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Dedicated to Jean-Michel Bismut on the occasion of his 60th birthday

Abstract. — We consider a Riemannian manifold, M , which can be compactified by
adjoining a smooth compact oriented Riemannian manifold such that a neighbour-
hood of the singular stratum B, of codimension at least two, is given by a family of
metric cones. Under the assumption that the middle cohomology of the cross-section
vanishes, we show that there is a natural self-adjoint extension for the Dirac operator
on forms with discrete spectrum, and we determine the condition of essential self-
adjointness. We describe the boundary conditions analytically and construct a good
parametrix which leads to the asymptotic expansion of a suitable resolvent trace as in
our previous work. We also give a new proof of the local formula for the L2-signature.

Résumé (Opérateur de signature sur les variétés avec une strate singulière conique)
Nous considèrons une variété riemannienne M , qui peut être compactifiée en lui

adjoignant une variété riemannienne C∞ compacte orientée, telle qu’un voisinage de
la strate singulière B, de codimension au moins deux, est donné par une famille de
cônes métriques. Sous une hypothèse d’annulation de la cohomologie de la section
du cône en dimension moitié, nous montrons qu’il existe une extension auto-adjointe
naturelle de l’opérateur de Dirac agissant sur les formes qui est de spectre discret, et
nous déterminons la condition sous laquelle l’opérateur de Dirac est essentiellement
auto-adjoint. Nous décrivons les conditions de bord, et nous construisons une para-
metrix qui donne le développement asymptotique de la trace de la résolvante, comme
dans un travail antérieur. Nous donnons aussi une preuve nouvelle de la formule locale
pour la signature L2.

Introduction

In this article, we analyze the signature operator on an oriented Riemannian mani-
fold (M, g), of dimension m = 4k, with one compact singular stratum B of dimension
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2 J. BRÜNING

h (the “horizontal dimension”), such that m−h ≥ 2. A neighbourhood of the singular
set is given by

(0.1) U := Uε0 := (0, ε0)×N, ε0 ∈ (0, 1/2),

with an oriented compact Riemannian manifold N of dimension 4k − 1 and metric
gTN , and M decomposes as

(0.2) M =: Uε0 ∪Mε0

into points of distance at most and at least ε0 of the singular set, respectively. For
ε ∈ (0, ε0], we use analogous notation and write Uε,Mε, with

M = Uε ∪Mε.

We assume that the orientation on M and N induce the boundary orientation on U ,
such that {− ∂

∂t , e1, . . . , em−1} is oriented on U if t ∈ (0, ε0) and {e1, . . . , em−1} is
oriented on N . We assume in addition that the singularity is of the following special
type. There is a fibration of oriented compact Riemannian manifolds,

(0.3) π : Y ↪→ N → B,

with fibers Yb = π−1(b), b ∈ B, of dimension v := 4k − 1 − h ≥ 1 (the “vertical
dimension”); in particular, B carries a metric gTB such that π becomes a Riemannian
submersion. Then the tangent bundle TN of N splits under gTN into the vertical and
the horizontal tangent bundle, consisting of the tangent vectors to the fibers and their
orthogonal complement,

TNp =: THNp ⊕ TVNp,(0.4)

with induced metrics gTHN and gTVN ; the corresponding orthogonal projections in
TN will be denoted by PH and PV , respectively. Next we assume that the metric
gTU := gTM |U takes the form

(0.5) gTU := dt2 ⊕ gTHN ⊕ t2gTVN ,

which we will call a metric of conic type. Thus,M∪B is a Riemannian pseudomanifold
with one singular stratum of conic type.

The boundary of U is the Riemannian manifold

Nε0 := (N, gTNε0 := gTHN ⊕ ε2
0g
TVN ).(0.6)

The splitting of TN induces a splitting of the cotangent bundle,

T ∗N =: T ∗HN ⊕ T ∗VN,

into cotangent vectors annihilating TVN and THN , respectively. This splitting induces
a bigrading of the exterior algebra ΛT ∗N which will be important for our analysis;
we write

ΛT ∗N = ΛT ∗HN ⊗ ΛT ∗VN

= ⊕j=p+qΛpT ∗HN ⊗ ΛqT ∗VN =: ⊕p,qΛp,qT ∗N.(0.7)
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SIGNATURE OPERATOR WITH CONICAL STRATUM 3

The smooth sections of ΛT ∗N and ΛT ∗H/VN will be denoted λ(N) and λH/V (N),
respectively, with degree or bidegree noted with superscripts.

