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REGULARITY OF ENTROPY, GEODESIC CURRENTS
AND ENTROPY AT INFINITY

 B SCHAPIRA  S TAPIE

A. – In this work, we introduce a notion of entropy at infinity for the geodesic flow of
negatively curved manifolds. We introduce the class of noncompact manifolds which admit a critical
gap between entropy at infinity and topological entropy. We call them strongly positively recurrent
manifolds (SPR), and provide many examples. We show that dynamically, they behave as compact
manifolds. In particular, they admit a finite measure of maximal entropy.

Using the point of view of currents at infinity, we show that on these SPR manifolds the topological
entropy of the geodesic flow varies in a C1-way along C1-uniform perturbations of the metric. This
result generalizes former work of Katok (1982) and Katok-Knieper-Weiss (1991) in the compact case.

R. – Dans ce travail, nous introduisons une notion d’entropie à l’infini pour les flots géodé-
siques des variétés à courbure négative. Nous introduisons la classe des variétés, dites fortement positi-
vement récurrentes (SPR), dont l’entropie à l’infini est strictement inférieure à l’entropie topologique.
Nous donnons de nombreux exemples de telles variétés. Nous montrons que d’un point de vue dyna-
mique, ces variétés ressemblent à des variétés compactes. En particulier, elles admettent une mesure
finie maximisant l’entropie.

À l’aide du point de vue des courants à l’infini, nous montrons que sur ces variétés SPR, l’entropie
topologique varie de manière C1 le long de perturbations C1-uniformes de la métrique. Ceci généralise
des résultats passés de Katok (1982) et Katok-Knieper-Weiss (1991) dans le cas compact.

1. Introduction

1.1. Variation of the topological entropy: An overview

The initial motivation of this work was to answer the following simple question. Consider
a hyperbolic surface of finite volume and a smooth compact perturbation of the metric. Does
the topological entropy of the geodesic flow vary regularly? More generally, what happens
for a smooth perturbation of the metric of a noncompact negatively curved Riemannian
manifold?
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2 B. SCHAPIRA AND S. TAPIE

The answer has been known on compact manifolds since almost thirty years [31, 30, 21],
and has been extended to the convex-cocompact case in [52]. A similar argument gives the
regularity of the topological entropy for a perturbation of an Anosov flow, cf [31].

Compactness of the underlying space is crucial in the above results, and no result was
known until now for manifolds with a non-compact non-wandering set. Even the case of
a smooth compact perturbation of the metric of a finite volume hyperbolic surface was
not accessible with their arguments. Let us recall the two main steps of their argument to
understand why.

The key step is the following inequality, due to Katok in [29] for surfaces, extended in [31]
to all dimensions.

T 1.1 ([29]; [31]). – Let g1; g2 be Riemannian metrics with negative sectional
curvature on the same compact manifold M . Then the entropies of their geodesic flows satisfy

(1) htop.g1/ � htop.g2/ �

Z
Sg1M

jjvjjg2 dm
g1
BM.v/;

where jjvjjg2 D
p
g2.v; v/ and mg1BM is the normalized Bowen-Margulis measure on the g1-unit

tangent bundle Sg1M for the g1-geodesic flow.

Reversing the role of g1 and g2 also provides a lower bound for htop.g1/, and a first order
power expansion gives the following smoothness result.

T 1.2 ([31]). – Let .g"/"2.�1;1/ be a C2-family of C2 Riemannian metrics with
negative sectional curvature on the same compact manifold M . Then " 7! htop.g"/ is C1, and
its derivative is given by

(2)
d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg" dm
g0
BM.v/;

where mg0BM is the normalized Bowen-Margulis measure on the g0-unit tangent bundle Sg0M
for the g0-geodesic flow.

In the previously quoted works, the proofs of (1) strongly use the compactness of the non-
wandering set. In the first part of our paper, we use a different approach to generalize it to
the non-compact setting. This improves it even in the compact case, providing an explicit
transformation rule for the entropies, equality which immediately implies (1), and has other
interesting consequences.

The previously known proofs of (2) use the compactness of M for a crucial point: to
ensure the finiteness and the continuity of the normalized Bowen-Margulis measures mg"BM
in the weak-� topology as " varies. Neither finiteness of the Bowen-Margulis measure nor
its continuity under a variation of the metric can be ensured in general. Maybe the most
striking fact of our work is that we introduce a new wide class of manifolds, which we
call SPR manifolds, SPR meaning strongly / stably positively recurrent. The terminology
Stably positively recurrent has been introduced by Gurevic-Savchenko [26] in the context of
countable Markov shifts. Sarig [48] modified it, in the same context, into strongly positively
recurrent, terminology which has been used later by other authors as Buzzi [8]. See also
the very recent work of Velozo [53], who follows also this terminology. Both terminologies
are meaningful, and had not yet been considered in our context. It turns out that the same
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 3

property also appeared recently and independently in the context of geometric group theory
in [3] under the name of growth gap.

The class of SPR manifolds that we define here has the remarkable property that the
Bowen-Margulis measure is finite, and moreover stays finite and varies continuously along
small perturbations. In particular, under C1-uniform variation of such SPR Riemannian
metrics, the topological entropy is C1 and its derivative is given by (2).

These SPR manifolds include finite volume hyperbolic manifolds, and more generally
almost all known examples where the geodesic flow admits a (finite) measure of maximal
entropy, as geometrically finite negatively curved manifolds with spectral gap [15], Schottky
product examples from [39], and unpublished examples of Ancona [2]. The class of SPR
manifolds is much larger than only the above mentioned examples. We postpone the extensive
study of SPR manifolds to a later paper [25]. Therefore, the second half of our paper will be
devoted to the presentation of a geometrical setting, as large as possible, where this finiteness
and continuity of Bowen-Margulis measures can be ensured.

Let us now present our main results with more details.

1.2. Invariant measures and change of Riemannian metrics

Let .M; g1/ be a complete Riemannian manifold, and g2 be another Riemannian metric
onM such that there exists C > 1with 1

C
g1 � g2 � Cg1. We assume moreover that both g1

and g2 have pinched negative sectional curvatures with uniformly bounded first derivatives:
this implies that g1-geodesics are g2-quasi-geodesics and the visual boundary of the universal
cover .fM;g1/ is canonically identified with the visual boundary of .fM;g2/; we will denote it
by @fM . We will use extensively this correspondance to compare the dynamics of the geodesic
flows on Sg1M and Sg2M .

Let � D �1.M/ acting on the universal cover fM , let m be a locally finite measure
on Sg1M , invariant by the geodesic flow .gt1/t2R, and em its lift to Sg1fM . We write
@2fM D .@fM � @fM/nDiag. In g1-Hopf coordinates (cf Section 2), Sg1fM ' @2fM � R,
and em has a local product structure of the form dem D d� � dt , where � is a �-invariant
geodesic current on @2fM . We write therefore m D mg1� .

We can now define a measure emg2� on Sg2fM , given in g2-Hopf parametrization by the
same local product formula emg2� D d� � dt : by �-invariance, this induces a locally finite
measure mg2� on Sg2M , which is invariant for the geodesic flow .gt2/t2R. The ergodic prop-
erties of .Sg1M;gt1; m

g1
� / and .Sg2M;gt2; m

g2
� / are strongly related.

Well known facts imply that if mg1� and mg2� are finite then one is ergodic or conservative
if and only if the other is. The reader may believe that, since 1

C
g1 � g2 � Cg1, then mg1� is

finite if and only if mg2� is. We will indeed show that it is the case and relate the masses and
entropies of these measures.

In this purpose, let us introduce the instantaneous geodesic stretch E g1!g2 W Sg1fM ! R
defined for all v 2 Sg1fM by

E g1!g2.v/ D
d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.�v; �gt1v/ D
d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.o; �gt1v/;

where � W Sg1fM ! fM is the canonical projection, and B
g2

v
g1
C

.:; :/ is the Busemann

function for g2 based at the endpoint of the g1-geodesic generated by v. By �-invariance,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



4 B. SCHAPIRA AND S. TAPIE

it induces a map E g1!g2 W Sg1M ! R. We will see in Section 2.3 that this is the derivative
along g1-geodesics of a natural Morse correspondance ‰g1!g2 W Sg1M ! Sg2M between
the g1 and g2 geodesic flows. This Morse correspondence is a global homeomorphism,
which sends g1-geodesics to g2-geodesics up to a time rescaling. In particular, it induces a
homeomorphism from the non-wandering set�g1 of the geodesic flow on Sg1M to the non-
wandering set�g2 of the geodesic flow on Sg2M ; see next section for precise definitions. This
implies the following.

P 1.3. – For every mg2� -measurable map G W Sg2M ! R, the map G ı
‰g1!g2 is mg1� -measurable andZ

Sg2M

G dmg2� D

Z
Sg1M

G ı‰g1!g2 � E g1!g2 dmg1� :

In particular, the masses of mg2� satisfyˇ̌̌̌
mg2�

ˇ̌̌̌
D

Z
Sg1M

E g1!g2 dmg1� :

Some other versions of the geodesic stretch have already been considered in [20] or [32];
we explain in Section 2.3 the relationship with these references and the interest of our new
definition. We then introduce in Section 3 a notion of local entropy for invariant measures,
which is an analogous in the non-compact setting to Brin-Katok entropy, and which coin-
cides with the classical measure-theoretic entropy for Gibbs measures (1). This also allows us
to relate the local entropies of .Sg1M;gt1; m

g1
� / and .Sg2M;gt2; m

g2
� /.

T 1.4 (See Theorem 3.11). – Let .M; gi /, i D 1; 2 be two equivalent Rieman-
nian metrics on M with pinched negative curvature and uniformly bounded derivatives.
Let � be any geodesic current and mgi� the associated invariant measure on SgiM under
the geodesic flow .gti /. Assume that these measures are finite and ergodic. Then the local
entropies of .gt1; m

g1
� / and .gt2; m

g2
� / are related as follows.

hloc.m
g2
� ; g2/ D I�.g2; g1/ � hloc.m

g1
� ; g1/;

where

I�.g2; g1/ D
1

km
g2
� k

Z
Sg2M

E g2!g1.v/ dmg2� .v/:

The combination of the previous theorem with the variational principle for entropy
implies the following result, which is an optimal improvement of (1).

T 1.5 (See Corollary 3.18 and Theorem 3.19). – Let .M; gi /, i D 1; 2 be two
equivalent Riemannian metrics on M whose curvature is negatively pinched and has uniformly
bounded derivatives. Assume that the geodesic flow on Sg2M has a finite measure Bowen-
Margulis measure mg2BM, i.e., a finite measure with maximal entropy. Then

htop.g2/ � Img2BM
.g2; g1/ � htop.g1/:

Moreover, equality holds if and only if the geodesic flow on Sg1M also has a finite Bowen-
Margulis measure and there exists a Morse correspondence F g1!g2 W Sg1M ! Sg2M which

(1) Riquelme showed recenty [44] that these entropies coincide for all ergodic measures.
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 5

conjugates the flows on the non-wandering sets of Sg1M and Sg2M up to a global time scaling
by htop.g1/

htop.g2/
: for all v 2 �g1 and all t 2 R,

g
htop.g2/t

2 ı F g1!g2.v/ D F g1!g2 ı g
htop.g1/t

1 .v/:

This has been shown by Knieper in [32] for compact manifolds. The relation between the
Morse correspondences F g1!g2 and‰g1!g2 will be precised in Theorem 3.19. Note that in
general, when two negatively curved metrics are equivalent, one may have a finite Bowen-
Margulis measure whereas the other may not. The previous theorem has the following
striking corollary.

C 1.6. – Let .M; gi /, i D 1; 2 be two equivalent Riemannian metrics on M
whose curvature is negatively pinched and has uniformly bounded derivatives. Assume that the
geodesic flow on Sg2M has a finite measure Bowen-Margulis measure mg2BM and that

htop.g2/ D Img2BM
.g2; g1/ � htop.g1/:

Then the marked length spectra of g1 and g2 coincide up to a global scaling by htop.g1/

htop.g2/
.

Section 4 is devoted to the study of Gibbs measures and their behavior under change
of metrics. It happens to be crucial in the proof of the above Theorem 1.5. We show that
a .gt1/-invariant measure mg1� is a Gibbs measure for the potential G W Sg1 ! R if and
only if the associated .gt2/-invariant measure mg2� is a Gibbs measure for the potential
G ı‰g2!g1 � E g2!g1 . We also give some applications of this last fact to a comparison
between the length spectra of .M; g1/ and .M; g2/, see Corollary 4.4.

1.3. Entropy at infinity, SPR manifolds and Bowen-Margulis measures

Let .M; g/ be a Riemannian manifold with pinched negative sectional curvatures
whose derivatives are uniformly bounded. We introduce a notion of entropy at infinity (see
Section 7), which measures the highest possible complexity of the (topological) dynamics
outside a compact set in the manifold. Note that another definition of entropy at infinity
appears in [8, 45, 53], which is somehow the maximal entropy of a sequence of invariant
probability measures diverging to infinity. See also [18, 19] for related works in finite volume
rank one homogeneous dynamics. It follows from [45] in the geometrically finite case
and [53, 25] more generally that this entropy at infinity coincides with our definition.

We call the Riemannian manifold .M; g/ strongly positively recurrent, shortly SPR, if the
entropy at infinity is strictly smaller than the topological entropy of the geodesic flow. This
SPR property implies that the geodesic flow admits a finite Bowen-Margulis measure, which
is then the unique measure of maximal entropy, according to [36], see Theorem 3.16, and
also that this fact remains true under a nice small perturbation of the metric, and that these
measures vary continuously in the narrow topology (i.e., in the dual of bounded continuous
functions).

Let us comment on this terminology of strong positive recurrence. It comes from the world
of symbolic dynamics with the works of Gurevich-Savchenko [26] and Sarig [48]. In Pit-
Schapira [41], it is shown that their notion of recurrence is equivalent to the conservativity

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



6 B. SCHAPIRA AND S. TAPIE

and ergodicity of the Bowen-Margulis measure, whereas positive recurrence corresponds to
finiteness (and therefore conservativity and ergodicity) of this Bowen-Margulis measure.

Let us summarize the main results that we establish here on the SPR property. A more
detailed study of this property and its consequences is the aim of paper [25].

T 1.7. – Let .M; g/ be a Riemannian manifold with pinched negative curvature.

1. The SPR property implies that the geodesic flow admits an invariant probability measure
of maximal entropy mgBM, the so-called Bowen-Margulis measure. In the terminology
of [41], the SPR property implies that the geodesic flow is positively recurrent.

2. Geometrically finite manifolds with critical gap (see [15]) have the SPR property,

3. Topologically infinite examples of [2] presented in Section 7.3.3 have the SPR property,

4. Schottky product examples of [39] have the SPR property.

Typical examples of manifolds which do not have the SPR property are infinite covers of
compact negatively curved manifolds, or geometrically finite manifolds without critical gap
(see [15] once again).

As mentioned above, this SPR property is stable in the following sense.

T 1.8. – Let .M; g0/ be a SPR manifold with pinched negative curvature and
bounded derivatives of the curvature. Let .g"/"2.�1;1/ be a C1-uniform variation of the metric.
Then there exists "0 > 0 such that for all " 2 .�"0; "0/, the manifold .M; g0/ is SPR. Moreover,
the Bowen-Margulis measures .mg"BM/ vary continuously at " D 0 in the narrow topology.

Let us recall here that the narrow topology is the dual topology of bounded contin-
uous functions, whereas the vague topology is the dual topology of continuous compactly
supported functions. In the above theorem, continuity in the vague topology is not a big
problem, whereas noncompactness of the manifold creates huge difficulties to get conver-
gence of the total mass of the measures, and therefore continuity in the narrow topology.
It is the key place of the paper where we really absolutely need the SPR property to get
convergence of the masses of measures, whereas at several other places the assumption is
either not needed, or could be slightly weakened.

This allows us to show the following regularity property for the topological entropy, which
answers our initial question. We refer to Section 7 for technical details on the assumptions.

T 1.9. – Let .M; g0/ be a SPR manifold with pinched negative curvature and
bounded derivatives of the curvature. Let .g"/"2.�1;1/ be a C1-uniform variation of the metric
with negative sectional curvatures. Then the map " 7! htop.g"/ is C1 near " D 0, with derivative
at 0

d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg" dm
g0
BM.v/;

the normalized Bowen-Margulis measure mg0BM D
m
g0
BM

km
g0
BMk

being the invariant probability

measure of maximal entropy for the g0-geodesic flow.
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 7

Let us emphasize the fact that this theorem is valid in a much greater generality than
what we thought initially possible. On the one hand, SPR manifolds are a very general and
interesting class of manifolds, much larger than the well known and well studied class of finite
volume, or even geometrically finite hyperbolic manifolds, as illustrated by Theorem 1.7. It
may be an optimal class to get such result in the sense that we guess that phase transitions
for the entropy can happen when the manifold is not SPR, analogous to those obtained
by Riquelme-Velozo [45] for the pressure when varying a potential on geometrically finite
manifolds.

On the other hand, we allow much more general perturbations than only compact ones
since we deal with noncompact C2-perturbations of our metric, as soon as they are not too
wild at infinity.

The paper is organized as follows. In Section 2, we develop the point of view of geodesic
currents at infinity, which allows us to associate to an invariant measuremg1� for the geodesic
flow for .M; g1/ an invariant measure mg2� for the geodesic flow on .M; g2/, and compare
their ergodic properties.

In Section 3, we introduce different notions of entropy and develop methods of Section 2
to relate the entropies of mg1� and mg2� .

In Section 4, we recall general facts about Gibbs measures on non-compact manifolds,
we show thatmg1� is a Gibbs measure if and only ifmg2� is and give applications to the length
spectrum.

In Section 5 we show some continuity results for geodesics, Busemann functions and non-
normalized Bowen-Margulis measures which will be needed in the sequel.

In Section 6, we first show that for a fixed geodesic current � on @2fM , the measure-
theoretic entropy " 7! h

�
gt"; m

g"
�

�
is C1 under a C1-uniform variation of the Riemannian

metrics g". We then show in a very similar proof that, if under a C1-uniform variation of
Riemmanian metrics the normalized Bowen-Margulis measures mg"BM vary continuously in
the narrow topology, then the topological entropy is also C1.

Eventually, in Section 7, we introduce entropy at infinity and SPR manifolds, we show
that they have finite Bowen-Margulis measure, and that under a small C1-uniform variation
of Riemannian metrics they remain SPR. On the way, we give some properties of the entropy
at infinity of independent interest.

Theorem 1.7 follows from results of Section 7.3, where we provide many examples of
SPR manifolds. Theorem 1.8 is a reformulation of the second part of Theorem 7.1. At
last, our main variational formula for the topological entropy, Theorem 1.9, follows from
Theorems 6.3 and 1.8 (or 7.1).
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8 B. SCHAPIRA AND S. TAPIE

2. Hopf parametrization and geodesic currents

2.1. Hopf parametrization and geodesic flow

Let .M; g0/ be a complete manifold with pinched negative sectional curvatures satisfying
�b2 � Kg0 � �a

2 < 0, and first derivatives of the curvature bounded. The bounds on
the curvature are crucial, particularly the upper bound, at many places of the paper. But the
assumption on the derivative will be used (implicitely) only when speaking about the Bowen-
Margulis measure and its entropy. Indeed, this allows to get regularity of strong (un)stable
foliations, which is used in the paper [36] that we shall use later, see Theorem 3.16.

Let fM be the universal cover of M , equipped with the lifted metric which we will still
denote by g0, and let @g0fM be its visual boundary. Let � D �1.M/ be the fundamental
group, acting properly by diffeomorphisms on fM . Denote by p� indistinctly the projectionfM ! M and its linear tangent map TfM ! TM . A metric g on M (or equivalently, a
�-equivariant metric g on fM ) will be called admissible if it has pinched negative sectional
curvature, if the derivatives of the curvature are bounded and if there exists a constant
C1.g0; g/ > 1 such that at all x 2M ,

(3)
1

C1.g0; g/
g0 � g � C1.g0; g/ g0:

This implies that g-geodesics are g0-quasi-geodesic. By Morse-Klingenberg lemma (see
for example [9, Th. 1.7 p. 401] for a proof), they are contained in theC2.g0; g/-neighborhood
of g0-geodesics, where C2.g0; g/ only depends on C1.g0; g/ .

In particular the visual boundary @gfM of .fM;g/ is canonically identified to the visual
boundary of .fM;g0/, and they will therefore both be denoted by @fM . Moreover, this
identification is Hölder continuous w.r.t the visual distances induced by both g0 and g, so
that @fM has a natural Hölder structure.

The limit setƒ� � @fM is the set of accumulation points of any orbit �:x on the boundary.
The radial limit set ƒr� � ƒ� is the set of endpoints of geodesics which, on the quotient
manifoldM , return infinitely often to some compact set. None of these limit sets depend on
the chosen admissible metric.

Let us fix once for all a point o 2 fM . Let g be any admissible metric on M , and dg the
distance induced by g on M and fM . Denote by SgM (resp. SgfM ) the unit tangent bundle
of .M; g/ (resp. .fM;g/), and @2fM D .@fM � @fM/nDiag. We write � W TM ! M and
� W TfM ! fM the projections from the tangent bundle to its base, and by .gt /t2R the
geodesic flow on SgM or SgfM . For any v 2 SgfM , write vg� and vgC for the negative and
positive endpoints in @fM of the geodesic f�gtvI t 2 Rg.

R 2.1. – We keep track in our notations of the metric g since we will soon
compare these quantities for two different admissible metrics g1 and g2.

For all � 2 @fM , let B
g

� be the Busemann function at � defined, for any x; y 2 fM , by

B
g

� .x; y/ D lim
z!�

dg.x; z/ � dg.y; z/:

The map

Hg
W v 7!

�
vg�; v

g
C; Bv

g
C
.o; �v/

�
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is a Hölder homeomorphism from SgfM to @2fM �R, called the Hopf parametrization of the
unit tangent bundle.

The action of� by (differentials of) isometries onSgfM can be written in these coordinates
as


:.vg�; v
g
C; t / D

�

:vg�; 
:v

g
C; t C B

g

v
g
C

.
�1:o; o/

�
:

Let us emphasize the fact that this action of � on @2fM �R, and more specifically on the third
factor, depends strongly on the cocycle B

g , and therefore on the metric g.

2.2. Geodesic currents and invariant measures

In the coordinates given by the Hopf parametrization of SgfM , the geodesic flow .gt / acts
by translation on the last factor: for all v 2 SgfM , and s 2 R,

if Hg.v/ D .v�; vC; t / then Hg.gsv/ D .v�; vC; t C s/:

Therefore, any positive Radon measurem on SgM invariant by the flow lifts to a measure em
on SgfM of the form em D .Hg/�.�� dt/, where dt is the Lebesgue measure on R, and � is
a �-invariant locally finite positive measure on @2fM .

D 2.2 (Geodesic current). – A�-invariant geodesic current, or simply geodesic
current, is a �-invariant positive Radon measure on @2fM .

Given any geodesic current � and any admissible metric g on M , we will denote by mg�
the unique measure on SgM invariant by the geodesic flow .gt / whose lift on SgfM is emg� D
.Hg/�.d� � dt/. The non-wandering set �g � SgM of the geodesic flow .gt / is the image
on SgM of the �-invariant set e�g on SgfM defined bye�g D .Hg/�1 ..ƒ� �ƒ�/nDiag � R/ :

It was shown by Eberlein [17] that for the geodesic flow of a negatively curved manifold, this
definition coincides with the usual definition of the nonwandering set of a flow.

It follows from (3) and [9, Thm 1.7 p. 401] that �g is compact (i.e., (M,g) is convex-
cocompact) if and only if �g0 is. We will mainly be interested in the case where �g is not
compact.

The measure mg� is locally finite, but may have infinite mass as soon as .M; g/ is not
convex-cocompact. We will use all over this paper the fact that many properties of the
measure mg� only depend on the geodesic current � and not on the chosen admissible
metric g.

Recall first that an invariant measure is ergodic if every invariant set either has measure
zero or its complementary set has measure zero.

Recall also that a sequence of measures .mn/ converges to m1 in the vague (respectively
narrow) topology if for every continuous compactly supported (respectively bounded) func-
tion f , we have

R
f dmn !

R
f dm1.

An invariant measure is periodic if it is (proportional to) the Lebesgue measure on a
periodic orbit. The measure m is conservative if it satisfies the conclusion of Poincaré recur-
rence Theorem: for all sets A of positive measure m.A/ > 0, and m-almost all vectors v,
the orbit .gtv/ returns infinitely often in A. The measure m has a product structure if the
associated geodesic current is equivalent to a product of measures on @fM . The measurem is
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10 B. SCHAPIRA AND S. TAPIE

strongly mixing if it is finite and satisfies m.A \ gtB/ ! m.A/m.B/ when t ! ˙1 for all
Borel sets A;B. It is weakly mixing if it is finite and 1

T

R T
0

ˇ̌
m.A \ gtB/ �m.A/m.B/

ˇ̌
goes

to 0 when T !˙1 for all Borel sets A;B.
First well known properties are given in the following proposition.

P 2.3. – Let � be a geodesic current, let g1 and g2 be two admissible metrics
on M . Then

1. the measure mg1� is supported by a (finite number of) closed geodesic(s) if and only if
m
g2
� is;

2. the measure mg1� is ergodic for the geodesic flow .gt1/ if and only if mg2� is ergodic for the
geodesic flow .gt2/;

3. the measuremg1� is conservative for the geodesic flow .gt1/ if and only ifmg2� is conservative
for the geodesic flow .gt2/;

4. the measure mg1� has a local product structure iff the measure mg2� has a local product
structure.

Proof. – The measuremg1� is supported by a closed geodesic if and only if � is carried by
the �-orbit of a couple .��; �C/ 2 @2fM where �� and �C are the fixed points of a hyperbolic
element 
 2 �. Since this property does not depend on g1, it shows 1.

The measure mg1� is ergodic for the geodesic flow .gt1/ if and only if � is ergodic under
the action of � on @2fM (cf for instance [46, p. 19]). This property only depends on �, which
shows 2.

The measure mg1� is conservative for the geodesic flow .gt1/ if and only if � gives full
measure to ƒr� � ƒ

r
� [46, Proof of (b) page 19] where ƒr� is the radial limit set, which does

not depend on the (admissible) metric gi . This shows 3.

One should note that in general an invariant measuremg�, even with finite total mass, has
no reason to be a probability measure.

We will see further nontrivial relationships between mg1� andmg2� later. It would be inter-
esting to know if this kind of result can be extended to (strong) mixing property. All known
explicit examples of strongly mixing measures have a local product structure. But there exist
mixing measures without such a product structure, for which the above question is relevant.

2.3. Geodesic stretches

Let g1 and g2 be two admissible metrics. For all v 2 Sg1M , define the quantity

(4) eg1!g2.v/ D lim inf
t!C1

dg2.�ev; �gt1ev/
t

;

whereev is a lift of v to SgfM . This does not depend on the choice ofev. Knieper showed in [32]
that if m is any invariant measure for .gt1/, then for m-almost every v 2 Sg1M ,

(5) eg1!g2.v/ D lim
t!C1

dg2.�ev; �gt1ev/
t

:

This asymptotic geodesic stretch has been studied by many authors, among which
[20], [32], [23]. Sambarino uses a different point of view of reparametrization of the geodesic
flow (see for example [47]) which is very close to our point of view below.
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Recall that, � 2 @fM being fixed, the Busemann function B
g

� .:; :/ is C2 on fM 2 [28,
Prop. 3.1]. Therefore, for all v 2 Sg1M , we can define

(6) E g1!g2.v/ D
d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.�ev; �gt1ev/ D d

dt

ˇ̌̌̌
tD0C

B
g2

v
g1
C

.o; �gt1ev/;
where ev 2 Sg1fM is any lift of v, vg1C is (2) the positive endpoint in the boundary of the
g1-geodesic associated to ev, and B

g2

v
g1
C

.:; :/ is the Busemann function for g2 based at the

endpoint of the g1-geodesic generated by v. This definition was inspired by Ledrappier’s
paper [34]. In his notations, our geodesic stretch satisfies E g1!g2.v/ D ˛g2.v/, where ˛g2 is
the harmonic 1-form on the g1-stable foliation associated to the Busemann cocycle of the
metric g2.

A g1-geodesic

Two g2-geodesics

A g2-horosphere

v gt1v
v
g1
C

B
g2

v
g1
C

.�v;�gt1v/

F 1. Geodesic stretch

D 2.4 (Geodesic stretch). – The maps eg1!g2 W Sg1M ! R and E g1!g2 W

Sg1M ! R will be called respectively the asymptotic and instantaneous geodesic stretch
of g2 with respect to g1.

Anyway, we will most of the time call them both without distinction geodesic stretch.
By construction, for all v 2 Sg1M , E g1!g1.v/ D eg1!g1.v/ D 1. Observe that there

is no obvious relation from the definition between eg1!g2 (resp. E g1!g2 ) and eg2!g1

(resp. E g2!g1 ).
Ifm is ergodic, then eg1!g2 ism-almost everywhere constant. Of course its value strongly

depends on the measurem. On the opposite, the map E g1!g2 is defined everywhere and does
not depend on the chosen measure. It is in general non-constant, globally Hölder on Sg1M
[4, Appendix of Brin], [38, Thm. 7.3], and C1 along g1-geodesics (as Busemann functions
are C2, see [28]). We will need the following basic estimate.

L 2.5. – Let g1 and g2 be two admissible metrics, and m any g1-invariant measure.
For m-almost all v 2 Sg1fM ,

eg1!g2.v/ �

Z
Sg1M

jjvjjg2 dm;

(2) We omit the tilde for boundary points to avoid too heavy notations.
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12 B. SCHAPIRA AND S. TAPIE

whereas for all v 2 Sg1fM ,
E g1!g2.v/ � jjvjjg2 :

Proof. – The first estimate was shown in [32, p. 44]. The second follows from triangular
inequality. Indeed, for all t � 0, B

g2

v
g1
C

.�.v/; �.gt1v// � dg2.�.v/; �.gt1v//, and these two

quantities vanish at t D 0 so that their derivatives at t D 0 satisfy the same inequality.
Moreover, dg2.�.v/; �.gt1v// is smaller than the g2-length of the curve .�.gs1v//0�s�t , whose
derivative at zero is exactly kvkg2 .

Lemma 2.6 and Corollary 2.8 below justify the common name of geodesic stretch given
to the two maps eg1!g2 and E g1!g2 . Before stating them, recall a well known feature
of negative curvature. On a geodesic space X , each triangle .x; y; z/ admits an interior
triangle .p; q; r/ such that d.r; x/ D d.q; x/, d.q; z/ D d.p; z/ and d.p; y/ D d.r; y/. If g is
a metric with negative curvature, there exists a universal constant �.g/ such that for any
geodesic triangle .x; y; z/ in fM , the associated interior triangle has sides smaller than �.g/
(see for example [9, p. 399] for a proof).

L 2.6. – There exists C3 D C3.g1; g2/ > 0, depending only on the constant
C2.g1; g2/ (defined just below (3) ) and the hyperbolicity constant �.g2/, such that for allev 2 Sg1fM and for all T > 0,ˇ̌̌̌
dg2.�ev; �gT1ev/ � B

g2

v
g1
C

.�ev; �gT1ev/ˇ̌̌̌ D ˇ̌̌̌ˇdg2.�ev; �gT1ev/ � Z T

0

E g1!g2.gt1ev/dt ˇ̌̌̌ˇ � C3.g1; g2/:
Proof. – Let ev 2 Sg1fM and T > 0 be fixed. We write x D �ev, xT D �gT1ev, and zT

is the intersection between the g2-geodesic .x; vg1C /
g2 and the g2-horosphere centered at vg1C

passing through xT .
We will need at several occasions the following estimate.

F 2.7. – With the above notations, dg2.xT ; zT / � 2C2.g1; g2/C�.g2/.

Let us first prove this fact. Consider the g2-geodesic triangle x; xT ; v
g1
C and its interior

triangle, say p 2 .xT ; v
g1
C /; q 2 .x; xT /; r 2 .x; v

g1
C /.

g1-geodesic

g2-geodesics
g2-horosphere

x
v
g1
C

p

xT

zT

q

r

F 2. Proof of Lemma 2.6
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Then by definition of zT , dg2.zT ; r/ D dg2.xT ; q/, so that

dg2.xT ; zT / � 2d
g2.xT ; q/C d

g2.q; r/:

Now, the definition of .p; q; r/ and Morse-Klingenberg lemma (see Section 2.1) imply
dg2.xT ; q/ � d

g2.xT ; .x; v
g1
C // � C2.g1; g2/. The fact follows.

By definition (6),Z T

0

E g1!g2.gt1ev/dt D B
g2

v
g1
C

.�ev; �gT1ev/ D dg2.x; zT /:
Thanks to the above fact, we get

jdg2.x; xT / � d
g2.x; zT /j � d

g2.xT ; zT / � 2C2.g1; g2/C�.g2/:

The result of the lemma follows, with C3.g1; g2/ D 2C2.g1; g2/C�.g2/.

C 2.8. – Let m be a .gt1/-invariant probability measure on Sg1M . ThenZ
Sg1M

eg1!g2.v/dm.v/ D

Z
Sg1M

E g1!g2.v/dm.v/:

Moreover, when m is ergodic, for m-almost every v 2 Sg1M and all liftsev 2 Sg1fM of v,

lim
T!C1

dg2.�ev; �gT1ev/
T

D lim
T!C1

1

T

Z T

0

E g1!g2.gt1ev/dt D Z
Sg1M

E g1!g2.w/dm.w/:

Proof. – It follows from the previous lemma that for all " > 0, there exists T0 > 0 such
that for all T � T0 and allev 2 Sg1fM ,

1

T

ˇ̌̌̌
ˇdg2.�ev; �gT1ev/ � Z T

0

E g1!g2.gt1ev/dt ˇ̌̌̌ˇ � ":
It yields the first equality.

When m is ergodic, for m-almost all vectors v 2 Sg1 ,Z
Sg1M

E g1!g2.v/dm.v/ D lim
T!C1

1

T

Z T

0

E g1!g2.gt1ev/dt
and Z

Sg1M

eg1!g2.v/dm.v/ D eg1!g2.v/ D lim
T!C1

dg2.�ev; �gT1ev/
T

;

which concludes the proof of the corollary.

Let us emphasize the fact that the measures that we will consider will usually have finite
mass, but may not be probability measures. We will denote by kmk the mass of a finite
measure m on TM .

D 2.9 (Geodesic stretch with respect to a geodesic current).

Let � be a geodesic current on @2fM such that mg� is finite. We will call (average) geodesic
stretch of g2 relative to g1 with respect to � the quantity

I�.g1; g2/ D
1

km
g1
� k

Z
Sg1M

E g1!g2.v/dmg1� .v/ D
1

km
g1
� k

Z
Sg1M

eg1!g2.v/dmg1� .v/:
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14 B. SCHAPIRA AND S. TAPIE

By Corollary 2.8, I�.g1; g2/ coincides with the definition of the geodesic stretch studied
in [32] (note that Knieper only considers invariant probability measures).

When .M; g/ has finite volume and � is the Liouville geodesic current of g1, then

I�.g1; g2/:Vol.Sg1M/ D i.g1; g2/;

where i.g1; g2/ is the intersection between the metrics g1 and g2 studied in [20].

It follows from the definition that for all geodesic currents � such that mg� is finite,
I�.g1; g1/ D 1.

R 2.10 (Geodesic stretches and Thurston metric). – Given two negatively curved
metrics g1 and g2 on a compact surface S , the Thurston distance dTh.g1; g2/ is defined as
the supremum over all periodic orbits of the ratios of their lengths:

dTh.g1; g2/ D sup



�
`g2.
/

`g1.
/
;
`g1.
/

`g2.
/

�
:

With our notations, this distance could also be defined as the following supremum

dTh.g1; g2/ D sup
�

�
I�.g1; g2/; I�.g2; g1/

�
over all currents � associated to ergodic measures. Indeed, considering periodic measures
immediately shows that Thurston distance is smaller than the above supremum. In the other
direction, the density of periodic measures in the set of ergodic measures, see [13], gives the
above equality.

2.4. Morse correspondences and geodesic stretches

To compare dynamics of the geodesic flows on Sg1M and Sg2M , it is natural to consider
their dynamics modulo the �-action on Sg1fM and Sg2fM . Hopf coordinates are a good
motivation to consider the mapêg1!g2 WD .Hg2/�1 ıHg1 W Sg1fM ! Sg2fM:

It is a Hölder homeomorphism, but it is unfortunately not �-equivariant, as both �-actions
on each unit tangent bundle SgifM are different. In other words, as said earlier, on @2fM �R,
these �-actions involve different cocycles on the R component.

Despite its non-invariance, this map is sometimes useful, because it has the nice property
to commute with both geodesic flows. But we need to find another map from Sg1fM
to Sg2fM which will be �-equivariant. We proceed as follows. For all v 2 Sg1fM , let
w D e‰g1!g2.v/ be the unique vector in Sg2fM on the g2-geodesic joining vg1� to v

g1
C

satisfying B
g2

v
g1
C

.�.v/; �.w// D 0.

L 2.11. – The map ‰g1!g2 is Hölder continuous. Moreover, for all v 2 Sg1fM , we
have

dg2.�v; �‰g1!g2.v// � C3.g1; g2/;

where C3.g1; g2/ is the constant given by Lemma 2.6.
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v
g1
C

v

‰g1!g2.v/

g2-horosphere

g2-geodesic

g1-geodesic

F 3. Morse correspondence

Proof. – It is Hölder continuous as composition of the maps ˆg1!g2 and some time g�2
of the geodesic flow, with � D �g1!g2.v/ depending Hölder-continuously on v (see formula
in Lemma 2.12 (4) below).

The bound on dg2.�v; �‰g1!g2.v// has already been proved in Fact 2.7.

By construction, the correspondence e‰g1!g2 is �-invariant. We denote by ‰g1!g2 the
induced map from Sg1M to Sg2M . It is a homeomorphism homotopic to identity sending
.gt1/-orbits to .gt2/-orbits, i.e., a .g1; g2/-Morse correspondence in the sense of [20].

By definition of both correspondences, the following lemma holds. It says that the
geodesic flows .gt1/ and .gs2/ on the unit tangent bundles SgifM are conjugated by ˆg1!g2 ,
and conjugated up to reparametrization by the Morse correspondance ‰g1!g2 .

L 2.12. – With the above notations, we have for all v 2 Sg1fM
1. ˆg1!g2 ı gt1.v/ D g

t
2 ıˆ

g1!g2.v/:

2. ˆg2!g1 D
�
ˆg1!g2

��1
:

3. ‰g1!g2 ıgt1.v/ D g
sg1!g2 .t;v/
2 ı‰g1!g2.v/;with sg1!g2.t; v/ D B

g2

v
g1
C

.�.v/; �.gt1v//.

4. ‰g1!g2.v/ D g�
g1!g2 .v/
2 ıˆg1!g2.v/ , with

�g1!g2.v/ D B
g2

v
g1
C

.o; �.v// � B
g1

v
g1
C

.o; �.v//:

5. ‰g2!g1 ı‰g1!g2.v/ D g�
g1!g2 .v/
1 .v/; with �g1!g2.v/ D B

g1

v
g1
C

�
�.v/; �.‰g1!g2v/

�
.

Let us emphasize that ˆg1!g2 and its inverse are not �-invariant, ‰g1!g2 and its
inverse are �-invariant, the map �g1!g2 is not �-invariant, whereas �g1!g2 and the cocycle
sg1!g2.t; v/ are �-invariant.

Proof. – The fact that ˆg1!g2 commutes with the geodesic flows of g1 and g2 is imme-
diate by definition of Hopf coordinates. The property about its inverse is also obvious.

By definition of ‰g1!g2 , the vectors ‰g1!g2.gt1v/, for t 2 R, all lie on the g2-geodesic
joining vg1� to vg2C . The only question is to compute

sg1!g2.t; v/ D B
g2

v
g1
C

.�.‰g1!g2.v//; �.‰g1!g2.gt1v///:
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By definition of ‰g1!g2 ,

B
g2

v
g1
C

.�‰g1!g2.gt1v/; �.g
t
1v// D 0 D B

g2

v
g1
C

.�‰g1!g2.v/; �.v//:

Using the cocycle properties of B
g2

v
g1
C

, we deduce immediately that sg1!g2.t; v/ is the alge-

braic g2-distance B
g2

v
g1
C

.�.v/; �.gt1v//.

The next affirmation follows from the computation

�g1!g2.v/ D B
g2

v
g1
C

.ˆg1!g2.v/; ‰g1!g2.v// D B
g2

v
g1
C

.o; �.v// � B
g2

v
g1
C

.o;ˆg1!g2.v//

D B
g2

v
g1
C

.o; �.v// � B
g1

v
g1
C

.o; v/:

The last statement follows easily from the previous one.

