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REGULARITY OF ENTROPY, GEODESIC CURRENTS
AND ENTROPY AT INFINITY

 B SCHAPIRA  S TAPIE

A. – In this work, we introduce a notion of entropy at infinity for the geodesic flow of
negatively curved manifolds. We introduce the class of noncompact manifolds which admit a critical
gap between entropy at infinity and topological entropy. We call them strongly positively recurrent
manifolds (SPR), and provide many examples. We show that dynamically, they behave as compact
manifolds. In particular, they admit a finite measure of maximal entropy.

Using the point of view of currents at infinity, we show that on these SPR manifolds the topological
entropy of the geodesic flow varies in a C1-way along C1-uniform perturbations of the metric. This
result generalizes former work of Katok (1982) and Katok-Knieper-Weiss (1991) in the compact case.

R. – Dans ce travail, nous introduisons une notion d’entropie à l’infini pour les flots géodé-
siques des variétés à courbure négative. Nous introduisons la classe des variétés, dites fortement positi-
vement récurrentes (SPR), dont l’entropie à l’infini est strictement inférieure à l’entropie topologique.
Nous donnons de nombreux exemples de telles variétés. Nous montrons que d’un point de vue dyna-
mique, ces variétés ressemblent à des variétés compactes. En particulier, elles admettent une mesure
finie maximisant l’entropie.

À l’aide du point de vue des courants à l’infini, nous montrons que sur ces variétés SPR, l’entropie
topologique varie de manière C1 le long de perturbations C1-uniformes de la métrique. Ceci généralise
des résultats passés de Katok (1982) et Katok-Knieper-Weiss (1991) dans le cas compact.

1. Introduction

1.1. Variation of the topological entropy: An overview

The initial motivation of this work was to answer the following simple question. Consider
a hyperbolic surface of finite volume and a smooth compact perturbation of the metric. Does
the topological entropy of the geodesic flow vary regularly? More generally, what happens
for a smooth perturbation of the metric of a noncompact negatively curved Riemannian
manifold?
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2 B. SCHAPIRA AND S. TAPIE

The answer has been known on compact manifolds since almost thirty years [31, 30, 21],
and has been extended to the convex-cocompact case in [52]. A similar argument gives the
regularity of the topological entropy for a perturbation of an Anosov flow, cf [31].

Compactness of the underlying space is crucial in the above results, and no result was
known until now for manifolds with a non-compact non-wandering set. Even the case of
a smooth compact perturbation of the metric of a finite volume hyperbolic surface was
not accessible with their arguments. Let us recall the two main steps of their argument to
understand why.

The key step is the following inequality, due to Katok in [29] for surfaces, extended in [31]
to all dimensions.

T 1.1 ([29]; [31]). – Let g1; g2 be Riemannian metrics with negative sectional
curvature on the same compact manifold M . Then the entropies of their geodesic flows satisfy

(1) htop.g1/ � htop.g2/ �

Z
Sg1M

jjvjjg2 dm
g1
BM.v/;

where jjvjjg2 D
p
g2.v; v/ and mg1BM is the normalized Bowen-Margulis measure on the g1-unit

tangent bundle Sg1M for the g1-geodesic flow.

Reversing the role of g1 and g2 also provides a lower bound for htop.g1/, and a first order
power expansion gives the following smoothness result.

T 1.2 ([31]). – Let .g"/"2.�1;1/ be a C2-family of C2 Riemannian metrics with
negative sectional curvature on the same compact manifold M . Then " 7! htop.g"/ is C1, and
its derivative is given by

(2)
d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg" dm
g0
BM.v/;

where mg0BM is the normalized Bowen-Margulis measure on the g0-unit tangent bundle Sg0M
for the g0-geodesic flow.

In the previously quoted works, the proofs of (1) strongly use the compactness of the non-
wandering set. In the first part of our paper, we use a different approach to generalize it to
the non-compact setting. This improves it even in the compact case, providing an explicit
transformation rule for the entropies, equality which immediately implies (1), and has other
interesting consequences.

