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BOUNDEDNESS OF Q-FANO VARIETIES
WITH DEGREES AND ALPHA-INVARIANTS

BOUNDED FROM BELOW

 C JIANG

A. – We show that Q-Fano varieties of fixed dimension with anti-canonical degrees and
alpha-invariants bounded from below form a bounded family. As a corollary, K-semistable Q-Fano
varieties of fixed dimension with anti-canonical degrees bounded from below form a bounded family.

R. – Nous démontrons que les variétés de Q-Fano de dimension fixe dont les degrés
anticanoniques et les alpha-invariants sont bornés inférieurement forment une famille bornée. En
corollaire, les variétés de Q-Fano K-semistables de dimension fixe dont les degrés anticanoniques sont
bornés inférieurement forment une famille bornée.

1. Introduction

Throughout the article, we work over an algebraically closed field of characteristic zero.
A Q-Fano variety is defined to be a normal projective varietyX with at most klt singularities
such that the anti-canonical divisor �KX is an ample Q-Cartier divisor.

When the base field is the complex number field, an interesting problem for Q-Fano
varieties is the existence of Kähler-Einstein metrics which is related to K-(semi)stability
of Q-Fano varieties. It has been known that a Fano manifold X (i.e., a smooth Q-Fano
variety over C) admits Kähler-Einstein metrics if and only if X is K-polystable by the works
[15, 42, 16, 17, 14, 40, 32, 33, 3] and [11, 12, 13, 43]. K-stability is stronger than K-polystability,
and K-polystability is stronger than K-semistability. Hence K-semistable Q-Fano varieties
are interesting for both differential geometers and algebraic geometers.

It also turned out that Kähler-Einstein metrics and K-stability play crucial roles for the
construction of nice moduli spaces of certainQ-Fano varieties. For example, compact moduli
spaces of smoothable Kähler-Einstein Q-Fano varieties have been constructed (see [36] for
dimension two case and [30, 39, 34] for higher dimensional case). In order to consider the
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moduli space of certain (singular) Q-Fano varieties, the first step is to show the boundedness
property, which is the motivation of this paper. We show the boundedness of K-semistable
Q-Fano varieties of fixed dimension with anti-canonical degrees bounded from below, which
gives an affirmative answer to a question asked by Yuchen Liu during the AIM workshop
“Stability and moduli spaces” in January 2017.

T 1.1. – Fix a positive integer d and a real number ı > 0. Then the set of d -dimen-
sional K-semistable Q-Fano varieties X with .�KX /d > ı forms a bounded family.

Note that the assumption that .�KX /d is bounded from below is necessary, by
Example 1.4(2) later.

As mentioned before, one might have further applications of Theorem 1.1 such as
constructing moduli spaces of d -dimensional K-semistable Q-Fano varieties with bounded
anti-canonical degrees. An interesting corollary of Theorem 1.1 is the discreteness of the
anti-canonical degrees of K-semistable Q-Fano varieties.

C 1.2. – Fix a positive integer d . Then the set of .�KX /d for d -dimensional
K-semistable Q-Fano varieties X is finite away from 0.

Here a set P of positive real numbers is finite away from 0 if for any ı > 0, P \ .ı;1/ is
a finite set. We remark that Corollary 1.2 might be related to the conjectural discreteness of
minimal normalized volumes of klt singularities, cf. [31, Question 4.3].

The idea of proof of Theorem 1.1 comes from birational geometry. According to Minimal
Model Program, Q-Fano varieties form a fundamental class in birational geometry, and the
boundedness property forQ-Fano varieties is also interesting from the point view of birational
geometry. For example, Kollár, Miyaoka, and Mori [26] proved that smooth Fano varieties
form a bounded family. The most celebrated progress recently is the proof of Borisov-Alexeev-
Borisov Conjecture due to Birkar [4, 5], which says that given a positive integer d and a real
number � > 0, the set of �-lc Q-Fano varieties of dimension d forms a bounded family.

In this paper, inspired by Birkar’s work, in order to show Theorem 1.1, we show the
following theorem.

T 1.3. – Fix a positive integer d and a real number ı > 0. Then the set of d -dimen-
sional Q-Fano varieties X with .�KX /d > ı and ˛.X/ > ı forms a bounded family.