Our main object will be the canonical Dirac operator associated with ΛT ∗M ,

DΛ := DΛ
M := dM + d†M ,(0.8)

with dM =: d the exterior derivative on M and d† its formal adjoint with respect to
the metric gTM .
D defined on forms with compact support, denoted by λc(M), is symmetric in

L2(M,ΛT ∗M) =: λ(2)(M) but may not be essentially self-adjoint; we refer to the
closure of this operator as DΛ

min =: Dmin, and dmin, d
†
min are defined analogously.

A specific self-adjoint extension of this operator can be defined via the Hilbert
complex given by the operator dmax which arises from d† as

(0.9) dmax := (d†min)∗,

cf. [11, §3]; with a slight abuse of notation we denote this extension again by D =

DΛ = DΛ
M , with domain D = domD. In general, there will be many more self-adjoint

extensions but D is of interest since its kernel gives the L2-cohomology of M . If D is
a Fredholm operator we have to break its symmetry to obtain a nontrivial index, e.
g. by an anticommuting supersymmetry i. e. a self-adjoint involution of ΛT ∗M . We
will use multiplication by the complex volume element, τM , which splits

ΛT ∗M =: Λ+T ∗M ⊕ Λ−T ∗M

into ±1-eigenbundles and analogously

λ(M) =: λ+(M)⊕ λ−(M),

with associated splitting σ = σ++σ− on the level of forms. If τM maps D to itself than
we can define the Signature Operator of M , with domain Dsign = D+ = 1

2 (I + τM ) D,
by

Dsign
M := Dsign := DΛ

M |D
+ : D+ → D−.(0.10)

We say that the case of uniqueness or the L2-Stokes Theorem holds on M if

(0.11) dmax = dmin.

In this case we have τ( D) ⊂ D, and if D is also Fredholm, then so is Dsign and its
index equals the L2-signature of M ,

(0.12) indDsign = sign(2)M.

The above metric data define the crucial object in the analysis of the signature oper-
ator: the splitting of T ∗N (induced by (0.4)) defines the “vertical de Rham operator”
dV (see (2.5)) and the metric gTVN1 defines the adjoint d†V , such that we can form the
operator (see (2.31))

AV := (dV + d†V )α+ ν.(0.13)
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Here α is another supersymmetry on ΛT ∗N and ν is an endomorphism (which are
defined in (2.19) and (2.13)), and AV is a first order symmetric differential operator
on C1

c (N,ΛT ∗N) which is fiberwise elliptic. Now M is called a Witt space if

(0.14) Hv/2(Y ) = 0.

We will see below (cf. Theorem 3.1) that (0.14) is essentially equivalent to the analytic
condition

(0.15) AV is invertible,

in the sense that the invertibility of AV implies the Witt condition, whereas the Witt
condition does not exclude the existence of zero eigenvalues but only of such which
may be called inessential; indeed, they disappear under suitable rescalings of the fiber
metric. We will assume that M is a Witt space.

Our results can then be summarized in the following theorems. We describe the
Signature Operator on M by explicitly constructing its Green kernel which relates it
to the symmetric operator D̃ defined as the restriction of Dmax to the domain

(0.16) {σ ∈ domDmax : ||σ+||λ(2)(Nt) = O(t1/2−ε) for every ε > 0,

||σ−||λ(2)(Nt) = O(t−1/2+η) for some η > 0, t→ 0};

note that D̃ anticommutes with τM by construction.

