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ARITHMETIC OF BORCHERDS PRODUCTS

by

Benjamin Howard & Keerthi Madapusi Pera

Abstract. — We compute the divisors of Borcherds products on integral models of
orthogonal Shimura varieties. As an application, we obtain an integral version of a
theorem of Borcherds on the modularity of a generating series of special divisors.

Résumé (Arithmétique des produits de Borcherds). — Nous calculons les diviseurs des
produits de Borcherds sur des modèles intégraux de variétés de Shimura orthogonales.
Comme application, nous obtenons une version intégrale d’un théorème de Borcherds
sur la modularité d’une série génératrice de diviseurs spéciaux.

1. Introduction

In the series of papers [4, 5, 6], Borcherds introduced a family of meromorphic
modular forms on orthogonal Shimura varieties, whose zeroes and poles are prescribed
linear combinations of special divisors arising from embeddings of smaller orthogonal
Shimura varieties. These meromorphic modular forms are the Borcherds products of
the title.

After work of Kisin [31] on integral models of general Hodge and abelian type
Shimura varieties, the theory of integral models of orthogonal Shimura varieties and
their special divisors was developed further in [26, 27] and [39, 1, 2].

The goal of this paper is to combine the above theories to compute the divisor
of a Borcherds product on the integral model of an orthogonal Shimura variety. We
show that such a divisor is given as a prescribed linear combination of special divisors,
exactly as in the generic fiber.
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The first such results were obtained by Bruinier, Burgos Gil, and Kühn [9], who
worked on Hilbert modular surfaces (a special type of signature (2, 2) orthogonal
Shimura variety). Those results were later extended to more general orthogonal
Shimura varieties by Hörmann [26, 27], but with some restrictions.

Our results extend Hörmann’s, but with substantially weaker hypotheses. For ex-
ample, our results include cases where the integral model is not smooth, cases where
the divisors in question may have irreducible components supported in nonzero char-
acteristics, and even cases where the Shimura variety is compact (so that one has no
theory of q-expansions with which to analyze the arithmetic properties of Borcherds
products).

1.1. Orthogonal Shimura varieties. — Given an integer n ≥ 1 and a quadratic space
(V,Q) over Q of signature (n, 2), one can construct a Shimura datum (G,D) with
reflex field Q.

The group G = GSpin(V ) is a subgroup of the group of units in the Clifford algebra
C(V ), and sits in a short exact sequence

1→ Gm → G→ SO(V )→ 1.

The hermitian symmetric domain is

D = {z ∈ VC : [z, z] = 0, [z, z] < 0}/C× ⊂ P(VC),

where the bilinear form

(1.1.1) [x, y] = Q(x+ y)−Q(x)−Q(y)

on V has been extended C-bilinearly to VC.
To define a Shimura variety, fix a Z-lattice VZ ⊂ V on which the quadratic form is

Z-valued, and a compact open subgroup K ⊂ G(Af ) such that

(1.1.2) K ⊂ G(Af ) ∩ C(VẐ)×.

Here C(VẐ) is the Clifford algebra of the Ẑ-quadratic space VẐ = VZ⊗Ẑ. The canonical
model of the complex orbifold

ShK(G,D)(C) = G(Q)\
(
D ×G(Af )/K

)
is a smooth n-dimensional Deligne-Mumford stack

ShK(G,D)→ Spec(Q).

As in work of Kudla [32, 34], our Shimura variety carries a family of effective Cartier
divisors

Z(m,µ)→ ShK(G,D)

indexed by positive m ∈ Q and µ ∈ V ∨Z /VZ, and a metrized line bundle

ω̂ ∈ P̂ic(ShK(G,D))
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of weight one modular forms. Under the complex uniformization of the Shimura va-
riety, this line bundle pulls back to the tautological bundle on D, with the metric
defined by (4.2.3).

We say that VZ is maximal if there is no proper superlattice in V on which Q takes
integer values, and is maximal at p if the Zp-quadratic space VZp = VZ ⊗ Zp has the
analogous property. It is clear that VZ is maximal at every prime not dividing the
discriminant [V ∨Z : VZ].

Let Ω be a finite set of rational primes containing all primes at which VZ is not
maximal, and abbreviate

ZΩ = Z[1/p : p ∈ Ω].

Assume that (1.1.2) factors as K =
∏
pKp, in such a way that

Kp = G(Qp) ∩ C(VZp)×

for every prime p 6∈ Ω. For such K there is a flat and normal integral model

SK(G,D)→ Spec(ZΩ)

of ShK(G,D). It is a Deligne-Mumford stack of finite type over ZΩ, and is a scheme
if K is sufficiently small. At any prime p 6∈ Ω, it satisfies the following properties:

1. If the lattice VZ is self-dual at a prime p (or even almost self-dual in the sense
of Definition 6.1.1) then the restriction of the integral model to Spec(Z(p)) is
smooth.

2. If p is odd and p2 does not divide the discriminant [V ∨Z : VZ], then the restriction
of the integral model to Spec(Z(p)) is regular.

3. If n ≥ 6 then the reduction mod p is geometrically normal.

The integral model carries over it a metrized line bundle

ω̂ ∈ P̂ic(SK(G,D))

of weight one modular forms, extending the one already available in the generic fiber,
and a family of effective Cartier divisors

Z(m,µ)→ SK(G,D)

indexed by positive m ∈ Q and µ ∈ V ∨Z /VZ.

