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MANOLESCU’S WORK ON THE TRIANGULATION CONJECTURE

by András I. STIPSICZ

1. INTRODUCTION

Simplicial complexes are topological spaces with a simple underlying combinatorial
structure. Indeed (in the compact case) such a space can be described by a system
of subsets of a finite set—for the precise definition see Section 3. The combinatorial
structure allows us to define invariants in a straightforward, computable manner. In
particular, simplicial homology (and cohomology) is among the nicest invariants both
from the point of view of definition and computation. The local structure of a simpli-
cial complex can be, however, rather complicated—for example, different dimensional
simplices might meet at a point.

Another convenient class of topological spaces is provided by manifolds, i.e., topo-
logical spaces which near every point look like Euclidean spaces. This definition gives
a good idea about the local structure of the space, but gives little information about
answers to global questions like homologies, etc.

It would be optimal to know that topological spaces having simple local structures
also have nice global properties. The Triangulation Conjecture asserts exactly that:

Conjecture 1.1. — A manifold is homeomorphic to a simplicial complex.

The question in this form has been raised in 1926 by Kneser. The answer turned
out to be affirmative in dimensions at most three, and for those manifolds of any
dimension which admit a smooth structure. The general case, however, stayed open
for almost a century. Work of Casson—relying on groundbreaking results of Freedman
regarding topological 4-manifolds—showed that in dimension four (where smooth and
topological manifolds are known to be more different than in any other dimensions)
Conjecture 1.1 is false. Previous experience with the oddity of this particular dimen-
sion, however, warned mathematicians to draw any conclusion about the general case.
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Results of Kirby and Siebenman on piecewise linear structures on manifolds
helped to put the question into perspective, while results of Galewski-Stern and
Matumoto from the late 70s provided a reformulation of the problem in terms
of three-manifolds and cobordism properties of those. More precisely (and rather
surprisingly) they showed that every closed topological manifold of dimension at least
five is triangulable (i.e., homeomorphic to a simplicial complex) if there is a three-
manifold Y which is an integral homology sphere (that is, H∗(Y ;Z) ∼= H∗(S

3;Z)),
admits Rokhlin invariant µ(Y ) equal to 1 (for the definition of µ(Y ), see Subsec-
tion 2.1) and the connected sum Y#Y is the boundary of a smooth four-manifold W
with H∗(W ;Z) ∼= H∗(D

4;Z). (Here S3 denotes the three-dimensional sphere, while
D4 stands for the four-dimensional disk.)

In studying the Seiberg-Witten equations and invariants, in 2013 Ciprian
Manolescu discovered a new set of invariants of three-manifolds, eventually leading
him to show

Theorem 1.2 ([23]). — If an integral homology three-sphere Y admits µ(Y ) = 1

then Y#Y does not bound an integral homology disk W .

Appealing to further related results of Galewski-Stern, this finding then implied

Theorem 1.3. — For every dimension n ≥ 5 there is a closed, connected topological
n-manifold which admits no triangulation, i.e., it is not homeomorphic to a simplicial
complex.

This theorem puts an end to a long-standing question; the importance of
Manolescu’s result, however, is not limited to his disproof of Conjecture 1.1, it also
lies in the way he proved Theorem 1.2. In [23] he defined a version of Seiberg-Witten-
Floer (or Monopole Floer) homology groups of integral homology spheres, where a
further symmetry of the Seiberg-Witten equations have been taken into account. The
new homology groups (admitting an integral grading) then allowed him to define new
functions on the abelian group Θ3 formed by equivalence classes of integral homology
spheres (where the equivalence relation is given by integral homology cobordisms, see
Section 2). This approach not only allows us to understand the group Θ3 better, but
also provides ways of using further similar theories (as Heegaard Floer homology)
to see invariants from a new angle. Soon after the appearance of Manolescu’s work,
Francesco Lin found an extension of the invariants to any (spin) three-manifolds,
opening the way to further applications.