Theorem 0.1. — Let the Riemannian manifold (M, gTM ), of dimension m = 4k, be
the top stratum of a Riemannian pseudomanifold, X, which is a Witt space with only
one singular stratum B of conic type.
1. The operator D̃ defined by (0.16) is self-adjoint and discrete and anticommutes
with τM .
2. If |AV | ≥ 1

2 , then D
Λ
M,min is essentially self-adjoint.

3. The case of uniqueness holds for M .
4. Dsign = D̃+.

This theorem is well known in the case h = 0, cf. [15], [12], and part 2 and part 3
could also be deduced from Cheeger’s work [15].

It is clear from part 4 of Theorem 0.1 that under the above conditions

(0.17) ind D̃+ = ind D̃sign = sign(2)M,

so it is natural to ask for a local formula analogous to Hirzebruch’s Signature Theorem
in the smooth case. Bismut and Cheeger [6, Thm. 5.7] have indicated the adiabatic
construction of the homology L-class on the compact singular space associated with
M , together with the corresponding L2-index formula. A crucial role is played by
the η-invariant, η(N, gTN ), of the Riemannian manifold (N, gTN ), as introduced by
Atiyah, Patodi, and Singer in [1, Thm. (4.14)], and its adiabatic limit,

η̃(N, gTN ) := lim
ε→0

η(N, gTNε ).
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SIGNATURE OPERATOR WITH CONICAL STRATUM 5

The adiabatic limit was first introduced and computed by Witten [25], as a gravita-
tional anomaly, in case of a one-dimensional base. Witten’s formula was proved rigor-
ously by Cheeger [16], and independently by Bismut and Freed [9], [10]. The compu-
tation of the adiabatic limit for arbitrary dimensions and invertible fiber operators was
given by Bismut and Cheeger [6, 7], who introduced the form η̃ = η̃(π, gTM ) ∈ λ(B)

generalizing the η-invariant; the case of the signature operator was treated by Dai
[18, Thm.0.3] who further introduced the τ -invariant associated to the Leray spectral
sequence of the fibration (0.3). There has been done considerable work recently on the
computation of L2-cohomology groups of spaces which can be compactified as pseudo-
manifolds of the type we consider here, cf. [19], [20], [21], and [17]. These calculations
lead to topological formulas for sign(2)M , see [17, Cor.1.2] for Witt spaces and its ex-
tension in [21]. Combining these topological formulas with Dai’s result quoted above
gives the following local signature formula which was stated for even dimensional base
spaces in [8, Thm.5.7]; in its formulation, we denote by DΛ⊗ H (Y )

B the Dirac operator
DΛ
B twisted by the bundle of fiber harmonic forms.

Theorem 0.2. — We have

indDsign = lim
ε→0

∫
M

L(∇TM )−
∫
B

L(TB,∇TB) ∧ η̃ − 1

2
η(D

Λ⊗ H (Y )
B ).

We give here an analytic proof of [17, Cor.1.2] in the general case which should
be applicable to more general situations; in combination with the results of Atiyah,
Patodi, and Singer and Dai’s computation, it yields the theorem. The parametrix
construction which we give in this paper should, in principle, also lead directly to
the local index formula but, so far, we have been unable to overcome the technical
difficulties involved.

We also have considered the resolvent trace expansion. We have a proof of the
following result, but its presentation would lengthen the paper unduly; we hope to
include it in a more general result at some future time.

Theorem 0.3. — 1. For µ ∈ R \ {0} and p > m, the resolvent
(D − iµ)−1 is in the Schatten-von Neumann class of order p in L2(M,ΛT ∗M).
2. For z ∈ R and l > m/2, we have the asymptotic expansion

tr[D2 + z2]−l ∼z→∞ zm−2l
∑
j≥0

ajz
−j +

∑
j≥2l−h

bjz
−j log z.

The plan of the article is as follows. In Section 1, we deal with general Dirac
operators and derive some decomposition theorems which are induced by a fibration
of the form (0.3) and are needed later on. These results are known for spin Dirac
operators, see [5, pp. 56, 59].

