from Theorem 8.1.
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It should be noted that knowing that A �
PL.X/ is formal as a dg Hopf T -coalgebra

implies that the data of H�.X;Q/ is enough to reconstruct X as a T -algebra up to rational
equivalence. Indeed, recall the Sullivan spatial realization functor

h�i W CDGAk �! Top:

Applying this functor to a weak dg Hopf T -coalgebra yields a weak T -algebra in rational
spaces. Specializing to A �

PL.X/ where X is a T -algebra in spaces, we get a rational model
for X in the sense that the map

X �! hA �
PL.X/i

is a rational weak equivalence of weak T -algebras whose target is objectwise rational. It
should also be noted that for reasonable algebraic theories T (including in particular the
theory for monoids, commutative monoids, operads, cyclic operads), the homotopy theory
of T -algebras in spaces is equivalent to that of weak T -algebras by the main theorem of
[3]. In particular our weak T -algebra hA �

PL.X/i can be strictified to a strict T -algebra
that models the rationalization of X . If A �

PL.X/ is formal, one also gets a rational model
for X by applying the spatial realization to the strict Hopf T -coalgebraH�.X;Q/. Thus the
rational homotopy type ofX as a T -algebra is a formal consequence ofH�.X;Q/ as a Hopf
T -coalgebra.

E 8.19. – Applying this theorem to the non-commutative little disks operad and
framed little disks operad of subsection 7.1, we deduce that A �

PL.A sS1/ and A �
PL.A sS1 ⋊ S1/

are formal as a weak Hopf non-symmetric cooperads. Similarly applying this to the monoid
of self maps of the projective line of subsection 7.2, we deduce that A �

PL.
F

d Fd / is formal
as a weak Hopf graded comonoid.
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