2.5. Change of mass

We will need the following variant of Lemma 2.6, which shows once more that E g1!g2

behaves asymptotically as the infinitesimal reparametrization of the flow given by Morse
correspondance ‰g1!g2 W Sg1fM ! Sg2fM .

P 2.13. – Let G W Sg2M ! R be a continuous map and eG W Sg2fM ! R be
its (�-invariant) lift to Sg2fM . Then for all v 2 Sg1fM , T � 0, and w D ‰g1!g2.v/, we haveZ sg1!g2 .T;v/

0

eG.gs2w/ ds D Z T

0

eG ı‰g1!g2.gt1v/ � E g1!g2.gt1v/ dt;

with sg1!g2.T; v/ D B
g2

v
g1
C

.�.v/; �.gT1 v// as in Lemma 2.12.

If moreover G is bounded, then there exists C D C.G; g1; g2/ such that for all v 2 Sg1fM ,
T � 0, and w D ‰g1!g2.v/, we haveˇ̌̌̌

ˇZ dg2 .v;gT
1
v/

0

eG.gs2w/; ds � Z T

0

eG ı‰g1!g2.gt1v/ � E g1!g2.gt1v/ dt

ˇ̌̌̌
ˇ � C:

If G is not bounded, then for all compact sets K � Sg1M there exists another constant
C 0 D C 0.G;K; g1; g2/ such that for all v 2 Sg1fM and T 2 R such that both v and gT1 v belong
to eK D p�1� .K/ � Sg1fM , we haveˇ̌̌̌

ˇZ dg2 .v;gT
1
v/

0

eG.gs2w/; ds � Z T

0

eG ı‰g1!g2.gt1v/ � E g1!g2.gt1v/ dt

ˇ̌̌̌
ˇ � C 0:

The geodesic stretch E g1!g2 can therefore be understood as the instantaneous repara-
metrization of the flow .gt1/ in the correspondance ‰g1!g2 .

Proof. – The first equality is a simple change of variable using Lemma 2.12. The second
follows using Lemma 2.6 and the fact that G is bounded. Indeed,ˇ̌̌̌

ˇZ dg2 .v;gT
1
v/

0

eG.gs2w/; ds � Z T

0

eG ı‰g1!g2.gt1v/ � E g1!g2.gt1v/ dt

ˇ̌̌̌
ˇ
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D

ˇ̌̌̌
ˇZ dg2 .�.v/;�.gT

1
v//

s.T;v/

eG.gs2w/ ds ˇ̌̌̌ˇ
� kGk1 �

ˇ̌̌̌
dg2.�.v/; �.gT1 v// � B

g2

v
g1
C

.�.v/; �.gt1v//

ˇ̌̌̌
D kGk1 �

ˇ̌̌̌
ˇdg2.�.v/; �.gT1 v// � Z T

0

E g1!g2.gt1v/ dt

ˇ̌̌̌
ˇ

� C1kGk1:

The last assertion is a variation on the second one. If v and gT1 v are in a compact setK, for
any parameter s such that jsj � C3.g1; g2/, gT˙s1 v belongs to the C3.g1; g2/-neighborhood
of K, on which G is bounded. The above computation therefore applies verbatim.

R 2.14. – Proposition 1.3 follows immediately. Given any mg2� -measurable map
G W Sg2M ! R, the map G ı‰g1!g2 is mg1� -measurable and G on Sg2M , and we haveZ

Sg2M

G dmg2� D

Z
Sg1M

G ı‰g1!g2 � E g1!g2 dmg1� :

The corollary below follows immediately from the above remark. It gives a nice interpre-
tation of the geodesic stretch I�.g1; g2/.

C 2.15 (Mass transformation law). – Let � be a geodesic current such
that mg1� has finite total mass, denoted by kmg1� k. Then

kmg2� k D I�.g1; g2/ � km
g1
� k:

In particular mg1� has finite mass if and only if mg2� has finite mass. Moreover, when it is the
case,

I�.g1; g2/ D
1

I�.g2; g1/
D
km

g2
� k

km
g1
� k

:

R 2.16. – The previous formula is very natural if I�.g2; g1/ is interpreted as the
average dilation of the reparametrization of the flow via the Morse correspondance‰g1!g2 .
Indeed, in the case where .gt1/ and .gt2/ are suspension flows over a (fixed) compact basis for
distinct ceiling functions, the above formula is well known [1].

2.6. Periodic orbits and geodesic stretch

In this section we relate geodesic stretch and lengths of periodic orbits. The results will
not be useful in the sequel of the paper, but are enlightening about the geodesic stretch.

For i D 1; 2, for any hyperbolic element 
 2 �, let 
gi be the closed gi -geodesic associated
to the conjugacy class of 
 . Let `gi .
/ be its gi -length, and d`gi
 be the Lebesgue measure
along the geodesic 
gi . Observe that, up to normalizing constants, the periodic measure
d`

gi

 , i D 1; 2, induce the same current at infinity.
Sincemg1� is finite and ergodic, there exists a sequence .
k/k2N of hyperbolic elements such

that in the weak topology,

lim
k!1

d`


g1
k

`g1.
k/
D

m
g1
�

km
g1
� k

;
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18 B. SCHAPIRA AND S. TAPIE

see for instance [13, Lemma 2.2]. This convergence holds a priori in the dual of contin-
uous functions with compact support. But as all measures involved above are probability
measures, this convergence also holds in the dual of bounded continuous functions of Sg1M .

We can moreover suppose that limk!1 `
g1.
k/ D C1.

The following proposition shows that the same happens on Sg2M , and that the ratio of
lengths of periodic orbits in both metrics allows to recover the geodesic stretch.

P 2.17. – Let .M; gi /, i D 1; 2, be two admissible Riemannian structures with
pinched negative curvature. Let � be a geodesic current such that both measuresmgi� are finite.

Let .
k/ be a sequence of hyperbolic elements such that
d`
g1

k

`g1 .
k/
converges weakly to m

g1
�

km
g1
� k

in

the dual of bounded continuous functions. Then
d`
g2

k

`g2 .
k/
converges weakly to m

g2
�

km
g2
� k

in the dual

of bounded continuous functions.
Moreover, the ratios of lengths satisfy

lim
k!C1

`g2.
k/

`g1.
k/
D I�.g1; g2/:

The proof is separated in two lemmas. The first one asserts that viewed on Sg2M ,

the sequence of periodic probability measures associated to .
k/ also converges to m
g2
�

km
g2
� k

in the dual of bounded continuous functions. The second says that the ratio of lengths
`g2.
k/=`

g1.
k/ converges to the average geodesic stretch I�.g1; g2/.

L 2.18. – With the previous notations, for the same sequence .
k/, in the dual of
continuous bounded functions of Sg2M ,

lim
k!1

d`
g2

k

`g2.
k/
D

m
g2
�

km
g2
� k

:

Proof. – First, as the sequence of probability measures
d`
g1

k

`g1 .
k/
converges to the prob-

ability measure m
g1
�

km
g1
� k

, the �-invariant lift of
d`
g1

k

`g1 .
k/
to Sg1fM converges in the dual of

continuous functions with compact support towards emg1�
km
g1
� k

. Using Hopf coordinates, we

deduce that the geodesic current on @2fM associated through Hg1 to
d`


g1
k

`g1 .
k/
converges

weakly (in the dual of continuous functions with compact support) to �. Using the same

argument in the other direction, we obtain that the sequence of probability measures
d`
g2

k

`g2 .
k/

converges weakly (in the dual of continuous functions with compact support) to some
multiple of mg2� =km

g2
� k.

It is not exactly the desired result. To get the convergence towards the probability measure
m
g2
� =km

g2
� k, and in the dual of bounded continuous functions, we need to avoid a possible

loss of mass at infinity. To establish this convergence, it is necessary and sufficient to prove

that
d`
g2

k

`g2 .
k/
does not diverge. In other words, we want to check that for all " > 0, there exists

a compact set K " � S
g2M , such that for all k � 0 large enough,

d`
g2

k

`g2.
k/
.K "/ � 1 � ":
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It follows easily from the fact that there exists a constant C D C.g1; g2/ such that any
g2-geodesic of fM stays in aC.g1; g2/-neighborhood of the g1-geodesic with same endpoints
at infinity. Let us write the detail of the argument.

Choose first some " > 0, and some compact setK1 �M such that m
g1
� .Sg1K1/

km
g1
� k

� 1� "=2.

By convergence of
d`
g1

k

`g1 .
k/
, for all k � k0 large enough, we also have

`
g1

k
.Sg1K1/

`g1 .
k/
� 1 � ".

Now, choose a relatively compact preimage eK1 2 fM , its g2-convex closure eK2 andeK3 � eK2 a larger compact convex set of fM containing a 2C.g1; g2/-neighborhood of eK2
for both metrics g1 and g2.

Consider a lifte
g1
k

of the g1-geodesic 
g1
k

which intersects eK1, and the associated lifte
g2
k

of the g2-geodesic 
g2
k

, at distance at most C.g1; g2/ frome
g1
k

. Let a; b be two points one
g2
k

such that the length `g2
k ..a; b// D `
g2.
k/. We want to estimate the proportion of g2-length

of Œa; b� outside �:K D �:Sg2K3.

e
g2
k

cieK2 eK3

a1
ai

di

bi

e
g1
k

b1a
b

eK1
F 4. Proof of Lemma 2.18

By convexity of eK3, we can write .a; b/\ .�:eK3/c as the disjoint union t.ai ; bi / of finitely
many intervals. Thus, we have to show that

`
g2

k .K

c
/

`g2.
k/
D

P
i `
g2

k .ai ; bi /

`g2.
k/
� ":

Choose two points ci and di on e
g1
k

whose projections (for the metric g2) on the
g2-geodesic e
g2

k
are exactly ai and bi . Such points are not necessarily unique but always

exist: take ci in the intersection ofe
g1
k

with the hyperplane orthogonal to e
g2
k

at ai . Denote
by .ci ; di / the g1-geodesic segment on e
g1

k
, and let � > 0 be such that 1

�
g2 � g1 � �g2. We

have
`g2
k .ai ; bi / D d

g2.ai ; bi / � d
g2.ci ; di / � `

g2.ci ; di / �
p
�`g1.ci ; di /:

We deduce that

`
g2

k .K

c
/

`g2.
k/
� �

X
i

`g1.ci ; di /

`g1.
k/
� �

`g1..Sg1�:eK1/c/ \e
g1k /
`g1.
k/

;

the last inequality coming from the fact that, as ai and bi are in the boundary of �:eK3, and
ci and di are at distance at most C.g1; g2/ resp. from ai and di , they cannot belong to �:eK2,
so that the segment .ci ; di / does not intersect �:eK1. This proves that

`
g2

k .K

c
/

`g2.
k/
� �";

which concludes the proof (up to changing " in "=�).
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Moreover, the lengths `g1.
k/ and `g2.
k/ are related as follows.

L 2.19. – With the previous notations, for the same sequence .
k/,

lim
k!C1

`g2.
k/

`g1.
k/
D I�.g1; g2/:

Proof. – For all k 2 N, let vg1
k

(resp. vg2
k

) be a tangent vector to 
g1
k

(resp. 
g2
k

) such
that dg2.�vg1

k
; �v

g2
k
/ � C2.g1; g2/, where C2.g1; g2/ > 0 is the constant defined just

after (3). Let evg1
k
2 Sg1fM and evg2

k
2 Sg2fM be lifts of vg1

k
and vg2

k
such that again,

dg2.�evg1
k
; �evg2

k
/ � C2.g1; g2/. It follows from Proposition 2.13 applied to F � 1 that there

exists c1 > 0, only depending on C2.g1; g2/ and the bounds on the curvature, such thatˇ̌̌̌
ˇ`g2.
k/ � Z `g1 .
k/

0

E g1!g2.gt1ev/dt ˇ̌̌̌ˇ � c1:
Therefore, ˇ̌̌̌

ˇ`g2.
k/`g1.
k/
�

1

`g1.
k/

Z `g1 .
k/

0

E g1!g2.gt1ev/dt ˇ̌̌̌ˇ � c1

`g1.
k/
:

By Lemma 2.18, as E g1!g2 is bounded and continuous, we know that

1

`g1.
k/

Z `g1 .
k/

0

E g1!g2.gt1ev/dt ! I�.g1; g2/;

so that the conclusion follows.

3. Entropy of finite measures

In this section, given two admissible metrics g1 and g2 as before, and a geodesic current �
on @2fM , we wish to compare the entropies of the measures mg1� and mg2� . Theorem 3.11
establishes that their ratio is the average geodesic stretch between g1 and g2 w.r.t �, but in
the reverse direction compared to the relation between their masses, which leads to Corol-
lary 3.12, which states that the product of the entropy of mgi� by its mass kmgi� k remains
constant under an admissible change of metric.

First, we will recall some definitions and relations between dynamical balls (Subsec-
tion 3.1). In Subsection 3.2, we compare two notions of entropy of a measure, the
Kolmogorov-Sinai entropy and the local Brin-Katok entropy, recalling well and less known
results of Brin-Katok and Riquelme. It allows us to prove Theorem 3.11 and Corollary 3.12
in Subsection 3.3.

3.1. Dynamical balls and shadows

If .'t / is a continuous dynamical system on a metric space .X; d/, a dynamical ball is a
ball for the dynamical distance dT .x; y/ D sup0�t�T d.'

tx; 'ty/.
We will restrict ourselves to geodesic flows associated to a Riemannian metric g on SgM .

For such geometric dynamical systems, it is more convenient to work with the Riemannian
distance induced by the metric g onM or fM instead of the distance coming from the Sasaki
metric on TM or TfM . We refer to [4, p. 70] and [38, p. 19–20] for a discussion about the fact
that it is the good thing to do in this case.
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For all "; T > 0 and v 2 SgfM , we will call dynamical ball of center v, diameter " and
length T the set

Bg.v; T; "/ D fw 2 SgfM; dg.�.gtv/; �.gtw// � "; for all 0 � t � T g:

Note that Bg.v; 0; "/ is the "-ball with center v for the distance dg defined above.

R 3.1. – On the quotient, for v 2 SgM , one can either consider the quotient
dynamical ball Bg.v; T; "/ D p�.B

g.ev; T; "//, ev being any lift of v to SgfM . There is also
a more dynamical definition, as

B
g
dyn.v; T; "/ D fw 2 S

gM; dg.�.gtv/; �.gtw// � "; for all 0 � t � T g:

Of course, ifev 2 SgfM and v D p�.ev/ 2 SgM , one has the obvious inclusion

(7) Bg.v; T; "// D p�.B
g.ev; T; "// � Bgdyn.v; T; "/:

One can easily see that this inclusion is an equality when the injectivity radius of M is
uniformly bounded from below, as soon as " is small enough. However, when the injectivity
radius of M is not bounded from below, one can build examples where this inclusion is not
an equality [6].

It turns out that in many cases, the most natural dynamical ball to consider is the
small ball p�.Bg.ev; T; "/. Therefore, we will call it the small dynamical ball and denote it
by Bg.v; T; "/.

This problem has not been emphasized in [38], where only these small dynamical balls
are considered (see [38, 3.15]). However, in various definitions of local entropies, the large
dynamical balls have to be considered.

We will also need the following variant, for v 2 SgfM and T; T 0 > 0:

Bg.vIT; T 0; "/ D fw 2 SgfM;dg.�.v/; �.w// � "; for all � T 0 � t � T g:

Observe that Bg.vIT; T 0; "/ D gT
0

.Bg.g�T
0

v; T C T 0; "//. As mentioned in the above
Remark 3.1, we consider on SgM the small dynamical balls

Bg.vIT; T 0; "/ D p�.B
g.evIT; T 0; "//:

Recall the following well known fact in negative curvature.

L 3.2. – Let .M; g/ be a manifold with pinched negative curvature. For all 0 < a < b,
there exists a constant c D c.a; b/ > 0 such that for all vectors v;w 2 SgfM , and all T > 2c,
if dg.�.gtv/; �.gtw// � b for all 0 < t < T , then dg.gtv; gtw/ � a for all c < t < T � c.

Proof. – This is an exercise using standard comparison results. Note that the constant
c.a; b/ also depends on the upper bound of the curvature.

L 3.3. – Let .M; g/be a manifold with pinched negative curvature. For all0< "1< "2,
there exists C.g; "1; "2/ > 0 such that for all v 2 SgfM and T; T 0 > 0, we have

Bg.vIT C C.g; "1; "2/; T
0
C C.g; "1; "2/; "2/ � B

g.vIT; T 0; "1/ � B
g.vIT; T 0; "2/:

Proof. – The right inclusion is obvious. The left one comes from Lemma 3.2 above.
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The shadow Ogx .B
g.y;R// of the ballBg.y;R/ viewed from x w.r.t. the metric g is the set

of positive endpoints in @fM of g-geodesic rays starting from x and intersecting Bg.y;R/.

Recall Lemma 3.17 from [38].

L 3.4 ([38]). – For all r; ˛>0 and T; T 0>0, and v2SgfM such that B
g

v
g
C

.�.v/; o/ D 0,

if xt denotes the footpoint of gt .v/, we have

Bg.vIT; T 0; r/ � .Hg/�1
�

Ogx�T 0 .B
g.xT ; 2r/ � OgxT .B

g.x�T 0 ; 2r// � ��r; rŒ
�
; and

.Hg/�1
�

Ogx�T 0 .B
g.xT ; r/ � OgxT .B

g.x�T 0 ; r// � ��˛; ˛Œ
�
� Bg.vIT; T 0; 2r C 2˛/:

When g1 and g2 are two admissible negatively curved metrics on M , recall that any
g1-geodesic between any two points is at distance at most C2.g1; g2/ of the g2-geodesic
joining the same endpoints, and vice versa, for some constant C2.g1; g2/ depending only
on g1 and g2. This leads immediately to the following lemma.

L 3.5. – Let g1 and g2 be two admissible negatively curved metrics on M , and x; y
two points on fM . Then

Og1x .B
g1.y;R// � Og2x .B

g2.y;RC C2.g1; g2/// � Og1x .B
g1.y;RC 2C2.g1; g2///:

These lemmas will have the following very convenient corollary.

C 3.6. – Let g1 and g2 be two admissible negatively curved metrics on M . For
all " > 0, there exists C > 0 and "0 D "0."/ > 0 such that for all v 2 Sg1M , we have

Bg2.‰g1!g2.v/; S C C; S 0 C C; "/ � ‰g1!g2.Bg1.v; T; T 0; "// � Bg2.‰g1!g2.v/; S; S 0; "0/;

where

S D B
g2

v
g1
C

.�.v/; �.gT1 v//;

S 0 D B
g2

v
g1
C

.�.v/; �.g�T
0

1 v// and

"0 D ".5C C1.g1; g2//C C2.g1; g2/C 2C3.g1; g2/:

Proof. – As the sets considered in the above statement are typically small, we can prove
them on TfM instead of TM . Without loss of generality, we can assume that �.v/ D o.
Indeed, all lemmas stated above are valid with o an arbitrary point, for example the basepoint
of v. In particular, we have ‰g1!g2.v/ D ˆg1!g2.v/.

We start with the right inclusion. Given u 2 Bg1.v; T; T 0; "/, we want to control the
distance dg2.gs2‰

g1!g2u; gs2‰
g1!g2v/. As u 2 Bg1.v; T; T 0; "/, �g1;g2.u/ � ".1C C1.g1; g2//,

where �g1;g2 was defined in Lemma 2.12, so that

dg2.ˆg1!g2.u/;‰g1!g2.u// � ".1C C1.g1; g2//:

Therefore, ‰g1!g2Bg1.vIT; T 0; "/ is included in the ".1 C C1.g1; g2//-neighborhood
of ˆg1!g2.Bg1.vIT; T 0; "/.
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Let w D ‰g1!g2.v/ D ˆg1!g2.v/. Denote by ws (resp. zs) the basepoint �.gs2w/,
for s 2 R, of gs2w. (resp. of gs2z). Let S D B

g2

v
g1
C

.o; �.gT1 v/ and S 0 D �B
g2

v
g1
C

.o; �.g�T
0

1 v//.

By Lemma 2.6, we know that

jS � dg2.�.v/; �.g1T v//j � C3.g1; g2/ and jS 0 � dg2.�.v/; �.g1�T 0v//j � C3.g1; g2/:

Moreover, the distances dg2.wS ; vT / and dg2.w�S 0 ; v�T 0/ are uniformly bounded. Indeed,
by Lemma 2.12, ‰g1!g2.gT1 v/ D g

S
2‰

g1!g2.v/ so that

dg2.wS ; vT / D d
g2.�.‰.gT1 v/; �.g

T
1 v// � C3.g1; g2/:

Lemma 3.5 and elementary geometric considerations in negative curvature give the inclu-
sion

Og1v�T 0 .B
g1.vT ;2"// � Og1vT .B

g1.x�T 0 ; 2"// � ��"; "Œ

� Og2w�S0 .B
g2.wS ; 2"C C2.g1; g2/C 2C3.g1; g2///

� Og2yS .B
g2.y�S 0 ; 2"C C2.g1; g2/C 2C3.g1; g2/// � ��"; "Œ:

Lemma 3.4 implies the right inclusion

ˆg1!g2Bg1.vIT; T 0; "/ � Bg2.wIS; S 0; 4"C C2.g1; g2/C 2C3.g1; g2//:

The relation between ˆg1!g2 and ‰g1!g2 gives

‰g1!g2Bg1.vIT; T 0; "/ � Bg2.‰g1!g2.v/; S; S 0; ".5C C1.g1; g2//C C2.g1; g2/C 2C3.g1; g2//:

We proceed in the same way for the left inclusion, but we need in addition the help of
Lemma 3.3.

Reasoning similarly as above gives the inclusion

Bg2.wIS; S 0; "/ � ‰g1!g2
�
Bg1.vIT; T 0; .4"C C2.g1; g2/C 2C3.g1; g2//.1C C1.g1; g2//

�
:

As T; T 0; " are arbitrary, using Lemma 3.3, we obtain easily the existence of a constantC > 0

such that
Bg2.wIS C C; S 0 C C; "/ � ‰g1!g2

�
Bg1.vIT; T 0; "/

�
:

3.2. Kolmogorov-Sinai, Brin-Katok and topological entropies

The Kolmogorov-Sinai entropy, or measure-theoretical entropy, of a dynamical system T

w.r.t an invariant probability measure � is the supremum over all measurable partitions
of the exponential growth rate of the complexity of a partition, when iterated by T , and
measured by �. By Shannon-McMillan-Breiman Theorem, it also equals (the supremum
over all partitions of) the exponential decay rate of a typical atom of the iterated partition.

Instead of iterating a measurable partition, when X is a metric space, endowed with the
Borel � -algebra, one can consider exponential decay rate of the measure of typical dynamical
balls, which will give us a notion of local entropy, introduced by [10].

When T is a continuous map on a compact space X , Brin-Katok [10] showed that for
ergodic measures this Kolmogorov-Sinai entropy coincides with the exponential decay of
dynamical balls, also called the local entropy. This equality also holds when T is a lipschitz
map of a noncompact manifold, as has been verified in [42, Thm. 1.32].
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We shall not define the classical Kolmogorov-Sinai entropy, denoted by hKS .T;m/,
because we do not really use it in this work. But we recall below some definitions of local
entropy and the statements of Brin-Katok and Riquelme.

For .'t / W X ! X a dynamical system and m a finite invariant measure, define the lower
local entropy

(8) hloc.T;m// D ess inf
x2X

lim
"!0

lim inf
T!1

�
1

T
logm.Bdyn.x; T; "//;

and the upper local entropy relative to compact sets

(9) h
comp
loc .T;m// D sup

K

ess sup
x2K

lim
"!0

lim sup
T!1;'T x2K

�
1

T
logm.Bdyn.x; T; "//:

For the geodesic flow in negative curvature, dynamical balls should be defined relatively to
a distance on SgM , but, as mentioned in the above subsection, the “natural” Sasaki distance
on SgM is equivalent to the distance d.v;w/ D sup�1�t�0 d

g.�.gtv/; �.gtw//, so that,
when studying asymptotic quantities as entropy, we can use the distance dg onM instead of
the Sasaki distance on SgM .

The following result is essentially due to Brin-Katok and Riquelme.

T 3.7 ([10],[42],[43]). – Let .M; g/ be a Riemannian manifold with pinched nega-
tive curvature. Let m be an invariant ergodic measure under the geodesic flow on SgM .

(10) hKS .m; g/ D hloc.m; g/ D h
comp
loc .m; g/:

Proof. – This result is due to Brin-Katok in the compact case. Their proof of the
inequality hKS .m; g/ � hloc.m; g/ extends verbatim to the noncompact case. In [42,
Thm. 1.32], Riquelme proved the equality hKS .m; g/ D hloc.m; g/ for any Lipschitz dynam-
ical system. In [42, Th. 1.41], he established the inequality hloc.m; g/ � h

comp
loc .m; g/, and

the inequality h
comp
loc .m; g/ � hKS .m; g/ is established in the proof of [42, Thm. 1.42].

As observed in Remark 3.1 there are two notions of dynamical balls and the small ones
are more relevant for us. Therefore, we define what we will call the local entropy, denoted
by h�loc.m; g/ in the sequel, as follows.

(11) h�loc.m; g/ D sup
K�SgM

sup ess
v2K

lim
"!0

lim sup
T!1;gT v2K

�
1

T
logm.Bg.v; T; "//:

It follows from Theorem 3.7 and inclusion (7) that

(12) hKS .m; g/ D h
comp
loc .m; g/ � h�loc.m; g/;

with equality as soon asM has an injectivity radius bounded from below orm has compact
support. We learned recently that Riquelme [44] proved that the last inequality above is also
an equality

hKS .m; g/ D h
comp
loc .m; g/ D h�loc.m; g/

in the case of the geodesic flow of a pinched negatively curved manifold.
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R 3.8. – Let us emphasize that all definitions of entropies above are sensitive to
the scaling of the metric but not sensitive to the scaling of the measure. In particular, if m is
finite but not a probability measure, then

h�loc.m; g/ D h
�
loc.�m; g/ and h�loc.m; �g/ D

h�loc.m; g/
p
�

:

R 3.9. – Observe that contrarily to Kolmogorov-Sinai entropy, the above defini-
tions of local entropy make perfectly sense for an infinite invariant ergodic and conservative
Radon measure. In particular, the Bowen-Margulis measure (see Section 3.4) which, when
finite, is the measure of maximal entropy of the geodesic flow, always has a local entropy with
respect to small dynamical balls and return times into compact sets which coincides with the
topological entropy of the geodesic flow, see Proposition 3.17.

Lemma 3.3 allows us to choose some " > 0 without need to take the limit when " ! 0.
Moreover, the invariance of the measure allows to consider shifted dynamical balls. It is the
result below.

L 3.10. – Let .M; g/ be a manifold with pinched negative curvature, and� a geodesic
current. Letmg� be the g-invariant measure associated to� on SgM . One can compute its local
entropy as

h�loc.m
g
�; g/ D sup

K

sup ess
v2K

lim sup
TCT 0!1;gT v2K;g�T

0
v2K

�
1

T C T 0
logmg�.B

g.vIT; T 0; "//:

Geometers usually are more interested in topological entropy than measure-theoretic
entropy. We shall not define topological entropy topologically, but through the variational
principle. Denote by M 1

.g/ the set of invariant probability measures for the metric g.

The topological entropy of the geodesic flow .gt /, denoted by htop.g/, satisfies

(13) htop.g/ D sup
m2M 1.g/

hKS .m; g/:

This variational principle is due first to [16, 24, 35] and later Handel-Kitchen [27] on
noncompact spaces. It follows from [36] that this supremum is achieved iff the so-called
Bowen-Margulis measure is finite (see later Subsection 3.4 for details). In this case, it is the
unique measure maximizing entropy.

3.3. Entropy transformation law

Our goal is to prove the following result.

T 3.11. – Let .M; gi /, i D 1; 2 be two admissible Riemannian metrics with pinched
negative curvature onM . Let� be a geodesic current andmgi� the associated invariant measures
on SgiM under the geodesic flow .gti /. Assume that these measures are finite and ergodic. Then
their local entropies are related as follows:

h�loc.m
g2
� ; g2/ D I�.g2; g1/ � h

�
loc.m

g1
� ; g1/:

Thanks to Corollary 2.15, the corollary below follows.
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C 3.12. – Under the same assumptions, we have

h�loc.m
g2
� ; g2/ � km

g2
� k D h

�
loc.m

g1
� ; g1/ � km

g1
� k:

As mentioned above, in the case of geodesic flows in pinched negative curvature,
Riquelme [44] proved that for ergodic probability measures, Kolmogorov Sinai entropy
and local entropy coincide. We deduce the following corollary.

C 3.13. – Under the same assumptions, we have

hKS

�
m
g2
�

km
g2
� k

; g2

�
� kmg2� k D hKS

�
m
g1
�

km
g1
� k

; g1

�
� kmg1� k:

Let us prove Theorem 3.11.

Proof. – It follows from Lemma 3.10 that for i D 1; 2, the entropy may be computed as

h�loc.m
gi
� ; gi / D sup

K

sup ess
v2K

lim sup
TCT 0!1;gT

i
v2K;g�T

0

i
v2K

�
1

T C T 0
logmgi� .B

gi .vI �T; T 0; "//

for some fixed " > 0, the essential supremum being relative to mgi� . The above limsup is
constant along .gi /-orbits, so that by ergodicity, it is mgi� -almost surely constant. Observe
also that when K grows, the quantity on the right also grows.

Choose some compact set K � TM large enough to contain an open subset of �gi \ SgiM
for i D 1; 2, and to have positive mgi� -measure. Choose it large enough so that it allows to
estimate entropies h�loc.m

gi
� ; gi /, up to some small arbitrary ˛. In other words,ˇ̌̌̌

ˇ̌h�loc.m
gi
� ; gi / � sup ess

v2K\SgiM

lim sup
TCT 0!1;gT

i
v2K;g�T

0

i
v2K

�
1

T C T 0
logmgi� .B

gi .vI �T; T 0; "//

ˇ̌̌̌
ˇ̌ � ˛:

Choose a typical v 2 Sg1M \K, which realizes the above essential supremum on K,
and the almost sure conclusion of Corollary 2.8 when T !˙1. With the notations
of Corollary 3.6, let w D ‰g1!g2.v/. As observed in the preceding section, we have
m
g2
� D E g1!g2 �‰

g1!g2
� m

g1
� . But E g1!g2 is uniformly close to 1 on Bg1.v; "/.

Thus, up to some constants e˙c.v;"/, by Corollary 3.6, we have

e�c.v;"/mg2� .B
g2.wIS C C; S 0 C C; "0/ � mg1�

�
Bg1.vIT; T 0; "/

�
� ec.v;"/mg2�

�
Bg2.wIS; S 0; "0/

�
with

w D ‰g1!g2.v/; S D dg2.�.w/; �.gT1 w//˙ C3.g1; g2/ and

S 0 D dg2.�.v/; �.g�T
0

1 w//˙ C3.g1; g2/:

Observe also that the condition gT1 v 2 K (resp. g�T
0

1 v 2 K ) implies that gS2w (resp.
g�S

0

2 w) belongs to the C3.g1; g2/-neighborhood of K for any of the two metrics g1 or g2. It
remains true for gSCC2 w and g�S

0�C
2 w inside the C3.g1; g2/CC -neighborhood ofK for the

metric g2. Set K 0 D VC3.g1;g2/CC .K/ � K.

By definition of T; T 0; S; S 0, we also have T C T 0 !C1 iff S C S 0 !1.
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Therefore, taking the limsup of 1
SCS 0

log of the above quantity, we get

lim sup
SCS 0!1;gS

2
w2K0; g�S

0

2
w2K0

�
1

S C S 0
logmg2� .B

g2.w; S; S 0; "0//

D lim sup
TCT 0!1;gT

1
v2K;g�T

0

1
v2K

T C T 0

S C S 0
�
�1

T C T 0
logmg1� .B

g1.v; T; T 0; "//:

By Corollary 2.8 we know that

T C T 0

S C S 0
D

T C T 0

B
g2

v
g1
C

.�.g�T
0

1 v/; �.gT1 v//
D

T C T 0R T
�T 0

E g1!g2.gt1v/ dt

converges when T C T 0 !C1 to

1R
Sg1M

E g1!g2
dm

g1
�

km
g1
� k

D

Z
Sg2M

E g2!g1
dm

g2
�

km
g2
� k

:

We deduce easily, by taking the supremum in K, that

h�loc.m
g2
� ; g2/ D

Z
Sg2M

E g2!g1
dm

g2
�ˇ̌̌̌

m
g2
�

ˇ̌̌̌ h�loc.m
g1
� ; g1/ D I�.g2; g1/ � h

�
loc.m

g1
� ; g1/:

3.4. Bowen-Margulis measures and comparison of topological entropies

We define now the so-called Bowen-Margulis measure, and use it to deduce from
Theorem 3.11 a corollary about the comparison of topological entropies of two metrics g1
and g2. The construction below is due to Patterson [37] for compact surfaces, to Sullivan [49,
51] for geometrically finite hyperbolic manifolds, and Yue [56] extended Sullivan’s work in
variable negative curvature.

Let .M; g/ be a negatively curved manifold, with pinched negative curvature. Choose some
point o 2 fM . Consider the Poincaré series

P
g
� .s/ D

X

2�

e�sd
g.o;
o/:

Let ı.g/ be its critical exponent. This exponent is finite, and when � is nonelementary, it is
positive. The pair .�; g/ is said to be divergent when the above series diverges when s D ı.g/.

The following lemma is immediate from the definition of ı.

L 3.14. – Let .g"/�1�"�1 be a family of negatively curved metrics on M D fM=�,
such that e�"g0 � g" � e"g0. Then e�"=2ı.g0/ � ı.g"/ � e"=2ı.g0/.

We need to ensure that the above series diverges at s D ı.g/, which could be false. We
will modify P g� .s/ into eP g� .s/ as follows. The Patterson trick [37] is the following. Define a
continuous map h W .0;C1/ ! .0;C1/ as the exponential of continuous piecewise affine
maps with slope "k on the interval Ik , with "k ! 0 and Ik a sequence of adjacent intervals of
increasing length. It is possible to do it in such a way that h is positive, increasing, continuous,
with slow growth, and h.t0Ct/

h.t0/
is bounded by exp."kt /. Moreover, "k and Ik can be chosen in

order to ensure that eP g� .s/ DX

2�

h.dg.o; 
o//e�sd
g.o;
o/
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has exponent ı.g/ but now diverges at s D ı.g/.
Define for all x 2 fM and s > ı.g/ a probability measure

�sx D
1eP g� .s/

X

2�

h.dg.o; 
o//e�sd
g.x;
o/�
o

on M D fM [ @fM , where �x denotes the Dirac mass at the point x. Choose a decreasing
sequence sk ! ı.g/ such that �sko converges to a probability measure �go on M . Choose
for all x 2 fM a subsequence skj of sk such that �

skj
x converges to a measure �gx on M .

By construction, as eP .ı.g// diverges, all these measures are equivalent finite measures
supported on ƒ� � @fM , the measure �go is a probability measure, and this family .�gx /x2fM
satisfies two crucial properties for all x; y 2 fM , almost all � 2 @fM and all 
 2 �:

(14)
d�

g
x

d�
g
y

.�/ D exp
�
�ı.g/B�.x; y/

�
and 
��

g
x D �

g

x :

A family of measures satisfying (14) is a �-invariant ı-conformal density on the boundary.
From these properties follows the Sullivan’s Shadow Lemma.

P 3.15 ([49]). – Let .�gx / be a �-invariant ı-conformal density on ƒ� . Then
for all R > 0 large enough, there exists a constant c D c.R/ > 0 such that

1

c
exp .�ı.g/dg.o; 
o// � �go . Oo.B.
o;R/// � c exp .�ı.g/dg.o; 
o// :

A Bowen-Margulis measure on SgM is a measure obtained from such a family .�gx / by the
following formula on SgfM , with v D .Hg/�1.vg�; v

g
C; t /

(15) demgBM.v/ D exp
�
ı.g/B

g

v
g
C

.o; �.v//C ı.g/B
g

v
g
�
.o; �.v//

�
d�go .v

g
C/d�

g
o .v

g
�/dt:

This formula being �-invariant, it induces on the quotient a Bowen-Margulis measuremgBM
on SgM .

It is well known (see the above references, or Roblin [46] for the most general version)
that P g� diverges at s D ı.g/ iff the Bowen-Margulis measure is ergodic and conservative,
and in this case, the family of measures .�gx / is in fact unique. In particular, when this
measure mgBM is finite, it is ergodic and conservative and P g� diverges at ı.g/.

Otal-Peigné proved the following result, due to Sullivan in the case of geometrically finite
hyperbolic manifolds.

T 3.16 ([51], [36]). – Let .M; g/ be a manifold with pinched negative curvature and
bounded derivatives of the curvature. Then

ı.g/ D htop.g/

is the topological entropy of .gt /. Moreover, whenmgBM is finite and normalized into a probability

measure, it is the unique measure maximizing entropy in the sense that hKS .
m
g
BM

km
g
BMk

; g/ D htop.g/.

When mgBM is infinite, there is no probability measure maximizing entropy.

It follows from [38, Prop. 3.16] and [36] that, finite or not, the Bowen-Margulis measure
satisfies the following equality.
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P 3.17. – Let .M; g/ be a negatively curved manifold with pinched negative
curvature and bounded derivatives of the curvature. Let mgBM be a Bowen-Margulis measure.
Then

(16) h�loc.m
g
BM; g/ D ı.g/:

Moreover, when mgBM is finite, it satisfies

(17) h�loc.m
g
BM; g/ D ı.g/ D hKS .m

g
BM; g/:

Proof. – The first equality is a computation done in [38, Prop. 3.16], the second is one of
the main results of [36].

This equality suggests that we could be able to prove a variational principle for infinite
measures, using local entropies instead of Kolmogorov-Sinai entropies. We postpone this
study to a further paper.

C 3.18. – Let .M; gi /, i D 1; 2 be two admissible Riemannian metrics on M
whose curvature is negatively pinched and has bounded derivatives. Assume that Sg2M has a
finite Bowen-Margulis measure mg2BM and let �g2BM be its geodesic current. Then

htop.g2/ D ı.g2/ D h
�
loc.m

g2
BM; g2/ D I�g2BM

.g2; g1/ � h
�
loc.m

g1

�
g2
BM
; g1/

� I
�
g2
BM
.g2; g1/ � htop.g1/:

Proof. – Let us first note that by Theorem 4.2, the measure mg1
�
g2
BM

is a Gibbs measure.

Moreover, [38, Thm. 1.3] ensures that the Gibbs measure associated to a given potential,
when finite, is the unique equilibrium measure of this potential. Therefore h�loc.m

g1

�
g2
BM
/ D

hKS .m
g1

�
g2
BM
/, and the variational principle ensures that hKS .m

g1

�
g2
BM
/ � htop.g1/, which gives

the last inequality.

In the compact case, the inequality htop.g2/ � I
�
g2
BM
.g2; g1/ � htop.g1/ is due to

Knieper [32]. Katok had a similar weaker inequality [29], proving that

htop.g2/ �

Z
Sg2M

kvkg1dm
g2
BM � htop.g1/:

Our inequality above is valid on any manifold, compact or not, with finite Bowen-Margulis
measure. It follows from Lemma 2.5 that it implies Katok’s inequality. Let us mention
however that it is this weaker version which is really used in the proof of our main theorem
of differentiability of entropy.

Let us now study the equality case in Corollary 3.18, as was done in Theorem 1.2 of [32].

T 3.19. – Let .M; gi /, i D 1; 2 be two admissible Riemannian metrics onM whose
curvature is negatively pinched and has bounded derivatives. Assume that the geodesic flow
on Sg2M has a finite Bowen-Margulis measure mg2BM and

htop.g2/ D I�g2BM
.g2; g1/ : htop.g1/:

Then we have the following facts.

1. The geodesic flow on Sg1M also has a finite Bowen-Margulis measure mg1BM.
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2. The geodesic currents �g1BM and �g2BM associated to the Bowen-Margulis measures of g1
and g2 coincide up to normalization. In particular the Patterson-Sullivan densities of g1
and g2 are equivalent.

3. For all v 2 Sg1fM with vg1C 2 ƒ� , there exists a unique real number �.v/ such that

d�
g1
�v

d�
g2

�g
�.v/
2
ı‰g1!g2 .v/

.v
g1
C / D 1:

Moreover, the map F g1!g2 defined on Sg1fM by

F g1!g2.v/ D g
�.v/
2 ı‰g1!g2.v/

is �-invariant and induces a Hölder-continuous Morse correspondance between the non-
wandering sets F g1!g2 W �g1 ! �g2 .

