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HOMOLOGY OF HURWITZ SPACES AND THE COHEN-LENSTRA
HEURISTIC FOR FUNCTION FIELDS

[after Ellenberg, Venkatesh, and Westerland]

by Oscar RANDAL-WILLIAMS

INTRODUCTION

Ellenberg and Venkatesh [7] introduced the idea of analyzing the function field
analogue of the conjecture of Malle (on the distribution of number fields with given
Galois group G) by relating Malle’s conjectural upper bound with the asymptotics
of Fq-point counts on Hurwitz schemes HG,n. Under the heuristic that each Fq-rational
component of HG,n contains qn Fq-points they were able to precisely reproduce the
upper bound in Malle’s conjecture.

In a breakthrough paper, Ellenberg, Venkatesh, and Westerland [8] applied similar
reasoning to relate the function field analogue of the Cohen-Lenstra heuristic (on the
distribution of imaginary number fields with `-parts of their class groups isomorphic
to a fixed group A) with the asymptotics of Fq-point counts on certain Hurwitz
schemes HncG,n, with G = A o Z× a generalized dihedral group and c ⊂ G the
conjugacy class of involutions. In this case they were—remarkably—able to justify
the heuristic that each Fq-rational component of HncG,n contains qn Fq-points, by
using the Grothendieck-Lefschetz trace formula and a comparison between étale and
singular cohomology to reduce it to a problem in algebraic topology, and then solving
this problem.

The topological problem concerns the singular homology of the corresponding Hur-
witz spaces HncG,n(C)an. It is easy to show that the total dimension of the homology
of these spaces is at most (2|c|)n, but in order to show that the main term in the
Grothendieck-Lefschetz trace formula is not overwhelmed as n → ∞ one must show
that there is not too much homology in homological degrees which are small com-
pared with n. Ellenberg, Venkatesh, and Westerland accomplish this by proving a
homological stability theorem for these Hurwitz spaces.
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The phenomenon of homological stability was discovered by Quillen, in his analysis
of the homology of general linear groups in relation to algebraic K-theory. This is the
phenomenon that for many natural sequences of spaces

X1 −→ X2 −→ X3 −→ · · ·

the induced maps Hd(Xn−1) → Hd(Xn) are isomorphisms as long as d 6 f(n),
for some divergent function f . In this case Hd(Xn) agrees with the direct limit
Hd(X∞) = colimiHd(Xi) for all but finitely many n. There is a remarkable range
of families {Xn} for which homological stability is known to hold. When the Xn are
Eilenberg-MacLane spaces for groups Gn, one may take: symmetric groups, braid
groups, general linear groups over rings of finite stable rank [27], mapping class
groups of surfaces [24], automorphism groups of free groups [25], Higman-Thompson
groups [35], Coxeter groups [26], and many others. When the Xn are moduli spaces,
broadly interpreted, one may take: configuration spaces [31], classifying spaces for
fiber bundles [22], classifying spaces for fibrations or block bundles [2], and many
variants of these.

In a related direction, the more recent development of representation stability [4]—
in which there is a sequence of groups Γn acting on theXn in a compatible manner and
the eventual behavior of Hd(Xn) as a Γn-representation is studied—may be applied to
study asymptotics of weighted point counts (i.e., moments) of sequences of schemes,
cf. [3].

There is a more or less standard pattern in most proofs of homological stabil-
ity, (1) in which one constructs an approximation to Xn from the spaces {Xi}i<n in
a standard way (cf. [32]), and then is left with the problem of proving that it is a
good approximation, which invariably leads one to analyze the connectivity of certain
simplicial complexes associated to the situation in hand. Ellenberg, Venkatesh, and
Westerland follow this general strategy, but because the Hurwitz spaces HncG,n(C)an

are disconnected a new kind of difficulty arises. To surmount this difficulty, they invent
a clever piece of homological algebra.

In this exposition of [8] I will present their argument differently to the way it
appears in that paper, closer to the framework of [20] than to the classical approach
to homological stability described above. While many of the key steps are unchanged,
I find that this streamlined argument clarifies the essential points.

(1) Though Galatius, Kupers, and I have recently proposed another [20], which in fortunate circum-
stances can provide information beyond classical homological stability, for example in the case of
mapping class groups of surfaces [19].
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1. THE COHEN-LENSTRA HEURISTIC FOR FUNCTION FIELDS

Let ` be a prime number. The Cohen-Lenstra distribution is the probability mea-
sure µ on the set of isomorphism classes of finite abelian `-groups given by

µ(A) =

∏
i>1(1− `−i)
|Aut(A)|

.

The numerator is simply a normalization to make µ into a probability measure: what
is important is that an abelian `-group is counted with weight proportional to the
reciprocal of the size of its automorphism group, as one does in the cardinality of
groupoids.

The original Cohen-Lenstra heuristic [5] suggests that when ` is odd the `-part of
the class groups of imaginary quadratic extensions of Q is distributed according to µ.
The analogue for function fields was first considered by Friedman andWashington [16].
In the function field case, K = Fq(t), a quadratic extension L ⊃ K is called imaginary
if it is ramified at infinity, or equivalently if it is of the form K(

√
f(t)) with f a

squarefree polynomial of odd degree n.
For n odd let Sn denote the set of such imaginary quadratic extensions L ⊃ K up

to K-isomorphism, and for a fixed finite abelian `-group A let ι : Sn → {0, 1} denote
the indicator function for those L with `-part of their class group isomorphic to A.
Define the upper and lower densities

δ+(q) := lim sup
n→∞

∑
L∈Sn

ι(L)

|Sn|
and δ−(q) := lim inf

n→∞

∑
L∈Sn

ι(L)

|Sn|
.