In Section 2, we represent the signature operator Dsign on U in the form

Dsign
M ' ∂

∂t
+AH(t) + t−1AV ,
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6 J. BRÜNING

acting on C1
c

(
(0, ε0), H1(N,ΛT ∗N)

)
(see (2.38)). Here AH(t) and AV are first order

differential operators which can be written as a Dirac operator plus a potential and
AH(t) is linear in t, with derivative a bounded endomorphism, while AV is given by
(0.13). We also show (in Theorem 2.5) that the anticommutator AHAV + AVAH is
a first order vertical differential operator, a crucial fact for our analysis. The guiding
principles here are the structure of Dirac systems, as developped in [3], and the
decomposition results from Sec. 1.

In Section 3, we obtain explicitly the spectral decomposition of the operators
AV (b) := AV |Yb (cf. Theorem 3.1). By ellipticity, the spectrum is discrete. It con-
sists of the harmonic eigenvalues µ = j − v/2, 0 ≤ j ≤ v, generated by the harmonic
forms on Yb, and two families µ± generated by the nonzero eigenvalues of the Lapla-
cian on Yb, with µ+ ⊂ (− 1

2 ,∞) and µ− ⊂ (−∞, 1
2 ). When the metric on Yb is scaled

down, these eigenvalues tend respectively to +∞ and −∞.
Section 4 introduces appropriate boundary conditions for Dsign, based on the spec-

tral analysis of Section 2. For the choice of boundary conditions and hence of a
self-adjoint extension, only the small eigenvalues of AV matter. We treat them by
explicitly constructing the resolvent kernel by means of matrix Bessel functions, as
introduced in [13], and then use this kernel in constructing a good pseudodifferen-
tial parametrix for Dsign with operator valued symbol, again following the strategy
developed in [13]. At the end of this section, we give the proof of Theorem 0.1.

In Section 5 we prove Theorem 0.2 by reducing the problem to an APS-type prob-
lem on Mε, for sufficciently small ε > 0. We also prove various related results: a Kato
type perturbation result for the APS projection (Theorem 5.9), a vanishing result
which is crucial for our approach (Theorem 5.2), and a new identity involving Dai’s
τ -invariant (Theorem 5.4).

This paper started as a joint project with Bob Seeley to whom it owes a lot.
The construction of the Signature Operator was essentially finished several years
ago using a less explicit parametrix construction. The publication of the results has
been delayed by an attempt to deduce the local signature formula directly from the
resolvent expansion in Theorem 0.3. However, this goal has proved elusive so far; we
hope that, nevertheless, the results presented here will be of independent value.

We wish to thank Bob Seeley for many years of fruitful exchange and cooperation.
We are indebted to Jean-Michel Bismut, Xiaonan Ma, and Henri Moscovici for useful
discussions. We are grateful for the support of Deutsche Forschungsgemeinschaft under
various grants, especially SFB 288 and SFB 647, and for the generous hospitality of the
Ohio State University, the Mittag-Leffler Institute, the University of Bergen, Kyoto
University, and MSRI Berkeley. Special thanks are due to an anonymous referee for
very helpful remarks based on an unduly preliminary version of this article.
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1. Dirac operators on fibrations

In this section, we consider a Riemannian manifold (M, gTM ) which we assume to
be oriented. For X,Y ∈ TM we write

gTM (X,Y ) =: 〈X,Y 〉TM =: 〈X,Y 〉,

if no confusion may arise, and we use similar notation for vector bundles. Moreover, we
consider a second oriented Riemannian manifold (B, gTB) and a Riemannian fibration

(1.1) π = πMB : M → B

with generic fiber F ; we write

(1.2) Fb := π−1(b), b ∈ B.

We denote the bundle of tangent vectors to the fibers by TVM . Then the fibration
induces an orthogonal splitting

TM =: THM ⊕ TVM, g := gTM =: gTHM ⊕ gTVM =: gH ⊕ gV ,

with orthogonal projections PH/V : TM → TH/VM . Note that TVM and its annihi-
lator T ∗HM are defined independent of the metric.