4. The map F g1!g2 conjugates the flows on the non-wandering sets of Sg1M and Sg2M up
to a global time scaling by htop.g1/

htop.g2/
: for all v 2 �g1 and all t 2 R,

g
htop.g2/t

2 ı F g1!g2.v/ D F g1!g2 ı g
htop.g1/t

1 .v/:

Proof. – Assume that the geodesic flow on Sg2M has finite Bowen-Margulis measure mg2BM,
with geodesic current �g2BM.

Since mg2BM is a Gibbs measure with maximal entropy, we have htop.g2/ D hKS .m
g2
BM/ D

h�loc.m
g2
BM/. Since by Theorem 4.2 the measure mg1

�
g2
BM

is also a Gibbs measure, we have

hKS

�
m
g1

�
g2
BM

�
D h�loc

�
m
g1

�
g2
BM

�
:

Therefore, if htop.g2/ D I�g2BM
.g2; g1/ : htop.g1/, it follows from Theorem 3.11 that

hKS

�
m
g1

�
g2
BM

�
D htop.g1/:

Therefore, Theorem 3.16 by Otal and Peigné implies thatmg1
�
g2
BM

(which is a finite measure by

Corollary 2.15) is, up to normalization, the unique Bowen-Margulis probability measure mg1BM
of g1. This shows Item 1.

It implies that there exists � > 0 such that

�
g1
BM D ��

g2
BM:

By definition of these currents, see (15), it follows immediately that the Patterson-Sullivan
measure �g1o is absolutely continuous with respect to �g2o . This shows Item 2. Moreover, (15)
also furnishes an explicit expression of the Radon-Nikodym derivative of �g1x w.r.t. �g2y , for
any two points x; y 2 fM , which is therefore not only defined almost surely but is a positive
Hölder continuous function defined everywhere on ƒ� .

The rest of the proof is inspired from [32, Prop. 3.8 p. 52], with the adaptations needed
due to the non-compactness of M .
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Let v 2 Sg1fM . Since the Patterson-Sullivan measure for g2 is ı.g2/-conformal (see (14)),
for all v 2 Sg1M and all t 2 R, we have

d�
g1
�v

d�
g2
�gt
2
ı‰g1!g2 .v/

.v
g1
C / D e

�ı.g2/t
d�

g1
�v

d�
g2
�‰g1!g2 .v/

.v
g1
C /:

In particular, for all v 2 Sg1fM such that vC D v
g1
C 2 ƒ� there exists a unique �.v/ such

that
d�

g1
�v

d�
g2

�g
�.v/
2
ı‰g1!g2 .v/

.v
g1
C / D 1:

It follows from the �-invariance of �g1 , �g2 and ‰g1!g2 that the map v 7! �.v/ is also
�-invariant. Therefore the map

F g1!g2.v/ D g
�.v/
2 ı‰g1!g2.v/

is well defined for all v 2 Sg1fM with vg1C 2 ƒ� , is Hölder continuous and is �-invariant.
Since any non-wandering vector v 2 �g1 is the image of a vector v 2 Sg1fM with vg1C 2 ƒ�
by the universal covering map, this shows Item 3.

The end of the proof follows [32, p. 53]. For all t 2 R and all v 2 Sg1fM with � D vg1C ,

eı.g1/t D
d�

g1
�gt
1
v

d�
g2
�v

.�/ D
d�

g1
�F g1!g2 .gt

1
v/

d�
g2
�F g1!g2 .v/

.�/ D eı.g2/s;

where s 2 R is such that
F g1!g2.gt1v/ D g

s
2 ı F

g1!g2.v/:

Therefore s D ı.g1/
ı.g2/

t and we get for all t 2 R and all v 2 Sg1fM with vg1C 2 ƒ�

g
ı.g2/t
2 ı F g1!g2.v/ D F g1!g2.g

ı.g1/t
1 v/:

This concludes the proof of Theorem 3.19.

Corollary 1.6 is an immediate consequence of the above few lines.

4. Gibbs measures

This section, particularly Theorem 4.2, is crucial in the proof of Corollary 3.18, and
therefore in our approach of Theorem 1.9.

Theorem 4.2 is new on noncompact manifolds, the explicit change of potential being new
even on compact manifolds. Corollary 4.4 is new even on compact manifolds.

Gibbs measures are, for a hyperbolic dynamical system, a family of measures with strong
stochastic properties, each one associated to a weight, i.e., a Hölder continuous potential,
describing somehow that all possible dynamical behaviors typically happen w.r.t one of these
measures. For the geodesic flow on the unit tangent bundle of a compact manifold, their
geometric construction, adapted from the Patterson-Sullivan construction described in the
above section, has been done by Ledrappier in [33]. He proved there, on compact manifolds,
that being a Gibbs measure does not depend on the metric. In other words, if g1 and g2 are
negatively curved metrics on M , an invariant measure mg1� on Sg1M is a Gibbs measure iff
the measuremg2� on Sg2M is also a Gibbs measure. However, his proof strongly relies on the

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



32 B. SCHAPIRA AND S. TAPIE

compactness ofM . Our goal in this section is to prove this result differently on noncompact
manifolds.

4.1. Definitions

We refer to [38] for details on all notions presented here. Let .M; g/ be a negatively curved
manifold, with pinched negative curvatures and bounded derivatives of the curvature. Let
F W SgM ! R be a Hölder continuous map. The pressure of F is the quantity

(18) P g.F / D sup
m2M 1.g/

�
hKS .m; g/C

Z
SgM

F dm

�
;

the supremum being considered over all invariant probability measures m 2 M 1
.g/ such

that
R

max.�F; 0/ dm <1. An invariant probability measurem is an equilibrium state forF
if it realizes the above supremum.

Assume thatP g.F / is finite. An invariant measurem under the geodesic flow .gt / satisfies
the Gibbs property for the potential F if for all compact setsK � SgM and " > 0 there exists
a constant C.K; "/ > 0 such that for all v 2 K and T > 0 with gT v 2 K, we have

1

C.K; "/
exp

 Z T

0

F.gtv/ dt � TP g.F /

!
� m.Bg.v; T; "//

(19)

� C.K; "/ exp

 Z T

0

F.gtv/ dt � TP g.F /

!
:(20)

A variant of the Patterson-Sullivan construction presented in Subsection 3.4 provides a
measure mF which satisfies (19) see [38, Prop. 3.16]. Moreover, when finite and normalized
into a probability measure, it is the unique equilibrium state, i.e., the unique measure realizing
the supremum in (18) (see [38, Thm. 6.1]). When this measure mF is infinite, there is no
equilibrium state forF . Let us summarize what is useful for the present work in the following
proposition.

P 4.1. – Let .M; g/ be a negatively curved manifold with pinched negative
curvature and bounded derivatives of the curvature. Let F W SgM ! R be a Hölder potential.
If the measure mF is finite and normalized, then

P g.mF / D hKS .mF ; g/C

Z
SgM

F dmF D h
�
loc.mF ; g/C

Z
SgM

F dmF :

4.2. Being a Gibbs measure does not depend on the metric

T 4.2. – Let .M; gi / be two admissible metrics with pinched negative curvature and
bounded first derivatives of the curvature on M . Let F W Sg1M ! R be a Hölder map, and
m
g1
F the associated Gibbs measure. We assume thatmg1F is ergodic and conservative. Let �g1F be

the associated current on @2fM . Let mg2
�
g1
F

be the g2-invariant measure associated to the same
current.

Then mg2
�
g1
F

is also ergodic and conservative, and satisfies the Gibbs property (19) for the

Hölder potential
G D .F � P g1.F // ı‰g2!g1 � E g2!g1 :
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Moreover, P g2.G/ D 0. In other words, for all compact subsets K � Sg2M and " > 0 there
exists C > 0 such that for all w 2 K and S > 0 with gSw 2 K, we have

1

C
e
R S
0 G.g

s
2
w/ds

� m
g2

�
g1
F

.B
g2
� .w; S; "// � Ce

R S
0 G.g

s
2
w/ds :

If we assume moreover that the measuremg1F is finite, and is therefore the equilibrium measure
associated to F , then mg2

�
g1
F

=km
g2

�
g1
F

k is the equilibrium measure associated to G.

R 4.3. – Reversing the role of g1 and g2, we observe that the same result holds
with the potentialH D

�
.F � P g1.F // � . E g1!g2/�1

�
ı .‰g1!g2/�1. Therefore, they must

be cohomologous.

Proof. – Conservativity and ergodicity depend only on the current at infinity and not on
the (admissible) metric, as said in Proposition 2.3.

Gibbs property for the potential G follows from Corollary 3.6. Let us explain it more in
details. We stated Theorem 4.2 in the most natural way, starting from g1 and going to g2,
but in view of all the statements proved above that we shall use, we will reverse the role
of g1 and g2, F and G, in the proof below. Assume that mg2G is a Gibbs measure w.r.t. the
potential G on Sg2M , let � D �

g2
G be its current at infinity, and let us prove that mg1� is a

Gibbs measure w.r.t. the potential F D .G � P g2.G// ı‰g1!g2 � E g1!g2 .
First choose some compact set Kg1 � Sg1M and some " > 0. Let v 2 Kg1 and T > 0

such that gT v 2 Kg1 . Define a compact setKg2 as the C -neighborhood of ‰g1!g2.Kg1/[
.‰g2!g1/�1Kg1 , where C is given by Corollary 3.6.

We will use Corollary 3.6 and first part of Proposition 2.13, and the fact that mg2� D

‰
g1!g2
� . E g1!g2 �m

g1
� /.

As E g1!g2 is continuous, it is uniformly continuous on Kg1 so that for all v 2 Kg1

and u 2 Bg1.v; "/, E g1!g2.u/ D e˙c.K
g1 ;"/ E g1!g2.v/. We deduce that

e�c.K
g1 ;"/

E g1!g2.v/
mg2� .‰

g1!g2.Bg1.v; T; "/// � mg1� .Bg1.v; T; "//

�
ec.K

g1 ;"/

E g1!g2.v/
mg2� .‰

g1!g2.B
g1
� .v; T; "///:

Now, using Corollary 3.6, with w D ‰g1!g2v, and S D B
g2

v
g1
C

.�.v/; �.gT1 v//, we get

e�c.K
g1 ;"/

E g1!g2.v/
mg2� .B

g2.w W S C C;C; "// � mg1� .B
g1.v; T; "/

�
ec.K

g1 ;"/

E g1!g2.v/
mg2� .B

g2.w; S; "0//:

As mg2� is a Gibbs measure, and w, gS2w, but also g�C2 w and gSCC2 w belong to Kg2 , there
exists a constant C.G;Kg2 ; "0/ coming from the Gibbs property, such that

e�c.K
g1 ;"/

E g1!g2.v/

e
R SCC
�C .G�Pg2 .G//.gs

2
w/ds

C.G;Kg2 ; "0/
� mg1� .B

g1.v; T; "//

�
ec.K

g1 ;"/

E g1!g2.v/
C.G;Kg2 ; "0/e

R S
0 .G�P

g2 .G//.gs
2
w/ds :
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As G is (Hölder) continuous, it is bounded on Kg2 , so that the integralZ SCC

�C

.G � P g2.G//.gs2w/ ds

is, up to a constant c, uniformly close to
R S
0
.G � P g2.G//.gs2w/ ds. The next ingredient is

Proposition 2.13, which gives

e�c.K
g1 ;"/

E g1!g2.v/

e�c

C.G;Kg2 ; "0/
e
R T
0 F.gt

1
w/dt

� mg1� .B
g1.v; T; "//

�
ec.K

g1 ;"/

E g1!g2.v/
C.G;Kg2 ; "0/e

R T
0 F.gt

1
w/dt ;

withF D .G�P g2.G//ı‰g1!g2� E g1!g2 . It is exactly the Gibbs property formg1� w.r.t.F .
It remains to show that P g1.F / D 0. To simplify notations, let us assume that P g2.G/ D 0.

Let � be any geodesic current on @2fM . By definition,

P g1.F / D sup
�

�
hKS .m

g1
� ; g1/C

Z
Sg1M

Fdmg1�

�
;

the supremum being taken over all currents � such that mg1� is an invariant probability
measure. The change of mass and change of entropy (Corollary 2.15 and Theorem 3.11) give

P g1.F / D sup
�
I�.g2; g1/

�
h.mg2� =km

g2
� k; g2/C

Z
Gdmg2� =km

g2
� k

�
� 0:

The same computations with � D � D �g2G give P g1.F / D 0.

4.3. Length spectrum and change of metrics

Let g1 and g2 be two quasi-isometric negatively curved metrics. There is a particular case
where the above results have an easy but striking illustration.

C 4.4. – Let .M; gi /iD1;2 be two quasi-isometric complete negatively curved
metrics on the same connected manifold M . Assume that the Bowen-Margulis measure
of g1 is ergodic and conservative, and let �g1BM be the associated geodesic current. Then the
measure mg2

�
g1
BM

is also ergodic and conservative. It is a Gibbs measure associated with the

potential G D �htop.g1/ E g2!g1 .
Moreover, for all primitive hyperbolic elements 
 2 �, if w
 is a periodic vector of Sg2M

associated to 
 , for all " > 0 there exists C � 1 such that for all T > 0, we have

1

C
e
�htop.g1/T

`g1 .
/

`g2 .
/ � m
g2

�
g1
BM

�
Bg2.w
 ; T; "/

�
� Ce

�htop.g1/T
`g1 .
/

`g2 .
/ :

Proof. – It is an immediate application of Theorem 4.2 with F D 0. First write T as
T D n`g2.
/C r , with 0 � r < `g2.
/. The only thing to notice is thatZ `g2 .
/

0

E g2!g1.gs2w
 / ds D `
g2.
/ � eg2!g1.
/

so that

�

Z T

0

htop.g1/ E g2!g1.gs2w
 / ds D �htop.g1/ � T �
`g1.
/

`g2.
/
˙ constant;
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the error term in the above inequality being smaller than htop.g1/`
g2.
/k E g2!g1k1.

5. Convergence of geodesics, Busemann functions and invariant measures

In this section, we study the continuity of geodesics, Busemann functions, and Bowen-
Margulis measures under a Lipschitz perturbation of the metric with uniform negative curva-
tures.

Let .g"/�1�"�1 be a family of metrics on fM with sectional curvatures satisfying Kg" � �a
2,

such that for all " > 0, at all x 2 fM , e�"g0 � g" � e"g0.
We first show that the g"-geodesic between two points at infinity converge uniformly in the

Hausdorff topology of fM to the g0-geodesic with same extremities, and that the Busemann
functions of g" converge uniformly on compact sets to the Busemann functions of g0.

When the variation of metrics is continuous in C1-topology, this also implies that the
Morse-correspondancesˆg0!g" and‰g0!g" converge to the identity uniformly on compact
sets in the C0-topology of SgfM , and that the geodesic stretch E g0!g" converges to 1.

Eventually, we show that under suitable assumptions, the Bowen-Margulis measures vary
continuously in the weak-* topology.

5.1. Convergence of geodesics and Busemann functions

The following lemma is a classical and very useful consequence of the uniform upper
bound on the curvature.

L 5.1. – Let a > 0 and .fM;g/ be a complete simply connected manifold with
sectional curvatures satisfying Kg � �a2.

1. For all C > 0, all � 2 @fM , x; y 2 fM with dg.x; y/ � C , and t � C , if xt D 
x;�.t/, we
have ˇ̌̌

B
g

� .x; y/ � .d
g.x; xt / � d

g.y; xt //
ˇ̌̌
� 2Ce�at :

2. For all T;K; ˛ > 0, for all R � R0 D T � 1
a

ln ˛
4KeK

, if .
1.t//t2R and .
2.t//t2R are
g-geodesics with

dg.
1.�R/; 
2.�R// � K and dg.
1.R/; 
2.R// � K;

then for all t 2 Œ�T; T �,
dg.
1.t/; 
2/ � ˛:

Proof. – We will omit the subscript g in the proof. Let us first prove 1.
Assume d.x; y/ � C . We can also assume that B�.x; y/ � 0. Denote by x0 the unique

point on Œx; �/ such that B�.x
0; y/ D 0. By convexity of the horoball, d.x; x0/ � C and

d.x0; y/ � C . Let xs (resp. ys) be the points on Œx0; �/ (resp. Œy; �/) at distance s of x0 (resp. y).
It follows from [28] that for all s � C ,

d.xs; ys/ � d.x
0; y/e�as � Ce�as :

Observe also that
ˇ̌̌
B
g

� .x; y/ � .d
g.x; xs/ � d

g.y; ys//
ˇ̌̌
D jB�.xs; ys/j � d.xs; ys/, so

that
ˇ̌̌
B
g

� .x; y/ � .d
g.x; xs/ � d

g.y; xs//
ˇ̌̌
� 2d.xs; ys/ � 2Ce

�as .
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To prove 2, denote by xs the point of Œ
1.�R/; 
1.R/� at distance s from 
1.�R/, ys
the point of Œ
1.�R/; 
2.R/� at distance s from 
1.�R/ and distance say ds from 
2.R/

and zs the point of Œ
2.�R/; 
2.R/� at distance ds from 
2.R/. Observe immediately
that jds � 2RC sj � K.

By the above, we have d.xs; ys/ � d.x2R; y2R/e�as . But elementary considerations in the
triangle .x2R; y2R; 
2.R// lead to

d.x2R; y2R/ D d.
1.R/; y2R/ � d.
1.R/; 
2.R//C d.
2.R/; y2R/ � 2K:

Thus d.xs; ys/ � 2Ke�as .

Similarly we get d.ys; zs/ � 2Ke�ads � 2KeKe�a.2R�s/. We deduce that

d.xs; 
2/ � d.xs; zs/ � 2Ke
K.e�as C e�a.2R�s//:

Now, chooseR0 D T � 1a ln ˛
4KeK

. For t 2 Œ�T; T �, we have 
1.t/ D xRCt andRCt � R0�T
and 2R � .RC t / � R0 � T , so that

d.
1.t/; 
2/ � d.
1.t/; zRCt / � 4Ke
Ke�a.R0�T / � ˛:

��
��
��
��

����

�
�
�
�

����

��
��
��
��

����
�
�
�
�


1.R/

xs

zs

ds
ys


2.R/
2.�R/


1.�R/

F 5. Proof of Lemma 5.1

Let us now show that the g"-geodesic segments converge to the g0-geodesic segments in
the Hausdorff topology of fM .

P 5.2. – Let g0 be a complete metric on fM with Kg0 � 0. For all 0 < " � 1

small enough let g" be a complete metric on fM such that at all x 2 fM , e�"g0 � g" � e"g0.
Then for all x; y 2 fM , any minimizing g"-geodesic 
" joining x to y is contained in the

D"-neighborhood of the g0-geodesic Œx; y�0 from x to y, with D" �
p
"dg0.x; y/.

Proof. – Let g0 and g" as above, and x; y 2 fM . Set L0 D dg0.x; y/ and L" D dg".x; y/.
Let 
0 W Œ0; L0�! fM and 
" W Œ0; L"�! fM be minimizing geodesics from x to y respectively
for g0 and g", parametrized with unit speed. Note that 
0 is unique. Let l 2 Œ0; L"� be such
that

dg0.
".l/; Œx; y�0/ D max
t2Œ0;L"�

dg0.
".t/; Œx; y�0/ D D":

We call z D 
".l/ 2 fM . Consider the g0-geodesic triangle with vertices x; y; z. Set
l1 D d

g0.x; z/ and l2 D dg0.z; y/.
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We have

(21) l1 �

Z l

0

jj P
".t/jjg0 dt and l2 �

Z L"

l

jj P
".t/jjg0 dt:

Since e�"g0 � g" � e"g0, we have jj P
".t/jjg0 � e
"=2 for all t 2 Œ0; L"� and jj P
0.t/jjg" � e

"=2

for all t 2 Œ0; L0�. Therefore, by equation (21),

L" �

Z L

0

jj P
0.t/jjg" dt � e
"=2L and l1 C l2 �

Z L"

0

jj
".t/jjg0 dt � e
"L:

Since Kg0 � 0, the distance dg0 satisfies CAT .0/-triangle comparison property (cf [9]
p161): D" is less than the height ND from Nz of the comparison triangle . Nx; Ny; Nz/ in the
Euclidean plane with side lengths d eucl. Nx; Ny/ D L0, d eucl. Nx; Nz/ D l1 and d eucl. Ny; Nz/ D l2.
Moreover, for all such Euclidean triangles with l1 C l2 � e"L0, the height ND is maximal if
and only if l1 D l2 D

e"L0
2

. Therefore,

D2
" �

ND2
�
e2"L20
4
�
L20
4
� "L20

as soon as e2" � 1 � 4". It proves D" �
p
"dg0.x; y/ and ends the proof of Proposition 5.2.

Proposition 5.2 together with Morse-Klingenberg Lemma and Lemma 5.1 imply that
when the curvatures have a uniform negative upper bound, the complete geodesics on fM
converge uniformly for the g0-Hausdorff topology under a variation of the metric. Let
a > 0 be fixed.

P 5.3. – Let .g"/�1<"<1 be a family of metrics on fM with sectional curvatures
satisfying Kg" � �a

2, such that for all " 2 .�1; 1/, e�"g0 � g" � e"g0 on each tangent space
TxfM , x 2 fM . Then there exists ˛ W .�1; 1/ ! Œ0;C1/, with lim"!0 ˛."/ D 0, such that for
all " 2 .�1; 1/ and all .�; �/ 2 @2fM , the g"-geodesic with extremities � and � is contained in
the ˛."/-neighborhood of the g0-geodesic with extremities � and �.

Proof. – First, recall (see Section 2.1) that the geodesics for g0 and g" are at uniform
bounded distance C2.g0; g"/ � C2.g0; g1/. Let 
0 be the g0-geodesic from � to �. Choose its
origin 
0.0/ arbitrarily. For any large � > 0, we have d.
0.˙�/; 
"/ � C2.g0; g1/. Consider
the g0-geodesic segment 
1 joining the nearest point to 
0.�/ on 
" with the nearest point
to 
0.��/ on 
". This geodesic segment has g0-length equal to 2R D 2� ˙ 2C2.g0; g1/.
Choose its origin in such a way that dg0.
0.˙R/; 
1.˙R// � 2C2.g0; g1/.

For all ˛ > 0, Lemma 5.1 applied with K D 2C2.g0; g1/, ˛=2 and T D 1 gives some R0 > 0
such that when R � R0, for all t 2 Œ�1; 1�, dg0.
1.t/; 
0.t// � ˛=2.

By Proposition 5.2, dg0.
1.0/; 
"// � 2R
p
".

Therefore,

dg0.
0.0/; 
"/ � d
g0.
0.0/; 
1.0//C d

g0.
1.0/; 
"// � ˛=2C 2R
p
":

Choose R � R0 and " > 0 such that 2R0
p
" � ˛=2 to get dg0.
0.0/; 
"/ � ˛. As the

origin on 
0 is arbitrary, the result follows.
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Observe that, in the above proof, the dependence between ˛ and " can be made relatively
explicit. For K D C2.g0; g1/, T D 1 and ˛=2 in Lemma 5.1 we get

R0 D 1C
2C2.g0; g1/

a
ln
2C2.g0; g1/

˛
and " D

˛2

16R20
:

Moreover, our proof only usesKg0 � �a
2 < 0 and the fact that for all g", the g"-geodesic

between two points at infinity is unique. The negative lowerbound on the sectional curvatures
Kg" does not need to be uniform.

P 5.4. – Let .g"/�1�"�1 be a family of complete metrics on fM withKg"��a
2,

such that for all " > 0, and all x 2 fM , e�"g0 � g" � e"g0 on the tangent space TxfM .
Then the map B

g"
W .x; y; �/ 7! B

g"
� .x; y/ converges to B

g0 as " ! 0, uniformly on
compact sets of fM �fM � @fM .

Proof. – Any compact set K � fM �fM � @fM is contained in some (noncompact) set of
the formHC D

˚
.x; y; �/ 2 fM �fM � @fM I dg0.x; y/ � C 	, for some C > 0. It is enough to

show that B
g"
! B

g0 as "! 0, uniformly on each HC .
Let C > 0 be fixed. For all " 2 .�1; 1/ and all .x; y; �/ 2 HC ,

dg".x; y/ � 2dg0.x; y/ � 2C:

Let � > 0 be fixed. Choose xt at distance t from x D x0 on the g0-geodesic .x; �/, and let
yt be the point on the g0-geodesic .y; �/ such that B

g0
� .x; y/ D 0. Let x"t be the projection

of xt on the g"-geodesic from x to �. Proposition 5.3 ensures that dg".xt ; x"t / � ˛."/. Let us
writeˇ̌̌

B
g"
� .x; y/ � B

g0
� .x; y/

ˇ̌̌
�

ˇ̌̌
B
g"
� .x; y/ � d

g".x; x"t /C d
g".y; x"t /

ˇ̌̌
C jdg".x; x"t / � d

g".y; x"t / � d
g".x; xt /C d

g".y; xt /j

C jdg".x; xt / � d
g0.x; xt / � d

g".y; xt /C d
g0.y; xt /j

C

ˇ̌̌
B
g0
� .x; y/ � d

g0.x; xt /C d
g0.y; xt /

ˇ̌̌
:

For t � 2C , by Lemma 5.1, the last term on the right hand side is bounded from the
above by 4Ce�at . For t � 2Ce" C ˛."/, we also have dg".x; x"t / � 2C so that again by
Lemma 5.1, the first term is bounded from the above by 4Ce�ad

g" .x;x"t / � 4Ce˛."/e�at=2. By
triangular inequality, the second term is bounded from the above by 2˛."/. The inequality
e�"g0 � g" � e

"g0 allows to bound the third term by 2.e" � 1/.t C C/.
At last, we getˇ̌̌

B
g"
� .x; y/ � B

g0
� .x; y/

ˇ̌̌
� 4Ce˛."/e�at=2 C 2˛."/C 2.e" � 1/.t C C/C 4Ce�at :

Let � > 0 be fixed. Choose first "0 so that for " � "0, ˛."/ � 1. Chose t � 2C large enough
to guarantee that the first and the last term are each bounded from the above by �=4. Choose
"1 � "0 small enough to guarantee that for " � "1, ˛."/ � �=4 and 2.e" � 1/.t C C/ � �=4.
Thus, jBg"

� .x; y/ � B
g0
� .x; y/j � �. This gives the desired result.

R 5.5. – Even though this section is written in a Riemannian setting, all the
previous proofs apply verbatim to a family of distances .d"/�1<"<1 on X such that for all
" 2 .�1; 1/, the metric space .X; d"/ is CAT.�1/ and e�"d0 � d" � e"d0.
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5.2. Higher regularity, Morse correspondances and geodesic stretch

In this section, we consider metrics g" ! g0 in the C1-topology. To emphasize the
necessity of this assumption, observe that g" ! g0 in the C0-topology does not imply the
convergence of the curvatures nor the convergence of the geodesic flow.

In particular, one can “add mushrooms” on a hyperbolic manifold, and make the mush-
rooms as small as we want, and build a sequence of manifolds with many points of nonneg-
ative curvature converging to a hyperbolic manifold. The geodesic flow of such g" will not
converge in general to the geodesic flow of g0.

In view of its importance in the sequel, recall the convergence that we shall use.

D 5.6. – A family .g"/�1�"�1 of complete Riemannian metrics on fM (or M)
converges in the C1-topology, uniformly on compact sets, to g0 if:

1. .g"/ converges to g0 uniformly on compact sets, i.e., for all compact sets K � TfM ,

lim
"!0

sup
v2K

jg".v; v/ � g0.v; v/j D 0I

2. the first derivatives of g" also converge uniformly on compact sets to those of g0.

By [22, Thm. 2.79], it implies for all fixed T > 0 the uniform convergence on compact sets
of the geodesic flows v 7! gT" v. As a consequence, we get the following result.

T 5.7. – Let .g"/�1<"<1 be a family of metrics on fM with sectional curvatures
satisfying Kg" � �a

2, such that for all " 2 .�1; 1/, at all x 2 fM , e�"g0 � g" � e"g0,
and g" ! g0 in the C1 topology, uniformly on compact sets.

Let êg0!g" ande‰g0!g" be the Morse correspondances betweenSg0fM andSg"fM defined in
Section 2.4. Then êg0!g" ! Id and e‰g0!g" ! Id uniformly on all compact setsK � Sg0fM
in the uniform topology of C0.K; TfM/.

Proof. – Let K be a fixed compact set of Sg0fM and v 2 K, with vg0
˙

the endpoints
of its g0-geodesic in @fM . Denote by .
0.t//t2R the parametrization of this geodesic such
that 
 00.0/ D v. Let 
" be the parametrization of the g"-geodesic with the same endpoints,
with v" D 
 0".0/ D ˆ

g0!g".v/.
By Proposition 5.4 and definitions from Section 2.4, uniform convergence of e‰g0!g" on

compact sets will follow from the convergence of êg0!g" . So let us prove the latter.
We will use the distance d.w;w0/ D supt2Œ0;1� d

g0.�.gt0w; g
t
0w
0/ on TfM and show that

for all ˛ > 0, if " is small enough, for all v 2 K and t 2 Œ0; 1�, dg0.�.gt0v/; �.g
t
0v"// � ˛.

Choose some ˛ > 0. By Propositions 5.3 and 5.4, for " small enough, uniformly in v 2 K,
and t 2 Œ�1; 1�, we know that 
" is in the ˛=2-neighborhood of 
0, and 
".t/ is uniformly
close to 
0.t/. It implies that v" D 
 0".0/ and v0 D 
 00.0/ are uniformly close. As g" ! g0

in the C1-topology, uniformly on compact sets, it implies that for " small enough, for all
t 2 Œ�1; 1�, �.gt".v"// and �.gt0.v"// will stay ˛=2-close. In particular, �.gt0.v"// will stay
˛-close from 
0.t/, for t 2 Œ�1; 1�. That is the desired convergence.

R 5.8. – Adapting Theorem 5.7 and the definition of the geodesic stretch in the
setting of CAT.�1/ spaces would require a careful definition of the tangent bundle on such
spaces with its topology, which we will not do here.
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Let us conclude this section by a key technical ingredient.

T 5.9. – Let .g"/�1<"<1 be a family of metrics on fM with sectional curvatures
satisfying Kg" � �a

2, such that for all " 2 .�1; 1/, at all x 2 fM , e�"g0 � g" � e"g0,
and g" ! g0 in the C1-topology, uniformly on compact sets.

Then uniformly on compact sets of Sg0fM , we have

lim sup
"!0

E g0!g".v/ � 1:

Moreover, for any geodesic current � such that mg0� is finite, we have

E g0!g" ! 1 mg0� � almost surely:

Proof. – Observe that Lemma 2.5 gives the obvious upper bound lim sup"!0 E g0!g" � 1,
uniformly on Sg0fM . For the same reason, lim sup"!0 E g"!g0 � 1, uniformly on Sg"fM . By
Corollary 2.15, one easily deduces that

(22)
km

g"
� k

km
g0
� k
! 1 when "! 0:

Combined with the fact that lim sup"!0 E g0!g" � 1, this implies in turn that E g0!g" ! 1

m
g0
� -almost surely.

5.3. Narrow convergence of measures associated to a fixed geodesic current

Recall that if � is a �-invariant geodesic current and g an admissible metric on M , we
denote by mg� the locally finite Radon measure on SgM whose lift to SgfM is given by

demg�.v/ D .Hg/�.� � dt/:

The results of the previous paragraph imply the following fact.

P 5.10. – Let .g"/�1<"<1 be a family of metrics on fM whose sectional curva-
tures satisfy Kg" � �a

2, and such that for all " 2 .�1; 1/, at all x 2 fM , e�"g0 � g" � e"g0,
and g" ! g0 in the C1-topology, uniformly on compact sets. Let � be a �-invariant geodesic
current such that kmg0� k <1. Then the measures mg"� converge to mg0� in the dual of bounded
continuous maps on TM (i.e., in the narrow topology).

Proof. – By definition, for all " 2 .�1; 1/ we have mg"� D .‰g0!g"/�
�

E g0!g" �m
g0
�

�
.

Therefore the weak-* convergence (in the dual of continuous compactly supported functions)
is an immediate consequence of Theorem 5.7 and the dominated convergence theorem.

We also showed that kmg"� k ! km
g0
� k, see equation (22). It is classical that it implies the

convergence of the above measures in the dual of bounded continuous functions. The result
follows.
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5.4. Weak convergence of Bowen-Margulis measures

We now show that, provided they are unique, the Bowen-Margulis measures are contin-
uous in the weak-* topology under Lipschitz deformations of the metric.

P 5.11. – Let .g"/�1�"�1 be a family of metrics onM with sectional curvatures
satisfying Kg" � �a

2, such that .�; g0/ is divergent and for all ", at all x2fM , e�"g0 � g" � e"g0.
Then for all x 2 fM , any Patterson-Sullivan measure for g" normalized at o converges:

lim"!0 �
g"
x D �

g0
x in the weak-* topology, uniformly in x on compact sets of fM .

Proof. – For all " 2 .�1; 1/ n f0g, let �g"o be any Patterson-Sullivan measure on ƒ� ,
normalized into a probability measure. (Observe that such a measure is not necessarily
unique for " ¤ 0, because only .�; g0/ is assumed to be divergent.) Lete�o D lim"i!0 �

g"i
0 be

any of its weak limits. Define for all x 2 fM a measuree�x on ƒ� by

de�x
de�o .�/ D e�ı.g0/B

g0
�
.o;x/

:

It is a �-invariant, ı.g0/-conformal family of measures as defined in (14), normalized at o.
By uniqueness of such a family, it coincides with .�g0x /x2fM .

Recall that �gBM denotes the g-Bowen-Margulis geodesic current on @2fM given by

d�
g
BM.�; �/ D d�

g
x .�/d�

g
x .�/ D e

�ı.g/.B
g

�
.o;x/CB

g
� .o;x//d�go .�/d�

g
o .�/;

where x is any point on the g-geodesic with endpoints .�; �/. We get the immediate corollary
of Propositions 5.4 and 5.11.

C 5.12. – Under the same assumptions, in the weak-* topology of @2fM ,
lim"!0 �

g"
BM D �

g0
BM.

R 5.13. – Once again, Proposition 5.11 and Corollary 5.12 are still valid if we
consider a family of �-invariant distances .d"/"2.�1;1/ on fM such that .fM;d"/ is a CAT.�1/
and e�"d0 � d" � e"d0 for all " 2 .�1; 1/.

We end this section by the convergence of Bowen-Margulis measures.

T 5.14 (Convergence of Bowen-Margulis measures). – Let .g"/�1<"<1 be a
family of metrics on fM with sectional curvatures satisfying Kg" � �a

2, such that for all
" 2 .�1; 1/, at all x 2 fM , e�"g0 � g" � e"g0 and g" ! g0 in the C1-topology, uniformly
on compact sets. Assume that � is divergent for all metrics g". Then in the weak-* topology
of TM ,

lim
"!0

m
g"
BM D m

g0
BM:

Proof. – Let ' be a continuous map with compact support on TM . Write the differenceR
TM

'dm
g"

�
g"
BM
�
R
TM

'dm
g0

�
g0
BM

as�Z
TM

'dm
g"

�
g"
BM
�

Z
TM

'dm
g0
�
g"
BM

�
C

�Z
TM

'dm
g0
�
g"
BM
�

Z
TM

'dm
g0

�
g0
BM

�
:

By Corollary 5.12, the second difference converges to 0.
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Proposition 2.13 allows to rewrite the first difference asZ
TM

'dm
g"

�
g"
BM
�

Z
TM

'dm
g0
�
g"
BM
D

Z
TM

�
' ı‰g0!g" � E g0!g" � '

�
dm

g0
�
g"
BM
:

By Corollary 5.12, mg0
�
g"
BM

converges weakly to mg0
�
g0
BM

in the dual of continuous functions

with compact support.
By Theorem 5.7, as lim sup"!0 E g0!g"� 1, if ' � 0, we have

lim sup
"!0

' ı‰g0!g"� E g0!g" � ' � 0:

As the support of these maps is included in a fixed compact set, we deduce that

lim sup
"!0

Z
TM

�
' ı‰g0!g" � E g0!g" � '

�
dm

g0
�
g"
BM
� 0:

Now, rewrite this first difference as

�

�Z
TM

'dm
g0
�
g"
BM
�

Z
TM

'dm
g"

�
g"
BM

�
D �

Z
TM

�
' ı‰g"!g0 � E g"!g0 � '

�
dm

g"

�
g"
BM
:

Observe first that, by the same arguments used in the proof of equation (22), the ratios of

masses
km
g0

�
g"
BM
k

km
g"

�
g"
BM
k

go to 1 when "! 0.

For the same reason as above, lim sup"!0 E g"!g0 � 1, so that for ' � 0, by Theorem 5.7,
uniformly on TM , the limsup of ' ı ‰g"!g0 � E g"!g0 � ' is nonpositive. By convergence
of the ratio of masses mentioned above, and by convergence of mg0

�
g"
BM

to mg0
�
g0
BM

, its integral

also has a nonpositive limsup, and the sign minus in the above expression gives

lim inf
"!0

Z
TM

'dm
g"

�
g"
BM
�

Z
TM

'dm
g0
�
g"
BM
� 0:

The result follows.

6. Differentiability of the metric and topological entropies

In this section, we show differentiability of topological and measure theoretic entropies
at " D 0, along a variation .g"/"2.�1;1/ of metrics of a negatively curved Riemannian
manifold .M D fM=�; g0/. We will focus on two distinct situations.

First, let� be a�-invariant geodesic current on @2fM , and for all " 2 .�1; 1/, letmg"� be the
associated invariant measure for the geodesic flow .gt"/ (see Section 2). Assume that the total
mass of mg0� is finite. We will show that the measure theoretic entropy " 7! h.m

g"
� ; g"/ is C1,

with explicit derivatives.
We then focus on the topological entropy. Provided that Bowen-Margulis measures of

each geodesic flow .gt"/ are finite, and that their masses vary continuously, we show that the
topological entropy is also C1, with a similar formula for its derivative. The proofs are similar
in both situations, and inspired from [31] and [52].

D 6.1. – LetM be a (non-compact) manifold. We say that a family of complete
Riemannian metrics .g"/"2.�1;1/ on M converges to g0 in the C1-uniform topology if:

1. g" ! g0 in the C1 topology, uniformly on compact sets, as in Definition 5.6;
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2. there exists � > 0 such that for all " 2 .�1; 1/ and all v 2 TM with jjvjjg0 � 1,ˇ̌̌̌
d

ds

ˇ̌̌̌
sD"

gs.v; v/

ˇ̌̌̌
� �:

A C2 variation of metric with compact support, or with non-compact support but
uniformly bounded first and second derivatives, is a typical example of such a uniformly C1

family. If .g"/"2.�1;1/ is such a C1-uniform family of complete metrics on M , one immedi-
ately sees that there exists B D B.C1; "/ > 0 such that at all x 2M and for all " 2 .�1; 1/,

e�B"g0 � g" � e
B"g0;

which allows us to apply the results shown in the previous section.

6.1. Variation of metric entropy

This paragraph is devoted to the proof of the following result, which seems to us new even
in the compact case.

T 6.2. – Let b > a > 0, " > 0 and let .g"/"2.�1;1/ be a family of complete metrics
on M D fM=� whose curvatures and first derivatives of curvatures are uniformly bounded,
and moreover such that for all " 2 .�1; 1/ and at all points, �b2 � Kg" � �a

2. Assume
that g" ! g0 in the C1-uniform topology. Let � be a �-invariant geodesic current on @2fM such
that mg0� is finite.

Then the local entropy " 7! h�loc.m
g"
� ; g"/ of the .gt"/-invariant measuresmg"� is differentiable

at " D 0 with derivative given by

d

d"

ˇ̌̌̌
"D0

h�loc.m
g"
� ; g"/ D �h

�
loc.m

g0
� ; g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg"
dm

g0
� .v/ˇ̌̌̌
m
g0
�

ˇ̌̌̌ :

Proof. – Let� be a�-invariant geodesic current on @2fM such thatmg0� is finite. It follows
from Proposition 2.15 that for all " 2 .�1; 1/, the measures mg"� are finite. Moreover, by

Corollary 5.10, lim"!0m
g"
� D m

g0
� and lim"!0

m
g"
�

jjm
g"
� jj
D

m
g0
�ˇ̌̌̌̌̌

m
g0
�

ˇ̌̌̌̌̌ in the narrow topology.