The previously known proofs of (2) use the compactness of M for a crucial point: to
ensure the finiteness and the continuity of the normalized Bowen-Margulis measures mg"BM
in the weak-� topology as " varies. Neither finiteness of the Bowen-Margulis measure nor
its continuity under a variation of the metric can be ensured in general. Maybe the most
striking fact of our work is that we introduce a new wide class of manifolds, which we
call SPR manifolds, SPR meaning strongly / stably positively recurrent. The terminology
Stably positively recurrent has been introduced by Gurevic-Savchenko [26] in the context of
countable Markov shifts. Sarig [48] modified it, in the same context, into strongly positively
recurrent, terminology which has been used later by other authors as Buzzi [8]. See also
the very recent work of Velozo [53], who follows also this terminology. Both terminologies
are meaningful, and had not yet been considered in our context. It turns out that the same
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 3

property also appeared recently and independently in the context of geometric group theory
in [3] under the name of growth gap.

The class of SPR manifolds that we define here has the remarkable property that the
Bowen-Margulis measure is finite, and moreover stays finite and varies continuously along
small perturbations. In particular, under C1-uniform variation of such SPR Riemannian
metrics, the topological entropy is C1 and its derivative is given by (2).

These SPR manifolds include finite volume hyperbolic manifolds, and more generally
almost all known examples where the geodesic flow admits a (finite) measure of maximal
entropy, as geometrically finite negatively curved manifolds with spectral gap [15], Schottky
product examples from [39], and unpublished examples of Ancona [2]. The class of SPR
manifolds is much larger than only the above mentioned examples. We postpone the extensive
study of SPR manifolds to a later paper [25]. Therefore, the second half of our paper will be
devoted to the presentation of a geometrical setting, as large as possible, where this finiteness
and continuity of Bowen-Margulis measures can be ensured.

Let us now present our main results with more details.

1.2. Invariant measures and change of Riemannian metrics

Let .M; g1/ be a complete Riemannian manifold, and g2 be another Riemannian metric
onM such that there exists C > 1with 1

C
g1 � g2 � Cg1. We assume moreover that both g1

and g2 have pinched negative sectional curvatures with uniformly bounded first derivatives:
this implies that g1-geodesics are g2-quasi-geodesics and the visual boundary of the universal
cover .fM;g1/ is canonically identified with the visual boundary of .fM;g2/; we will denote it
by @fM . We will use extensively this correspondance to compare the dynamics of the geodesic
flows on Sg1M and Sg2M .

Let � D �1.M/ acting on the universal cover fM , let m be a locally finite measure
on Sg1M , invariant by the geodesic flow .gt1/t2R, and em its lift to Sg1fM . We write
@2fM D .@fM � @fM/nDiag. In g1-Hopf coordinates (cf Section 2), Sg1fM ' @2fM � R,
and em has a local product structure of the form dem D d� � dt , where � is a �-invariant
geodesic current on @2fM . We write therefore m D mg1� .

We can now define a measure emg2� on Sg2fM , given in g2-Hopf parametrization by the
same local product formula emg2� D d� � dt : by �-invariance, this induces a locally finite
measure mg2� on Sg2M , which is invariant for the geodesic flow .gt2/t2R. The ergodic prop-
erties of .Sg1M;gt1; m

g1
� / and .Sg2M;gt2; m

g2
� / are strongly related.

Well known facts imply that if mg1� and mg2� are finite then one is ergodic or conservative
if and only if the other is. The reader may believe that, since 1

C
g1 � g2 � Cg1, then mg1� is

finite if and only if mg2� is. We will indeed show that it is the case and relate the masses and
entropies of these measures.

In this purpose, let us introduce the instantaneous geodesic stretch E g1!g2 W Sg1fM ! R
defined for all v 2 Sg1fM by

E g1!g2.v/ D
d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.�v; �gt1v/ D
d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.o; �gt1v/;

where � W Sg1fM ! fM is the canonical projection, and B
g2

v
g1
C

.:; :/ is the Busemann

function for g2 based at the endpoint of the g1-geodesic generated by v. By �-invariance,
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