Remark 1.1.1. — If VZ is itself maximal, one can take Ω = ∅, choose

K = G(Af ) ∩ C(VẐ)×

for the level subgroup, and obtain an integral model of ShK(G,D) over Z.
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1.2. Borcherds products. — In § 5.1, we recall the Weil representation

ρVZ : S̃L2(Z)→ AutC(SVZ)

of the metaplectic double cover of SL2(Z) on the C-vector space

SVZ = C[V ∨Z /VZ].

Any weakly holomorphic form

f(τ) =
∑
m∈Q

m�−∞

c(m) · qm ∈M !
1−n2

(ρVZ
)

valued in the complex-conjugate representation has Fourier coefficients

c(m) ∈ SVZ ,

and we denote by c(m,µ) the value of c(m) at the coset µ ∈ V ∨Z /VZ. Fix such an f ,
assume that f is integral in the sense that c(m,µ) ∈ Z for all m and µ.

Using the theory of regularized theta lifts, Borcherds [5] constructs a Green function
Θreg(f) for the analytic divisor

(1.2.1)
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ)(C)

on ShK(G,D)(C), and shows (after possibly replacing f by a suitable multiple) that
some power of ω

an admits a meromorphic section ψ(f) satisfying

(1.2.2) − 2 log ‖ψ(f)‖ = Θreg(f).

This implies that the divisor of ψ(f) is (1.2.1). These meromorphic sections are the
Borcherds products of the title.

Our main result, stated in the text as Theorem 9.1.1, asserts that the Borcherds
product ψ(f) is algebraic, defined over Q, and has the expected divisor when viewed
as a rational section over the integral model.

Theorem A. — After possibly replacing f by a positive integer multiple, there is a
rational section ψ(f) of the line bundle ω

c(0,0) on SK(G,D) whose norm under the
metric (4.2.3) satisfies (1.2.2), and whose divisor is

div(ψ(f)) =
∑
m>0

µ∈V ∨Z /VZ

c(−m,µ) · Z(m,µ).

The unspecified positive integer by which one must multiply f can be made at least
somewhat more explicit. For example, it depends only on the lattice VZ, and not on
the form f . See the discussion of § 9.3.

As noted earlier, similar results can be found in the work of Hörmann [26, 27].
Hörmann only considers self-dual lattices, so that the corresponding integral model
SK(G,D) is smooth, and always assumes that the quadratic space V admits an
isotropic line. This allows him to prove the flatness of div(ψ(f)) by examining the
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q-expansion of ψ(f) at a cusp. As Hörmann’s special divisors Z(m,µ), unlike ours,
are defined as the Zariski closures of their generic fibers, the equality of divisors stated
in Theorem A is then a formal consequence of the same equality in the generic fiber.

In contrast, we can prove Theorem A even in cases where the divisors in question
may not be flat, and in cases where V is anisotropic, so no theory of q-expansions is
available.

The reader may be surprised to learn that even the descent of ψ(f) to Q was
not previously known in full generality. Indeed, there is a product formula for the
Borcherds product giving its q-expansions at every cusp, and so one should be able
to detect the field of definition of ψ(f) from a suitable q-expansion principle.

If V is anisotropic then ShK(G,D) is proper over Q, no theory of q-expansions
exists, and the above strategy fails completely. But even when V is isotropic there is
a serious technical obstruction to this argument. The product formula of Borcherds is
not completely precise, in that the q-expansion of ψ(f) at a given cusp is only specified
up to multiplication by an unknown constant of absolute value 1, and there is no a
priori relation between the different constants at different cusps. These constants are
the κ(a) appearing in Proposition 5.4.2.

If ShK(G,D) admits (a toroidal compactification with) a cusp defined over Q there
is no problem: simply rescale the Borcherds product by a constant of absolute value
1 to remove the mysterious constant at that cusp, and now ψ(f) is defined over Q.
But if ShK(G,D) has no rational cusps, then to prove that ψ(f) descends to Q one
must compare the q-expansions of ψ(f) at all points in a Galois orbit of cusps. One
can rescale the Borcherds product to trivialize the constant at one cusp, but then one
has no control over the constants at other cusps in the Galois orbit.

Using the q-expansion principle alone, is seems that the best one can prove is
that ψ(f) descends to the minimal field of definition of a cusp. Our strategy to improve
on this is sketched in § 1.4 below.

Remark 1.2.1. — As in the statement and proof of [26, Theorem 10.4.12], there is
an elementary argument using Hilbert’s Theorem 90 that allows one to rescale the
Borcherds product so that it descends to Q, but in this argument one has no control
over the scaling factor, and it need not have absolute value 1. In particular this
rescaling may destroy the norm relation (1.2.2). Even worse, rescaling by such factors
may introduce unwanted and unknown vertical components into the divisor of the
Borcherds product on the integral model of the Shimura variety, and understanding
what’s happening on the integral model is the central concern of this work.

1.3. Modularity of generating series. — The family of special divisors determines a
family of line bundles

Z(m,µ) ∈ Pic(SK(G,D))
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