By Theorem 3.7, if g1 and g2 are admissible metrics on M , we know that

(23) h�loc.m
g2
� ; g2/ D

Z
Sg2M

E g1!g2.v/d Nmg2� .v/ � h
�
loc.m

g1
� ; g1/:

By Theorem 5.9, this implies that the local entropy h�loc.m
g"
� ; g"/ converges to h�loc.m

g0
� ; g0/

when "! 0. Moreover, (23) and Lemma 2.5 also imply that

h�loc.m
g2
� ; g2/ �

Z
Sg2M

jjvjjg1 dm
g2
� .v/ � h

�
loc.m

g1
� ; g1/:

Applying it with g1 D g0 and g2 D g" first, and second with g1 D g" and g2 D g0, we get

h�loc.m
g0
� ; g0/

 
1R

Sg0M jjvjj
g" dmg0� .v/

� 1

!
� h�loc.m

g"
� ; g"/ � h

�
loc.m

g0
� ; g0//

� h�loc.m
g0
� ; g0/

�Z
Sg"M

jjvjjg0 dmg"� .v/ � 1

�
;
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which yields to

h�loc.m
g0
� ; g0/

R
Sg0M

jjvjjg0�jjvjjg"

"
dmg0� .v/R

Sg0M jjvjj
g" dmg0� .v/

�
h�loc.m

g"
� ; g"/ � h

�
loc.m

g0
� ; g0/

"

� h�loc.m
g0
� ; g0/

Z
Sg�M

jjvjjg0 � jjvjjg"

"
dmg"� .v/:

Now, dominated convergence theorem, continuity of "! h�loc.m
g"
� ; g"/ at " D 0, and narrow

convergence of m
g"
�

km
g"
� k

towards m
g0
�

km
g0
� k

give

d

d"

ˇ̌̌̌
"D0

h�loc.m
g"
� ; g"/ D �h

�
loc.m

g0
� ; g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg" dmg0� .v/:

This is the desired result.

6.2. Variation of topological entropy

We now show differentiability of the topological entropy htop.g"/ at " D 0. It is not a
corollary of Theorem 6.2 since we have to consider Bowen-Margulis geodesic currents �g"BM
depending on the metricg". However, the strategy of proof is very similar, as by Theorem 5.14,
m
g"
BM ! m

g0
BM in the weak-* topology. The only missing ingredient is the convergence of

Bowen-Margulis measures in the dual of bounded continuous functions. It is therefore
required in the assumptions of Theorem 6.3. We refer to Section 7 for the study of the large
class of the so-called SPR manifolds, which will satisfy this assumption.

T 6.3. – Let b > a > 0, and let .g"/"2.�1;1/ be a family of complete metrics onM
such that

1. for all " 2 .�1; 1/ and at all point, �b2 � Kg" � �a
2;

2. g" ! g0 uniformly in the C1 topology as in Definition 6.1;

3. for all " 2 .�1; 1/, the Bowen-Margulis measure mg"BM of the geodesic flow .gt"/t2R
on Sg"M has finite mass;

4. the map "!
ˇ̌̌̌
m
g"
BM

ˇ̌̌̌
is continuous at " D 0.

Then the entropy " 7! htop.g"/ is C1 at " D 0 with derivative given by

d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg"
dm

g0
BM.v/ˇ̌̌̌
m
g0
BM

ˇ̌̌̌ :

Proof. – As the preceding one, our strategy of proof is inspired from [31] and [52].
Corollary 3.18 shows that if g1 and g2 are admissible metricsM with finite Bowen-Margulis
measures, then

htop.g2/ �

Z
Sg2M

E g1!g2.v/
dm

g2
BM.v/

km
g2
BMk

htop.g1/ �

Z
Sg2M

jjvjjg1
dm

g2
BM.v/

km
g2
BMk

htop.g1/;
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where the last inequality follows from Lemma 2.5. Applying it to g" and g0 on both sides,
we get for all " 2 .�1; 1/,

htop.g0/ �

R
Sg0M

jjvjjg0�jjvjjg"

"

dm
g0
BM.v/

km
g0
BMkR

Sg0M jjvjj
g" dm

g0
BM.v/

km
g0
BMk

�
htop.g"/ � htop.g0/

"

� htop.g0/ �

Z
Sg"M

jjvjjg0 � jjvjjg"

"

dm
g"
BM.v/

km
g"
BMk

:

The assumptions of the theorem are now exactly done to make the above integrals converge.
We deduce that topological entropy is differentiable at " D 0, with

d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg" d Nm
g0
BM.v/:

7. Entropy at infinity and Strongly Positively Recurrent groups

In this section, our goal is to propose a wide class of manifolds and metrics to which
Theorem 6.3 will apply. In view of this goal, proving differentiability of entropy, this section
is apparently technical. However, the definition of this class of manifolds, and the related
concepts studied here, is probably one of the main novelties in our paper. We refer to [3, 14,
55, 25] for further results on these manifolds.

We define the entropy at infinity ı1.M; g/ of a negatively curved manifold .M; g/ (see
Definition 7.12), as the maximal exponential growth of the dynamics away from any given
(large) compact set. In particular, it is invariant under any C2 compact perturbation of a
negatively curved metric.

We introduce the class of strongly positively recurrent manifolds .M; g/, defined as those
negatively curved manifolds whose entropy at infinity is strictly smaller than the total topo-
logical entropy of the geodesic flow.

As said in the introduction, the notion of strong positive recurrence appeared in [48] in
the context of symbolic dynamics over an infinite alphabet, and has been used later by
some other authors among which [8]. A former terminology due to [26] was stable positive
recurrence. This terminology could be more adapted to the kind of results that we prove here.
In any case, as will be seen below and in [25], the acronym SPR is perfectly adapted to the
concept.

The simplest nontrivial examples are geometrically finite hyperbolic manifolds, but this
class also includes most known examples of non-compact manifolds with negative curva-
ture whose geodesic flow has a finite Bowen-Margulis measure, and many new ones (see
Section 7.3).

Our main result is the following.

T 7.1. – Let .M; g0/ be a manifold with pinched negative curvature and bounded
derivatives of the curvature.

If .M; g0/ is a strongly positively recurrent manifold, then the Bowen-Margulis measure of
its geodesic flow is finite.
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Moreover, if .g"/"2.�1;1/ is a uniformly C1-variation of smooth complete metrics onM with
pinched negative curvature and bounded derivatives of metrics, then the following holds.

1. For " 2 .�"0; "0/ small enough, all metrics g" are strongly positively recurrent.

2. The mass of the associated (finite) Bowen-Margulis mg"BM varies continuously on .�"0; "0/.

The first part of this theorem (finiteness of Bowen-Margulis) has been proven indepen-
dently and simultaneously by A. Velozo [53] by a different approach.

As a corollary, all assumptions of Theorem 6.3 hold for such a variation of metrics, so that
we get the following result, which answers positively the question at the origin of this work.

C 7.2. – Let .g"/"2.�1;1/ be a uniformly C1 family of complete metrics on the
manifold M with pinched negative curvature and bounded derivatives of the curvature. Assume
that .M; g0/ is strongly positively recurrent. Then the entropy " 7! htop.g"/ is C1 around " D 0,
and its derivative is given by

d

d"

ˇ̌̌̌
"D0

htop.g"/ D �htop.g0/ �

Z
Sg0M

d

d"

ˇ̌̌̌
"D0

jjvjjg"
dm

g0
BM.v/ˇ̌̌̌
m
g0
BM

ˇ̌̌̌ :

In view of the length of this section, let us present the strategy of the proof.

Heuristically, the SPR assumption allows to neglect the dynamical contribution of the
complement of a large compact set to the dynamics. We develop this idea in two introductive
parts 7.1 and 7.2, defining the growth of the fundamental group outside a compact set, the
entropy at infinity and the class of Strongly Positively Recurrent manifolds.

In Subsection 7.3 we provide an illustration of this concept, by describing different fami-
lies of examples of SPR manifolds.

A criterion of finiteness of the Bowen-Margulis measure from [41] is used to prove the first
part of Theorem 7.1. Subsection 7.4 is devoted to this proof.

All entropies considered here are continuous for a negatively curved perturbation
.g"/�1�"�1 satisfying e�"g0 � g" � e"g0. Thus, the SPR assumption, that is the exis-
tence of a critical gap between the entropy at infinity and the topological entropy is stable
under such small perturbations. And the existence of a large compact set concentrating the
most part of the dynamics allows to prove that its complement is of small Bowen-Margulis
measure, uniformly in the perturbation. These ideas are developped in Subsection 7.5, where
we prove that for a variation of a SPR metric as above, the mass of the Bowen-Margulis
measures varies continuously.

As said in the introduction, these results imply all theorems stated in the introduction.
Theorem 1.7 is an immediate consequence of Section 7.3 and the first part of Theorem 7.1.
Theorem 1.8 is a reformulation of the second part of Theorem 7.1. At last, our main result,
Theorem 1.9, follows from Theorems 6.3 and 1.8 (or 7.1).
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7.1. Fundamental group outside a given compact set

Let .M; g/ be a complete Riemannian manifold with pinched negative curvature
�b2 � Kg � �a

2 < 0, whose fundamental group � D �1.M/ is non-elementary. Let
p� W fM ! M be the universal covering map. Let o 2 fM be a point, fixed once for all. For
any set W �M , we will write W c DMnW .

D 7.3. – Let W � M be a compact pathwise connected set which is the closure
of its interior, and whose boundary is piecewise C1. A nice preimage of W is a compact seteW � fM such that

1. p�.eW / D W and the restriction of p� to the interior of eW is injective;

2. eW has a piecewise C1 boundary.

R 7.4. – We will often refer to and use results of [41]. In this reference, W is a
subset of SgM and fW is an open set inside p�1� .W/ such that p� W fW ! W is onto. As
we deal with several metrics and several unit tangent bundles, it is better here to work with
W �M . The reader can think to W as SgW . The fact thatW is compact here, and W open
in [41] is just a matter of taste in some arguments.

We gather in the following lemma elementary useful facts.

L 7.5. – Let W be a compact pathwise connected set with piecewise C1 boundary,
which is the closure of its interior.

1. A nice preimage eW of W exists.

2. If W2 � W1, then they admit nice preimages eW2 � eW1.

3. If 
 ¤ id then 

ıeW \ ıeWD ;.

4. The set f
 2 � I 
 eW \ eW ¤ ;g is finite. We call such 
 eW the adjacent elements of eW .

Proof. – Choose some w 2 W , lift it to ew 2 p�1� .W / and construct the Dirichlet domaineW D fz 2 p�1� .W /; 8
 2 �; dg.z; ew/ � dg.z; 
ew/g:
It is a compact set with C1-boundary which satisfies the properties stated in the lemma. If
W1 � W2, choose some w 2 p�1� .W1/ � p�1� .W2/. For i D 1; 2 the Dirichlet domainseW1 � eW2 � p�1� .Wi / satisfy Fact 2.

The following notion was introduced in [41].

D 7.6. – Let W � M be a compact set and eW a nice preimage of W . The
fundamental group of M out of eW is the set �gfW of elements 
 2 � such that there exists
x; y 2 eW and a g-geodesic segment c
 joining x to 
y such that for all h 2 �,

c
 \ p
�1
� W D c
 \ � eW � eW [ 
 eW :

By compactness of eW we will always assume that x; y 2 @eW .
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Heuristically, as explained in [41], �gfW represents loops p�.Œx; 
y�/which go outsideW at
the beginning, and come back toW only at the end. This heuristics does not work perfectly,
depending on the topology of W , for example when it has holes.

The set �gfW will help controlling what happens far at infinity. In particular it follows
immediately from the definition that it is not sensitive to small compact perturbations of the
metric g, as stated in the proposition below.

P 7.7. – Let .M; g0/ be a complete negatively curved metric and W � M be

a compact set, with nice preimage eW . For any proper compact subsetK �
ı

W and any metric g
such that g1 D g2 outside K, we have �g1fW D �g2fW .

By definition, id� 2 �
gfW , and 
 2 �gfW iff 
�1 2 �gfW . When .M; g/ is a geometrically finite

manifold, for suitable choice ofW ,�gfW is a union of groups. But in general,�gfW is not a group
at all, as shown in the following proposition.

P 7.8. – With the previous notations, let W � M be a compact pathwise
connected set with piecewise C1 boundary and eW be a nice preimage of W . If 
 2 �fW is a
hyperbolic element whose axisA
 intersects the interior of eW , then there existsN D N.
/ > 0
such that for all n � N , 
n … �gfW .

Proof. – Let 
 2 �gfW be such an hyperbolic element. Its axis A
 intersects eW , and there-

fore also 
 eW and all iterates 
n eW . Choose some x0 2 A
\
ıeW and let d0 D dg.x0; @eW / > 0.

Let x; y 2 eW . By Lemma 5.1 (2), with K D diam.eW /, ˛ D d0=2, we know that if
dg.x; 
ny/ D n`g.
/˙ 2diameW � 2R0, all points in the middle interval of length 2T D
`g.
/ of the g-geodesic segment from x to 
ny would be at distance less than d0=2 from A
 ,
and therefore some of them would be inside 
k eW , for some 1 � k � n � 1. This proves the
proposition.

The set �fW depends on W and the choice of its preimage eW , but not too strongly as
illustrated by the following proposition.

P 7.9. – 1. Let W � M be a compact set (with piecewise C1 boundary), andeW be a nice preimage. Let ˛ 2 �. Then �g
˛fW D ˛�gfW ˛�1.

2. If W1 and W2 are compact sets of M (with piecewise C1 boundary) such that W1 �
ı

W2
with respective nice preimages eW1 � eW2, there exists k � 1 and ˛1; : : : ; ˛k 2 � such that

�fW2 �
k[

i;jD1

˛i�fW1. j̨ /�1:
3. If eW1 and eW2 are nice preimages of W , then there exists a finite set f˛1; : : : ; ˛kg � �

such that

�fW2 �
p[

i;jD1

˛i�fW1. j̨ /�1:
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Proof. – The first item of the proposition is obvious. Let us show 2. Set

D D 2diam.W2/ and � D inf fdg.w; @W2/ I w 2 W1g > 0:

Let 
 2 �gfW2 . There exist x2; y2 2 @eW2 such that the g-geodesic segment Œx2; 
y2� intersects

� eW2 only in eW2 [ 
 eW2. Now, choose some x1; y1 2 @eW1.
By Lemma 5.1, there exists L D L.D; �/ > 0 and R D R.D; �/ > 2L such that for all

x1; y1; x2; y2 2 fM with dg.x1; x2/ � D, dg.y1; y2/ � D and dg.x2; y2/ � R, the
g-geodesic segment .x1; y1/ is contained in the �

2
-neighborhood of .x2; y2/ except inside the

balls Bg.x1; L/ and Bg.y1; L/.
Let ˛1; : : : ; ˛k 2 � be the (finitely many) elements such that

dg.eW1; ˛i eW1/ D inffdg.a; b/; a 2 eW1; b 2 ˛i eW1g � L:
Let eW1 � eW2 be included nice preimages of W1 and W2, and let 
 2 �fW2 such that

dg.o; 
o/ � R C 2D. Then there exists x2; y2 2 @eW2 such that .x2; 
y2/ does not inter-
sect p�1� .W2/. By construction there exists x1; y1 2 eW1 such that dg.x1; x2/ � D and
dg.y1; y2/ � D. The geodesic .x1; 
y1/ is �

2
-close to the geodesic .x2; 
y2/ outside the balls

Bg.x1; L/ and Bg.
y1; L/, hence does not intersect p�1� .W1/ except maybe in these balls.
Thus, there exist ˛i ; j̨ in the above finite set, such that the geodesic segment .x1; 
y1/ does
not intersect � eW1 between ˛i eW1 and 
 j̨

eW1. Therefore, ˛�1i 
 j̨ 2 �fW1 or in other words,


 2 ˛i�fW1˛�1j :

The proof of the last item is similar, and we let it to the reader.

7.2. Entropy at infinity

P 7.10. – Let W � M be a compact set and eW a nice preimage of W . The
critical exponent ıW .g/ of the Poincaré series

P

2�fW e�sd

g.o;
o/ is equal to

ıW .g/ D lim sup
R!1

log #
˚

 2 �fW ; R � 1 < dg.o; 
o/ � R	

R

and does not depend on the choice of a nice preimage eW � fM of W nor o 2 fM . We call it the
entropy out of W of .M; g/.

Proof. – It follows from the triangular inequality that ıW .g/ does not depend on the
choice of o. Let us show that it does not depend on the choice of preimage. Let eW1 and eW2
be two nice preimages of W . By Proposition 7.9, there exists k � 0 and ˛1; : : : ; ˛k 2 � such
that

(24) �fW2 �
k[

i;jD1

˛i�fW1˛�1j :

Set

D D max

8<:dg.w; o/ I w 2 eW2 [ k[
i;jD1

˛i�fW1. j̨ /�1
9=; :

Define for i D 1; 2 and R > 0,

�fWi .R/ D
n

 2 �fWi I dg.o; 
o/ � R

o
:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



50 B. SCHAPIRA AND S. TAPIE

It follows from (24) and triangular inequality that for all R > 0,

�fW2.R/ �
k[

i;jD1

˛i�fW1.RC 2D/. j̨ /�1;
and therefore #�fW2.R/ � k2#�fW1.RC 2D/. This gives immediately

lim sup
R!C1

1

R
log #�fW2.R/ � lim sup

R!C1

1

R
log #�fW1.R/:

By symmetry, the reverse inequality also holds, and the result follows.

P 7.11. – Let .M; g/ be a complete negatively curved metric.

1. For any proper compact subset K �
ı

W and any metric g2 such that g1 D g2 outside K,
we have ıW .g1/ D ıW .g2/.

2. For all compact sets W1; W2 such that W1 �
ı

W2�M , we have ıW1 � ıW2 .

Proof. – Item 1 follows from Proposition 7.7. Item 2 can be proven similarly to Proposi-
tion 7.10, thanks to Proposition 7.9.

For a global variation of the metric (i.e., beyondW ), even small, the behavior of ıW .g/ is
not clear since the set �fW depends on the metric.

D 7.12. – The entropy at infinity of .M; g/ is

ı1.g/ D inf f ıW .g/; W �M compact set g:

Proposition 7.11 implies the following natural characterization of the entropy at infinity.

P 7.13. – Let .M; g/ be a complete negatively curved manifold and .Wi /i2N be
an increasing exhaustion of M by compact sets. Then

ı1.g/ D lim
i!1

ıWi .g/:

Moreover, it is invariant under any negatively curved perturbation of the metric with compact
support.

This entropy at infinity is a dynamical analogous to the bottom of the essential spectrum
of the Laplacian in spectral geometry. We will use this fact in some of the examples given in
Section 7.3.

D 7.14. – The complete manifold .M; g/ is called strongly/stably positively
recurrent (SPR), if ı1.g/ < ı�.g/. We will also call this property a critical gap at infinity.

By definition, if .M; g/ is strongly positively recurrent, there exists a compact setW �M
such that ıW < ı� .
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R 7.15. – The reader may have noticed that the definition of �eU given in [41, p. 4]

is slightly different from ours, since it is written for an open set eU which projects onto U D
ı

W .
Nevertheless, these definitions almost coincide in the following sense. LetW �M be a compact

set with nice preimage eW � fM , let eU � fM be an open set which projects onto U D
ı

W . Let
�eU be defined as in [41], and �fW be defined as above. Then there exists ˛1; : : : ; ˛k 2 � such
that

�eU �
k[

i;jD1

˛i�fW . j̨ /�1 and �fW �
k[

i;jD1

˛i�eU . j̨ /�1:
Therefore �eU and �fW have the same critical exponent and all results stated in [41] to charac-
terize the finiteness of Gibbs measures in terms of �eU are also valid for our definition of �fW .

7.3. Examples of SPR manifolds

We present here three classes of SPR manifolds. The first examples are geometrically finite
manifolds with critical gap studied in [15]. Schottky products furnish also plenty of examples,
generalizing the examples of [39]. At last, we describe examples inspired by Ancona’s exam-
ples in [2].

These examples are almost the only known examples of non-compact manifolds with
finite Bowen-Margulis measure. To our knowledge, the only exception is a construction of
Peigné of geometrically finite manifolds with finite Bowen-Margulis measure but without
critical gap, see [40, 54].

7.3.1. Geometrically finite manifolds with critical gap. – The convex core CC.M/ � M is
the image on M of the convex hull of the limit set ƒ� inside fM . The nonwandering set
� � SgM of the geodesic flow is the set of vectors v 2 SgM such that v˙ 2 ƒ� . By defi-
nition, � � SgCC.M/. A parabolic subgroup P of � is a subgroup which fixes a point at
infinity, and therefore stabilizes any horoball H centered at this point.

A cusp is the image on M of such a horoball.

The manifold M is geometrically finite if its convex core can be written as a finite union

CC.M/ D C0 t C1 t � � � t CK ;

where C0 is a compact set and the Ci are finitely many cusps, images through p� of
horoballs H i stabilized by parabolic subgroups P i of �. The complete reference on
such manifolds is [7]. Parabolic subgroups have a positive critical exponent. The preimage
on fM of a cusp Ci is the orbit of a horoball H i , and the stabilizer of any horoball 
 H i is
conjugated to the stabilizer P i of H i in �.

A convex-cocompact manifold is a geometrically finite manifold without cusps; in other
words, it is a manifold whose convex core is compact.

P 7.16. – Let .M; g/ be a manifold with pinched negative curvature. If
.M; g/ is convex-cocompact, its entropy at infinity is �1. If .M; g/ is geometrically finite with
k cusps represented by parabolic subgroups P1; : : : ; Pk � �, then

ı1.g/ D max
˚
ıP1

.g/; : : : ; ıPk
.g/
	
:
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In particular, a geometrically finite manifold is strongly positively recurrent if and only if

max
˚
ıP1

.g/; : : : ; ıPk
.g/
	
< ı� :

This condition is precisely the critical gap criterion introduced by Dalbo, Otal and Peigné
in [15]. It is satisfied in particular by locally symmetric geometrically finite manifolds and
their small compact C2 perturbations. The notion of SPR manifold allows to generalize many
results of [15] and others on geometrically finite manifolds to all strongly positively recurrent
manifolds.

Proposition 7.16 follows immediately from Proposition 7.17 below.

P 7.17. – Let .M; g/ be a manifold with pinched negative curvature.

If .M; g/ is convex-cocompact and W is a compact set such that CC.M/ �
ı

W , then �fW is
finite.

If .M; g/ is geometrically finite withk cusps, then there exists a compact setW �M with nice
preimage eW , a finite set �0fW , finitely many elements ˛1; : : : ; ˛N 2 �, and parabolic subgroups
P1; : : : ; Pk � � such that

�
gfW D �0fW [

[
i;j

˛i
�

P1 [ � � � [ Pk

�
˛�1j :

Proof. – Assume first that .M; g/ is convex-cocompact and CC.M/ �
ı

W . Let D be the
diameter of W and � D inf fdg.w; @W / I w 2 CC.M/g > 0. Let 
 2 �gfW , x; y 2 @eW and

choose x1; y1 2 C̃C.M/ such that d.x; x1/ � D and d.y; y1/ � D. By Lemma 5.1, there
exists some R0 depending on D; � such that if `g.
/ � R0, there exists some z 2 .x; 
y/,

z1 2 .x1; 
y1/ such that dg.z; z1/ � �=2. But C̃C.M/ is convex, so that z1 2 C̃C.M/ and z is

at distance �=2 of C̃C.M/ and therefore inside � eW . Thus, 
 … �fW . Therefore, all elements
of �fW have bounded length less than R0, so that �fW is finite, included in f
 2 �; `g.
/ � R0g.

Assume now that M is geometrically finite with cusps, and let CC.M/ D C0 t .
Fk
iD1 Ci /

be a decomposition of the convex core into a compact part and finitely many disjoint cusps.

Let W � M be a compact set such that
ı

W� CC.M/. Choose some nice preimage eW and
disjoint horoballs H i , 1 � i � k whose boundary intersects eW . Let P i be the stabilizer
of H i in �.

Let 
 2 �fW be such that `g.
/ � R0 and x; y 2 @eW . As noticed above, by Lemma 5.1,
the geodesic segment .x; 
y/ is (except at the beginning and the end, inside balls Bg.x; L/

and Bg.
y;L/) in the �=2 neighborhood of C̃C.M/. As already said in [41], if 
 2 �fW ,
except for a bounded amount of time at the beginning and the end, the geodesic segment
p�.x; 
y/ has to leave the compact part C0 and enter in some cusp Ci . Therefore, there
exists a finite set f˛1; : : : ˛N g such that for some 1 � i; j � N , the geodesic segment
.˛ix; 
 j̨y/ stays in some horoball H l . As in the proof of Proposition 7.9, one deduces
that �fW � �0fW [ Si;j;l ˛l P i˛

�1
j with �0fW � f
 2 �; `g.
/ � R0g as in the convex-

cocompact case.
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7.3.2. Schottky products. – We present now a family of geometrically infinite examples first
studied in [39]. Let G andH be discrete groups of isometries of a complete manifold .fM;g/

with pinched negative curvature. They are in Schottky position if there exist disjoint compact
sets UG ; UH � fM [ @fM such that for all g 2 Gnfidg and all h 2 Hnfidg, we have

g
�
.fM [ @fM/nUG

�
� UG and h

�
.fM [ @fM/nUH

�
� UH :

In particular, by Klein’s ping-pong argument, they generate a free product: � D hG;H i D
G � H . The entropy at infinity behaves nicely under Schottky products, as shown by the
following theorem.

T 7.18. – Let G and H be discrete groups of isometries of a complete mani-
fold .fM;g/ with pinched negative curvature which are in Schottky position. Let � D hG;H i D
G �H . Denote respectively by M� D fM=�, MG D fM=G and MH D fM=H the associated
quotient manifolds endowed with the quotient metric induced by g. Then

ı1.M�/ D max fı1.MG/; ı1.MH /g :

As an immediate corollary, we get the following result.

C 7.19. – Let G and H be discrete groups of isometries of a complete mani-
fold .fM;g/ with pinched negative curvature which are in Schottky position. Let MG ;MH , and
MG�H be the quotient manifolds. Their critical exponents satisfy

(25) ıG�H � max fıG ; ıH g � max fı1.MG/; ı1.MH /g D ı1.MG�H /:

In particular,

1. if G and H are Strongly Positively Recurrent, then G �H is also;

2. if ıG�H > maxfı1.MG/; ı1.MH /g, then G �H is strongly positively recurrent.

In both cases .fM=�; g/ has a finite Bowen-Margulis measure.

It was originally shown by M. Peigné in [40] that if ı� > maxfıG ; ıH g then .fM=�; g/ has
a finite Bowen-Margulis measure. The above corollary with Theorem 7.1 guarantees this
finiteness under a weaker condition.

It was shown in [15] that ifG � � is a divergent subgroup, then ıG < ı� . We get therefore
the following corollary.

C 7.20. – Let G;H be discrete divergent groups of isometries of a complete
manifold .fM;g/ with pinched negative curvature which are in Schottky position. Then
� D hG;H i D G �H is strongly positively recurrent.

This last corollary allows a lot of topologically infinite examples. For instance, if G and
H are discrete subgroups of the group of isometries of the hyperbolic space, whose limit
sets are not the whole boundary, they can be settled in Schottky position by taking suitable
conjugation with hyperbolic elements. IfG andH areZ-covers of convex-cocompact groups,
they are divergent and their Schottky product gives a SPR manifold, hence with finite Bowen-
Margulis measure, whose fundamental group is not even finitely generated.
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UH
W�UG

�

o

F 6. Schottky manifold

Proof. – Our proof relies on the ideas of Section 9 of [41]. Let UG and UH be the sets
ensuring the Schottky position of G and H . Since they are compact in fM [ @fM and since
Kg � �a

2 < 0, a key point is that there exists � > 0 such that all geodesics from UG
to UH intersect the ball Bg.o; �/. Moreover, without loss of generality, we can assume that
the point o is neither in UG nor in UH .

Let M� D fM=�, MG D fM=G and MH D fM=H . Let p� W fM ! M� , pG W fM ! MG

and pH W fM !MH be the associated covering maps.

For all R � �, define W R
� D p�.B

g.o; R// � M� , W R
G D pG.B

g.o; R// � MG

and W R
H D pH .B

g.o; R// � MH . Let eW R
� ;

eW R
G ;

eW R
H �

fM be nice preimages (Dirichlet
domains viewed from o) of W R

� ; W
R
G ; W

R
H , respectively for the actions of �, G, H . By

definition of W R
� ; W

R
G ; W

R
H and of a Dirichlet domain, one easily checks that they all lie

inside Bg.o; R/. Moreover, as pG and pH are intermediate covers between fM and M� , we
have o 2 eW R

� �
eW R
G \

eW R
H � B

g.o; R/.

Let �fWR
�
� �,GfWR

G
� G andHfWR

H
� H be the fundamental groups respectively of �;G

and H respectively out of eW R
� ;

eW R
G ;

eW R
H , according to Definition 7.6.

A key fact is the following.

L 7.21 ([41]). – For all R > 0, there exists a finite set S � � such that

�fWR
G
� G [H [ S:

It implies that ı1.M�/ � ıWR
�
.�/ � maxfıG ; ıH g; and therefore, if ı� > maxfıG ; ıH g

then � is strongly positively recurrent.

We precise this inclusion in the following lemma, which implies immediately Theorem 7.18.

L 7.22. – With the previous notations, for all R � � C 1, there exists a finite set F
such that

�fW 2R
�
� S [GfW 2R

G
[HfW 2R

H
� S [ F [

[
˛;ˇ2F

˛�fWR
�
ˇ:
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Proof. – Let us first show the left inclusion. It follows from the previous lemma
that �fW 2R

�
� G [H [ S: Moreover,

G eW 2R
G D GBg.o; 2R/ � � eW 2R

� D �Bg.o; 2R/:

For each 
 2 �fW 2R
�
\G, there exist x; y 2 eW 2R

� � eW 2R
G such that

Œx; 
y� \ �:eW 2R
� � eW 2R

� [ 
:eW 2R
� ; whence Œx; 
y� \G eW 2R

G � eW 2R
G [ 
 eW 2R

G ;

so that 
 2 GfW 2R
G

. It shows that �fW 2R
�
\G � GfW 2R

G
.

Similarly, �fW 2R
�
\H � HfW 2R

H
.

Let us now prove the right inclusion. We want to show that there exists a finite set F � �
such that GfW 2R

G
� F [

S
˛;ˇ2F ˛�fWR

�
ˇ; the case of HfW 2R

H
being similar.

Define F�R as F�R D f
 2 �; 
Bg.o; �R/ \ Bg.o; �R/ ¤ ;g.

First observe that for � � 2, we have

(26) eW 2R
� � eW 2R

G �

[
˛2F�R

˛:eW R
� :

Let g 2 GfW 2R
G

, g … F . By definition, there exist x; y 2 eW 2R
G such that .x; gy/ intersects

G:eW 2R
G only in eW 2R

G and g eW 2R
G . We will show that .x; gy/ intersects �:eW R

� D �:eW R
G only

inside eW 2R
G and g eW 2R

G . By equation (26), as in the proof of Proposition 7.9, it will imply
that g 2

S
˛;ˇ2F�R

˛�fWR
�
ˇ. In fact, we will show that if .x; gy/ intersects some 
:eW R

� , then

either 
 or g�1
 is in the finite set F , so that by the same argument, g 2
S
˛;ˇ2F�R

˛�fWR
�
ˇ.

By contradiction, assume that the geodesic segment .x; gy/ intersects 
 eW R
� , with


 ¤ id; g, and 
; g�1
 … F�R. In particular, d.o; 
o/ > 2�R and d.go; 
o/ > 2�R.
As g 2 GfW 2R

G
, we know that 
 … G. Denote by z
 2 .x; gy/ the closest point to 
o

in .x; y/ \ eW R
� . By the above, we have d.x; z
 / � d.o; 
o/ � 3R � .2� � 3/R.

By definition of a Schottky product, as o … UG [ UH , either 
o 2 UG or 
o 2 UH .
Assume first that 
o 2 UH . Recall that go 2 UG . Therefore, the geodesic segment .
o; go/
intersects the ball B.o; �/. As d.
o; go/ � 2�R and d.
o; z
 / � R, d.go; gy/ � 2R,
the geodesic segment .z
 ; gy/ intersects the ball B.o; � C 2R/. Let w
 be a point in this
intersection. Therefore, we get d.x;w
 / � d.x; o/ C d.o;w
 / � 4R C � � 5R. However,
d.x;w
 / � d.x; z
 / > .2� � 3/R, which leads to a contradiction as soon as � � 4.

Therefore, the first case holds, 
o 2 UG , so that 
 has a reduced form as 
 D g0h0
 0, with
g0 2 G n fidg, h0 2 H n fidg, 
 0 2 �. We will distinguish the cases g0 2 F and g0 … F .

If g0 … F , consider the segment Œ.g0/�1o; h0
 0o�. It goes from UG to UH so that it
intersects the ball Bg.o; �/. It follows that Œo; 
o� intersects g0:B.o; �/ at a point y with
d.o; y/ � 2�R � �. By Lemma 5.1, for � large enough, the point y is at distance less than �
from the geodesic segment .x; 
o/, and therefore at distance less thanRC1 from the geodesic
segment .x; z
 /. Thus, we deduce that .x; z
 / intersects the ball g0B.o; � C R C 1/. As we
assumed R � �C 1, this ball is included in g0B.o; 2R/ � G:eW 2R

G . Moreover, as 
 0 … F , this
intersection .x; z
 /\ g0B.o; 2R/ is disjoint from eW 2R

G , and as 
 … F , and the intersection is
between x and z
 , this intersection is also disjoint from g:eW 2R

G . This is a contradiction with
the hypothesis g 2 GfW 2R

G
.
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It remains the case g0 2 F , which implies in particular g0 ¤ g. Consider in this case
the geodesic segment Œh0
 0o; .g0/�1go�. It goes from UH to UG , so that it intersects the
ball Bg.o; �/. It follows that Œ
o; go� intersects g0B.o; �/. The same arguments on Œz
 ; gy�
instead of Œx; z
 � lead once again to a contradiction with the hypothesis g 2 GfW 2R

G
.

It concludes the proof, forF D F�R, for some � � 4 determined by the use of Lemma 5.1.

7.3.3. Ancona-like examples. – We present now a family of surfaces inspired by examples
of Ancona [2], which is particularly easy to handle using the entropy at infinity introduced
before.

T 7.23. – Any non-elementary hyperbolic surface S D H2=� with ı� < 1 admits
a compact perturbation which is strongly positively recurrent: there exists a hyperbolic surface
S 0 D H2=� 0, homeomorphic to S , which is isometric to S outside a compact set and such
that ı1.S 0/ < ı�0 .

By Theorem 7.1, all these examples have finite Bowen-Margulis measure.
Note that for topologically finite surfaces (i.e., when � is finitely generated), this theorem

is an immediate consequence of Proposition 7.16 since all topologically finite hyper-
bolic surfaces are geometrically finite with critical gap (hence SPR), see [15] for a proof.
Theorem 7.23 is only interesting for topologically infinite hyperbolic surfaces S D H2=�
with ı� < 1. For instance, by [11], any nonamenable regular cover S of a compact hyperbolic
surface S0 satisfies these hypotheses.

F 7. SPR surface

Before beginning the proof, recall that on hyperbolic manifolds, the dynamics is strongly
related to the spectrum of the Laplacian. In particular, a well-known theorem of Patterson
and Sullivan relates the entropy ı� ofM D HnC1=� with the bottom of the spectrum of the
Laplacian �0.M/:

T 7.24 ([37], [49], [50], [51]). – Let M D HnC1=� be a complete hyperbolic
manifold. If ı� < n

2
, then �0.M/ D n2

4
. If ı� > n

2
, then �0.M/ D ı�.n � ı�/.
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Proof of Theorem 7.23. – Let S D H2=� be a complete topologically infinite hyperbolic
surface with ı� < 1. Denote by g0 its metric. In any pair of pants decomposition of S , choose
finitely many pairs of pantsP1; : : : ; PK . Change the metric of S to a metric g", which is equal
to g0 far from the pants Pi , and modified in the neighborhood of the Pi by shrinking the
lengths of the boundary geodesics of the pants Pi to a length ". Let �" be a discrete group
such that the new hyperbolic surface .S; g"/ is isometric to H2=�".

As the perturbation is compact, for all " > 0, ı1.g"/ D ı1.g0/ < 1. An elementary
computation (see for example [12, Prop. II.2 (ii)] ) gives lim"!0 �0.S; g"/ D 0, therefore
lim"!0 ı�" D 1. This implies that for " > 0 small enough, .S; g"/ has a critical gap at
infinity : ı�" > ı�0 � ı1.g"/.

7.4. SPR manifolds have finite Bowen-Margulis measure

This paragraph is devoted to the proof of the first part of Theorem 7.1: if .M; g/ is a
strongly positively recurrent manifold, then the Bowen-Margulis measure of its geodesic flow
has finite mass.

This finiteness result had been shown in [15] on geometrically finite manifolds, under the
assumption that max

˚
ıP1

.g/; : : : ; ıPk
.g/
	
< ı� , which is exactly the SPR assumption in

the geometrically finite context, although they did not introduce this concept.

As said earlier, this result (finiteness of Bowen-Margulis measure) has been obtained
independently, by a different approach, in [53].

Our proof will rely on the following theorem shown in [41].

T 7.25 ([41]). – Let .M; g/ be a complete manifold with negative curvatures. Then
the Bowen-Margulis measure of .M; g/ is finite if and only if � D �1.M/ is divergent and there
exists a compact set W �M with nice preimage eW such that �fW satisfiesX


2�fW
d.o; 
o/e�ı�d.o;
o/ < C1:

Let .M; g/ be a complete strongly positively recurrent manifold: there exists a compact set
W �M such that ıW .g/ < ı�.g/. The second condition

P

2�fW d.o; 
o/e�ı�d.o;
o/ < C1 is

then automatically satisfied for eW a nice lift of W . Therefore, Theorem 7.1 follows immedi-
ately from the following.

T 7.26. – Let .M; g/ be a strongly positively recurrent manifold. Then its funda-
mental group � is divergent.

We give first the strategy of the proof. Let .M; g/ be a SPR manifold, with � D �1.M/.
It follows from Hopf-Tsuji-Sullivan theorem (see [46, p. 18]) that � is divergent if and only
if any Patterson-Sullivan measure �go (cf Section 5.4) gives full measure to the radial limit
set ƒr� .

Theorem 7.26 follows from a careful study of ƒr� . More precisely, if W is a nice set with
ıW < ı� and nice lift eW , we introduce a kind of limit set LW c of the subset �fW of �,
see Definition 7.27 and Proposition 7.28. We show in Proposition 7.31 that �go . LW c / D 0.
By definition, @fM n LW c consists in asymptotic directions of geodesics returning infinitely
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often in the compact set W . In particular, it is included in the radial limit set. We deduce
that �go .ƒr�/ D 1, which implies that � is divergent by Hopf-Tsuji-Sullivan Theorem.

D 7.27. – LetW �M be a compact subset and eW � fM a nice preimage ofW .
Introduce the set

ƒfW D ˚� 2 ƒ� s.t. 9x 2 eW ; Œx; �/ \ � eW � eW 	
:

We call the limit set of � out of W the set LW c D �ƒfW .

The following proposition shows that all elements of ƒfW are limit points of �fW o in the
boundary at infinity, and that the only limit points of�fW owhich are not inƒfW are endpoints

of geodesic rays which do not come back inside the interior �
ıeW , after leaving eW but touch

the boundary @.� eW /.
P 7.28. – Let W � M be a compact subset and eW � fM a nice preimage

of W . Then

ƒfW � �fW on�fW o �
�
� 2 ƒ� s.t. 9x 2 eW ; Œx; �/ \ � ıeW� eW �

:

Proof. – Without loss of generality, assume that o 2 eW . We show first the left inclusion.
Let � 2 ƒfW � ƒ� . There exists a sequence .
n/ of elements of � such that 
no ! �.
Moreover, by definition of ƒfW , there exists x 2 eW such that the geodesic Œx; �/ does not
intersect � eW after leaving eW . Thus, for n large enough, the geodesic segment Œx; 
no� also
leaves eW before returning to 
n eW . Lete
n eW be the first image of eW crossed by the geodesic
segment Œx; 
no� after leaving eW . By construction,e
n 2 �fW . Moreover, we have

(27) lim
n!C1

dg.x;e
no/ D C1:
Indeed, for all R > 0, there exists � > 0 such that inside the (compact) ball Bg.x;R/,
the distance between Œx; �/ \ Bg.x;R/ and � eW neW is at least �. Moreover, it follows from
Lemma 5.1 that the sequence of geodesic segments .Œx; 
no�/n2N converges to the half
geodesic Œx; �� uniformly on Bg.x;R/. Thus, for all n large enough, Œx; 
no�\Bg.x;R/ and
Œx; �� \ Bg.x;R/ are �

2
-close, so that Œx; 
no� does not meet � eW neW on Bg.x;R/, whence

dg.x;e
no/ � R.
It follows from the above that the sequence of geodesic segments .Œx;e
no�/n2N also

converges to the half geodesic Œx; ��, so that

� D lim
n!C1

e
no 2 �fW on�fW o:
Let us now show that

�fW on�fW o �
�
� 2 ƒ� s.t. 9x 2 eW ; Œx; �/ \ � ıeW� eW �

:

Let � 2 �fW on�fW o. There exists a sequence .
n/n2N of elements ofe�fW such that 
no! � and
dg.o; 
no/ ! C1. By definition of �fW , for all n � 0 there exist xn; yn 2 eW such that the
geodesic segment Œxn; 
nyn� intersects � eW only in eW and 
n eW . Up to taking a subsequence,
we can assume that xn ! x1 2 eW and yn ! y1 2 eW as n ! C1. Once again, it
follows from the compactness of eW and Lemma 5.1 that the sequence of geodesic segments
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.Œx1; 
ny1�/n2N converges to Œx1; �� uniformly on compact sets. Therefore Œx1; �/ cannot
intersect the interior of � eW .