In this paper we will review the definitions of the main concepts listed above, outline
the arguments leading to the (dis)proof of the Triangulation Conjecture, and review
some of the further results and constructions originating from the groundbreaking
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ideas of Manolescu. The papers of Ciprian Manolescu provide outstanding introduc-
tions to the construction and the application of his invariants, see [20, 21, 22, 23]. (1)

For this reason, to avoid repetitions we will try to emphasize aspects which appeared
in less detail in the literature, and will try to draw attention to the aftermath of
Manolescu’s work in Heegaard Floer homology.

In this spirit, in Section 2 we collect some of the most fundamental infinite Abelian
groups appearing in low dimensional topology and devote a paragraph to infinite
Abelian groups in general. In Section 3 we review the basic notions appearing in the
Triangulation Conjecture, while in Section 4 we discuss various obstruction classes.
Section 5 gives a short recollection of the reformulation of the conjecture in terms of
the integral homology cobordism group. Section 6 contains a (very sketchy) outline
of the theory producing the novel invariants of Manolescu, leading to the disproof
of Conjecture 1.1 in Subsection 6.3. We close our discussion with Section 7, where
further directions and developments inspired by Manolescu’s work is given (without
the aim of providing a complete picture of this dynamically changing field).

Acknowledgements. — The author would like to thank Antonio Alfieri, Francesco
Lin, András Némethi, Péter Pál Pálfy and András Szűcs for helpful discussions. He
was partially supported by the Élvonal (Frontier) grant KKP126683 of the NKFIH
(Hungary) and by the Lendület (Momentum) grant “Low Dimensional Topology” of
the Hungarian Academy of Sciences.

2. ABELIAN GROUPS IN LOW DIMENSIONAL TOPOLOGY

Certain infinite groups play central role in low dimensional topology. Mapping
class groups (groups of isotopy classes of orientation preserving diffeomorphisms of
manifolds) are rather mysterious in most dimensions, and even for two-dimensional
compact manifolds there are fundamental open questions regarding these groups—
although in these cases various presentations of the groups are known. Surprisingly,
there are even Abelian groups in low dimensional topology which capture important
information, but we do not have a good grasp on their structure. We list some of these
below.

2.1. Homology cobordism groups

The three-dimensional (oriented) cobordism group Ω3 is trivial (which is just an-
other way to say that any closed, oriented three-dimensional manifold is the boundary

(1) The paper [23] was awarded by the Moore prize of the American Mathematical Society in 2019,
recognizing this paper as an outstanding research article.
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of a compact, smooth, oriented four-manifold). In a similar manner, Ωspin
3 (the spin

cobordism classes of spin three-manifolds) is also trivial.

The homology cobordism group Θ3, however, is highly nontrivial. Indeed, consider
those (oriented, closed) three-manifolds for which the first homology group (with
integer coefficient) vanishes. These three-manifolds are traditionally called integral
homology spheres, and the condition is obviously equivalent to the requirement that
for such a three-manifold Y we have H∗(Y ;Z) = H∗(S

3;Z). The most notable non-
trivial example of such a manifold is the Poincaré homology sphere P , given as

P = {(z1, z2, z3) ∈ C3 | z2
1 + z3

2 + z5
3 = 0, ‖(z1, z2, z3)‖ = 1}.

This smooth three-manifold has fundamental group π1(P ) a perfect group of or-
der 120, implying H∗(P ;Z) = H∗(S

3;Z).

In defining the group Θ3, regard two integral homology three-spheres Y1 and Y2

equivalent if there is a smooth, oriented, compact four-manifold X with boundary
∂X = −Y1 ∪ Y2 and with H∗(X;Z) = H∗(S

3 × [0, 1];Z), that is, we assume that the
cobordism (up to homology) is like the trivial cobordism. The group structure is given
by the connected sum (Y1, Y2) 7→ Y1#Y2 as addition, the map Y 7→ −Y as inverse
(where −Y denotes the same manifold as Y , with the opposite orientation) and S3 as
the identity element. It is not hard to see that the result is an Abelian group.