The formulation of the Cohen-Lenstra heuristic proved by Ellenberg, Venkatesh, and
Westerland is as follows, where a prime power q is called good for ` if q is odd and
neither q nor q − 1 is divisible by `.

Theorem 1.1 (Ellenberg-Venkatesh-Westerland). — Suppose ` is odd. As q → ∞
with q good for `, both δ+(q) and δ−(q) converge to µ(A).

I will mainly discuss the solution of the topological problem that Theorem 1.1
reduces to, but will first briefly outline how this topological problem arises.

2. REDUCTION TO COUNTING POINTS OF HURWITZ SCHEMES

The key property of the Cohen-Lenstra distribution µ is that for any finite abelian
`-group A the expected number of surjections A′ → A is 1 when A′ is distributed
according to µ, and in fact this property characterizes µ [8, Lemma 8.2]. For L ∈ Sn
one writes mA(L) for the number of surjections from the class group of L to A. Using
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the above characterisation of the measure µ, Ellenberg, Venkatesh, and Westerland
show [8, p. 777] that to prove Theorem 1.1 it suffices to prove the following.

Theorem 2.1 (Theorem 8.8 of [8]). — Suppose ` is odd and q is good for `. There
is a constant B = B(A) such that∣∣∣∣∣

∑
L∈Sn

mA(L)

|Sn|
− 1

∣∣∣∣∣ 6 B
√
q

for all n and q with √q > B, n > B, and n odd.

A pair (G, c) of a finite group G and a conjugation-invariant subset c ⊂ G is called
admissible if c generates G and if whenever g ∈ c then gn ∈ c for all n coprime to |G|.
If (G, c) is admissible then there are Hurwitz schemes HncG,n over Spec(Z[1/|G|])
which parametrise connected branched Galois G-covers of the affine line with n branch
points and monodromy in the class c. These schemes are formed out of similar schemes
HG,n parametrising branched Galois G-covers of the projective line, which have been
constructed by Romagny and Wewers [33].

The crucial relation between the Cohen-Lenstra heuristic for function fields and
these Hurwitz schemes, which was discovered by Yu [36], is as follows. For an odd
prime ` and an abelian `-group A, form the semi-direct product G = Ao Z×, where
Z× acts on A by inversion, and let c ⊂ G denote the conjugacy class of involutions.
The pair (G, c) is admissible in the sense defined above, and using Proposition 8.7
of [8], which for this choice of (G, c) relates surjections Cl(OL)→ A to branched Galois
G-covers of the affine line A1

Fq
with monodromy in the class c, one shows that∑

L∈Sn

mA(L) = 2 ·#HncG,n(Fq).

On the other hand, the number of squarefree polynomials of degree n is (q − 1)(qn − qn−1),
but the sets of q−1

2 polynomials which differ only by a square in F×q define isomorphic
quadratic extensions, so

|Sn| = 2 · (qn − qn−1).

To prove Theorem 1.1 it therefore suffices to prove the following.

Statement 2.2. — Suppose ` is odd and q is good for `. There is a constant
B = B(A) such that ∣∣∣∣#HncG,n(Fq)

qn
− 1

∣∣∣∣ 6 B
√
q

for all n and q with √q > B, n > B, and n odd.
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3. POINT COUNTING AND HOMOLOGICAL STABILITY

3.1. Example of the method: squarefree polynomials

I will first illustrate how algebraic topology may be used to prove results such as
Statement 2.2 with a much simpler example. The squarefree, monic, degree n poly-
nomials over Fq are the Fq-points Cn(Fq) of a scheme Cn over Spec(Z). Parametrising
monic degree n polynomials by their n coefficients, Cn may be described as the com-
plement in An of the zero-locus of the discriminant morphism ∆ : An → A1.

As a squarefree, monic, degree n polynomial over C is determined by its unordered
set of n distinct roots, the set of complex points in the analytic topology Cn(C)an is
precisely the space of configurations of n distinct unordered points in C. This space
is well-studied (2) and its Q-homology can be computed by many methods (originally
by Arnol′d [1]): for n > 2 it is

(1) Hi(Cn(C)an;Q) ∼=

{
Q if i is 0 or 1,

0 otherwise.

Furthermore, the discriminant restricts to a morphism ∆ : Cn → A1 \ {0} which on
complex points gives a continuous map Cn(C)an → C×, and this map induces the
above isomorphism on Q-homology.

To evaluate the number #Cn(Fq) of squarefree, monic, degree n polynomials
over Fq one may try to apply the Grothendieck-Lefschetz trace formula to the smooth
n-dimensional scheme Cn, in the form

#Cn(Fq) = qn
n∑
i=0

(−1)iTr(Frobq : Hi
ét(Cn/Fq;Qr)∨ 	),

where r is an auxiliary prime number not dividing q. If there were a natural comparison
isomorphism

(2) Hi
ét(Cn/Fq;Qr)

∼−→ Hi(Cn(C)an;Qr),

then by the isomorphism (1) and the fact that it is induced by the discriminant
morphism, one would be able to calculate the étale cohomology of Cn/Fq, as well as
the action of Frobq, to be

Hi
ét(Cn/Fq;Qr) ∼=


Qr(0) if i = 0,

Qr(−1) if i = 1,

0 otherwise.

(2) Its fundamental group is Artin’s braid group on n strands, βn, and in fact Cn(C)an is an Eilenberg-
MacLane space for this group. The homology of this space therefore coincides with the group homol-
ogy of βn, and can also be studied from this perspective.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2020