We gather in the following proposition elementary properties of the sets ƒfW and LW c .

P 7.29. – Let .M; g/ be a manifold with pinched negative curvature. Let
W �M be a nice compact set, and eW a nice preimage. With the above notations,

the set LW c D �ƒfW is the set of endpoints of geodesics which eventually leave � eW :

LW c D �ƒfW D ˚vC 2 ƒ� I 9v 2 SgfM; 9T > 0 s.t. 8t � T; �gtv … � eW 	
:

The limit set out ofW , LW c D �ƒfW does not depend on the choice of a nice preimage eW .

If W1 � W2, we have LW c
2
� LW c

1
.

ƒ�n
�

LW c

�
� ƒr� , where ƒr� is the radial limit set.

Proof. – The first property is left to the reader.

The set
˚
vC 2 ƒ� I 9v 2 S

gfM; 9T > 0 s.t. 8t � T; �gtv … � eW 	
only depends on

� eW D p�1� .W /, which is independent of the choice of eW .

If W1 � W2, then for all nice preimages eW1 and eW2, we have

� eW1 D p�1� .W1/ � p
�1
� .W2/ D � eW2;

which shows the third point.

The radial limit set is the set of � 2 ƒ� such that there exists x 2 fM and a compact
set K �M such that the geodesic ray Œx; �/ intersects infinitely often the preimage p�1� .K/.
If � 2 ƒ�n

�
ƒfW �, by the above proposition, the geodesic ray Œx; �� intersects infinitely often

the set � eW D p�1� .W /, which shows the last claim.

As seen in Section 7.3, basic examples are given by geometrically finite manifolds. The
following proposition is an immediate consequence of Propositions 7.17 and 7.28.

P 7.30. – Let .M; g/ be a geometrically finite manifold with pinched negative
curvature, with k cusps C1; : : : ; Ck . Let W D Bg.x;R/ be a large ball. It admits a nice preimage eW
such that

ƒfW D f�1; : : : ; �ig;
each point �1; : : : ; �k 2 ƒ� being a parabolic point fixed by a parabolic group P i < �

representing the cusp Ci .

The following proposition is a detailed version of Theorem 7.26, with additional proper-
ties which will be useful in Section 7.5.

If x 2 fM and � 2 fM [ @fM , we write Œx; ��T D .�gtv/t2Œ0;T �, where v 2 SgxfM is the
tangent vector at x of the geodesic Œx; ��.
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P 7.31. – Let .M D fM=�; g/ be a complete manifold with Kg � �a2, with
� D �1.M/ its fundamental group. Assume that .M; g/ is SPR. Then � is divergent.

Moreover, for all compact sets W � M such that ıW < ı� , for all � 2 .0; ı� � ıW /, there
existsC D C.g;W; �; a/ > 0 such that for all nice preimages eW ofW and all T � 4diamg.W /,
if

UT D UT .eW ;g/ D ˚� 2 fM [ @fM I 9x 2 eW s.t. 8t 2 Œ0; T �; Œx; ��T \ �W � eW :	 ;
then the unique Patterson-Sullivan density .�gx /x2fM on ƒ� such that �go .ƒr�/ D 1 satisfies

�go .UT / � Ce
�.ı��ıWc��/T :

In particular,
�go .ƒfW / D �go .\

T>0

UT / D 0:

Proof. – We start with any Patterson-Sullivan density .�gx / on ƒ� obtained as a weak
limit of an average as in Section 3.4. We will show that there exists C > 0 such that for all
T > 0 large enough,

(28) �go .UT / � Ce
�.ı��ıWc��/T :

By definition, UT is the (open) set of points joined by a geodesic from eW which, after
exiting eW , does not enter � eW before time T , so that

ƒfW D \
T>0

UT :

Therefore, (28) implies

�go
�
ƒfW � D 0 so that �go . LW c / D 0 and �go .ƒ

r
�/ D 1:

By Hopf-Tsuji-Sullivan Theorem, it will imply that � is divergent and the Patterson-Sullivan
density is unique.

Recall notations from Section 3.4. We omit the mention of the metric g here. As in [37],
choose a positive increasing map h W RC ! RC such that for all � > 0, there exists C� > 0

such that

(29) 8r � 0; 8t � 0; h.t C r/ � C�e
�th.r/;

and the series eP�.s/ D P

2� h.d.o; 
o/e

�sd.o;
o/ diverges at the critical exponent ı� .
Construct a Patterson-Sullivan density .�x/ s.t. for all x 2 fM , the measure �x is a weak limit
as s ! ıC� of the positive finite measures

(30) �sx D
1eP�.o; s/X
2� h.d.x; 
o//e�sd.x;
o/ D
o:

For all 
 2 �fW , define OfW .
 eW / as the set of y 2 fM [@fM such that there exists v 2 Sg eW
such that the first intersection of the geodesic ray .�gtv/t�0 with � eW , after the first exit
of eW is in 
 eW , and the point y belongs to .�gtv/t�0.

By definition of UT and �fW , and triangular inequality, for all T > 0 and ˛ 2 �, if
˛o 2 UT , there exists 
 2 �fW such that ˛o 2 OfW .
 eW / and d.o; 
o/ � T � 2D, with
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D D diam.eW /. Indeed, choose 
 so that 
 eW is the first copy of eW intersected by all geodesic
segments from eW to ˛o after exiting eW inside � eW .

In other words, we have

(31) �o \ UT �
[


2�fW ;d.o;
o/�T�2D
OfW .
 eW /:

Fix s > ı� and recall from (30) that for all x; y 2 fM and � 2 �o,

d�sy

d�sx
.�/ D e�s.d.y;�/�d.x;�//

h.d.y; �//

h.d.x; �//
:

Therefore, for all 
 2 �fW ,

�so
�

OfW .
 eW /� D �s
�1o � O
�1fW .eW /�
D

Z
O

�1fW .fW / e

�s.d.
�1o;�/�d.o;�// h.d.

�1o; �//

h.d.o; �//
d�so.�/:

Moreover, there exists C > 0 such that as soon as d.o; 
o/ > 2D, for all � 2 O
�1fW .eW /,
d.
�1o; o/C d.o; �/ � C � d.
�1o; �/ � d.
�1o; o/C d.o; �/.

It implies by (29) that

e�s.d.

�1o;�/�d.o;�// h.d.


�1o; �//

h.d.o; �//
� esCC�e

�s.d.
�1o;o/e�d.

�1o;o/:

Therefore, as �so.fM [ @fM/ D 1, for all 
 2 �fW with d.o; 
o/ > 2D and 2ı� > s > ı� ,

�so
�

OfW .
 eW /� � C�e.�sC�/d.o;
o/:
By (31), for all T > 4D, we get

�so.UT / � C�
X

2�fW

d.o;
o/�T�2D

e.�sC�/d.o;
o/:

Taking any weak limit as s ! ıC� , as UT is an open set, we obtain

�go .UT / � C�
X

2�fW

d.o;
o/�T�2D

e.�ı�C�/d.o;
o/:

As ı��� > ıW c , the right hand side decreases exponentially fast as T !C1. As mentioned
at the beginning of the proof, by Hopf-Tsuji-Sullivan, we deduce that � is divergent so that
Theorem 7.26 is proven.

Let us prove now the end of the statement of Proposition 7.31. The Patterson-Sullivan �go
is the weak limit as s ! ıC� of �so D

1
P� .o;s/

P

2� e

�sd.o;
o/ D
o. Repeating exactly the same
computations, setting h � 1, we get that there existsCa > 0, depending only on the curvature
upperbound, such that for all T � 4D

�go .UT / � e
ı�Ca

X

2�fW

d.o;
o/�T�2D

e�ı�d.o;
o/:
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We get therefore that for all T � 4D,

�go .UT / � e
ı� .CaC2D/e�.ı��ıW ��/T

X

2�fW

e�.ıWC�/d.o;
o/;

which is precisely the desired estimate with

(32) C.�; g;W; a/ D eı� .CaC2D/
X

2�fW

e�.ıWC�/d.o;
o/:

Under the above assumption, the Patterson-Sullivan measure �go gives full mass to the set
of endpoints of lifts of geodesics of .M; g/ which come back infinitely often in W . This set
is in general strictly smaller than the radial limit set. The product structure of the Bowen-
Margulis measure (see Section 3.4) implies the following useful fact.

C 7.32. – Under the same assumptions, let W � M be any compact set such
that ıW .g/ < ı�.g/. Then the Bowen-Margulis measure of SgM is finite and gives full mass
to the set of bi-infinite geodesics which intersect infinitely oftenW in the past and in the future.

7.5. Entropy variation for SPR manifolds

As mentioned earlier, the original motivation of this article was to find reasonable
geometric assumptions on non-compact manifolds with negative curvature such that the
entropy is regular under a small variation of the metric. In this subsection, our aim is to
finish the proof of Theorem 7.1.

Let .g"/"2.�1;1/ be a uniformly C1 family of complete metrics on the manifold M such
that for all " 2 .�1; 1/, �b2 � Kg" � �a

2 for some b > a > 0, and .M; g0/ is SPR.

LetW �M be a compact subset such that ıW .g0/ < ı�.g0/, and let eW be a nice preimage
of W . For r > 0, denote by Wr D fx 2 M I dg0.x;W / � rg the .g0; r/-neighborhood of W .
Note that ıWr .g0/ � ıW .g0/ � ı1.g0/ < ı�.g0/. Denote by eWr a nice preimage ofWr such
that eW � eWr . Observe that 
 eWr is the .g0; r/-neighborhood of 
 eW .

L 7.33. – For all r > 0, there exists a finite set F � � and "0 > 0 such that for all
" 2 .�"0; "0/, we have

�fW2r .g0/ � [
˛;ˇ2F

˛�fWr .g"/ˇ and �fWr .g"/ � [
˛;ˇ2F

˛�fW .g0/ˇ:

Proof. – We prove the right inclusion, the left one is proved similarly.

Let D D diamg0.
eW / and D0 D e1.D C 1/, so that for all " 2 .�1; 1/, diamg".

eWr / � D0.
It follows from Section 5 that there exists "0 > 0 such that for all " 2 ."0; "0/ x; y 2 eWr ,
and 
 2 �fWr , the g"-geodesic between x and 
y is at distance less than r to the g0-geodesic
between x and y. Reasoning as in Proposition 7.9 leads to the desired result.

This lemma leads to the following corollary, which implies the first item of Theorem 7.1.
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C 7.34. – Let .g"/"2.�1;1/ be a uniformly C1 family of complete metrics on the
manifoldM such that for all " 2 .�1; 1/,�b2 � Kg" � �a

2 for some b > a > 0, and .M; g0/ is
SPR. Then for all ˛ > 0 and r > 0, there exists "0 > 0 such that for all " 2 .�"0; "0/, we have

e�˛ıW2r .g0/ � ıWr .g"/ � e
˛ıW .g0/:

In particular, the entropy at infinity " 7! ı1.g"/ is continuous at " D 0, and if ˛ > 0 is small
enough, g" is SPR for " 2 .�"0; "0/.

Proof. – Let r; ˛ > 0 be fixed, and choose "0 as in Lemma 7.33. For all 
 2 �, we have
dg".o; 
o/�e�"=2dg0.o; 
o/. Therefore, for all "2.�"0; "0/ we get ıWr .g"/�e

"=2ıW .g0/�e
˛ıW .g0/

up to reducing "0. The other inequality is proved similarly.

Let us show now the last item of Theorem 7.1, that is that the mass of the Bowen-Margulis
measure of g" varies continuously. This will rely on the following estimate, which is a uniform
version of Proposition 7.31.

L 7.35. – For all ı0 2 .0; ı�.g0/ � ı1.g0// and ˇ 2 .0; ı0/, there exists a compact
set W � M with nice preimage eW , "0 > 0 and C > 0 such that for all " 2 .�"0; "0/, we have
ı�.g"/ � ıW c .g"/ � ı0 and

�g"o .UT .
eW ;g"// � Ce�ˇT ;

where UT .eW ;g"/ is defined as in Proposition 7.31.

Proof. – Let ı0 2 .0; ı�.g0/ � ı1.g0// be fixed. By the above corollary, for j"j small
enough, .M; g"/ is SPR and has therefore a finite Bowen-Margulis. Choose ˛ > 0 small
enough and a large enough compact set W � M so that ı1.g0/ � ıW c .g0/ � e˛ı1.g0/.
Let r > 0 small enough and "0 > 0 given by Corollary 7.34 be such that for all " 2 .�"0; "0/,

e�˛ıW c .g0/ � ıWr .g"/ � e
˛ıW c .g0/:

Up to decreasing ˛ > 0, we can therefore assume that for all " 2 .�"0; "0/,

ı�.g"/ � ıWr .g"/ � ı0 > 0:

Let ˇ 2 .0; ı0/ and eWr nice preimage of Wr be fixed. Define D > 0 as D D sup
"2.�"0;"0/

diam.eWr /.
For all " 2 .�"0; "0/, let U "T D UT .eWr ; g"/ be defined as in Proposition 7.31. By the last esti-
mate in the proof of Proposition 7.31, there exists Ca > 0, only depending on the curvature
upperbound of the metrics g", such that for all T > 4D,

�
g"
0 .U

"
T / � e

ı� .g"/.CaC2D/e�ˇT
X


2�fWr.g"/
e�.ıWr .g"/Cˇ/d

g" .o;
o/:

Therefore,
�
g"
0 .U

"
T / � e

Ke�ˇT
X


2�fW.g0/
e�.e

�"ıW .g0/C˛/e
�"dg0 .o;
o/;

where K 2 R is independent of ". Up to reducing ˛ > 0 and "0 > 0, we can suppose
that e�˛ıW .g0/C ˇ/e�" > ıW .g0/C

ˇ
2

. Therefore, we get that for all " 2 .�"0; "0/,

(33) �
g"
0 .U

"
T / � Ce

�ˇT ;

with C > 0 being independent of ". This concludes the proof of Lemma 7.35, the compact
set W of the statement being the set Wr of the proof.
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Let us now conclude the proof of Theorem 7.1. Let W �M , eW � fM and ˇ; "0; C > 0

satisfy the conclusion of Lemma 7.35. For all R>0, set as usual WRDfx2M I dg0.x;W /�Rg.
We have shown in Theorem 5.14 that, under our current hypotheses, the Bowen-Margulis
measure " 7! m

g"
BM varies continuously for the weak-* convergence, i.e., on the dual

of compactly supported maps. In particular, for all fixed compact sets K �M with
m
g0
BM.@S

g0K/ D 0, the map " 7! m
g"
BM.S

g"K/ is continuous at " D 0. Therefore the following
lemma will imply Theorem 7.1.

L 7.36. – With the above notations, for all ˛ > 0, there exists R0 > 0 such that for
all R � R0 and all " 2 .�"0; "0/, we have

m
g"
BM .Sg".MnWR// � ˛:

Proof. – Let R > 8 diam.W / be fixed and let OR D MnWR. By Corollary 7.32, for all
" 2 .�"0; "0/, since ıW c .g"/ < ı�.g"/, the Bowen-Margulis measure mg"BM gives full mass to
the set of vectors which hit infinitely often W in the past and in the future. In particular,

m
g"
BM.S

g"OR/ D m
g"
BM

0@ a
n�R�1

O"n

1A ;
where O"n is defined for all integers n � R � 1 by

O"n D
˚
v 2 Sg"OR I 9t 2 Œn; nC 1Œ s.t. 8s 2 Œ0; t/; �g�sv … W and �g�t" v 2 W

	
:

Therefore, since the Bowen-Margulis measuremg"BM is invariant under the geodesic flow .gt"/,

m
g"
BM.S

g"OR/ D
X

n�R�1

m
g"
BM

�
O"n
�
D

X
n�R�1

m
g"
BM

�
g�n" .O"n/

�
:

Now, by definition for all v 2 g�n" .O"n/, there exists t 2 Œ0; 1/ such thatw D g�n�t" v 2 Sg"W

and for all s 2 Œ0; n�, we have �gsw … W .
Let us writeeA"n D ˚v 2 Sg" eW I 9t 2 Œn; nC 1/ s.t. 8s 2 .0; t/; �gs"v … 
 eW and �gtv 2 
 eW 	

:

The reader will easily check that
S
s2Œ0;1/ g

s
"A

"
n � S

g"fM projects onto g�n.O"n/. Moreover,
as soon as "0 is small enough, since g" � e�"g0 � 1

4
g0, all vectors v 2 eA"n have a point at

infinity vC which satisfies vC 2 Un=2.eW ;g"/. As the map

v 7! e
ı� .g"/.BvC .o;�v/CBv� .o;�v/

is uniformly bounded in v 2 W and " 2 .�"0; "0/, the product structure of the Bowen-
Margulis measure (see Section 3.4) implies that

m
g"
BM.O

"
n/ D m

g"
BM.g

�n
" .O"n// � 2K�

g"
o .ƒ�/ � �

g"
o .U

"
n=2/;

which eventually gives by Lemma 7.35

m
g"
BM.O

"
n/ � 2KCe

�˛2 n;

where C and ˛ do not depend on ". Therefore, we get

m
g"
BM.S

g"OR/ � 2KC
X

n�R�1

e�
˛
2 n � "

as soon as R is large enough.
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CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2

WITHOUT AN ABSOLUTELY CONTINUOUS
INVARIANT MEASURE

 Z KOSLOFF

A. – We construct examples of C 1 Anosov diffeomorphisms on T2 which are of Krieger
type III1 with respect to Lebesgue measure. This shows that the Gurevic Oseledec phenomena that
conservative C 1C˛ Anosov diffeomorphisms have a smooth invariant measure does not hold true in
the C 1 setting.

R. – Sur T2, on construit des exemples de difféomorphismes C 1 d’Anosov qui sont de
type de Krieger III1 par rapport à la mesure de Lebesgue. Ceci montre que le phénomène de Gurevic
Oseledec selon lequel tout difféomorphisme conservatif d’Anosov C 1C˛ a une mesure invariante lisse,
n’est pas valable dans le cadre C 1.

1. Introduction

This paper provides the first examples of Anosov diffeomorphisms ofT2 which are conser-
vative and ergodic yet there is no Lebesgue absolutely continuous invariant measure.

Let M be a compact, boundaryless smooth manifold and f W M ! M be a diffeomor-
phism. A natural question which arises is whether f preserves a measure which is absolutely
continuous with respect to the volume measure on M . In order to avoid confusion in what
follows, we would like to stress out that in this paper, the term conservative means the defini-
tion from ergodic theory which is non existence of wandering sets of positive measure. That
is f is conservative if and only if for every W � M so that ff nW gn2Z are disjoint (modulo
the volume measure), vol.W / D 0.

It follows from [16] that for a generic C 2 Anosov diffeomorphism there exists no abso-
lutely continuous invariant measure (a.c.i.m.), [6, p. 72, Corollary 4.15.]. Following this
result, Sinai asked whether a generic Anosov diffeomorphism will satisfy Poincare recur-
rence. This question was answered by Gurevic and Oseledec [9] who proved that the set of
conservative (Poincare recurrent) C 2 Anosov diffeomorphism is meager in the C 2 topology
(restricted to the open set of Anosov diffeomorphisms). Indeed, they have proved that if
f is a conservative C 2 Anosov (hyperbolic) diffeomorphism, then f preserves a probability

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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70 Z. KOSLOFF

measure in the measure class of the volume measure which combined with the result of Livsic
and Sinai proves the non-genericity result. The proof in [9] uses the absolute continuity of
the foliations and existence of SRB measures to show that if the SRB measure for f is not
equal to the SRB measure for f �1 then there exists a continuous function g W M ! R and
a set A �M of positive volume so that,

lim
n!1

1

n

n�1X
kD0

g
�
f k.x/

�
¤ lim
n!1

1

n

n�1X
kD0

g
�
f �k.x/

�
; 8x 2 A:

It is then a straightforward argument to construct a set B � A of positive volume measure
so that for almost every x 2 B, the set

˚
k 2 N W f kx 2 B

	
is finite, in contradiction with

Halmos Recurrence Theorem [1].
This result remains true for C 1C˛; ˛ > 0 Anosov diffeomorphisms. However, since there

exist C 1 Anosov diffeomorphisms whose stable and unstable foliations are not absolutely
continuous [17], this proof can not be generalized for the C 1 setting. This paper is concerned
with the question whether every conservative C 1-Anosov diffeomorphism has an absolutely
continuous invariant measure.

An easier version of this question was studied before in the context of smooth expanding
maps. Every C 2 expanding map of a manifold has an absolutely continuous invariant
measure [14]. In contrast to the higher regularity case, Avila and Bochi [4], extending
previous results of Campbell and Quas [8], have shown that a generic C 1 expanding map
has no a.c.i.m and a generic C 1 expanding map of the circle is not recurrent [8]. It seems
natural to argue that these generic statements for expanding maps can be transferred to
Anosov diffeormorphisms via the natural extension. However there are several problems
with this approach which could be summarized into roughly two parts:

— The natural extension construction is an abstract theorem and in many cases it is not
clear if it has an Anosov model. See [22] for constructions of smooth natural extensions.

— In order for the natural extension to be conservative, the expanding map has to be
recurrent [19, Th. 4.4] and a generic C 1 expanding map is not recurrent.

Another natural approach in finding C 1 examples with a certain property is to prove that
the property is generic in the C 1 topology, see for example [5]. However since by the result
of Sinai and Livsic, a generic C 1 Anosov map is dissipative, it is not clear to us how to use
this approach to find a conservative example without an a.c.i.m. Nonetheless we prove the
following.

T 1. – There exists a C 1-Anosov diffeomorphism of the two torus T2 which
is ergodic, conservative and there exists no � -finite invariant measure which is absolutely
continuous with respect to the Lebesgue measure on T2:

In fact, the ergodic type III transformations ( a transformation without an a.c.i.m.) can
be further decomposed into the Krieger Araki-Woods classes III�; 0 � � � 1 [13] , see
Section 2, and our examples are of type III1.

The examples are constructed by modifying a linear Anosov diffeomorphism to obtain a
change of coordinates which takes the Lebesgue measure to a measure which is equivalent to
a type III Markovian measure (on a Markov partition of the linear diffeomorphism). These

4 e SÉRIE – TOME 54 – 2021 – No 1



CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2 71

examples are greatly inspired by the ideas of Bruin and Hawkins [7] where they modify the
map f .x/ D 2x mod 1 using the push forward (with respect to the dyadic representation)
of a Hamachi product measure on f0; 1gN to the circle. Since by embedding a horseshoe in
a linear transformation one loses the explicit formula for the Radon Nykodym derivatives
of the modified transformations, we couldn’t use measures on a full shift space but rather
measures supported on topological Markov shifts. The measures which play the role of
the Hamachi measures in our construction are the type III1 (for the shift) inhomogeneous
Markov measures.

This paper is organized as follows. In Section 2 we start by introducing the definitions
and background material from nonsingular ergodic theory and smooth dynamics which are
used in this paper. We end this section with a discussion on the method of the construc-
tion. Section 3 presents the inductive construction of the type III1 Markov shift examples.
In Section 4 we show how to use the one sided Markov measures from the previous section
to obtain a modification of the golden mean shift. In Section 5 we show how to embed and
modify the one dimensional perturbations of the previous sections to obtain homeomor-
phisms of the two torus, which when applied as conjugation to a certain total automorphism
(the natural extension of the golden mean shift) are examples of type III1 Anosov diffeomor-
phisms. Finally in the appendix we prove that these Markovian measures satisfy the afore-
mentioned properties (ergodic, conservative and type III1).

2. Preliminary definitions and a discussion on the method of construction

2.1. Basics of nonsingular ergodic theory

This subsection is a very short introduction to nonsingular ergodic theory. For more
details and explanations please see [1].

Let
�
X; B; �

�
be a standard probability space. In what follows equalities (and inclusions)

of sets are modulo the measure � on the space. A measurable map T W X ! X is nonsingular
if T�� WD �ıT �1 is equivalent to �meaning that they have the same collection of negligible
sets. If T is invertible one has the Radon Nykodym derivatives

.T n/
0
.x/ WD

d� ı T n

d�
.x/ W X ! RC:

A setW � X is wandering if fT nW gn2Z are pairwise disjoint and as was stated before we say
that T is conservative if there exists no wandering set of positive measure. By the Halmos’
Recurrence Theorem a transformation is conservative if and only if it satisfies Poincare
recurrence, that is given a set of positive measureA 2 B, almost every x 2 A returns to itself
infinitely often. A transformation T is ergodic if there are no non trivial T invariant sets. That
is T �1A D A implies A 2 f;; Xg.

We end this subsection with the definition of the Krieger ratio set R.T /. We say
that r � 0 is in R.T / if for every A 2 B of positive � measure and for every � > 0 there
exists an n 2 Z such that

�
�
A \ T �nA \

˚
x 2 X W

ˇ̌
.T n/

0
.x/ � r

ˇ̌
< �

	�
> 0:

The ratio set of an ergodic measure preserving transformation is a closed multiplicative
subgroup of Œ0;1/ and hence it is of the form f0g; f1g; f0; 1g; f0g[f�n W n 2 Zg for 0 < � < 1
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72 Z. KOSLOFF

or Œ0;1/. Several ergodic theoretic properties can be seen from the ratio set. One of them is
that 0 2 R.T / if and only if there exists no � -finite T -invariant�-a.c.i.m. Another interesting
relation is that 1 2 R.T / if and only if T is conservative (Maharams Theorem). If R.T / D
Œ0;1/ we say that T is of type III1.

2.2. Anosov diffeomorphisms and topological Markov shifts

Smooth dynamics deals with the case whereM is a Riemannian manifold and f WM!M

is a diffeomorphism on M . In this paper we would only talk about the class of Anosov
(uniformly hyperbolic) automorphisms. A diffeomorphism f is Anosov if for every x 2M
there is a decomposition of the tangent bundle at x, TxM D Esx ˚E

u
x , such that

— The decomposition is Df -equivariant, here Df denotes the differential of f . That is�
Df

�
x

�
Esx
�
D Es

f .x/
and

�
Df

�
x

�
Eux
�
D Eu

f .x/
.

— There exists 0 < � < 1 and C > 0 so that

�Df n�x v

 � C�n kvk ; for every v 2 Esx ; n � 0

and 

�Df �n�x u

 � C�nkuk; for every u 2 Eux ; n � 0:

A topological Markov shift (TMS) on S is the shift on a shift invariant subset † � SZ of the
form

†A WD
˚
x 2 SZ

W Axi ;xiC1 D 1
	
;

where A D fAs;tgs;t2S is a f0; 1g valued matrix on S . A TMS is mixing if there exists n 2 N
such that Ans;t > 0 for every s; t 2 S .

Markov partitions of the manifoldM as in [3, 20, 6, 2] are an important tool in the study
of C 1C˛ Anosov diffeomorphisms. They provide a semiconjugacy between a TMS and the
Anosov transformation f . One of the important contributions of this paper is that it uses
a connection between inhomogeneous Markov chains supported on a TMS to the Anosov
diffeomorphism with the push forward of the Markov measure.

E 2. – Consider f W T2 ! T2 the toral automorphism defined by

f .x; y/ D .fx C yg; x/ D

 
1 1

1 0

! 
x

y

!
mod 1;

where ftg is the fractional part of t . Since
ˇ̌
det

�
1 1
1 0

�ˇ̌
D 1, f preserves the Lebesgue measure

on T2. In addition for every z 2 T2, the tangent space can be decomposed as span fvsg ˚
span fvug where vu D .1; 1='/ and vs D .1;�'/ : Here and throughout the paper ' denotes
the golden mean (' WD 1C

p
5

2
).

For every w 2 Vu WD span fvug and z 2 T2

Df .z/w D

 
1 1

1 0

!
w D 'w;

For every u 2 Vs WD span fvsg and z 2 T2; Df .z/u D
�
�
1
'

�
u. These facts can be used

(cf. [2, 3]) to construct the Markov partition for f with three elements fR1; R2; R3g, see
Figure 2.1.
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vs

vu

R1

R2

R3

F 2.1. The construction of the Markov partition

The adjacency matrix of the Markov partition is then defined by Ai;j D 1 if and only if
intRi \ f �1

�
intRj

�
¤ ;. Here the adjacency matrix is

A D

0BB@ 1 0 11 0 1

0 1 0

1CCA :
Let ˆ W †A ! T2 be the map defined by ˆ.x/ WD

T1
nD�1 f

�nRxn . Note that by the Baire

Category Theorem since
nTN

nD�N f
�nRxn

o1
ND1

is a decreasing sequence of compact sets,

ˆ.x/ is well defined. The mapˆ W †A ! T2 is continuous, finite to one, and for every x 2 †A,

ˆ ı T .x/ D f ıˆ.x/:

In other words, ˆ is a semi-conjugacy (topological factor map) between .†A; T / to
�
T2; f

�
.

In addition, for every x 2 T2n
S
n2Z

S3
iD1 f

�n .@Ri / there exists a unique w 2 †A so
that ˆ.w/ D x . The Lebesgue measure mT2 on T2 is invariant under f . One can check

that mT2
�S3

iD1 @Ri

�
D 0 and thus ˆ�1 defines an isomorphism between

�
T2; mT2 ; f

�
and�

†A; ��Q;Q; T
�

where ��Q;Q is the stationary Markov measure with

(2.1) Pj � Q WD

0BB@
'
1C'

0 1
1C'

'
1C'

0 1
1C'

0 1 0

1CCA
and

(2.2) �j D ßQ WD

�
1=
p
5; 1='

p
5; 1='

p
5
�
D .mT2 .R1/ ;mT2 .R2/ ;mT2 .R3// :
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74 Z. KOSLOFF

2.2.1. Nonsingular Markov shifts: Let fPng
1
nD�1 �MS�S be a sequence of aperiodic and

irreducible stochastic matrices on S: In addition let f�ng
1
nD�1 be a sequence of probability

distributions on S so that for every s 2 S and n 2 Z,

(2.3)
X
t2S

�n�1.t/ � Pn .t; s/ D �n.s/:

Then one can define a measure on the collection of cylinder sets,

Œb�lk WD
˚
x 2 SZ

W xj D bj 8j 2 Œk; l� \ Z
	

by

�
�
Œb�lk

�
WD �k .bk/

l�1Y
jDk

Pj
�
bj ; bjC1

�
:

Since the equation (2.3) is satisfied, � satisfies the consistency condition and therefore by
Kolmogorov’s extension theorem � defines a measure on SZ. In this case we say that � is
the Markov measure generated by f�n; Pngn2Z and denote � DM f�n; Pn W n 2 Zg.
By M f�;P g we mean the measure generated by Pn � P and �n � � . We say that � is
nonsingular for the shift T on SZ if T�� � �.

2.3. Local absolute continuity

Let .X; B/ be a measure space and F n � B be a filtration of X . That is an increasing
sequence of � -algebras such that F n " B. The method in [10, 18] uses ideas from Martin-
gale theory in order to determine whether two Borel probability measures�; � are absolutely
continuous.

D 3. – Given a filtration fF ng, we say that � �loc � (� is locally absolutely
continuous with respect to �) if for every n 2 N, �n � �n where �n D �jF n

:

Suppose that � �loc � w.r.t fF ng, set zn WD d�n
d�n

. The sequence zn is a nonnegative
martingale with respect to F n and thus by the martingale convergence theorem there exists
a Œ0;1� valued random variable z1 such that limn!1 zn D z1 a.s. It follows that if � �loc �

then � � � if and only if zn ����!
n!1

z1 in L1 .�/. The latter holds if and only if the sequence

fzng
1
nD1 is uniformly integrable meaning that for all � > 0 there exists M > 0 such that for

all n 2 N,
R
zn1Œzn>M�d� < �.

2.4. Section’s overview and explanation of the method of construction

The idea is as follows, let f .x; y/ D .x C y; x/mod1, fR1; R2; R3g be the corresponding
Markov partition for f , †A the resulting topological Markov shift and ˆ W †A ! T2 the
topological semiconjugacy with the shift. In addition Q will always denote the transition
matrix corresponding to the Lebesgue measure.

— In Section 3 we present an inductive construction which produces a family of
nonatomic inhomogeneous Markov measures which are fully supported on
†A � f1; 2; 3g

Z and are of type III1.
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— Let � be such a Markov measure generated by f�k ; Pk W k 2 Zg. Since � is conser-
vative ˆ�� gives zero measure to the images of the boundaries of the rectangles
of the Markov partition. The latter property implies that ˆ is an isomorphism
of
�
T2; ˆ��; f

�
and .†A; �; Shif t/ and thus

�
T2; ˆ��; f

�
is a type III1 dynam-

ical system.

The type III1, inhomogeneous Markov measures for the shift on †A have the additional
property that for every k � 0 the transition matrices of � at k are the same as the ones
arising from the Lebesgue measure (8k � 0; Pk D Q). This implies that (after a rotation
of the coordinates to the vu; vs coordinates) withˆ W †A ! T being the semiconjugacy map
arising from the Markov partition we have

dˆ��.x; y/ D d�
C.x/dy:

Here �C is the image by the push forward on the stable manifold of the Markov measure
on f1; 2; 3gN given by f�k ; Pkg

1
kD1. This property will be used (see Subsection 2.5) to show

that there exists an homeomorphism G of T2 such that mT2 ı G D ˆ�� and the trans-
formation G ı f ı G�1 W

�
T2; mT2

�
!

�
T2; mT2

�
is measure theoretically isomorphic

to
�
T2; ˆ��; f

�
(1), hence a type III1 system.

The harder part in the proof of this theorem is to construct a homeomorphism H WT2!T2

so that

1. m ı H � ˆ�� D m ı G. Consequently the system
�
T2; BT2 ; mT2 ;H ı f ıH

�1
�

is
of type III1 because it is measure theoretically isomorphic to

�
T2; BT2 ; mT2 ıH;f

�
and the fact that the type III1 property is invariant upon changing the measure to an
equivalent measure.

2. H ı f ıH�1 is C 1 and Anosov.

In order to obtain this goal and to explain the definition of G it is easier for us to build f as
the natural extension of the (non invertible) golden mean shift Sx D 'xmod1.

2.5. The map f as the natural extension of the golden mean shift

The partition
˚
J1 D Œ0; 1='

2�; J2 D Œ1='; 1�; J3 D
�
1='2; 1='

�	
is a Markov partition

for the golden mean shift with A (the same matrix as the one for f ) as its adjacency matrix.
See Figure 2.2.

Denote by � the one sided shift on†CA . It can be verified that
�
†CA ; ��Q;Q; �

�
is isomorphic

to .T; mT; S/wheremT is the Lebesgue measure onT. The natural extension of
�
†CA ; ��Q;Q; �

�
is
�
†A;M

˚
�Q;Q

	
; �
�

which is isomorphic to
�
T2; mLeb; f

�
. This shows that f is indeed the

natural extension of the golden mean shift. To see the geometric picture of how S and f are
related one can look at the Markov partitions and move to the Vu; Vs coordinates. On those
coordinates f acts almost as

.u; v/ 7!
�
'u mod 1;�'�1v

�
D
�
Su;�'�1v

�
;

(1) The isomorphism
�
T2;mT2 ıG D ˆ��;f

� �
�!

�
T2;mT2 ;G ı f ıG

�1
�

is clearly � D G. Indeed G is
a homeomorphism, hence measurable and invertible (and G�1 is measurable), G ı f D

�
GfG�1

�
ı G and�

mT2 ıG
�
ıG�1 D mT2 .
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1

ϕ

1

ϕ2
1

I1 I2I3

1

ϕ2

1

ϕ

1

F 2.2. The Markov partition of 'x mod 1

where the mistake is in the second coordinate. To make it precise let

M D Œ0; 1='� �
�
�'= .' C 2/ ; '2= .' C 2/

�
[ Œ1='; 1� � Œ�'= .' C 2/ ; 1= .' C 2/� :

Define Qf WM!M by

Qf .x; y/ D

8<:
�
'x;�'�1y

�
; 0 � x � 1=';�

'x � 1;�'�1
�
y � '2

'C2

��
; 1=' � x � 1:

See Figure 2.3 for the way Qf maps its 3 rectangles, as can be seen by this picture the action
of Qf is the same as how f acts on its Markov partition.

F 2.3. Action of Qf on its (soon to be) Markov partition

In order that Qf will be the same as f , we identify by orientation preserving piecewise
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translations the following intervals (for a geometric understanding one can see that this
identification comes from the way the Markov partition of f tiles the plane):

f0g �
�
0; '2= .' C 2/

�
' f1g � Œ�'= .' C 2/ ; 1= .' C 2/�

f0g � Œ�'= .' C 2/ ; 0� ' f1='g �
�
1= .' C 2/ ; '2= .' C 2/

��
0; 1='3

�
�
˚
'2= .' C 2/

	
'
�
1='2; 1='

�
� f�'= .' C 2/g�

1='3; 1='
�
�
˚
'2= .' C 2/

	
' Œ1='; 1� � f�'= .' C 2/g�

0; 1='2
�
� f�'= .' C 2/g ' Œ1='; 1� � f1= .' C 2/g :

The resulting manifold (which is T2) will be denoted by M� in order to remind the reader of
this change of coordinates and the geometric relation between f and S .

In M�, dˆ��.x; y/ D d�C.x/dy where �C is a non atomic measure on T. This means
that the circle homeomorphism h.x/ D �CŒ0; x� takes the Lebesgue measure on T to �C

and h .1='/ D � .x1 ¤ 2/ D 1
'

. The homeomorphism of M� defined byG.x; y/ D .h.x/; y/
takes Lebesgue measure of M� to ˆ��. The perturbed homeomorphism H WM� !M�
which will be constructed is of the form H.x; y/ D

�
hy.x/; y

�
, where for

y 2
�
�'= .' C 2/ ; '2= .' C 2/

�
, hy W T! T is a circle homeomorphism such that

mT ı hy � �
C. This construction is carried out by the following steps:

— the first step is to work on the action of f on the unstable manifold which is the golden
mean shift and to construct a circle homeomorphism Qh such that Qh ı S ı Qh�1 is C 1

expanding and mT ı Qh � �C. A further important property of the homeomorphisms
which we construct is that Qh .Ji / D Ji for all elements of the Markov partition

of S . This will imply for example that
�
Qh.x/; y

�
is an homeomorphism of M�. This

step involves adding another parameter for the inductive construction of the measure
� DM fPk ; �k W k 2 Zg and is carried out in Section 4.

— in Section 5 we modify construction of these homeomorphisms Qh in order to construct
the functions hy in the definition of H . A major challenge in this step is to ensure

that @Hı
Qf ıH�1

@y
is defined and continuous.

3. The type III1 Markov shifts supported on †A

Here we present the inductive construction of the inhomogeneous Markov measures.

3.1. Markov Chains

3.1.1. Basics of Stationary (Homogeneous) Chains. – Let S be a finite set which we regard
as the state space of the chain, � D f�.s/gs2S a probability vector on S and P D .Ps;t /s;t2S
a stochastic matrix. The vector � and P define a Markov chain fXng on S by

8n 2 Z; P� .Xn D t / �.t/ and P.Xn D s j X1; : : : ; Xn�1/ WD PXn�1;s :

P is irreducible if for every s; t 2 S , there exists n 2 N such that P ns;t > 0 and P is aperiodic
if for every s 2 S , gcd

˚
n W P ns;s > 0

	
D 1. Given an irreducible and aperiodic P, there

exists a unique stationary probability �P (that is �PP D �P ). In addition for every s; t 2 S ,
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P ns;t ����!n!1
�P .t/. Since S is a finite state space, it follows that for any initial distribution �

on S ,
P� .Xn D t / D

X
s2S

�.s/P ns;t ����!n!1
�P .t/:

An important fact which will be used in the sequel is that the stationary distribution is contin-
uous with respect to the stochastic matrix. That is if fPng

1
nD1 is a sequence of irreducible and

aperiodic stochastic matrices such that

kPn � Pk1 WDmax
s;t2S

ˇ̌
.Pn/s;t � Ps;t

ˇ̌
����!
n!1

0

and P is irreducible and aperiodic then k�Pn � �Pk1 ! 0.