The bundle (TM, gTM ) has a distinguished metric connection, the Levi-Civita
connection ∇TM ; all bundles associated to the principal bundle of orthonormal frames
in TM inherit a metric and a metric connection from (TM, gTM ). This holds in
particular for the exterior algebra of the cotangent bundle, ΛT ∗M , and for the bundle
of Clifford algebras, Cl(TM), and its complexification, Cl(TM) = Cl(TM)⊗R C.

We are interested in the class of Dirac bundles as defined in [23, p. 114], i.e. the
smooth hermitian bundles (E, hE) over M equipped with hermitian connections ∇E
such that the following conditions are satisfied: There is a smooth bundle map cl from
the tangent bundle, TM , to the skew-hermitian endomorphisms, EndasE, of E such
that

(1.3) cl(X) ◦ cl(X) = −g(X,X)IE , X ∈ TM,

which implies that cl extends to an algebra homomorphism

(1.4) cl : Cl(TM)→ EndE,

turning E into a left Clifford module. Moreover, ∇E is required to be compatible with
the Levi-Civita connection in the sense that

(1.5) ∇EXcl(Y )σ = cl(∇TMX Y )σ + cl(Y )∇EXσ,

for X,Y ∈ TM, σ ∈ C1(M,E). A prototypical Dirac bundle is, of course, Cl(TM)

itself with the metric structure induced from gTM . This bundle is canonically isomor-
phic to the exterior algebra bundle ΛT ∗M , with Clifford action

cl(X)ω = w(X[)ω − i(X)ω, X ∈ TM, ω ∈ ΛT ∗M,
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8 J. BRÜNING

where “w” and “i” refer to wedge and interior multiplication, respectively, while [ :

TM → T ∗M denotes the “musical” isomorphism induced by gTM with inverse ]. Note
that these definitions extend naturally to Hilbert bundles over M .

The notion of Dirac bundle was introduced to define the Dirac operator naturally
associated with it, i.e. the operator

(1.6) D := DE
M :=

m∑
i=1

cl(ei)∇Eei ,

which we will regard as an unbounded operator in L2(M,E) with domain C1
c (M,E)

if not stated otherwise. Then D is symmetric in L2(M,E) and essentially self-adjoint
e.g. if M is complete.

To obtain a nontrivial index, the symmetry of D must be broken. This is achieved
by a supersymmetry or grading, α, on E, i.e. by a self-adjoint involution α ∈ EndE

which is parallel with respect to ∇E and anticommutes with Clifford multiplication,
and hence with D. Then the bundle E splits as

E = E+ ⊕ E−, E± =
1

2
(I ± α)E.

Cl(TM) has a natural grading obtained by lifting the map X 7→ −X from TM to
Cl(TM), with the property that

Cl(TM)±E+ ⊂ E±, Cl(TM)±E− ⊂ E∓,

for any graded Dirac bundle E.
We are now interested in splitting the Dirac operator D = DE

M along the fibration
π : M → B into a “horizontal” and a “vertical” part. The notion of horizontality we
use will be introduced below, while we will call a differential operator Q on C1

c (M,E)

vertical if Q commutes with multiplication by functions pulled back from the base, i.e.
if Q differentiates only in fiber directions; if Q is of first order this is also equivalent
to saying that

Q̂(ξ) = 0, ξ ∈ T ∗HM,(1.7)

with Q̂ the principal symbol of Q. The desired splitting of D will reflect the geometry
of the fibration π, through the second fundamental form, which is defined for X,Y ∈
TVM and Z ∈ THM by

〈II(X,Y ), Z〉 = 〈∇ZX − PV [Z,X], Y 〉(1.8)

= 〈∇XZ, Y 〉
= −〈∇XY,Z〉;

and through the curvature of π, which is for Z1, Z2 ∈ THM defined as

RZ1,Z2 := −PV [Z1, Z2].