Here ˛.X/ is the alpha-invariant of X defined by Tian [41] (see also [7]) in order to
investigate the existence of Kähler-Einstein metrics on Fano manifolds. Recall that Fujita and
Odaka [18, Theorem 3.5] proved that the alpha-invariant of a K-semistableQ-Fano variety of
dimension d is always not less than 1=.dC1/, so Theorem 1.3 implies Theorem 1.1 naturally.
The advantage to consider Theorem 1.3 is that we can then apply methods from birational
geometry, instead of dealing with K-semistable Q-Fano varieties.

The point of Theorem 1.3 is that we replace the �-lc condition in Borisov-Alexeev-Borisov
Conjecture by the condition on lower bound of anti-canonical degrees and alpha-invariants,
which are global invariants.

We remark that if one takes ı D 1, then Theorem 1.3 is a consequence of [4, Theorem 1.3],
which says that the set of exceptionalQ-Fano varieties (i.e.,Q-Fano varietiesX with˛.X/ > 1)
of fixed dimension forms a bounded family. Note that in this case we do not even need to

4 e SÉRIE – TOME 53 – 2020 – No 5



BOUNDEDNESS OF Q-FANO VARIETIES WITH DEGREES 1237

assume .�KX /d is bounded from below. But in general we need to assume both .�KX /d

and ˛.X/ are bounded from below, by the following examples.

E 1.4. – Fix a positive integer d .

1. Consider the weighted projective space Xn D P.1d ; n/ which is a Q-Fano variety of
dimension d with .�KXn

/d D .nC d/d=n > 1, but it is clear that fXng does not form
a bounded family.

2. Consider Y8nC4 � P.2; 2n C 1; 2n C 1; 4n C 1/, a general weighted hypersurface of
degree 8n C 4, which is a Q-Fano variety of dimension 2 with ˛.Y8nC4/ D 1 (see [6,
Corollary 1.12] or [22]), but it is clear that fY8nC4g does not form a bounded family.
For more interesting examples of Q-Fano varieties with ˛ � 1, we refer to [6, 9] in
dimension 2 and [8, 10] in higher dimensions. Note that all examples with ˛ � 1 are
K-semistable (in fact, K-stable) by [35, Theorem 1.4] (or [41]).

By [4, Proposition 7.13] or [5, Theorem 2.15], Theorem 1.3 is a consequence of the following
theorem.

T 1.5. – Fix a positive integer d and a real number ı > 0. Then there exists a
positive integer m depending only on d and ı such that if X is a d -dimensional Q-Fano variety
with .�KX /d > ı and ˛.X/ > ı, then j �mKX j defines a birational map.

To show Theorem 1.5, our main idea is to establish an inequality expressed in terms of
the volume of �KX jG on a covering family of subvarieties G of X and .�KX /d , ˛.X/, see
Lemma 3.1.

As a variation of Theorem 1.3, we can also show the following theorem.

T 1.6. – Fix a positive integer d and a real number � > 0. Then the set of d -dimen-
sional Q-Fano varieties X with ˛.X/d � .�KX /d > � forms a bounded family.

Logically, Theorem 1.3 is implied by Theorem 1.6. But we will show Theorem 1.3 first in
order to make the explanation more clear.

R 1.7. – Note that the invariant ˛.X/d � .�KX /d appears naturally in birational
geometry, see for example [25, Theorem 6.7.1]. It is not clear whether we can replace
˛.X/d �.�KX /

d in Theorem 1.6 by˛.X/d
0

�.�KX /
d for some positive real number d 0 < d:At

leastd 0 � d�1 is not sufficient to conclude the boundedness. For example, in Example 1.4(1),
.�KXn

/d D .n C d/d=n and ˛.Xn/ D 1=.n C d/ (for computation of alpha-invariants of
toric varieties, see [1, 6.3]), hence ˛.Xn/d�1 � .�KXn

/d > 1.

R 1.8. – We remark that the proof of both Theorems 1.3 and 1.6 works under the
weaker assumption that X is a weak Q-Fano variety (i.e., X has at most klt singularities and
�KX is nef and big), see also Remark 2.5. But it is not clear yet whether the log Fano pair
versions hold or not.
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