3.2. Type III1 Markov Shifts

In this subsection, let � WD †A, B WD B†A and T is the two sided shift on �. For
two integers k < l , write F .k; l/ for the algebra of sets generated by cylinders of the form
Œb�l
k
; b 2 f1; 2; 3gl�k . That is the smallest � -algebra which makes the coordinate mappings

fwi .x/ WD xi W i 2 Œk; l�g measurable.

3.2.1. Idea of the construction of the type III Markov measure. The construction uses the
ideas in [11]. For every j � 0

Pj � Q and �j � �Q;

where Q and�Q are as in (2.1) and (2.2) respectively. On the positive axis one defines on larger
and larger chunks the stochastic matrices which depend on a distortion parameter �k � 1

where 1 means no distortion. Now a cylinder set Œb�n�n fixes the values of the first n terms in
the product form of the Radon Nykodym derivatives. We would like to be able to correct the
values in order that we can enforce a given number to be in the ratio set. This corresponds to a
lattice condition on �k which is less straightforward than the one in [11]. However this is not
enough for a Markov measure, since the states are not independent, this forces us to utilize
both the convergence to the stationary distribution and the mixing property for stationary
chains.

Another difficulty is that the measure of the set Œb�n�n \ T
�N Œb�n�n \

n�
T N

�0
� a

o
could

be of very small measure with respect to �
�
Œb�n�n

�
. To remedy this problem, and enable

approximation of general sets, we look for many approximately independent such events so
that their union covers at least a fixed proportion of Œb�n�n.

More specifically the construction goes as follows. We define inductively 5 sequences
˚
�j
	
,˚

mj
	
,
˚
nj
	
,
˚
Nj
	

and
˚
Mj
	

where

M0 D 1

Nj WD Nj�1 C nj

Mj WD Nj Cmj :

This defines a partition of N into segments
˚�
Mj�1; Nj

�
;
�
Nj ;Mj

�	1
jD1

. The sequence fPng

equals Q on the
�
Nj ;Mj

�
segments while on the

�
Mj�1; Nj

�
segments we have Pn � Q�j ,

the �j perturbed stochastic matrix. The Q segments facilitate the form of some of the Radon
Nykodym derivatives while the perturbed segments come to ensure that � ?M

˚
�Q;Q

	
and

that the ratio set condition is satisfied for cylinder sets.
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Notation: By x D a˙ b we mean a � b � x � aC b.

3.2.2. The construction. For � � 1 let

Q˘ WD

0BB@
'�
1C'�

0 1
1C'�

'
1C'

0 1
1C'

0 1 0

1CCA :
Choice of the base of induction: Let M0 D 1; �1 > 1, n1 D 2, N1 D 3 and Q1 WD Q�1

be the �1 perturbed matrix. Set P1 D P2 D Q1 and �0 D �Q. The measures �1; �2 are then
defined by equation (2.3). Letm1 D 3 and thusM1 D 6. SetPj D Q for j 2 ŒN1;M1/ D Œ3; 6/

and �3; �4; �5 be defined by equation (2.3).

Assume that
˚
�j ; mj ; nj ; Nj ;Mj

	l�1
jD1

have been chosen.

Choice of �l . – Notice that the function f .x/ WD x 1C'
1C'x

is monotone increasing and contin-
uous in the segment Œ1;1/. Therefore we can choose �l > 1 which satisfies the following
three conditions:

1. Finite approximation of the Radon-Nykodym derivatives condition:

(3.1) .�l /
2ml�1 < e

1

2l :

This condition ensures an approximation of the derivatives by a finite product.

2. Lattice condition:

(3.2) �l�1 �
1C '

1C '�l�1
2

�
�l �

1C '

1C '�l

�N
;

where aN WD fan W n 2 Ng.

3. Let Ql WD Q�l and�Ql be its unique stationary probability. Notice that when �l is close
to 1, then Ql is close to Q in the L1 sense. Therefore by continuity of the stationary
distribution we can demand that

(3.3) k�Q � �Qlk1 <
1

2l
:

Choice of nl . – It follows from the Lattice condition, Equation (3.2), that for each k � l�1,�
�k �

1C '

1C '�k

�
2

�
�l �

1C '

1C '�l

�N
:

Choose nl large enough so that for every k � l � 1 (notice that the demand on k D 1 is
enough) there exists N 3 p D p.k; l/ � nl

20
so that

(3.4)
�
�l �

1C '

1C '�l

�p
D

�
�k �

1C '

1C '�k

�
:

Till now we have defined
˚
Pj ; �j

	Ml�1
jD�1

. By the mean ergodic theorem for Markov chains
[15, Th. 4.16] and (3.3), one can demand by enlarging nl if necessary that in addition

(3.5) ��Ml�1 ;Ql

0@x W 1
nl

nlX
jD1

1ŒxjD1� D
1
p
5
˙ 2�l

1A > 1 � 1
l
;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



80 Z. KOSLOFF

and

(3.6) ��Ml�1 ;Ql

0@x W 1
nl

nlX
jD1

1ŒxjD2;xjC1D3� >
1

15

1A > 1 � 1
l
;

where � is the Markov measure on f1; 2; 3gN defined by Ql and �Mt�1 . The numbers inside
the set were chosen so that ˇ̌̌

�Ql.1/ � 1=
p
5
ˇ̌̌
< 2�l ;

and similarly for l large enoughZ
1Œx0D2;x1D3�.x/d��Ql ;Ql D �Ql.2/ .Ql/2;3 D

�
1

'
p
5
˙
1

2l

�
1

' C 1
>
1

15
:

Choice of Nl . – Let Nl WDMl�1 C nl . Now set for all j 2 ŒMl�1; Nl /,

Pj D Ql

and
˚
�j
	Nl
jDMl�1C1

be defined by equation (2.3).

Choice ofml . – Let kl be the
�
1˙

�
1
3

�3Nl�mixing time of Q. That is for every n > kl , j 2 N,

A 2 F .0; j /, B 2 F .j C n;1/ and initial distribution Q� ,

(3.7) � Q�;Q .A \ B/ D
�
1˙ 3�3Nl

�
� Q�;Q .A/ ��Q;Q

�
T nClB

�
:

Demand in addition that kl > Nl . Let ml be large enough so that

(3.8)
�
1 � 9�3Nl

�ml=4kl
�
1

l
;

and

(3.9) .ml �Nl / �
�2Nl
1 � 1:

To summarize the construction. We have defined inductively sequences fnlg ; fNlg ; fmlg,
fMlg of integers which satisfy

Ml < NlC1 DMl C nl < MlC1 D NlC1 CmlC1:

In addition we have defined a monotone decreasing sequence f�lg which decreases to 1 and
using that sequence we defined new stochastic matrices fQlg. Now we set

(3.10) Pj WD

8̂̂<̂
:̂

Q; j � 0

Ql; Ml�1 � j < Nl

Q; Nl � j < Ml ;

and �j D �P for j � 0. The rest of the �j ’s are defined by the consistency condition, equa-
tion (2.3). Finally let � be the Markovian measure on f1; 2; 3gZ defined by

˚
�j ; Pj

	1
jD�1

.
Notice that for all j 2 N, suppPj � suppA D suppQ.

T 4. – The shift
�
f1; 2; 3gZ ; �; T

�
is nonsingular,conservative, ergodic and of

type III1.

The proof of Theorem 4 is given in the appendix.
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4. Type III perturbation of the golden mean shift arising from Markovian measures

4.1. A perturbation of the golden mean shift

Let � D M f�k ;Pkg
1
kD�1 be the type III1 (for the shift on f1; 2; 3gZ) Markov measure

from Section 3 for the two sided shift. It follows from [19, Thm. 4.4.] that the one sided
Markov measure �C DM f�k ;Pkg

1
kD1 on f1; 2; 3gN is a type III measure for the (one sided)

shift.
Let Sx D 'x mod 1 and J1 WD

�
0; 1='2

�
, J2 WD .1='; 1/ and J3 WD

�
1='2; 1='

�
be a

Markov partition for S . Denote by

Bd .S/ WD
1[
nD0

3[
iD1

@ .S�nJi / :

The map‚ W †CA ! Œ0; 1�,‚.w/ D
T1
nD0 S

�nJwn is a semiconjugacy of
�
†CA ; �

�
and .T; S/

and for each x … Bd .S/, ‚�1.x/ consists of one point (point of uniqueness for the ‚ repre-
sentation). Since the support of �C is contained in G .�/ WD ‚�1 .TnBd .S//, the map ‚ is
a metric isomorphism between

�
†CA ; �

C; �
�

and
�
T; ‚�

�
�C
�
; S
�

and therefore the measure
�C WD ‚�

�
�C
�

is a type III measure for S . Since �C is a continuous measure, its cumula-
tive distribution function h.x/ D �C .Œ0; x�/ is a homeomorphism of T such that �C ı h�1 is
Lebesgue measure on T. It follows that the map

�
T; mT; h ı S ı h

�1
�

is a type III transforma-
tion, wheremT denotes the Lebesgue measure. The problem is that hıSıh�1 is not necessarily
smooth, so we construct h�, as in the idea of the examples of Bruin and Hawkins, close to h
in the C 0 norm such that

� h� ı S ı h
�1
� is C 1 and uniformly expanding.

� mT ı h� � �
C.

� We will have in addition that h.Ji / D Ji for every i 2 f1; 2; 3g, this extra property is
crucial for the extension to two dimensions.

Before we go through the construction we would like the reader to recall that the Lebesgue
measure on T is the measure arising from M f�;Qg. The main idea is to approximate the
change of measure between Lebesgue measure and �C on the semi algebras

R .n/ WD

(
CŒw�n1 WD

n�1\
kD0

S�kJwk W x 2 †A

)
D fCw W w 2 †A.n/g :

The construction goes as follows: We first assume that we are given a type III Markovian
measure defined by f�k ;Mk ; Nkg

1
kD1. Then we would like to choose inductively, mostly by

continuity arguments a sequence � D f�kg that will give us the perturbation. However in
the end we arrive at a problem, namely that we need that the size of Mk is relatively large
with respect to 1=�k�1. This problem will be solved by modifying the induction process of
Section 3 and adding the choice of the sequence � to the induction. The new induction will
be explained in Subsection 4.2.2.

R 5. – Before we continue with the construction we would like to remind the
reader that at each stage in the inductive construction of the Markovian measure in Section 3
we can take �t to be as close to 1 as we like and nt ; Mt=Nt to be as large as we want. This
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is because the conditions on �t ((3.1), (3.2) and (3.3)) are that �t is small enough whilst the
conditions on nt ((3.4), (3.5) and (3.6)) and Mt=nt � mt=nt ((3.8) and (3.9)) are to be large
enough.

Special interpolation functions. – Given˛ > 0we would like to define a Lipschitz function g˛
so that g˛.0/ D 0, g0˛.0/ D 1, g˛.1/ D

R 1
0
g0˛.x/dx D ˛ and g0˛.1/ D ˛. We will use the

functions g˛ W Œ0; 1�! Œ0; ˛� defined by g˛.0/ D 0 and

g0˛.x/ D

8̂̂<̂
:̂
1C 3x � 5˛�5

4
; 0 � x � 1

3
;

5˛�1
4
; 1

3
� x � 2

3
;

5˛�1
4
� .3x � 2/˛�1

4
; 2

3
� x � 1;

which have the additional property that if ˛ > 1 then

1 D inf
x2Œ0;1�

g0˛.x/ < sup
x2Œ0;1�

g0˛.x/ D
5˛ � 1

4
< ˛2

and if 1
4
� ˛ < 1 then

˛2 �
5˛ � 1

4
D inf
x2Œ0;1�

g0˛.x/ < sup
x2Œ0;1�

g0˛.x/ D 1:

R 6. – For all ˛; � > 0,Z �

0

g0˛

�x
�

�
dx D �

Z 1

0

g0˛.x/dx D �˛

and for all u > �, Z u

u��

g0˛

�u � x
�

�
dx D �˛:

4.2. Realization of the homeomorphism of change of measures

For 0 < � < 1
'

and � > 1, let  �;� W Œ0; 1� 	 be the function defined by  �;�.0/ D 0 and

 0�;�.x/ WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

g0�
�'2

1C�'

� �x
�

�
; 0 � x � �;

�'2

1C�'
; � < x � 1

'
� �;

g0�
�'2

1C�'

� �1='�x
�

�
; 1

'
� � < x � 1

'
;

g0�
'2

1C�'

� �x�1='
�

�
; 1

'
� x � 1

'
C �;

'2

1C�'
; 1

'
C � < x � 1 � �;

g0�
'2

1C�'

� �1�x
�

�
; 1 � � < x � 1:

If � D 0 then by a rescaling procedure one can use these functions to define the cumulative

distribution function of ‚�
�
��Q� ;Q�

�
. The function  �;� is basically an interpolation of a

piecewise constant function in order to make it continuous and that the following properties
hold:

1.  0
�;�
.0/ D  0

�;�
.1/ D 1. This is needed in order to glue  �;� with the identity function

and still have a C 1 function.
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1
ϕ

1

ε ε εε

F 4.1. The graph of  0
�;�

2. For every �; �, by Remark 6,

 �;�

�
1

'

�
D

"Z �

0

g0�
�'2

1C�'

� �x
�

�
dx C

�'2

1C �'

�
1

'
� 2�

�
C

Z 1
'

1
'��

g0�
�'2

1C�'

� �1=' � x
�

�
dx

#
D

�'

1C �'
:

Similarly  �;�.1/ D  �;�
�
1
'

�
C

�
 �;� .1/ �  �;�

�
1
'

��
D 1.

3. By Remark 6,  �;�.�/ D
�'2

1C�'
� �. Thus for every � < x < 1

'
� �,

 �;�.x/ D
�
 �;�.x/ �  �;�.�/

�
C  �;�.�/ D

�'2

1C �'
x;

and
 �;�.x/

 �;�.1='/
D 'x:

Similarly,  �;�
�
1
'
C �

�
�  �;�

�
1
'

�
D

'2

1C�'
�, thus for every 1

'
C � < x < 1 � �,

 �;�.x/ �  �;�.1='/

 �;�.1/ �  �;�.1='/
D '2 .x � 1='/ D

x � 1='

1 � 1='
:

4.  0
�;�

is Lipschitz with Lipschitz constant of the order 1=� when � ! 0 and for
every x 2 T,

(4.1) ��2 �  0�;�.x/ < �
2:
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Given two sequences �k � 0 and �k � 1, let  k denote  �k ;�k .
Define an order on †CA in the following way. For w; z 2 †CA , let

j.w; z/ WD inf fn 2 N W wn ¤ zng :

Then w � z if either wj.w;z/ D 1 or wj.w;z/ D 3 and zj.w;z/ D 2 (notice that in the latter
case j.w; z/ D 1). This order has the following property. If Œw�n1 ¤ Œy�

n
1 for some n 2 N, then

CŒw�n
1

is to the left of CŒy�n
1

if and only if w � y.
In addition for n 2 N we write Nxn; xn W †A ! T to be defined by

CŒw�n
1
WD Œxn.w/; Nxn.w// :

For n 2 N; denote by †A.n/ the collection of words w D w1w2 � � �wn with Œw�n1 � †A.
We will define inductively a sequence fhng

1
nD1 of diffeomorphisms of T. Since

T D
S
w2†A.n/

CŒw�n
1

and each hk ; k < n is onto T,

T D
[

w2†A.n/

Hn�1

�
CŒw�n

1

�
;

where Hn�1 WD hn�1 ı hn�2 ı � � � ı h1.

— If Nt < n < Mt for some t 2 N, then hn is the identity.

— If Mt�1 < n � Nt for some t 2 N, then hn is made from #†A.n/ scalings of  t or
the identity. Let w.n; 1/; : : : ; w.n;#†A.n// be an enumeration of †A.n/ with respect
to�. Set hn.0/ D 0. Assume we have defined hn on

Sl�1
kD1Hn�1

�
Cw.n;k/

�
, we will now

define hn on Hn�1
�
Cw.n;l/

�
.

— If w.n; l/n D 1, we define for z 2 Hn�1
�
Cw.n;l/

�
,

hn.z/ WD Hn�1 .xn.w//C l.n; w/ t

�
z �Hn�1 .xn.w//

l.n; w/

�
;

where w D w.n; l/ and

l.n; w/ WD mT .Hn�1 .w// D Hn�1 . Nxn.w// �Hn�1 .xn.w// :

— If w.n; l/n ¤ 1 then for all z 2 Hn�1
�
Cw.n;l/

�
,

hn.z/ D z:

— Note that since we have  t .1/ D 1 for all t 2 N, it follows that hn
�
Hn�1

�
Cw.n;l/

��
D

Hn�1
�
Cw.n;l/

�
for all n and l . Consequently, hn is continuous. The differentiability

of hn at points fHn�1 .xn.w// W w 2 †A.n/g follows from  0t .0/ D  
0
t .1/ D 1.

We need to define hn for all n 2 fMtg
1
tD1. Here we apply a statistical correction procedure

which we will now proceed to describe. In what follows we assume that �1 is small enough so
that

mT

�
 1

�
C
Œw�

N1
1

��
D mT

�
 1

�
CŒw�2

1

��
mT

�
C
Œw�

N1
3

ˇ̌̌
CŒw�2

1

�
:

The first equality follows from property 3 of  t provided that �1 is small enough so that for
everyw 2 †CA ; the end points ofC

Œw�
N1
1

are in
�
�1; '

�1 � �1
�
[
�
'�1 C �1; 1 � �1

�
[f0; '�1; 1g.

The equality then follows from  1.1='/ D
�1'
1C�1'

. This relation gives for example that

mT

�
HN1

�
C
Œw�

N1
1

��
D �C

�
C
Œw�

N1
1

�
;
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and we have good knowledge of where the point in 1
'

proportion in Hn�1
�
CŒw�n

1

�
travels.

However, since Mt is generally much larger than Nt we loose this control and the useful
equality

(4.2) mT

�
HMt

�
C
Œw�

NtC1
1

��
D mT

�
HMt

�
C
Œw�

Mt
1

��
mT

�
C
Œw�

NtC1
MtC1

ˇ̌̌̌
C
Œw�

Mt
1

�
needs no longer to hold true. The role of hMt is to take care that equality (4.2) holds true.

The functionH 0Nt being a product of bounded Lipschitz functions, is a bounded Lipschitz
function. Therefore if Mt is large enough with respect to Nt , then (here we use the fact

that hn D Id for Nt < n < Mt ) H 0Nt D H 0Mt�1 is almost constant on HMt�1
�
C
Œw�

Mt
1

�
.

That means that for every 0 ¤ x 2 HMt�1
�
C
Œw�

Mt
1

�
in the interior of HMt�1

�
C
Œw�

Mt
1

�
,ˇ̌̌̌

ˇ̌̌ mT

�
C
Œw�

Mt
1

�
R
C
Œw�
Mt
1

H 0Mt�1.s/ds
�H 0Mt�1.x/ � 1

ˇ̌̌̌
ˇ̌̌� 1:

By using a similar idea as in the construction of  with the g˛ we define hMt restricted

to HMt�1

�
C
Œw�

Mt
1

�
so that equality (4.2) holds. This is done as follows: for ˛1; ˛2 2 R,

let G˛1;˛2 W Œ0; 1�! Œ0; ˛2� be defined by G˛1;˛2.0/ D 0 and

(4.3) G0˛1;˛2.x/ WD

8̂̂<̂
:̂
˛1 C

15.˛2�˛1/
4

x; 0 � x � 1=3;
5˛2�˛1

4
; 1=3 � x � 2=3;

5˛2�˛1
4
C

˛2�˛1
4

.3x � 1/ 2=3 � x � 1:

This function is a C 1 function which satisfies G0˛1;˛2.0/D˛1 and G0˛1;˛2.1/DG˛1;˛2.1/D˛2.

Define ˛ W N �†A ! .0;1/ by

˛.t; w/ WD
1

mT

�
C
Œw�

Mt
1

� Z
C
Œw�
Mt
1

H 0Mt�1.s/ds D
mT

�
HMt�1

�
C
Œw�

Mt
1

��
mT

�
C
Œw�

Mt
1

� :

In addition for a finite wordw 2 †A .Mt /we denote byw� the predecessor ofw with respect
to� restricted on†A .Mt /. We define h0Mt ıHMt�1.x/ on C

Œw�
Mt
1

to be equal to ˛.t;w/

H 0
Mt�1

.x/
off

an �tC1mLeb

�
C
Œw�

Mt
1

�
neighborhood of the left end point of the segment C

Œw�
Mt
1

, ˛.t;w�/

H 0
Mt�1

.x/

on the left endpoint (which is in the boundary of C
Œw�

Mt
1

) and an interpolation in between

by usingG˛1;˛2 for an appropriately chosen ˛1; ˛2. Here �tC1 has to be small enough so that

the end points of
�
HMt�1

�
C
Œw�

NtC1
1

�
W Œw�

NtC1
1 2 †A .NtC1/

�
are not in an �tC1 neighbor-

hood of the left end point of HMt�1
�
C
Œw�

Mt
1

�
. Formally hMt ıHMt�1jC

Œw�
Mt
1

is defined by
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hMt ıHMt�1
�
xMt .w/

�
D HMt�1

�
xMt .w/

�
and

h0Mt ıHMt�1.x/ D
1

H 0Mt�1.x/
�

8̂̂̂<̂
ˆ̂:
G0
˛.t;w�/;˛.t;w/

0B@ x�xMt .w/

�tC1 mT

 
C
Œw�
Mt
1

!
1CA ; xMt .w/ � x < OxMt .w/;

˛.t; w/; OxMt .w/ � x < NxMt .w/;

where OxMt .w/ D xMt .w/C �tC1mT

�
C
Œw�

Mt
1

�
. It follows from the chain rule that for

x 2 C
Œw�

Mt
1

,

H 0Mt .x/ D

8̂̂̂<̂
ˆ̂:
G0
˛.t;w�/;˛.t;w/

0B@ x�xMt .w/

�tC1 mT

 
C
Œw�
Mt
1

!
1CA ; xMt .w/ � x < OxMt .w/;

˛.t; w/; OxMt .w/ � x < NxMt .w/:

x̄Mt
(w)

ǫt+1

α(w, t)

x
Mt

(w)

α(w−, t)

F 4.2. The graph of H 0
Mt

restricted to C
Œw�

Mt
1

when ˛.t; w/ > ˛ .t; w�/

C 7. – There exists ıtC1 such that if �tC1 < ıtC1 then:

(a) for all w 2 †A and Mt � n � NtC1

HMt

�
C
Œw�

Mt
1

�
D HMt�1

�
C
Œw�

Mt
1

�
D HNt

�
C
Œw�

Mt
1

�
:

(b) Equation (4.2) holds.

Proof. – Let ıtC1 be small enough so that the end points of�
HMt�1

�
C
Œw�

NtC1
1

�
W Œw�

NtC1
1 2 †A .NtC1/

�
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are not in a ıtC1 neighborhood of
˚
HMt�1

�
xMt . Qw/

�
W Qw 2 †A .Mt /

	
. As a consequence

H 0Mt .x/ D ˛.t; w/ for all w 2 †A and x 2
n
xNtC1.w/; NxNtC1.w/

o
.

Fix w 2 †A and �tC1 � ıtC1, we first prove (a). Write for convenience x D xMt .w/,

Nx D NxMt .w/ and Ox D x C �tC1 . Nx � x/ D xMt .w/ C �tC1mT

�
C
Œw�

Mt
1

�
. In this notation

Ox � x D �tC1mT

�
C
Œw�

Mt
1

�
and (2) we have

HMt�1

�
C
Œw�

Mt
1

�
D .HMt�1 .x/ ;HMt�1 . Nx// D HMt�1 .x/C .0;HMt�1 . Nx/ �HMt�1 .x// :

In addition, since hMt ıHMt�1 .x/ D HMt�1 .x/, then

HMt

�
C
Œw�

Mt
1

�
D HMt .x/C .0;HMt . Nx/ �HMt .x//

D HMt�1 .x/C .0;HMt . Nx/ �HMt .x// :

This shows that (a) is equivalent to showing that

HMt . Nx/ �HMt .x/ D HMt�1 . Nx/ �HMt�1 .x/ :

Now

HMt . Nx/ �HMt .x/ D

Z Nx
x

H 0Mt .s/ds

D

Z Ox
x

G0˛.t;w�/;˛.t;w/

�
s � x

Ox � x

�
ds C ˛.t; w/ . Nx � Ox/

D

Z Ox�x
0

G0˛.t;w�/;˛.t;w/

�
s

Ox � x

�
ds C ˛.t; w/ . Nx � Ox/ :

For all ˛1; ˛2; ı > 0,
R ı
0
G0˛1;˛2

�
x
ı

�
dx D ı˛2. Whence

HMt . Nx/ �HMt .x/ D ˛.t; w/ . Ox � x/C ˛.t; w/ . Nx � Ox/

D ˛.t; w/mT

�
C
Œw�

Mt
1

�
D HMt�1 . Nx/ �HMt�1 .x/ ;

we have finished the proof of part (a).

To see part (b) notice that if x … C
Œw�

NtC1
1

then HMt restricted to C
Œw�

NtC1
1

is linear with

slope ˛.t; w/. This shows that

mT

�
HMt

�
C
Œw�

Mt
1

��
D ˛.t; w/mT

�
C
Œw�

NtC1
1

�

D mT

�
HMt

�
C
Œw�

Mt
1

�� mT

�
C
Œw�

NtC1
1

�
mT

�
C
Œw�

Mt
1

�
D mT

�
HMt

�
C
Œw�

Mt
1

��
mT

�
C
Œw�

NtC1
MtC1

�
C
Œw�

Mt
1

�
;

(2) For an interval I and a point x, xC I D fxC y W y 2 I g :
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as required. If x 2 C
Œw�

NtC1
1

then C
Œw�

NtC1
1

D
�
x; xNtC1.w/

�
and thus as in the proof of

part (a)

mT

�
HMt

�
C
Œw�

NtC1
1

��
D HMt

�
NxNtC1.w/

�
�HMt .x/

D

Z Ox�x
0

G0˛.t;w�/;˛.t;w/

�
s

Ox � x

�
ds C ˛.t; w/

�
NxNtC1.w/ � Ox

�
D ˛.t; w/

�
NxNtC1.w/ � x

�
D ˛.t; w/mT

�
C
Œw�

NtC1
1

�
:

Continuing as in the case x … C
Œw�

NtC1
1

one arrives at the conclusion.

R 8. – An important feature of this construction that will be used in the extension
to two dimensions is that for any 1 � l � #†A.n/,

(4.4) hn
�
Hn�1

�
Cw.n;l/

��
D Hn�1

�
Cw.n;l/

�
:

This in turn implies that for every n 2 N, Hn.x; y/ WD .Hn.x/; y/ is a diffeomorphism ofM�
and the Markov partition fR1; R2; R3g for Qf defined by

Ri WD

8<:Ji �
h
�

'
'C2

; '2

'C2

i
; i 2 f1; 3g;

J2 �
h
�

'
'C2

; 1
'C2

i
; i D 2:

is preserved by Hn.

T 9. – There exists a choice of�k # 1, fnk ; mk ; Nk ;Mkgk2N � N and � D f�kgk2N
so that:

(i) The Markov measure from the construction of Section 3 is a type III1 measure for the
shift on †A.

(ii) The function h� is a circle homeomorphism and we have mT ı h� � �
C, where

�C D ‚�M fPk ; �kg
1
kD1.

(iii) The function g D h ı S ı h�1 is C 1, and for every x 2 T,

1:6 � g0.x/ � 1:7:

The proof of this theorem is by showing that we can realize smoothly the inductive
construction of Section 3 (with three extra conditions) and include a new sequence f�kg in it
so that the following properties hold:

1. h� WD limn!1Hn is a homeomorphism of T.

2. gn WD Hn ı S ıH�1n is a convergent sequence in the C 1 topology.

3. The limit function g D limn!1 gn D h� ı S ı h
�1
� satisfies 1:6 � g0.x/ � 1:7.

4. mT ı h� � �
C.
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4.2.1. The inductive choice of f�lg
1
lD1. Before we continue we would like to set up some

notations which will be used.

— Given � D f�kg
t
kD1 and n � Nt we denote by h�;n the function in the construction with

the sequence � at level n.

— For j � Nt ,H�;j WD h�;j ıh�;j�1ı� � �ıh�;1. The functionH�;j only depends on f�sg
t
sD1

with j � Nt .

— H0;j will denote the function with � D 0.

L 10. – Assume that f�sg
t
sD1 were chosen so that for all s < t and x 2 T, h0�;Ms .x/ D

e˙2
�Ns . IfMt is sufficiently large with respect toNt and �tC1 is small enough then the following

two properties hold:

(i) For all x 2 T,

h0�;Mt .x/ D e
˙2�Nt :

(ii) Let w 2 †A and Mt < n � NtC1. Denote by �.n;w/ D xn.w/C
1
'
.xn.w/ � xn.w//

the point in 1
'

proportion in CŒw�n
1

. Then

H�;n�1 .�n .w// �H�;n�1 .xn.w//

H�;n�1 . Nxn .w// �H�;n�1 .xn.w//
D
1

'
:

That is the (reference) point in 1
'

proportion in CŒw�n
1

travels under H�;n�1 to the reference

point in H�;n�1
�
CŒw�n

1

�
.

Proof. – In the course of the proof we write for n � NtC1, hn D h�;n and H�;n D Hn.
Let ı > 0. Since hn is the identity forNt < n < Mt , thenHMt�1 D HNt . The functionH 0Nt is
a product of Nt bounded Lipschitz functions and inft2Œ0;1�H 0Nt .x/ > 0. Therefore there

exists K.t/ > 1, which depends only on f�s; Ns;Ms; �sg
t�1
sD1 and fNt ; �t ; �tg, such that for

every x; y 2 T,ˇ̌
H 0Mt�1.x/ �H

0
Mt�1

.y/
ˇ̌
D
ˇ̌
H 0Nt .x/ �H

0
Nt
.y/
ˇ̌
� K.t/jx � yj

and for every x 2 T,

(4.5) K.t/�1 �
ˇ̌
H 0Mt�1.x/

ˇ̌
< K.t/:

By uniform expansion of S , if Mt is sufficiently large then

sup
w2†A

mT

�
HMt�1

�
C
Œw�

Mt
1

��
� '�.Mt�1/K.t/ <

ı

K.t/2
:

This implies that for every w 2 †A and x; y 2 HMt�1
�
C
Œw�

Mt
1

�
,ˇ̌

H 0Mt�1.x/ �H
0
Mt�1

.y/
ˇ̌
� K.t/jx � yj � K.t/mT

�
HMt�1

�
C
Œw�

Mt
1

��
< ı=K.t/:
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Averaging this inequality over all y 2 HMt�1
�
C
Œw�

Mt
1

�
, for every x 2 HMt�1

�
C
Œw�

Mt
1

�
,

ˇ̌
H 0Mt�1.x/ � ˛.t; w/

ˇ̌
D

ˇ̌̌̌
ˇ̌̌H 0Mt�1.x/ � 1

mT

�
C
Œw�

Mt
1

� Z
C
Œw�
Mt
1

H 0Mt�1.y/dy

ˇ̌̌̌
ˇ̌̌

� K.t/�1ı:

If follows from this and the lower bound in (4.5) that for every x 2 C
Œw�

Mt
1

,ˇ̌̌̌
ˇ ˛.t; w/

H 0Mt�1.x/
� 1

ˇ̌̌̌
ˇ < ı:

A consequence of the latter inequality which is proved by fixing x.w/DxMt .w/DxMt .w
�/

once on w and once on w�; is that

8w 2 †A .Mt / ;

ˇ̌̌̌
ˇ ˛.t; w/

H 0Mt�1 .x.w//
�

˛ .t; w�/

H 0Mt�1 .x.w//

ˇ̌̌̌
ˇ < 2ı:

Part (i) follows by choosing an appropriate ı and the definition of hMt .

(ii) By the definition of hMt , if �tC1 is small enough then equation (4.2) holds. Using
property 3 of  �t ;�t , a proof by induction shows that for all Mt < n < J � NtC1,

(4.6) mT

�
Hn

�
CŒw�J

1

��
D mT

�
Hn

�
C
Œw�

nC1
1

��
mT

�
CŒw�J

nC1

ˇ̌̌
C
Œw�

nC1
1

�
:

The conclusion follows since if wnC1 2 f1; 2g then C
Œw1�

nC2
1

D
�
xnC1.w/; �nC1.w/

�
Hn .�nC1.w// �Hn

�
xnC1.w/

�
Hn .xnC1.w// �Hn

�
xnC1.w/

� D mT

�
Hn

�
C
Œw1�

nC2
1

��
mT

�
Hn

�
C
Œw�

nC1
1

��
D mT

�
C
Œw1�

nC2
nC2

ˇ̌̌
C
Œw�

nC1
1

�
D mT .w2 D 1jw1 D 1/ D

1

'
:

If wnC1 D 3 then C
Œw21�

nC3
1

D
�
xnC1.w/; �nC1.w/

�
and then

Hn .�nC1.w// �Hn
�
xnC1.w/

�
Hn .xnC1.w// �Hn

�
xnC1.w/

� D mT .w2 D 2;w3 D 1jw1 D 3/ D
1

'
:

By part (i) of the previous lemma we can choose sequences f�t ; nt ; Nt ;Mt ; �tgt2N so
that supx2T h

0
�;Mt

.x/ � e2
�Nt for all t 2 N.

P 11. – Assume '=�21 >1:6, assume that for all t 2N, supx2T h
0
�;Mt

.x/ � e2
�Nt ,

then

sup
n2N

ˇ̌
h�;n.x/ � x

ˇ̌
� e.1:6/�n

and consequently limn!1H�;n.x/ D h�.x/ is a homeomorphism of T.
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Proof. – If for some � � T C 1, M� < k < M�C1 then,

(4.7) sup
x2T

h0�;k.x/ D sup
s2T
j k.s/j

(4.1)
� �2� � �

2
1:

Therefore for every n �MTC1,

mT

�
H�;n�1

�
CŒw�n

1

��
�

 
TY
kD1

sup
x2T

ˇ̌̌
h0�;Mk .x/

ˇ̌̌!
�2n1 mT

�
CŒx�n

1

�
� exp

 
TX
kD1

2�Nk

!�
�1

'

�n
� e.1:6/�n:

The invariance of H�;n�1
�
CŒw�n

1

�
under h�;n implies that

sup
x2T

ˇ̌
h�;n.x/ � x

ˇ̌
� sup
w2†A

mT

�
H�;n�1

�
CŒw�n

1

��
� e.1:6/�n:

Consequently for every n < m,ˇ̌
H�;m.z/ �H�;n.z/

ˇ̌
�

mX
kDn

ˇ̌
H�;kC1.z/ �H�;k.z/

ˇ̌
D

mX
kDn

ˇ̌
h�;kC1

�
H�;k.z/

�
�H�;k.z/

ˇ̌
� e

mX
kDn

sup
z2T

ˇ̌
h�;kC1.z/ � z

ˇ̌
� e

mX
kDn

.1:6/�k :

This shows that
˚
H�;m

	1
mD1

is a Cauchy sequence in C.T/. Its limit, being a continuous and
strictly increasing function, is a homeomorphism of T.

L 12. – Assume f�kg
t
kD1 are already chosen so that for all s < t and x 2 T,

h0�;Ms .x/ D e˙2
�Ns . If Mt is large enough with respect to Nt then there exists QıtC1 > 0 so

that for all �tC1 < QıtC1

(4.8) g0NtC1.x/ D �
˙Mt
tC1 e

˙2�NtC2g0Nt .x/:

Here gNt D H�;Nt ı S ıH
�1
�;Nt

.

Proof. – Assume first that �tC1 D 0 and since we are not going to vary � we write Hn
and hn to denote H�;n and h�;n. Since �tC1 D 0, by Lemma 10 if Mt is large enough then
h0Mt .x/ D e

˙2�Nt for all x 2 T. We assume that Mt is large enough for this to hold.

Let z 2 T, there exists a unique y D y.z/ such that z D HNtC1.y/. By the chain and
differentiation of inverse functions, if gNtC1 is differentiable at z,

g0NtC1.z/ D '
H 0NtC1 .Sy/

H 0NtC1.y/
:
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Therefore since hk D id for all Nt < k < Mt , HNt D HMt�1 and

g0NtC1.z/

g0Nt .z/
D

H 0NtC1 .Sy/

H 0Nt .Sy/
�
H 0Nt .y/

H 0NtC1.y/

D

0@NtC1Y
kDMt

h0k .Hk�1 .Sy//

1A0@NtC1Y
kDMt

h0k .Hk�1 .y//

1A�1 :
Fix j 2 ŒMt ; NtC1/. Notice that Hj�1.y/ 2 Hj�1

�
C
Œw�

j
1

�
if and only if

Hj�2 .Sy/ 2 Hj�2

�
CŒw2���wj �

�
;

and that by Lemma 10.(ii), Hj�1.y/ and Hj�2 .Sy/ are to the right of �
�
C
Œw�

j
1

�
and �

�
CŒw2���wj �

�
respectively if and only if y is to the right of the reference point in C

Œw�
j
1

.

Thus under the assumption that �tC1 D 0 for all j 2 .Mt C 1;NtC1�,

h0j�1
�
Hj�2 .Sy/

�
h0j
�
Hj�1.y/

� D 1:

The last equality together with Lemma 10(i) implies that if Mt is large enough then,

g0NtC1.z/

g0Nt .z/
D
h0Mt .HMt�1 .Sy//

h0Mt .HMt�1.y//

h0NtC1

�
HNtC1�1.Sy/

�
h0MtC1 .HMt .y//

NtC1Y
jDMtC2

h0j�1
�
Hj�2 .Sy/

�
h0j
�
Hj�1.y/

�„ ƒ‚ …
D1

D

�
�8tC1e

2�NtC1
�˙1

The last inequality uses the fact that for l 2 fMt C 1;NtC1g and z 2 T,
ˇ̌
h0
l
.z/
ˇ̌
D �˙2tC1.

In [7] they argue that the estimate on the derivative is continuous (uniformly) with respect
to �tC1 since  0

�;�tC1
converges pointwise to  0

0;�tC1
when � ! 0. However this convergence

is not uniform (and it can’t be as it converges to a step function) and therefore their argument
is not sufficient for convergence in the C 1 norm.

We proceed as follows. For n 2 .Mt ; NtC1� and w 2 †A with wn D 1 denote by BS.n; w/,
the Bad Set at stage n for w, to be the following set�

y 2 CŒw�n
1
W 8ı > 0; 9z 2 .y � ı; y C ı/; h0n ıHn�1.z/ …

�
�tC1'

2

1C �tC1'
;

'2

1C �tC1'

��
:

This set, which is a union of four small intervals, is the set of all y 2 CŒw�n
1

where the derivative
of h0n ıHn�1 is not constant on a neighborhood of y.

First we demand that ıtC1 is small enough so that the conclusion of Lemma 10 and
equation (4.6) holds for all �tC1 < ıtC1.

Secondly we demand that ıtC1 is small enough so that for Mt < n < m � NtC1, if

BS.m;w/\BS .n; w/ ¤ ; then one of the end points ofHm�1
�
CŒw�m

1

�
is either an end point

of Hn�1
�
CŒw�n

1

�
or the point in 1

'
proportion in Hn�1

�
CŒw�n

1

�
.

To understand why we choose these points, notice that in those marked endpoints

h0n.x/ D 1:
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xn(w) ξn(w) x̄n(w)

F 4.3. The small intervals demonstrate the possibilities of locations of BS.m;w/.

This can be done if for example (3)

mT

�
H�;m�1

�
CŒw�m

1

��
mT

�
H�;n�1

�
CŒw�n

1

�� �  1

'2�2tC1

!n�m
�

1

5�ntC1
� ıtC1:

Indeed, if �tC1 � ıtC1, then BS.n;w/ is the union of four subintervals ofH�;n�1
�
CŒw�n

1

�
of

considerably smaller length than H�;m�1
�
CŒw�m

1

�
and thus their bad sets can only intersect

in a unique interval if either Nxm.w/ 2 f Nxn.w/; �n.w/g or xm.w/ 2 fxm.w/; �n.w/g.