Before we state the results on the splitting of D we need to introduce some notation
concerning local orthonormal frames. We will always denote by (ei)

h
i=1 and (fj)

v
j=1an

oriented local orthonormal frame for THM and TVM , respectively, where h = dimB
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SIGNATURE OPERATOR WITH CONICAL STRATUM 9

and v := dimF denote the “horizontal” and “vertical” dimensions, with h+ v = m :=

dimM , and we assume that {e1, . . . , fv} is oriented in TM . More specifically, we may
assume that (ei)

h
i=1 consists of the horizontal lifts of an oriented local orthonormal

frame (ei)
h
i=1 for TB; if this frame is defined in some open set U then (ei)

h
i=1 is defined

in π−1(U).
There are two operators generated by D which naturally belong to the horizontal

and the vertical space, respectively, to wit

D̃H :=
h∑
i=1

cl(ei)∇Eei ,(1.9)

D̃V :=
v∑
j=1

cl(fj)∇Efj ,(1.10)

such that D = D̃H + D̃V . However, these operators are not easy to interpret and in
spite of having a symmetric principal symbol, they are not symmetric in general. This
defect is easily cured as follows. Since D is symmetric on C1

c (M,E), i. e. D = D†, its
formal adjoint, we obtain

D =
1

2
(D̃H + D̃†H) +

1

2
(D̃V + D̃†V )

=: DH +DV ,(1.11)

with DH/V symmetric. But since D̃V has symmetric principal symbol, we see that

(1.12) D̃†V = D̃V + β1,

with some endomorphism β1 ∈ C∞(M,EndE) such that

DH = D̃H −
1

2
β1,(1.13)

DV = D̃V +
1

2
β1;(1.14)

note that β1 is necessarily skew-symmetric.

Lemma 1.1. — 1. In (1.12), we have

β1 = −v cl(HF ),(1.15)

where

HF := −1

v

v∑
j=1

PH∇TMfj fj

is the mean curvature vector field of the fibers of π.
2. For any horizontal vector field Z on M we have

(1.16) cl(Z)DV +DV cl(Z) = 0.
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Proof. — 1. We compute D̃†V by calculating for σk ∈ C1
c (M,E), k = 1, 2, the expres-

sion

(D̃V σ1, σ2)L2(M,E) − (σ1, D̃V σ2)L2(M,E)

=
v∑
j=1

∫
M

(
〈cl(fj)∇Efjσ1, σ2〉E − 〈σ1, cl(fj)∇Efjσ2〉E

)
=

v∑
j=1

∫
M

(
− fj〈σ1, cl(fj)σ2〉E + 〈σ1, cl(∇TMfj fj)σ2〉E

)
=

v∑
j=1

∫
M

(
− fj〈σ1, cl(fj)σ2〉E + 〈σ1, cl(∇TVMfj

fj)σ2〉E
)

(1.17)

− (σ1, v cl(HF )σ2)L2(M,E),

where we have used the properties (1.3) through (1.5). Now we introduce a vertical
vector field, X, by setting

〈X,Y 〉TVM := 〈σ1, cl(Y )σ2〉E , Y ∈ C(M,TVM).

Then it is easy to see that the integrand in (1.17) equals the divergence of X|Fb and
hence vanishes upon integration over Fb, for any b ∈ B. It follows that

D̃†V − D̃V = −v cl(HF ),

as claimed.
2. We compute, using again the basic relations (1.3) through (1.5),

cl(X)DV +DV cl(X) = cl(X)D̃V + D̃V cl(X) + v〈X,HF 〉TM

=
∑
j

(
cl(X) cl(fj)∇Efj + cl(fj)∇Efj cl(X)

)
+ v〈X,HF 〉TM

=
∑
j

cl(fj) cl(∇TMfj X) + v〈X,HF 〉TM

=
(∑

j,l

cl(fj) cl(fl)〈∇TMfj X, fl〉TM + v〈X,HF 〉TM
)

=
∑
j 6=l

cl(fj) cl(fl)〈X,∇TMfj fl〉TM

= 0.

We will use below a stronger property of this decomposition, namely that (in the
case of DΛ)

(1.18) D̃HV := DHDV +DVDH

is a first order vertical differential operator. Note that while D̃HV is always of first
order, it need not be vertical in general. But this can be achieved if we further modify
the decomposition (1.11) by bringing in the curvature of π.
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