There are simple variants of this construction, for example the rational homology
cobordism group ΘQ

3 is defined in a similar manner, with the exception that all ho-
mologies are required to be taken with rational coefficients. In particular, a rational
homology sphere Y is a closed, oriented three-manifold with H∗(Y ;Q) = H∗(S

3;Q),
which is equivalent to request H1(Y ;Z) to be a finite group, or to ask the first Betti
number b1(Y ) to vanish. A further common variant of this constrution is the spinc

rational homology cobordism group ΘQ, spinc

3 , where we consider pairs (Y, s) with the
property that Y is a rational homology sphere as above, s is a spinc structure on Y ,
and two such pairs (Y1, s1) and (Y2, s2) are considered to be equivalent if there is a
rational homology cobordism X between Y1 and Y2, together with a spinc structure t
on X with the property that t restricts to s1 over −Y1 ⊂ ∂X and to s2 over Y2 ⊂ ∂X.

These groups come with natural maps between them: for example there is the
forgetful map ΘQ, spinc

3 → ΘQ
3 , and the natural map Θ3 → ΘQ

3 induced by the fact
that every integral homology sphere (and integral homology cobordism) is also a
rational homology sphere (and a rational homology cobordism).

As the groups introduced above are all Abelian, one can have the impression that
their structure is easy to understand (even if for some reason we might not be able to
compute them). At first glance is seems possible that Θ3 (similarly to Ω3 and Ωspin

3 )
is indeed trivial. The Rokhlin homomorphism µ : Θ3 → Z/2Z, however shows that
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this is not the case. For defining µ, recall that an integral homology sphere Y (carry-
ing a unique spin structure) is the boundary of a compact spin four-manifold X (as
Ωspin

3 = 0). Simple algebra (see for example [7, Lemma 1.2.20]) shows that the signa-
ture σ(X) of such an X is divisible by 8. Rokhlin’s Theorem (stating that a closed
spin four-manifold has signature divisible by 16) implies that the mod 2 reduction
of 1

8σ(X) is independent of the chosen X, hence by defining µ(Y ) ∈ Z/2Z as the mod
2 reduction of 1

8σ(X) we get an invariant of Y . This value is obviously a homology
cobordism invariant and provides a homomorphism µ : Θ3 → Z/2Z. Simple calcula-
tion shows that µ(P ) = 1 for the Poincaré homology sphere P (as it is the boundary
of the negative definite E8-plumbing), hence µ is onto, consequently |Θ3| ≥ 2. Indeed,
for a while it seemed plausible to expect that µ is an isomorphism between Θ3 and
Z/2Z.

As one of the early applications of the gauge theoretic techniques introduced by
S. Donaldson in the study of four-dimensional manifolds, Furuta showed that

Theorem 2.1. — The Abelian groups Θ3,Θ
Q
3 and ΘQ, spinc

3 defined above are not
finitely generated.

Therefore, despite being Abelian, their structure might be rather intricate.

2.2. Concordance groups

Before going any further, we invoke a further similar important group, the group of
concordance classes of knots. Let us consider knots in the three-space, i.e., smoothly
embedded circles in S3. We say that two knots K1 and K2 are concordant, if there is a
smoothly and properly embedded annulus (∼= S1× [0, 1]) in S3× [0, 1] intersecting the
two ends in K1 and K2, respectively. The resulting Abelian group C (once again, with
connected sum as addition, the mirror image as inverse and the unknot representing
the identity element) is called the smooth concordance group.

As before, this group has a number of variants. The easiest one is when we define
the equivalence relation by considering concordances in integral homology cobordisms
between the two copies of S3; the resulting group will be a quotient of C . A slightly
larger group can be defined by considering knots in integral homology spheres (and
the concordances in integral homology cobordisms), or in rational homology spheres
(with rational homology cobordisms between them containing the concordances) and
even rational homology spheres (and rational homology cobordisms) together with
appropriate spinc structures. Once again, there are various natural maps between
these constructions.

A further variant of C is provided by the fact that in dimension four the appli-
cation of smooth or merely continuous maps provide drastically different theories.
Here, when we use the term ‘continuous’, we really mean ‘locally flat’, that is, the
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