In fact with such a choice of ıtC1 one has that for all w 2 †A and Mt < n < m � NtC1,
BS.n; w/ \ BS.m;w/ is always one interval for which one of its end points satisfies

(4.9) h0n.Hn�1.x// D 1:

In addition,

mT .BS.n; w/ \ BS.m;w//
mT .BS.n; w//

� sup
x2T

�
h�1n ı � � � ı h

�1
m

�0
.x/

mT

�
CŒw�m

1

�
mT

�
CŒw�n

1

�(4.10)

�

�
�21
'

�n�m
� .1:6/n�m:

By the definition of h�;n, h0�;n ı Hn�1 is a Lipschitz function with a Lipschitz constant of
order Const:=mT .BS.n; w//.

It follows from (4.9) and (4.10) that there exists a constant B > 0 such that for all
y 2 BS.n; w/ \ BS.m;w/,

h0n.Hn.y// D e
˙B.1:6/n�m :

The final argument is as follows: given x 2 T there is a unique y 2 T such that
x D HNtC1.y/. Let w be such that y 2 C

Œw�
NtC1
1

. If y …
SNtC1
nDMtC1

BS.n; w/ then a similar

analysis as in the case �tC1 D 0 yields the conclusion. Otherwise there exists a maximal
Mt < J D J.y/ � NtC1 such that y 2 BS.J; w/. A similar argument as in the case �tC1 D 0
yields

(4.11) g0NtC1.z/ D

NtC1Y
kDJ

hk .Hk�1 .Sy//

hk .Hk�1.y//
D �˙4tC1g

0
J ıHJ�1.y/:

(3) Here notice that supn�k�NtC1;x2T
1

h0
�;k
.x/
� ��2

tC1
irrespectible of the choice of �.
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For Mt C 2 � n < J �Mt=4, either y … BS.k; w/ for all k � n and then we proceed as in
the case �tC1 D 0 or y 2 BS.n; w/ \ BS .J; w/ and then,

h0n ıHn�1.y/ D e
˙B.1:6/n�J

:

In addition, S .BS.n; w/ \ BS .J; w// is an interval of size 'mT .BS.n; w/ \ BS.J; w// with
one point x for which (4) h0n ıHn�1.x/ D 1. Therefore as before,

h0n ıHn�1.Sy/ D e
˙'B.1:6/m�J

:

Thus, using that for all Mt � k � NtC1;
h0
k
.Hk�1.Sy//

h0
j
.Hk�1.y//

� �4tC1

g0J ıHJ�1.y/

� g0Nt .HMt�1.y//
h0Mt .HMt�1 .Sy//

h0Mt .HMt�1.y//

J�Mt=4Y
nDMtC1

e3B.1:6/
n�J

JY
kDJ�Mt=4

h0
k
.Hk�1.Sy//

h0j .Hk�1.y//

�

�
g0Nt .z/ e

2�NtC2
�
eC.1:6/

�Mt=4

�
Mt
tC1:

The upper bound follows from the last equation together with (4.11) sinceMt=4� Nt . The
lower bound is similar.

A consequence of Lemma 12 is that we can choose � D f�kg
1
kD1 so that gNt and DgNt

converge uniformly to a map g with

(4.12) Dg.x/ D ' �

 Y
t2N

�
˙Mt�1
t

!
� e
P1
tD1 2

�NtC4;:

By taking care that for each t 2 N, �Mt�1t is small enough and the Nt are large enough,

1:6 � ' �

 Y
t2N

�
˙Mt�1
t

!
� exp

 
1X
tD1

2�NtC4

!
� 1:7;

thus the limiting transformation g is uniformly expanding. What remains to be shown before
we can explain the modified inductive construction of f�k ;Mk ; Nk ; �kg

1
kD1 is that we can

choose � so that mT ı h� � �
C.

L 13. – Assume that �C is a push forward via‚ of the Markovian type III1 measure
for the shift defined by f�k ; mk ; nk ;Mk ; Nkg

1
kD1 . Then there exists a sequence " D f"kg

1
kD1

such that for every � D f�kg
1
kD1 which satisfies 8k 2 N; �k � "k , the function h� defined

previously satisfies
mT ı h� � �

C:

Proof. – The proof of the lemma will be done by applying the theory of local abso-

lute continuity of Shiryaev with F t the sigma algebra generated by
n
C
Œw�

Nt
1

W w 2 †A

o
.

For � D f�kg
1
kD1, we will use the notation %�;n.x/ WD h0�;n

�
H�;n�1.x/

�
.

Given � D f�kg
t
kD1, �

mT ı h�
�
t
WD mT ı h�

ˇ̌
F t
D mT ıH�;Nt ;

(4) x is either an end point or the point in 1
'

proportion in CŒw2;:::;wnC1�.
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and �
�C
�
t
WD �jF t

D mT ıH0;Nt :

A calculation shows that

zt .x/ WD
d
�
mT ı h�

�
t

d .�C/t
.x/ D

H 0�;Nt .x/

H 00;Nt .x/
:

Writing QH�;k;t for the function Hı.�;k/;Nt with

ı .�; k/j WD

(
�j ; 1 � j � k

0; j > k;

and noticing that QHı.�;0/;Nt D H0;Nt we get

(4.13) zt .x/ D

tY
kD1

QH 0
�;k;t

.x/

QH 0
�;k�1;t

.x/
:

By [18, p. 527 Remark 2] it remains to show that we can choose " such that if for all k 2 N,
�k < "k , then fztg

1
tD1 is uniformly integrable with respect to �. We proceed to show how to

choose ". Let x 2 TnBd .S/.
Fix k 2 N. By the chain rule and the fact thatHı.�;k/;Mk�1 D Hı.�;k�1/;Mk�1 one sees that

QH 0
�;k;t

.x/

QH 0
�;k�1;t

.x/
D

0@ NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A �0@ NtY
lDNk

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A :
First we will want to prove that if �k is small enough, then

(4.14)
NtY
lDNk

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
� e3.1:6/

�Nk
:

To see (4.14), first notice that since for every s � k and Ns < n < Ms ,

hı.�;k/;n D hı.�;k�1/;n D id;

then for all k � s � t � 1,
Ms�1Y
lDNs

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
D 1:

Secondly, for s � k and Ms < n � NsC1 there exists w 2 †A such that x 2 CŒw�n
1

. If wn ¤ 1
then �ı.�;k/;l .x/ D �ı.�;k/;l .x/ D 1. Otherwise notice that for � 2 fı .�; k/ ; ı .�; k � 1/g,

�sC1 D 0 andH�;n�1.x/ is to the right of the point in 1
'

proportion inH�;n�1
�
CŒw�n

1

�
if and

only if x is to the right of the point in 1
'

inCŒw�n
1

. Therefore for all s � k andMs < l � NsC1,
�ı.�;k/;l .x/ D �ı.�;k�1/;l .x/ and by Lemma 10.(i),

t�1Y
sDk

NsC1Y
lDMs

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
D

t�1Y
sDk

�ı.�;k/;Ms .x/

�ı.�;k�1/;Ms .x/

�

t�1Y
sDk

e.1:6/
�Nt

e�.1:6/
�Nt
� e3.1:6/

�Nk
:
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We remark here that similarly one can get that

t�1Y
sDk

NsC1Y
lDMs

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
� e�3.1:6/

�Nk
;

which in turn shows that there exists c > 1 such that

(4.15) zt .x/ D c
˙1

tY
kD1

NkY
lDMk�1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
:

If for every t < k, we have chosen Mt to be large enough so that Lemma 10.(i) holds then
there exists c > 0 such that

zt .x/ D c
˙1

tY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
:

As �k ! 0,

 0k.x/ WD  
0
�k ;�k

.x/ �!  00;�k .x/ � a.e. x:

It follows that
NkY

lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
����!
�k!0

1 � a:e: x:

By Egorov’s Theorem there exists Ak 2 BT, with � .Ak/ > 1 � 1

2k
Qk
rD1.�r /

4nr
such that

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
����!
�k!0

1; uniformly in x 2 Ak :

The lower bound on the measure of Ak is chosen because for every �k > 0

(4.16) max
x;y2T

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .y/
/

 
max
x;y2T

 0
�k ;�k

.x/

 0
0;�k

.y/

!nk
D .�k/

4nk :

Now we are finally in a position to define the sequence ". Let "k be small enough so that for
every � with �k < "k and x 2 Ak ,

1 �
1

k2
�

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
� 1C

1

k2
:

Let � which satisfies for every k 2 N, �k < "k . For large M , if for some n 2 N and x 2 T,
zn.x/ > M , then there exists q D q.M/ � n such that x 2

Sn
rDq A

c
r . Therefore by (4.15)

and decomposing the set Œzn > M� by the last r � n for which x 2 Acr ,Z
Œzn>M�

zn.x/d�.x/ � c

Z
Œzn>M�

0@ nY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A d�.x/
� c

nX
rDq.M/

Z
ŒAcr\.

Tn
jDrC1Aj /�

0@ nY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A d�.x/:
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Since for x 2 Aj ,
QNj
lDMj�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/
� 1C 1

j2
,

nX
rDq.M/

Z
ŒAcr\.

Tn
jDrC1Aj /�

0@ nY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A d�.x/
�

nX
rDq.M/

nY
jDrC1

�
1C

1

j 2

�Z
Acr

0@ rY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A d� .x/
�

24 1Y
jD1

�
1C

1

j 2

�35 nX
rDq.M/

�
�
Acr
�

max
x2T

0@ rY
kD1

NkY
lDMk�1C1

�ı.�;k/;l .x/

�ı.�;k�1/;l .x/

1A
(4.16)
/

24 1Y
jD1

�
1C

1

j 2

�35 nX
rDq.M/

1

2r

/ 2�q.M/

1Y
jD1

�
1C

1

j 2

�
:

When M !1 then q.M/!1 and therefore

sup
n2N

Z
Œzn>M�

zn.x/d�.x/ / 2
�q.M/

1Y
jD1

�
1C

1

j 2

�
! 0 as M !1:

This shows that fzng is uniformly integrable and hence mT ı h� � �
C.

4.2.2. The modified induction process for choosing f�k ; Nk ;Mk ; nk ; mk ; �kg and the proof of
Theorem 9. In the course of the construction here we arrived at two conditions on f�kg and
two extra conditions on f�k ;Mkg. In order to show the existence of these sequences one has
to modify the induction process of Section 3 as follows and insert the choice of f�tg in the
induction.

In the proof of the previous lemmas we have an extra condition on the size of Mt (or
mt DMt �Nt ) which is determined by fNs; �s;Ms�1; �sg

t
sD1.

The choice of "tC1 in Lemma 13, QıtC1 in Lemma 12 and �tC1 in Proposition 10 is
determined by fNs; �s;Ms�1; �sg

t
sD1 and fNtC1;Mtg. We also need to take care that

1:6 � ' �

 Y
t2N

�
˙2Mt�1
t

!
� exp

 
˙

1X
tD1

2�NtC4

!
� 1:7:

This shows now that the order of choice in the induction is as follows

f�s; ns; Ns; ms;Ms; �sg
t
sD1) �tC1) fntC1; NtC1g ) �tC1) fmtC1;MtC1g :

The modifications needed to be done in the inductive construction are: first change the
condition (3.1) on �tC1 with the condition

�
2Mt
tC1 � exp

�
2�Nt

�
;

as this involves making �tC1 smaller this choice is valid. This gives that

' �

 Y
t2N

�
˙2Mt�1
t

!
� exp

 
˙

1X
tD1

2�NtC4

!
D ' � exp

 
˙

1X
tD1

2�NtC5

!
:
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By demanding now that N1 > 20, we get

' �

 Y
t2N

�
˙2Mt�1
t

!
� exp

 
˙

1X
tD1

2�NtC4

!
D ' � exp

 
˙

1X
tD1

2�NtC5

!
2 .1:6; 1:7/

as we required. There is no further change in the inductive choice of �t ; nt ; Nt as they will
not depend on �.

Given f�s; ns; Ns; ms;Ms; �sg
t
sD1 andNtC1 we choose �tC1 to be small enough so that the

conclusions of Lemma 10.(ii), Lemma 12 and Lemma 13 hold true.
Then we choose mtC1 based on the original constraints from Section 3 together with the

restriction thatMtC1 D mtC1CNtC1 is large enough so that the conclusion of Lemma 10.(i)
is true. Since this involves perhaps enlarging mtC1 it is consistent with the other constraints
of the induction.

Proof of Theorem 9. – Choose f�k ; Nk ;Mk ; nk ; mk ; �kg
1
kD1 as in the inductive construc-

tion. Build the Markovian measure � DM fPk ; �k W k 2 Zg determined by f�k ; Nk ;Mk ;

nk ; mkg
1
kD1

, � WD ˆ� .�/ and �C D ‚� .M fPk ; �k W k 2 Ng/.
Part (i) follows from Theorem 4 since f�k ; Nk ;Mk ; nk ; mkg

1
kD1 satisfy the constraints of

the inductive construction in Section 3 hence it is a type III1 measure for the shift.
(ii) and (iii): Since we chose � D f�kg so that the conclusion of Lemma 13 holds, it follows

thatmT ı h� � �
C. As we chose the sequences so that the conditions of Lemma 12 hold, for

all t 2 N and x 2 T,

g0NtC1.x/ D exp
�
˙2�NtC4

�
�
˙2Mt
tC1 g

0
Nt
.x/:

Therefore
n
g0Nt

o1
tD1

is a Cauchy sequence in C .T/, its limit function satisfies

1:6 � g0.x/ D ' �

 Y
t2N

�
˙2Mt�1
t

!
� exp

 
˙

1X
tD1

2�NtC4

!
� 1:7:

5. Type III1 Anosov Diffeomorphisms

Let f�k ; mk ; nk ;Mk ; Nkg
1
kD1 and � D f�kg

1
kD1 as in Theorem 9 and let h� be the resulting

function. Set H�.x; y/ WD .h�.x/; y/ and

G.x; y/ WD H� ı Qf ı H
�1
� .x; y/ D

8<:
�
g .x/ ;�'�1y

�
; 0 � x � 1=';�

g .x/ ;�'�1
�
y � '2

'C2

��
; 1=' � x � 1:

In the construction of Section 3,Pk D Q for all k < 0. Writing mM for the Lebesgue measure
on M� one then has

dmM ı H0.x; y/ D d�
C.x/dy D d�.x; y/;

or in other words mM ı H0 D ˆ�M fPk ; �k W k 2 Zg. Therefore since mT ı h� � �
C,

� WD ˆ�M fPk ; �k W k 2 Zg � mM ı H�:

Consequently
�
M�; BM� ;mM;G

�
is a type III1 transformation. This is because .M�; B�;

mM;G/ is measure theoretically equivalent to .M�; B�;mM ıH�; Qf / which is orbit equiva-
lent to .M�; B�; �; Qf /.
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By Remark 8, G� is one to one and onto. In addition, for every .x; y/ … @M, G is differ-
entiable in a neighborhood of .x; y/ as all the partial derivatives are continuous in Mn@M,
and

DG.x; y/ D

 
g0 .x/ 0

0 �'�1

!
:

The problem is thatGwhen viewed as a transformation of M� is not even continuous on the
horizontal lines of @M.

We define a sequence of functions rn.x; y/ W T �
�
�'=.' C 2/; '2=.' C 2/

�
! T; n 2 N

using the construction of the previous section. This defines a sequence hn;y.�/ WD rn .�; y/ W

.T or Œ0; 1='�/! T and

hy.x/ WD lim
n!1

hn;y ı hn�1;y ı � � � ı h1;y.x/;

where we will take care that the limit exists. The new examples will then be of the form

Z.x; y/ WD

8<:
�
h�y=' ı S ı h

�1
y .x/;�y='

�
; x � 1='�

h�y='C '
'C2
ı S ı h�1y .x/;�y=' C '

'C2

�
; 1=' � x � 1

W M� !M�:

Particular care in the definition of hy is taken in order to ensure that if .x; y/ � . Ox; Oy/

then hy.x/ D h Oy . Ox/ as this is needed for the continuity of Z on @M.

5.1. Definition of the coupling time on the horizontal boundary of M

Denote by

U1 WD

�
Œ0; 1='� �

�
'2

' C 2
�

1

'10
;
'2

' C 2

��
[

�
Œ1='; 1� �

�
�

'

' C 2
;�

'

' C 2
C

1

'10

��
;

U2 WD

�
.1='; 1/ �

�
1

' C 2
�

1

'10
;

1

' C 2

��
[

�
Œ1='; 1� �

�
�

'

' C 2
;�

'

' C 2
C

1

'10

��
and MnU WD U1 [ U2. Then MnU is a neighborhood of the horizontal lines of @M.

In our construction for any .x; y/ 2 U ,

rn.x; y/ D hn.x/;

with hn the functions in the one dimensional example in Section 4. This means that for any
.x; y/ 2 U;

hy.x/ D h�.x/:

We now will proceed to specify the construction of hy.x/ for .x; y/ 2MnU .
On the horizontal lines there is a problem that there are points .x; y/; . Ox; Oy/ 2 @M that

are equivalent in M� and
.h�.x/; y/ ¤ .h�. Ox/; Oy/:

For example, consider the case x D 1='3, y D '2

'C2
and Ox D 1=', Oy D � '

'C2
. The point 1

'

is a fixed point for h� meaning h� .1='/ D 1='. Since h�
�
1='3

�
D

�1
'.1C�1'/

¤
1
'3

we get�
h�.x/; y

�
¤
�
h� . Ox/ ; Oy

�
D . Ox; Oy/ :

However if we took care that 1
'3

is a fixed point for hy then we will have the desired equality.
It turns out that the correct way to do this will be by setting h1;y jŒ0;1='3/ D h2;y jŒ0;1='3/

D
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1
ϕ10

1
ϕ10

1
ϕ10

F 5.1. The bands are MnU

IdjŒ0;1='3/ and to start perturbing (similarly as in the definition of hn from the previous

section) from n � 3. In general we will have a decomposition of the horizontal lines of @M
to fVig

1
iD1 and we will start perturbing at Vi from n � i C 1.

To be more precise the horizontal boundary consists of the lines Œ0; 1='/�
˚
'2= .' C 2/

	
,

Œ1='; 1/ � f1= .' C 2/g and T � f�'= .' C 2/g. We look at a countable partition of the
horizontal lines @M which are identified by � and couple them in a time T 2 N such that
in the symbolic space on T, the move w.T /T ! 1 is possible for both pieces identified.

5.1.1. The partition of horizontal subsegments of @M

1. V1 WD
�
0; 1='2

�
�

n
�

'
'C2

o
� Œ1='; 1/ �

n
1
'C2

o
. In this case Œ0; 1='2/ D CŒ1�1

1
and

Œ1='; 1/ D CŒ2�1
1

and T .V1/ D 2.

2. V2 WD
�
0; 1='3

�
�

n
'2

'C2

o
�
�
1='2; 1='

�
�

n
�

'
'C2

o
. Here Œ0; 1='3/ D CŒ11�2

1
and�

1='2; 1='
�
D CŒ32�2

1
and T .V2/ D 3.

3. V3 WD
�
1='3; 1='2

�
�

n
'2

'C2

o
�
�
1='; 1=' C 1='4

�
�

n
�

'
'C2

o
. Here Œ1='; 1='2/ D

CŒ132�3
1

and
�
1='; 1=' C 1='4

�
D CŒ211�3

1
and T .V3/ D 4.

4. V4 WD
�
1='2; 1='2 C 1='5

�
�

n
'2

'C2

o
�
�
1=' C 1='4; 1=' C 1='3

�
�

n
�

'
'C2

o
. Here

CŒ3211� D
�
1='2; 1='2 C 1='5

�
and CŒ2132� D

�
1=' C 1='4; 1=' C 1='3

�
.
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5. For general j > 4, Vj WD CŒw.j /�j
1

�

n
'2

'C2

o
� C

Œ Qw.j /�j
1

�

n
�

'
'C2

o
where w.j /; Qw.j / are

the following words of length j ,

w.j / D

(
32 � � � 32132 j odd

32 � � � 3211; j even

Qw.j / D

(
23 � � � 23211; j odd

23 � � � 232132 j even:

As is expected for all j � 2, T
�
Vj
�
D j C 1. The following is immediate from the

definition.

C 14. – For any j � 2,

Qf
�
Vj
�
D Vj�1;

and

Qf .V1/ D Œ0; 1='/ � f
1

' C 2
g � U:

5.1.2. Definition of the perturbation maps hn;y . – For w 2 †A and n 2 N, we write again
CŒw�n

1
WD Œxn.w/; Nxn.w//. Let

u.x; y/ WD

8<:min
n
'2

'C2
� y; y C '

'C2

o
; 0 � x � 1

'

min
n

1
'C2
� y; y C '

'C2

o
1
'
� x � 1

be the minimal distance of .x; y/ to the horizontal lines of @M. In addition we will write

y.x; y/ WM!
n
�

'
'C2

; 1
'C2

; '2

'C2

o
to be the value so that

u.x; y/ D jy.x; y/ � yj :

Under that notation .x; y.x; y// is the closest point to .x; y/ in the horizontal boundary.
Let .x; y/ 2M�.

Case 1: .x; y/ 2 U . – We do the regular construction as in Section 4. That is for any
Nt < n < Mt , hn is the identity. For any Mt < n � Nt , if wn D 1 then hnj

Hn�1

�
CŒw�n

1

� is a

rescaling of t to the intervalHn�1
�
CŒw�n

1

�
and ifwn ¤ 1 then hnj

Hn�1

�
CŒw�n

1

� is the identity.

If for some t , n DMt then hMt ıHMt�1jC
Œw�
Mt
1

is the distribution correction function in the

construction. Finally we set

rn.x; y/ D hn;y.x/ WD hn.x/

and

Kn;y.x/ WD hn;y ı hn�1;y ı � � � ı h1;y.x/ D Hn.x/:
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Case 2: .x; y/ … U . – In this case u .x; y/ < 1
'10

. Let .x; y.x; y// 2 @M be the closest point
on the horizontal lines of @M to .x; y/. Let j.x; y/ 2 N be the integer so that

.x; y.x; y// 2 Vj.x;y/:

This means that either x 2 C
Œw.j /�j

1

(if x � 1='/ or x 2 C
Œ Qw.j /�j

1

(1=' � x < 1). We will

define the construction for x 2 C
Œw.j /�j

1

, the other case being similar. First we define for any
x 2 C

Œw.j /�j
1

,

Kj.x;y/;y.x;y/.x/ D x:

Then for any .x; y/ 2MnU such that x 2 C
Œw.j/�j

1

we set

Kj;y.x/ WD .HJ.x/ � x/
h
3'20 .u.x; y//2 � 2'30u.x; y/3

i
C x:

For n > j.x; y/, assume that we have defined for all j < k < n, hk;y WD rk .�; y/ and
x 2 CŒw�n

1
� C

Œw.j/�j
1

. We set

Kn�1;y jCŒw�n
1

D hn�1;y ı � � � ı hjC1;y ıKj;y.x/;

and

ln.y; w/ WD mT

�
Kn�1;y

�
CŒw�n

1

��
D Kn�1;y . Nxn .w/// �Kn�1;y .xn .w/// :

If wn ¤ 1 or Nt < n < Mt for some t 2 N, then for all x 2 Kn�1;y
�
CŒw�n

1

�
, rn.x; y/ WD x.

If wn D 1 and Mt < n � Nt and j < n then

rn.x; y/ WD Kn�1;y .xn.w//C ln.y; w/ t

�
x �Kn�1;y .xn.w//

ln.y; w/

�
:

Finally if j �Mt D n then rMt ;y is the distribution correction function withHMt�1 replaced
by KMt�1;y .

R 15. – The 2 variable function

qJ.x;u/ WD .HJ.x/ � x/
�
3'20u2 � 2'30u3

�
C x

was chosen because of its following properties:

1. qJ
�
x; '�10

�
D HJ .x/ and qJ.x; 0/ D x. This means that for y 2 @M, rn.x; y/ D x

and therefore Kj;y interpolates between the identity map and HJjC
Œw.j/�

j
1

.

2. A consequence of the previous property is that @qj
@x
.x; 0/ D 1 and @qJ

@x

�
x; '�10

�
D

@HJ
@x
.x/.

This is needed in order that @KJ;y
@x

will be continuous in y.

3. @qJ
@u
.x; 0/ D

@qJ
@u

�
x; '�10

�
D 0 which is necessary for continuity of @Kj;y

@y
.

4. sup0�z�'�10
ˇ̌̌
@qj
@u
.x; z/

ˇ̌̌
D

3
2
'10

ˇ̌
Hj.x/ � x

ˇ̌
. We will show that the right hand side is

uniformly exponentially small when j!1. The control of the derivatives in the y
direction is to our opinion the hardest part in this section.
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The idea behind this construction can be summarized as follows: for a fixed .x; y/ which is
close enough to the horizontal segment on the boundary we first look at the coupling time
of the interval which contains the point closest to .x; y/ on the boundary. On the boundary
we start to apply the rescaling after the coupling time to ensure that the resulting map will
be a map of M� (respects the equivalence relation). Inside U we just start perturbing from
the start and in what remains we do an interpolation using qJ, of the map on the boundary
and the map on U .

5.1.3. Definition of ZN and the new examples of Anosov diffeomorphisms

Define ZN WM� !M�,

ZN .x; y/ D

8<:
�
KN;�y=' ı S ıK

�1
N;y.x/;�y='

�
; .x; y/ 2 R1 [R3;�

KN;�y='C '
'C2
ı S ıK�1N;y.x/;�y=' C

'
'C2

�
; .x; y/ 2 R2:

R 16. – In the construction of the previous subsection for every n 2 N,
x 2

˚
0; 1='2; 1='

	
are fixed points for h�;n (Remark 8). This remains true for rn in the

sense that for all y and x 2
˚
0; 1='2; 1='

	
, rn .x; y/ D Orn.x; y/ D x: This shows that ZN is

continuous. In addition if x is an endpoint of the segment Kn;y
�
CŒw�n

1

�
for some w 2 †A

and y, then @rn
@x
.x; y/ D 1: This gives that ZN is C 1. The invariance of the Markov partition

fJ1; J2; J3g of S under Ky;n gives that ZN is one to one and onto and

Z�1n .x; y/ D

8<:
�
Kn;�'y ı

�
S jJ1[J3

��1
ıK�1n;y.x/;�'y

�
; �

'
'C2
� y � 1

'C2�
Kn;�'yC'2=.'C2/ ı

�
S jJ2

��1
ıK�1n;y.x/;�'y C

'2

'C2

�
; 1

'C2
< y � '2

'C2
:

Here
�
S jJ1[J3

��1
.x/ WD x

'
W Œ0; 1�! Œ1; 1='� is the inverse branch ofS to the segment Œ0; 1='�

and
�
S jJ2

��1
.x/ D xC1

'
W Œ0; 1='�! Œ1='; 1� is the inverse branch ofS to the segment Œ1='; 1�.

Since Z�1n is C 1, Zn is a diffeomorphism.

T 17. – The sequence ZNt converges in the C 1 topology to a type III1 Anosov
diffeomorphism.

The proof of this theorem consists in a series of lemmas. The first step is to show
that KNt ;y.x/ converges uniformly in M as t !1.

L 18. – If x 2 C
Œw.J /�J1

[ C
Œ Qw.J /�J1

and J 2 ŒMt�1; Nt /,

jHJ .x/ � xj � mT

�
CŒw.x/�J�3

1

�
� '�.J�3/;

where w.x/ 2 fw.J /; Qw.J /g is such that x 2 C
Œw.x/�J1

.

Proof. – By the form of w.J / and Qw.J / one has that for all l � J � 3, w.x/l 2 f2; 3g,
hence

HJ�3.x/jC
Œw.x/�J�3

1

D x:

Since xJ�3.w.x//; NxJ�3.w.x// are fixed points of hj�2; hj�1 and hj , HJ
�
CŒw.x/�J�3

1

�
D

CŒw.x/�J�3
1

, the lemma follows.
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C 19. – The limit

lim
n!1

Kn;y.x/ DW hy.x/

exists uniformly in M and is a continuous function and the function H .x; y/ D
�
hy.x/; y

�
is a

homeomorphism of M�.

Proof. – The proof is similar to the proof of Lemma 11. First we claim that for every
n 2 N,

(5.1) sup
.x;y/2M�

jrn.x; y/ � xj � .1:5/
�n :

This is true since for every w 2 †A,

rn

�
Kn�1;y

�
CŒw�n

1

�
; y
�
D Kn�1;y

�
CŒw�n

1

�
;

and consequently

jrn.x; y/ � xj � mT

�
Kn�1;y

�
CŒw�n

1

��
�

�
�21
'

��n
:

The last inequality follows since
ˇ̌̌
@ l
@x
.x/
ˇ̌̌
� �21 for every l 2 N and thus

ˇ̌̌
@rk
@x

ˇ̌̌
1
� �21:

Proceeding as in Lemma 11, it follows that for every y,
˚
Kn;y.x/

	1
nD1

is a Cauchy sequence
in the uniform topology. Thus, hy.x/ is a continuous function in M as it is a uniform
limit of continuous functions. Notice that hy is a homeomorphism of the circle for
y 2 Œ�'= .' C 2/ ; 1=.' C 2/� or of Œ0; 1='� if y 2

�
1= .' C 2/ ; '2= .' C 2/

�
.

It remains to show that if .x; y/ � . Ox; Oy/ (for points on @M) then
�
hy.x/; y

�
�
�
h Oy . Ox/ ; Oy

�
.

Let .x; y/ ; . Ox; Oy/ 2 @M with .x; y/ � . Ox; Oy/. There exists j.x; y/ 2 N such that .x; y/ ; . Ox; Oy/ 2 Vj.
Since .x; y/ � . Ox; Oy/, it follows that for every n > j and a word w 2 †A.n/,

x 2 C
Œw.j/w�nCj

1

, Ox 2 C
Œ Qw.j/w�nCj

1

:

Since for all n � j, rnjVJ
D IdT, this property and the definition of rn.�; �/ yield that for all

n 2 N, �
Kn;y.x/; y

�
�
�
Kn; Oy . Ox/ ; Oy

�
:

The lemma follows by taking n!1.

Denote the function of the first coordinate by zn.x; y/. Our goal is to prove that the limit

z.x; y/ WD lim
t!1

zNt .x; y/

exists for all .x; y/ and z is a C 1 .M�/ function with

1:6 �
@z

@x
.x; y/ � 1:7:

The conclusion of hyperbolicity of Z will follow from a standard lemma in the theory of
Lyapunov exponents.

4 e SÉRIE – TOME 54 – 2021 – No 1



CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2 105

L 20. – If in addition

1:6 � ' � �61

 Y
t2N

�
˙2Mt�1
t

!
� exp

 
˙

1X
tD1

2�NtC4

!
� 1:7;

then @z
@x

is a continuous function in M� and

1:6 �
@z

@x
.x; y/ � 1:7:

R. – The extra condition in this lemma can easily be inserted into the inductive
construction of the sequence f�k ;Mk ; Nk ; mk ; nk ; �kg

1
kD1.

Proof. – Let .x; y/ 2 M�. For the convenience of the reader, we will first show
that @zNt

@x
.x; y/ converges pointwise and 1:6 � @z

@x
.x; y/ � 1:7 and then argue that the

convergence is in fact uniform.

Let t 2 N and .x; y/ 2 M� be fixed. There exists a w D w.x/ 2 †A such that for all

t 2 N; x 2 KNt ;y
�
C
Œw�

Nt
1

�
. As in the proof of Lemma 12, we write zy.x/ to be the unique

point in C
Œw�

Nt
1

such that x D KNt ;y
�
zy.x/

�
. Recall that

zNt .x; y/ D

8<:KNt ;�y='
�
'K�1Nt ;y.x/

�
; 0 � x � 1='

KNt ;�y='C'='C2

�
'K�1Nt ;y.x/ � 1

�
; 1=' � x � 1

D

(
KNt ;�y='

�
Szy.x/

�
; 0 � x � 1='

KNt ;�y='C'='C2
�
Szy.x/

�
; 1=' � x � 1:

By the chain rule, the lemma will follow once we show that uniformly in .x; y/ 2 M� with
0 � x � 1=',

lim
t!1

�
@KNt ;�y='

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

���1
2

�
1:6

'
;
1:7

'

�
;(5.2)

and for every .x; y/ 2M� with 1=' � x � 1,

lim
t!1

�
@KNt ;�y='C'='C2

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

��
2

�
1:6

'
;
1:7

'

�
:

We will separate the proof for three cases: we assume that .x; y/ 2 R1 [ R3, equivalently
0 � x � 1=', the proof when .x; y/ 2 R2 is similar and just involves changing the
appearance of �y=' by �y=' C '=.' C 2/.

Case 1: .x; y/ 2 U \ Z�1U . – In this case

zNt .x; y/ D HNt ı S ıH
�1
Nt
.x/;

and the conclusion is true by Lemma 12.
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Case 2: .x; y/ 2 U \Z�1U c . – Firstly since .x; y/ 2 U thenKn;y.x/ D Hn.x/. In addition,
because Z.x; y/ … U there exists J 2 N such that

Œw2; :::; wJC1�
J
1 D Œw.J/�

J
1 or Œ Qw.J/�J1 ;

and consequentlywn ¤ 1 for all 2 � l < J�2. This shows that Kn;y
ˇ̌
CŒw�n

1

D hnı� � �ıhJ�2ıh1

and writing zy.x/ 2 T for the point such that KNt ;y
�
zy.x/

�
D x,

@KNt ;y

@x

�
zy.x/

�
D
@h1

@x

�
zy.x/

�
�

NtY
kDJ�2

@hl

@x

�
Hl�1

�
zy.x/

��
:

By the definition of the construction

@KNt ;�y='

@x

�
Szy.x/

�
D

NtY
lDJ

@hl;�y='

@x

�
Kl�1;�y='.Szy.x//

�
;

and, here �t.J/ D �k if Nk�1 < J � Nk or 1 otherwise,�
@KNt ;�y='

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

���1
D �˙6t.J/

�
@h1

@x

�
zy.x/

���1
� I;

where

I WD

0@NtY
lDJ

@hl;�y='

@x

�
Kl�1;�y='

�
Szy.x/

��1A �0@NtY
lDJ

@hl;y

@x

�
Hl
�
zy.x/

��1A�1 :
As in the proof of Lemma 12, assuming that � � 0, one has that for l � J C 1,

Kl�1;�y='
�
Szy.x/

�
is to the right of the point in 1=' proportion inKl�1;�y='

�
CŒw2;:::;wlC1�

�
if and only ifKl�1;y

�
zy.x/

�
is to the right of the point in 1=' proportion inKl;�y='

�
C
Œw�

lC1
1

�
.

This means that in the case � D 0,�
@hl�1;�y='

@x

�
Kl�2;�y='.Szy.x//

��
�

�
@hl;y

@x

�
Kl�1;y.zy.x//

���1
D 1:

By proceeding with the analysis of the bad sets as in Lemma 12 one proves that

I D

0@ tY
kDt.J/

�
˙2Mk�1
k

1A exp

0@˙ tX
kDt.J/

2�NkC4

1A ;
and thus�

@KNt ;�y='

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

���1
D

24�@h1
@x

�
zy.x//

���10@ tY
kDt.J/

�
˙2Mk�1
k

1A � exp

0@˙ tX
kDt.J/

2�NkC4

1A35 :
This shows (5.2). In fact, because

lim
s!1

 
1Y
kDs

�
˙2Mk�1
k

!
exp

 
˙

1X
kDs

2�NkC4

!
D 1;

the convergence is uniform as t !1.
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Case 3: .x; y/ 2 U c . – In this case let QJ 2 N be such that the closest point to .x; y/ on
the horizontal segments of @M is in VQJ. If QJ D 1 then

�
Szy.x/;�y='

�
2 U . Otherwise�

Szy.x/;�y='
�

is in U c and the closest point to it on the horizontal segments of @M is
in VQJ�1. Consequently�

@KNt ;�y='

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

���1
D

0@ NtY
lDQJ�1

@hl;�y='

@x

�
Kl�1;�y='

�
Szy.x/

��1A �0@NtY
lDQJ

@hl;y

@x

�
Kl�1;y

�
zy.x/

��1A�1 :
Similarly as in case 2, one has�

@KNt ;�y='

@x

�
Szy.x/

��
�

�
@KNt ;y

@x

�
zy.x/

���1
D �˙2

t.QJ/

0B@ tY
kDt.QJ/

�
˙2Mk�1
k

1CA exp

0B@˙ tX
kDt.QJ/

2�NkC4

1CA
and the convergence is uniform.

5.1.4. Proving differentiability in the y-direction. Again we will prove differentiability in the
y direction for .x; y/ 2 R1 [R3. The idea of the proof here is as follows. If .x; y/ 2 U then
Kn; Qy.x/ D H�;n.x/ for all Qy in a neighborhood of .x; y/, hence @Kn;y

@y
.�/ � 0. Otherwise,

for .x; y/ 2 MnU , Kj.x;y/�2; Qy.x/ D x and the first (major) change between Kn;y.x/ and
Kn; Qy.x/ appears at time n D j.x; y/. We will show that for our construction the y derivative

of Kn;y.x/ can be bounded above by a (bounded) constant times @Kj.x;y/;y.x/

@y
, the uniform

convergence of @zn=@y will follow from the chain rule and simple arithmetic.

The following notation will be used in this subsection. Usually we will consider x 2 Œ0; 1='�
and work constantly with a fixed w 2 †A such that x 2 CŒw�n

1
for all n 2 N. If that is the

case we will write Œxn; Nxn/ to denote CŒw�n
1

.

For � '
'C2
� y � '2

'C2
and n � N.y/, let BS.n; w; y/ � CŒw�n

1
to be the bad set as in the

proof of Lemma 12 with h0n ıHn replaced by
�
@rn;y
@x

�
ıKn�1;y .

For anw 2 †A we denote bywn1 D w1w2 � � �wn the finite word derived byw up to time n.
Given a finite word wn1 , Œwn1 � denotes the n-periodic word defined by wn1 . Finally given two
words w and Qw (in which case w is a finite word), the word w Qw denotes the concatenation
of w and Qw.

Recall the definition of Kj.x;y/;y.x/ D rj.x;y/ .x; y/ which is defined by

rj.x;y/.x; y/ WD
�
Hj.x;y/.x/ � x

�
P.x; y/C x;

where

P.x; y/ D
h
3'20 .u.x; y//2 � 2'30u.x; y/3

i
:
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In the following proof if j.x; y/ D J we will need a different definition of the bad set for n D J.
Let

BS .J/ WD

(
BS .J � 2;w .J// ; J odd

BS .J � 1;w .J// [ BS .J;w .J// J even

if .x; y/ 2 R1 [R3 (For .x; y/ 2 R2 change the odd to even and even to odd).

L 21. – Assume that Mt � j � NtC1, and x 2 C
Œw�

NtC1
1

. If x … BS .J/, for

every j <n � NtC1, there exists 0 � ˇn.x/ � ' such that for every .x; y/ with j .x; y/ D j,

Kn;y.x/ D Kn;y .xn/C ˇn.x/ln .y; w/ ;

in addition ˇNtC1.x/ is continuous in x.

Proof. – Let .x; y/ 2 .MnU/ [ .R1 [R3/ so that j.x; y/ D j (the case .x; y/ 2 R2 is
similar). The proof is by induction on n. Since x … BS .J/, xJC1 2

˚
xJ; xJ C '

�1
�
NxJ � xJ

�	
and

w .J/ D

(
32 � � � 32132; J odd;

32 � � � 3211; J even;

it follows that if J is even then by property (3) of  t ,

HJ .x/ �HJ
�
xJC1.w/

�
D

(
.' tC1.1='//

2
�
x � xJC1

�
; wJC1 D 1

.' tC1.1='//
�
'2 .1 �  tC1 .1='//

� �
x � xJC1

�
; wNC1 D 3

D
PJ�1 .wJ�1; wJ/

Q .wJ; wJC1/

PJ .wJ; wJC1/

Q .wJ; wJC1/

�
x � xJC1

�
WD b

�
x � xJC1

�
;

and if J is odd then

HJ .x/ �HJ
�
xJC1

�
D '2 .1 �  tC1 .1='//

�
x � xJC1

�
D
PJ�2 .wJ�2; wJ�1/

Q .wJ�2; wJ�1/

�
x � xJC1

�
WD b

�
x � xJC1

�
:

It then follows that

KJ;y.x/ �KJ;y
�
xJC1

�
W D rJ .x; y/ � rJ

�
xJC1; y

�
D
�
x � xJC1

�
Œ.b � 1/P.x; y/C 1� ;

and

ljC1.y; w/ WD Kj;y . NxJC1/ �Kj;y
�
xjC1

�
D
�
NxjC1 � xJC1

�
Œ.b � 1/P.x; y/C 1� :

This implies that

(5.3)
KJ;y .x/ �KJ;y

�
xJC1

�
lJC1.y; w/

D
x � xJC1

NxJC1 � xJC1
:
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Therefore

KJC1;y.x/ D KJC1;y
�
xJC1

�
C  tC1

 
x � xjC1

NxJC1 � xjC1

!
„ ƒ‚ …

WDˇj.x/

lJC1 .y; w/

and the base of induction is proved.
For the inductive step notice that if the conclusion of the lemma is true for n 2 N, then

Kn;y.x/ �Kn;y
�
xnC1

�
lnC1.y; w/

D
ˇn.x/ � ˇn

�
xnC1

�
ˇn . NxnC1/ � ˇn

�
xnC1

�
does not depend on y: The conclusion then follows for nC 1 with

ˇnC1.x/ WD  tC1

 
ˇn.x/ � ˇn

�
xnC1

�
ˇn . NxnC1/ � ˇn

�
xnC1

�!
and the continuity of ˇnC1 follows from the continuity of ˇn and  tC1.

The last lemma shows the importance of knowing how @ln
@y

decays when N.y/ < n � NtC1.
We will now show that it is exponential in n.

L 22. – LetMt � j < n � NtC1, a w 2 †A with wj
1 D w.j/ and � '

'C2
� y � '2

'C2
,

then ˇ̌̌̌
@ln

@y
.y;w/

ˇ̌̌̌
� .1:6/j�n

ˇ̌̌̌
@lj

@y
.y;w/

ˇ̌̌̌
and ˇ̌̌̌

@ljC1

@y
.y;w/

ˇ̌̌̌
. .1:6/�j:

Proof. – We assume
�
xNtC1 ; y

�
… @U , the proof for the case

�
xNtC1 ; y

�
2 @U is similar.

In this case for small jhj,
�
xNtC1 ; y C h

�
2 U c .

Since NxNtC1.w/ is not in the bad set BS .j.x; y//, it follows from (5.3) that for small jhj,

mT

�
Kj;yCh

�
C
Œw�

NtC1
1

��
mT

�
Kj;yCh

�
C
Œw�

jC1
1

�� W D

Kj;yCh
�
NxNtC1

�
�Kj;yCh

�
xNtC1

�
Kj;yCh

�
NxjC1

�
�Kj;yCh

�
xjC1

�
D
NxNtC1 � xNtC1

NxjC1 � xjC1

D

mT

�
C
Œw�

NtC1

1

�
mT

�
C
Œw�

jC1
1

� :
It then follows by definition of hn;y for n > j that for jhj small,

lNtC1.y C h;w/ D ljC1.y C h;w/

NtC1Y
kDjC1

Pk .wk ; wkC1/ ;
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hence
lNtC1.y C h;w/

lNtC1.y; w/
D
ljC1.y C h;w/

ljC1.y; w/
:

This yields that

lNtC1.y C h;w/ � lNtC1.y; w/ D
lNtC1.y; w/

lj.x;y/C1.y; w/

�
lj.x;y/C1.y C h;w/ � lj.x;y/C1.y; w/

�
;

dividing by h and taking limit h! 0 we getˇ̌̌̌
@lNtC1.y; w/

@y

ˇ̌̌̌
D
lNtC1.y; w/

ljC1.y; w/

ˇ̌̌̌
@ljC1.y; w/

@y

ˇ̌̌̌
� .1:6/j�NtC1

ˇ̌̌̌
@ljC1.y; w/

@y

ˇ̌̌̌
:

The last inequality follows from, for all Nt � j < n � NtC1,
n�1Y
kDj

Pk .wk ; wkC1/ �

�
�tC1'

1C �tC1'

�j�n

�

�
�tC1

'

�j�n

< .1:6/j�n:

For the proof of the second part notice that for x 2
˚
xj; Nxj

	
,ˇ̌̌̌

@Kj;y

@y
.x/

ˇ̌̌̌
D

ˇ̌̌̌
@rj

@y
.x; y/

ˇ̌̌̌
(5.4)

�

ˇ̌̌̌
@P

@y
.x; y/

ˇ̌̌̌ ˇ̌
H�;j.x/ � x

ˇ̌
�
3

2
'10

ˇ̌̌
m
�
C
Œw�

j�2
1

�ˇ̌̌
�
3

2
'12'�j

�
1

2
.1:62/�j;

for all large j. Thus (recall ljC1.y; w/ D rj.x;y/
�
NxjC1

�
� rj

�
xjC1

�
)ˇ̌̌̌

@ljC1

@y
.y;w/

ˇ̌̌̌
� .1:6/�j; for all large j:

Lemma 21 shows that if x 2 CŒw.j/�n
1

is not in x 2 BS .j/ then they-derivative ofKNtC1;y.x/
(here t is the number such that Nt < j < NtC1) is controlled by the derivative on a finite
collection of points plus the evolution of the lengths of the intervals. We would like to point
out that there is actually no bad set ifNt < j �Mt because thenKj;y jC

Œw.j/�
j
1

D idT. This idea

will be reiterated with a slight modification for the derivatives @Kn;y=@y for Ms < n < Ns
where Ms > j.x; y/.

For points in the bad set we will apply a correction point procedure which we call the
x-delta method. Assume that x 2 BS .j/. For�-small (so that .x; y˙�/ 2 U c/) there exists
a unique x .�/ such that

(5.5)
Kj.x;y/;yC�.x .�// �Kj.x;y/;yC�

�
xj.x;y/C1

�
lj.x;y/C1.y C�;w/

D
Kj.x;y/;y.x/ �Kj.x;y/;y

�
xj.x;y/C1

�
lj.x;y/C1.y; w/

:

We will use Lemma 22 to obtain a first order approximation for x .�/ when � is small.

In the next lemma, if Mt < j C 1 < NtC1 ˇjC1.x/ WD  tC1

�
Kj;y.x/�Kj;y.xjC1/

ljC1.y;w/

�
and

for Mt < jC 1 < n � NtC1

ˇnC1.x/ WD  tC1

 
ˇn.x/ � ˇn

�
xnC1

�
ˇn . NxnC1/ � ˇn

�
xnC1

�! :
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L 23. – Assume that Mt � j � NtC1, and x 2 C
Œw�

NtC1
1

with wj
1 D w .j/. The

following holds:

(i) For every y so that j .x; y/ D j and � so that .x; y ˙�/ 2MnU ,

KNtC1;yC� .x .�// D KNtC1;yC�
�
xNtC1

�
C ˇNtC1.x/lNtC1 .y C�;w/ ;

(ii) jx .�/ � xj � 4.1:6/�NtC1�C o .�/ as �! 0.

Proof. – (i) This is the same as the proof of Lemma 21 by using (5.5) as the starting point.

(ii) If x … BS .j/ \ C
Œw�

Nt
1

then by Lemma 21, x .�/ D x. Since xNtC1 … BS .j/,

Kj;yC�

�
xNtC1

�
�Kj;yC�

�
xj.x;y/C1

�
ljC1.y C�;w/

D
xNtC1 � xj.x;y/C1

xjC1 � xjC1

D

Kj;y

�
xNtC1

�
�Kj;y

�
xjC1

�
ljC1.y; w/

:

Therefore by adding and subtracting Kj;yC�

�
xNtC1

�
=ljC1.y C �;w/ on the right hand

side and Kj;y

�
xNtC1

�
=ljC1.y; w/ on the left hand side of Equation 5.5, if follows that

Equation (5.5) is equivalent to

(5.6) Kj;yC�.x .�// �Kj;yC�

�
xNtC1

�
D
ljC1.y C�;w/

ljC1.y; w/

�
Kj;y.x/ �Kj;y

�
xNtC1

��
:

For the ease of notation we will writeX WD xNtC1 andHj.z/ WD H�:j .z/. Since by Lemma 22,

ljC1.y C�;w/ D ljC1.y; w/˙ .1:6/
�J�C o.�/

we have

ljC1.y C�;w/

ljC1.y; w/

�
Kj;y.x/ �Kj;y .x/

�
D

�
1˙

.1:6/�j�

ljC1.y; w/

� �
Kj;y.x/ �Kj;y .X/

�
C o .�/ :

In addition for all j�j small,

Kj;yC�.x .�// �Kj;yC� .X/ D
�
Hj.x.�// �Hj .X/ � .x.�/ �X/

�
P.x; y C�/C .x.�/ �X/ :

By Taylor expansion

P.x; y C�/ DP.x; y/C�
@P

@y
.x; y/C o .�/ :

Using this one can show that (5.6) yields,

.x .�/ � x/C
�
Hj.x.�// �Hj .x/ � .x.�/ � x/

�
P.x; y/ D �.IC II/C o .�/ ;

where

jIj WD

ˇ̌̌̌
.1:6/�j

ljC1.y; w/

�
Kj;y.x/ �Kj;y .X/

�ˇ̌̌̌
� .1:6/�j '�NtC1Cj
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and

jIIj W D

ˇ̌̌̌�
Hj.x.�// �Hj .X/ � .x.�/ �X/

� @P
@y

.x; y/

ˇ̌̌̌
�
ˇ̌
�4tC1 � 1

ˇ̌
max

.x;y/2U c

ˇ̌̌̌
@P

@y
.x; y/

ˇ̌̌̌
jx.�/ �X j

�
ˇ̌
�4tC1 � 1

ˇ̌ �3
2
'10

�
'�NtC1

� '�NtC1 :

For both inequalities we used the fact that

max
nˇ̌̌

x .�/ � xNtC1

ˇ̌̌
;
ˇ̌̌
x � xNtC1

ˇ̌̌o
� '�NtC1 :

Since ˇ̌�
Hj.x.�// �Hj .x/ � .x.�/ � x/

�
P.x; y/

ˇ̌
�
ˇ̌
�4tC1 � 1

ˇ̌
jx .�/ � xj

we get by the triangle inequality that

jx .�/ � xj
�
1 �

ˇ̌
�4tC1 � 1

ˇ̌�
�
ˇ̌
x .�/ � x C

�
Hj.x.�// �Hj .x/ � .x.�/ � x/

�
P.x; y/

ˇ̌
� �.jIj C jIIj/C o .�/

� 2�.1:6/�NtC1 C o .�/ :

As 1 � j�tC1 � 1j � 1
2

the conclusion of part (ii) follows.

From now on, we work under the assumption that .1:62/=�21 � 1:6. As �1 can be made
arbitrarily small this is compatible with the inductive procedure.

C 24. – (i) For every .x; y/ 2 R1 [R3, if Nt < j.x; y/ � NtC1 thenˇ̌̌̌
@KNtC1;y.x/

@y

ˇ̌̌̌
� 6.1:6/�j.x;y/:

In addition if .x; y/ 2 @U c [ @M then

@KNtC1;y.x/

@y
D 0:

(ii) Assume that fNk ;Mk�1; �k ; �kg
s
kD1 are chosen, there exists a choice ofMs; �sC1; NsC1

and �sC1 (compatible with the inductive procedure) such thatˇ̌̌̌
@lMtC1
@y

.y;w/

ˇ̌̌̌
� 3.1:6/�NtC1 :

Proof. – (i) First we claim that for all w 2 †A such that Œw�j.x;y/1 D w .j.x; y//,

(5.7)
@KNtC1;y

�
xNtC1

�
@y

D ˙4.1:6/�j.x;y/:

This is true because of the following argument. For each j.x; y/ < n � NtC1, either
xn�1 D xn and then

Kn;y .xn/ D Kn�1;y .xn�1/
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or xn D xn�1 C '
�1 . Nxn�1 � xn�1/ and then

Kn;y .xn/ D Kn�1;y .xn/ D Kn�1;y .xn�1/C
�tC1'

1C �tC1'
ln.y; w/:

This equality remains true in a neighborhood of y. Therefore for all j.x; y/ < n � NtC1,ˇ̌̌̌
@Kn;y .xn.w//

@y

ˇ̌̌̌
�

ˇ̌̌̌
@Kn�1;y .xn�1.w//

@y

ˇ̌̌̌
C
2

3
max

Œw�
NtC1
1

�Œw.j.x;y//�

ˇ̌̌̌
@ln

@y
.y;w/

ˇ̌̌̌
Lem. 22
�

ˇ̌̌̌
@Kn�1;y .xn�1.w//

@y

ˇ̌̌̌
C
2

3
.1:6/�n

and so ˇ̌̌̌
ˇ̌@KNtC1;y

�
xNtC1.w/

�
@y

ˇ̌̌̌
ˇ̌ �

ˇ̌̌̌
ˇ@Kj.x;y/;y

�
xj.x;y/

�
@y

ˇ̌̌̌
ˇC 2

3

NtC1X
nDj.x;y/C1

.1:6/�n

(5.4)
� 4.1:6/�j.x;y/:

Now for a general 0 � x � 1=',

@KNtC1;y.x/

@y
D lim
�!0

KNtC1;yC�.x/ �KNtC1;y.x/

�

D lim
�!0

KNtC1;yC� .x .�// �KNtC1;y.x/

�

C lim
�!0

KNtC1;yC� .x .�// �KNtC1;yC�.x/

�
:

As ˇ̌̌̌
@KNtC1;yC�.x/

@x

ˇ̌̌̌
� �

2.NtC1�j.x;y//
tC1 ;

it follows that

lim
�!0

ˇ̌̌̌
KNtC1;yC� .x .�// �KNtC1;yC�.x/

�

ˇ̌̌̌
� �

2NtC1
tC1 lim

�!0

ˇ̌̌̌
x .�/ � x

�

ˇ̌̌̌
(5.8)

Lem 23
�

�
1:62

�21

��NtC1
:

By Lemma 23.(i) if x 2 C
Œw�

NtC1
1

then,

lim
�!0

ˇ̌̌̌
KNtC1;yC� .x .�// �KNtC1;y.x/

�

ˇ̌̌̌
� lim

�!0

ˇ̌̌̌
ˇ̌KNtC1;yC�

�
xNtC1.w/

�
�KNtC1;y

�
xNtC1.w/

�
�

ˇ̌̌̌
ˇ̌

C ˇn.x/ lim
�!0

ˇ̌̌̌
lNtC1.y C�;w/ � lNtC1.y; w/

�

ˇ̌̌̌
�

ˇ̌̌̌
ˇ̌@KNtC1;y

�
xNtC1

�
@y

ˇ̌̌̌
ˇ̌C ˇ̌̌̌@lNtC1@y

.y;w/

ˇ̌̌̌
� 4.1:6/�j.x;y/

C .1:6/�NtC1

and the conclusion follows.
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The second part of (i) in the corollary is true since if .x; y/ 2 @U c [ @M, then @P
@y
.x; y/ D 0.

Therefore @lj.x;y/C1
@y

.y; w/ D 0 and x .�/ D x C o.�/.

(ii) Let w 2 †A .MtC1/. As for all y,
n
KNtC1;y

�
xMtC1

�
; KNtC1;y

�
NxMtC1

�
W w 2 †A .MtC1/

o
are fixed points for hMtC1;y it follows that for all �,

lMtC1.y C�;w/ D KMtC1�1;yC�
�
NxMtC1

�
�KMtC1�1;yC�

�
xMtC1

�
D KNtC1;yC�

�
NxMtC1

�
�KNtC1;yC�

�
xMtC1

�
:

The last line follows from hn;yC� D idT for NtC1 < n < MtC1. Writing x.�/ (respectively
Nx .�/) for the x-delta point of xMtC1.w/ (respectively NxMtC1.w/), by Lemma 23, for j�j small,

KNtC1;yC� .x .�// D KNtC1;yC�
�
xNtC1

�
C ˇNtC1

�
xMtC1

�
lNtC1.y C�;w/;

and

KNtC1;yC� .Nx .�// D KNtC1;yC�
�
xNtC1

�
C ˇNtC1

�
NxMtC1

�
lNtC1.y C�;w/:

It then follows that for j�j small,

lMtC1.y C�;w/ D
n
ˇNtC1

�
NxMtC1

�
� ˇNtC1

�
xMtC1

�o
lNtC1.y C�;w/C I� C I�;

where by (5.8),ˇ̌
I�
ˇ̌
WD
ˇ̌
KNtC1;yC� .Nx .�// �KNtC1;yC�

�
NxMtC1

�ˇ̌
� .1:1/�.1:59/�NtC1

and

jI�j WD
ˇ̌̌
KNtC1;yC� .x .�// �KNtC1;yC�

�
xMtC1

�ˇ̌̌
� .1:1/�.1:59/�NtC1 :

It then follows thatˇ̌̌̌
@lMtC1
@y

.y;w/

ˇ̌̌̌
�

n
ˇNtC1

�
NxMtC1

�
� ˇNtC1

�
xMtC1

�o
„ ƒ‚ …

�1

ˇ̌̌̌
@lNtC1
@y

.y;w/

ˇ̌̌̌
C lim
�!0

ˇ̌
I�
ˇ̌
C jI�j

�

. 3.1:6/�NtC1 as MtC1 !1:

So far we have managed to show how to control
@KNtC1;y.x/

@y
by a constant times the

derivative at level j.x; y/ where t D t .y/ D min ft 2 N W NtC1 � j.x; y/g. The next step is

for s > t.y/, to obtain a relation between @KsC1;y.x/

@y
and

@KNs;y
@y

.

D 25. – For Ms < n � NsC1, x 2 C
Œw�

NsC1
1

and j�j small we define xs .�/ to

be the unique point such that

KMs ;yC� .xs .�// �KMs ;yC�
�
xMsC1

�
lMsC1 .y C�;w/

D
KMs ;y .x/ �KMs ;y

�
xMsC1

�
lMsC1 .y; w/

:

Setting similarly to before for 0 � x � 1=' and y such that j.x; y/ < Ms ,

ˇMsC1.x/ WD  sC1

 
KMs ;y .x/ �KMs ;y

�
xMsC1

�
lMsC1 .y; w/

!
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and for Ms C 1 < n � NsC1,

ˇn.x/ WD  sC1

�
ˇn�1.x/ � ˇn�1 .xn/

ˇn�1 . Nxn/ � ˇn�1 .xn/

�
:

L 26. – For all .x; y/ 2 R1 [R3 with j.x; y/ < Ns the following holds:
1. for every j�j small,

KNsC1;yC� .xs .�// D KNsC1;yC�
�
xNsC1

�
C ˇNsC1.x/lNsC1 .y C�;w/ :

2. (i) For every Ms < n � NsC1,ˇ̌̌̌
@ln

@y
.y;w/

ˇ̌̌̌
� .1:6/Ms�n

ˇ̌̌̌
@lMs
@y

.y;w/

ˇ̌̌̌
:

(ii)
ˇ̌̌
@lMs
@y
.y; w/

ˇ̌̌
� .1:6/�ns :

(iii) Assume that fNk ;Mk�1; �k ; �kg
s
kD1 are chosen, there exists a choice ofMs; �sC1; NsC1

and �sC1 (compatible with the inductive procedure) such that

jxs .�/ � xj � '�NsC1�C o .�/

as �! 0.

Proof. – This is done by induction on s. The base of induction is the first s 2 N such
that Ns > j.x; y/.

1. This is similar to the proof of Lemma 21 and Lemma 23.(i).
2. (i) Let w 2 †A. The starting point is that by the definition of hMt ;y (as a distribution

correcting function), Equation 4.2 holds for KMt ;y . Therefore for all w 2 †A and h > 0

small,

mT

�
KMs ;yCh

�
C
Œw�

NsC1
1

��
D lMs .y C h;w/

mT

�
C
Œw�

NsC1
1

�
mT

�
C
Œw�

Ms
1

� :

The rest is similar to the proof of the first part of Lemma 22 with j.x; y/ replaced by Ms .
2. (ii) Since for all y,

˚
KNs ;y

�
xMs .w/

�
; KNs ;y . NxMs .w// W w 2 †A .Ms/

	
are fixed points

for hMs ;y it follows that (here xMs D xMs .w/)

lMs .y C�;w/ D KNs ;yC� . NxMs / �KNs ;yC�
�
xMs

�
:

The base of induction is Corollary 24.(ii).
The proof of the inductive step is the same as the proof of the base of induction where we

use the induction hypothesis thatˇ̌̌̌
@lNs
@y

.y;w/

ˇ̌̌̌
� .1:6/Ms�1�Ns

ˇ̌̌̌
@lMs�1
@y

.y;w/

ˇ̌̌̌
� .1:6/�Ns�1�ns ;

and
jxs .�/ � xj � '�NsC1�C o .�/ :

Therefore, ˇ̌
I�.s/

ˇ̌
WD
ˇ̌
KNtC1;yC� .Nxs .�// �KNtC1;yC� . NxMs /

ˇ̌
� �.1:6/�NsC1

and
jI�j WD

ˇ̌
KNtC1;yC� .xs .�// �KNtC1;yC�

�
xMs

�ˇ̌
� �.1:6/�NsC1 :
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It then follows thatˇ̌̌̌
@lMs
@y

.y;w/

ˇ̌̌̌
�
˚
ˇNs . NxMs / � ˇNs

�
xMs

�	„ ƒ‚ …
�1

ˇ̌̌̌
@lNs
@y

.y;w/

ˇ̌̌̌
C lim
�!0

ˇ̌
I�.s/

ˇ̌
C jI�.s/j

�

. .1:6/�Ns�1.1:6/�ns C 2.1:6/�NsC1

� .1:6/�ns :

(iii) We first recall the definition of KMs ;y . Define ˛ W N �†A �
�
�'= .' C 2/ ; '2= .' C 2/

�
by

˛.s; w; y/ WD

R
C
Œw�
Ms
1

@KMs�1;y
@x

.x/dx

mT

�
C
Œw�

Ms
1

� D
lMs .y; w/

mT

�
C
Œw�

Ms
1

� :
It follows that for s 2 N such that Ns > j.x; y/, the definition of KMs ;y restricted to C

Œw�
Ms
1

is the function defined by KMs ;y
�
xMs

�
D KNs ;y

�
xMs

�
and x-derivative

@KMs ;y

@x
.x/ WD

8̂̂̂<̂
ˆ̂:
@G˛.s;w�;y/;˛.s;w;y/

@x

0@ x�xMs

�tC1mT

�
C
Œw�
Ms
1

�
1A 0 � x � xMs � �sC1mT

�
C
Œw�

Ms
1

�
˛.s; w; y/ x � xMs � �sC1mT

�
C
Œw�

Ms
1

�
;

where w� is the predecessor of w in †A .Mt / and G˛1;˛2 W Œ0; 1� ! Œ0; 1� is the function
defined by (4.3).

Therefore the function

Kt;y.x/ WD
KMs ;y.x/ �KMs ;y

�
xMs

�
lMs .y; w/

D

�
mT

�
C
Œw�

Ms
1

���1 "KMs ;y.x/ �KMs ;y �xMs �
.s; y; w/

#

satisfies Kt;y

�
xMt .w/

�
D 0 and

@Kt;y

@x
.x/

WD mT

�
C
Œw�

Ms
1

��1
�

8̂̂̂<̂
ˆ̂:
@G‡.s;w;y/;1

@x

0@ x�xMs

�sC1mT

�
C
Œw�
Ms
1

�
1A ; 0 � x � xMs � �sC1mT

�
C
Œw�

Ms
1

�
1 x � xMs � �sC1mT

�
C
Œw�

Ms
1

�
;

where‡.s;w; y/ D ˛.s;w�;y/
˛.s;w;y/

: The function Ks;y is important since the definition of xs.�/ is
as the unique point so that

Ks;yC� .xt .�// D Kt;y .x/ :
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Since for all 0 < a,
R 1
0
G0a;1.x/dx D 1, it follows that if x � xMs � �sC1mT

�
C
Œw�

Ms
1

�
then

writing Ox D xMs C �mT

�
C
Œw�

Ms
1

�
Ks;yC�.x/ D

Z x

xMs

@Ks;yC�

@x
.x/

D

�
mT

�
C
Œw�

Ms
1

���10@Z Ox
xMs

@G‡.s;w;yC�/;1

@x

0@ x � xMs

�sC1mT

�
C
Œw�

Ms
1

�1A dx C .x � Ox/1A
D

x � xMs

mT

�
C
Œw�

Ms
1

� D Ks;y.x/ by a similar reasoning.

If x�xMs � �sC1m
�
C
Œw�

Ms
1

�
then using the fact that for all 0 � x � 1,

ˇ̌
Ga;1.x/ �Gb;1.x/

ˇ̌
�

x jb � aj,

Ks;yC�.x/ D Ks;y.x/˙ j‡.s;w; y C�/ � ‡.s;w; y/j �
�
x � xMs .w/

�
D Ks;y.x/˙ �sC1 j‡.s;w; y C�/ � ‡.s;w; y/j :

j‡.s;w; y C�/ � ‡.s;w; y/j D
m
�
C
Œw�

Ms
1

�
m
�
C
Œw��

Ms
1

� ˇ̌̌̌ lMs .y C�;w�/
lMs .y C�;w/

�
lMs .y; w

�/

lMs .y; w/

ˇ̌̌̌

� �
'
�ˇ̌̌
@lMs
@y
.y; w/

ˇ̌̌
C

ˇ̌̌
@lMs
@y

.y; w�/
ˇ̌̌�

min .lMs .y; w/; lMs .y; w�//
C o.�/:

Thus if �sC1 is sufficiently small (this choice depends on fNt ;Mt ; �t W t � tg and NsC1) then

Ks;yC�.x/ D Ks;y.x/˙
1

2
�'�NsC1�Ms C o.�/;

and for all � sufficiently small

Ks;y .x/ D Ks;yC� .xs.�//

D Ks;y .xs.�//˙
1

2
�'�NsC1 C o.�/:

Since
@Ks;y

@x
.x/ �

�
2mT

�
C
Œw�

Mt
1

���1
�
'�Ms

2
;

it follows that

jx � xs.�/j � 2'Ms
ˇ̌
Ks;y .x/ �Ks;y .xt .�//

ˇ̌
� �'�NsC1 C o.�/

as required.

The next corollary is the final ingredient for the proof of Theorem 17.

C 27. – There exists a choice of f�t ; nt ; Nt ; mt ;Mt ; �tgt2N such that:
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(i) For all .x; y/ 2M� and for all t 2 N such that j.x; y/ < Nt ,ˇ̌̌̌
@KNtC1;y.x/

@y

ˇ̌̌̌
�

ˇ̌̌̌
ˇ@KNt ;y

�
xMt .w/

�
@y

ˇ̌̌̌
ˇC 2.1:6/�nt :

(ii)
@KNtC1;y.x/

@y
converges uniformly inR1[R3 as t !1. For every .x; y/ 2 @ .R1 [R3/

or .x; y/ 2 U ,

lim
t!1

ˇ̌̌̌
@KNtC1;y.x/

@y

ˇ̌̌̌
D 0:

Proof. – We assume that f�t ; nt ; Nt ; mt ;Mt ; �tg are chosen so that Lemma 26 holds.
(i) Similarly as in the proof of Corollary 24.(i) one can use the fact thatˇ̌̌̌

ˇ̌@KNtC1;y
�
xNtC1 .w/

�
@y

ˇ̌̌̌
ˇ̌ �

ˇ̌̌̌
ˇ@KMt ;y

�
xMt .w/

�
@y

ˇ̌̌̌
ˇC NtC1X

nDMtC1

ˇ̌̌̌
@ln

@y
.y;w/

ˇ̌̌̌
;

and
KMt ;y

�
xMt .w/

�
D KNt ;y

�
xMt .w/

�
to show thatˇ̌̌̌

ˇ̌@KNtC1;y
�
xNtC1

�
@y

ˇ̌̌̌
ˇ̌ Lem:26:2:i

�

ˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇC NtC1X

nDMtC1

.1:6/Mt�n
ˇ̌̌̌
@lMt
@y

.y;w/

ˇ̌̌̌
Lem:26:2:ii
�

ˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇC .1:6/�nt NtX

nDMtC1

.1:6/Mt�n

�

ˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇC 5

3
.1:6/�nt :

Therefore by Lemma 26,

lim
�!0

ˇ̌̌̌
KNtC1;yC� .xt .�// �KNtC1;y .x/

�

ˇ̌̌̌
�

 ˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇC 5

3
.1:6/�nt

!
C ˇn.x/

@lNtC1

@y
.y;w/

�

 ˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇC 5

3
.1:6/�nt

!
C ˇn.x/ .1:6/

�ntC1

and by Lemma 26.2.(iii),ˇ̌̌̌
KNtC1;yC� .xt .�// �KNtC1;yC� .x/

�

ˇ̌̌̌
�

 
sup

.x;y/2M�

ˇ̌̌̌
@KNtC1;yC� .x/

@x

ˇ̌̌̌! �
jxt .�/ � xj

�

�
� �

2NtC1
1 '�NtC1 C o.�/ � .1:6/�Nt C o.�/:

A combination of the previous two inequalities and nt D o.Nt /, Nt D o .ntC1/ shows thatˇ̌̌̌
@KNtC1;y .x//

@y

ˇ̌̌̌
�

ˇ̌̌̌
ˇ@KNt ;y

�
xMt .w/

�
@y

ˇ̌̌̌
ˇC 2.1:6/�nt :
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(ii) Let t 2 N, and .x; y/ 2 R1 [ R3. By applying part (i) of this corollary repeatedly
one has that with t .x; y/ D min ft W Nt > j.x; y/g. For t > t.x; y/ C 1 and w such that
x 2 C

Œw�
NtC1
1

, by the first part of the corollaryˇ̌̌̌
ˇ@KNt ;y

�
xMt

�
@y

ˇ̌̌̌
ˇ �

ˇ̌̌̌
ˇ@KNt�1;y

�
xMt�1

�
@y

ˇ̌̌̌
ˇC 2 .1:6/�nt :

For t D t .x; y/ by Corollary 24ˇ̌̌̌
ˇ̌@KNt.x;y/;y

�
xMt.x;y/

�
@y

ˇ̌̌̌
ˇ̌ � .1:6/�j.x;y/:

A combination of these two observations shows that for t > t.x; y/ˇ̌̌̌
@KNt ;y.x/

@y

ˇ̌̌̌
�

ˇ̌̌̌
ˇ̌@KNt.x;y/;y

�
xMt.x;y/

�
@y

ˇ̌̌̌
ˇ̌C 2 tX

kDt.x;y/

.1:6/�nk :

� .1:6/�j.x;y/
C 2.1:6/�nt.x;y/ :

This is enough to show that
n
@KNsC1;y.x/

@y

o1
sD1

is a Cauchy sequence in the uniform topology.

Indeed if s; t > t.x; y/, thenˇ̌̌̌
@KNt ;y.x/

@y
�
@KNs ;y.x/

@y

ˇ̌̌̌
�

sX
kDt

.1:6/�nk � 2.1:6/�nt :

If Nt < j.x; y/ � 3 � NsC1 then KNtC1;y.x/ D x in a neighborhood of y and henceˇ̌̌̌
@KNtC1;y.x/

@y
�
@KNsC1;y.x/

@y

ˇ̌̌̌
D

ˇ̌̌̌
@KNsC1;y.x/

@y

ˇ̌̌̌
� .1:6/�j.x;y/

C 2.1:6/�nt

� 3.1:6/�nt :

We leave the bound on the easier cases t D t .x; y/�1 < s, s; t < t.x; y/�1 to the reader.

R 28. – The latter corollary shows that limt!1
@KNt ;y
@y

is uniformly contin-
uous in x as a uniform limit of continuous functions. As a consequence, since for all
x 2 Œ0; 1='�, the sequence K�1Nt ;y.x/ converges uniformly to h�1y .x/ and h�1y is a homeomor-
phism of Œ0; 1='� then for all x 2 Œ0; 1='�,

@KNt ;y

�
K�1Nt ;y.x/

�
@y

���!
t!1

lim
t!1

@KNt ;y
�
h�1y .x/

�
@y

and the convergence is uniform in t 2 N.

Proof of Theorem 17. – Lemma 20 shows that @z
@x
D limt!1

@zNt
@x
.x; y/ exists and is a

continuous function of M�. It remains to show that @z
@y
D limt!1

@zNt
@y
.x; y/ exists and is a

continuous function of M�. To this end, write

BN .x; y/ D

 
@KN;y.x/

@x

@KN;y.x/

@y

0 1

!
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for the differential of the map .x; y/ 7!
�
KN;y.x/; y

�
. By the chain rule

DZNt .x; y/ D BNt
�
SK�1Nt ;y.x/;�y='/

�  ' 0

0 �1='

!
B�1Nt

�
K�1Nt ;y.x/; y

�
:

This yields that

@zNt
@y

.x; y/ D '
@KNt ;�y='.SK

�1
Nt ;y

.x//

@x

�

0B@�
0@@KNt ;�y=' �K�1Nt ;y.x/�

@x

1A�10@@KNt ;y �K�1Nt ;y.x/�
@y

1A
1CA

�
1

'

@KNt ;�y='

�
SK�1Nt ;y.x/

�
@y

D �
@zNt
@x

.x; y/ �
@KNt ;y

�
K�1Nt ;y.x/

�
@y

�
1

'

@KNt ;�y='

�
SK�1Nt ;y.x/

�
@y

:

Since all the terms on the right hand side converge uniformly as t ! 1, the theorem is
proved.

5.2. Proof of the Anosov property for Z.

So far we have shown that ZNt converges uniformly to Z and we have estimated the
derivatives. We are going to use the following well-known lemma, the proof of which can be
found in [21]. A function A WM� �Z! SL.2;R/ is linear cocycle over a homeomorphism
f WM� !M� if for any m:n 2 Z and x 2 T2,

AmCn.x/ D Am ı f
n.x/A n.x/:

We say that the cocycle is hyperbolic if there are � > 1 and C > 0 so that for every x 2 M�
there exist transverse lines Esx and Eux in R2 such that

1. A .x/Esx D E
s
f.x/

and A .x/Eux D E
u
f.x/

.
2. jA n.x/v

sj � C�n jvsj and jA�n.x/v
uj � C�n jvuj for every vs 2 Esx , vu 2 Eux and

n � 1.

P ([21, Prop. 2.1]). – Let A W M� � Z ! SL.2;R/ be a linear cocycle over
a homeomorphism f WM� ! M�. If there exists v 2 R2, constants c > 0 and � > 1 such
that jAn.x/vj � c�n then A is hyperbolic. The transverse lines Esx ; E

u
x; in R2 satisfy that for

any �0 < � , there exists C > 0 so that for any vs 2 Esx , vu 2 Eux and n � 1,

jA n.x/v
s
j � C�n0 jv

s
j and jA�n.x/v

u
j � C�n0 jv

u
j :

Proof that Z is Anosov. – Define A WM� � Z! SL .2;R/ by

A .x/ D
1

det .DZ.x; y//
DZ.x; y/:

Since DZ is of the form  
@z
@x
.x; y/ �

0 �1='

!
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and

1:6 �
@z

@y
.x; y/ � 1:7

one has that for all .x; y/ 2M�;
1:6

'
� jdet .DZ.x; y//j �

1:7

'

and ˇ̌̌̌
ˇDZn.x; y/

 
1

0

!ˇ̌̌̌
ˇ D

ˇ̌̌̌
ˇ
 Qn�1

kD0
@z
@x
ı Zk.x; y/

0

!ˇ̌̌̌
ˇ � .1:6/n

ˇ̌̌̌
ˇ
 
1

0

!ˇ̌̌̌
ˇ :

It then follows that with v D .1; 0/tr

jA n.x; y/vj D .det .DZn.x; y///
�1
jDZn.x; y/vj �

�
' � 1:6

1:7

�n
jvj � .1:52/njvj

there exist transverse lines Esx and Eux in R2 ' TxM� and C > 0 so that for any vu 2 Eux ,

jA n.x/v
u
j � .1:5/n jvuj :

It follows that

jDZn.x; y/v
u
j D jA n.x/v

u
j

n�1Y
kD0

ˇ̌̌
det

�
DZ

�
Zk.x; y/

��ˇ̌̌
� C.1:5/n

�
1:6

'

�n
jvuj

� C.1:48/n jvuj :

Similarly one has for every vs 2 Esx ,

jDZn.x; y/v
s
j � C.1:5/�n

�
1:7

'

�n
jvsj

� C .0:7/n

and so Z WM� !M� is Anosov.

5.3. Proof of the type III1 property for Z.

For � '
'C2

< y < 1
'C2

let,

Ky.x/ WD lim
n!1

Kn;y.x/ W T! T

and for 1
'C2
� y � '2

'C2
,

Ky.x/ WD lim
n!1

Kn;y.x/ W Œ0; 1='�! Œ0; 1='�:

In both cases it is an orientation preserving homeomorphism.
We will show that the measuresmLeb.T/ ıKy andmLeb.Œ0;1=’�/ ıKy are equivalent measures

to �C, the measure on T arising from f�k ; mk :Mk ; nk :Nkg in the previous section.
In addition, the Radon Nykodym derivative

d�y

d�C
.x/ WM! Œ0;1/
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defined by
d�y

d�C
.x/ WD

dmT ı Ky

d�C
.x/;

is a
�
M�; B .M�/ ; �

�
measurable function. This means that the measure � on M� defined

by Z
M�

u.x; y/d� D

Z
M�

u.x; y/d�y.x/dy

D

Z
M�

u.x; y/
d�y

d�C
.x/d�C.x/dy

is equivalent to � D mM ı H0 D �
C ˝ dy.

Since
�
M�; BM; �; Qf

�
is a type III1 transformation and � � �,

�
M; BM; �; Qf

�
is

a type III1 transformation. Thus
�
M; BM;mM;Z

�
is a type III1 transformation since

�.x; y/ WD
�
Ky.x/; y

�
W
�
M; BM;mM;Z

�
!

�
M; BM; �; Qf

�
is an isomorphism. Therefore

what is left to prove is the following.

L 29. – (i) For all � '
'C2

< y < 1
'C2

,
�
K�1y

�
�
mT is an equivalent measure to �C

(the measure on T arising from f�k ; mk :Mk ; nk :Nk ; �kg in the previous section).

(ii) For all 1
'C2

< y < '2

'C2
,
�
Ky
�
�
mTjŒ0;1='� is an equivalent measure to �CjŒ0;1='�.

(iii) The Radon Nykodym derivatives d�y
d�C

.x/ WM! Œ0;1/are measurable in
�
M�; BM� ; �

�
.

Proof. – Fix� '
'C2

< y < 1
'C2

. The proof is the same as in Lemma 13 by using the theory

of local absolute continuity of Shiryaev with F t WD

n
C
Œw�

Nt
1

W w 2 †A

o
. By the construction�

mT ı Ky
�
t
WD mT ı Ky

ˇ̌
F t
D mT ıKNt ;y ;

and �
�C
�
D mT ıH0;Nt :

Therefore,

Zt;y.x/ WD
d
�
mT ı Ky

�
t

d .�C/t
.x/ D

�
@KNt ;y
@x

�
�
@H0;Nt
@x

� .x/:
The rest of the proof thatZt;y.x/ is uniformly integrable and hence converges a.s. as t !1 is
the same as in Lemma 13. This proves (i) and (ii).

To see .i i i/, notice that the function

.x; y/ 7!
d�y

d�C
.x/ D lim

t!1
Zt;y.x/

is almost surely a limit of continuous functions, hence measurable.
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Appendix

Proof of Theorem 4

Assume that f�k ; nk ; Nk ; mk ;Mkgk�1 and M0 are chosen via the inductive construction,
f�k ; Pkgk2Z are defined by (3.10) and � D M f�k ; Pk W k 2 Zg :Again T denotes the shift
on †A. The proof of non-singularity, the K-property of the shift with respect to � and that

T 0.x/ D
d� ı T

d�
.x/ D

1Y
kD1

Pk�1 .xk ; xkC1/

Pk .xk ; xkC1/

appears in [12, Thm. 6]. In order to show the other properties of the Markov Shift, we will
need a more concrete expression of the Radon Nykodym derivatives. The measure�, or more
concretely its transition matrices, differs from the stationary

˚
�Q;Q

	
measure only when one

moves inside state 1 in the segments
�
Mj ; NjC1

�
. Denote by

Lj .x/ WD #
˚
k 2

�
Mj�1; Nj

�
W xk D 1

	
and

Vj .x/ D #
˚
k 2

�
Mj�1; Nj

�
W xk D xkC1 D 1

	
:

L 30. – For every � > 0, there exists t0 2 N s.t for every t > t0, Nt � n < mt and
x 2 f1; 2; 3gZ,

.T n/
0
.x/ D .1˙ �/

tY
kD1

"�
1C '

1C '�k

�LkıT n.x/�Lk.x/
� �
VkıT

n.x/�Vk.x/

k

#
:

Proof. – Let � > 0, t 2N andNt � n < mt . Canceling out all the k0s such thatPk�n D Pk
one can see that

.T n/
0
.x/ D It � QIt

where (notice in the definition of It that n > Nt )

It D

tY
uD1

240@ NuY
kDMu�1

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A �0@ NuCn�1Y
kDMu�1Cn

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A35
and (here notice that Mt > Nt Cmt > Nt C n/

QIt D

1Y
uDtC1

240@Mu�1Cn�1Y
kDMu�1

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A �0@NuCn�1Y
kDNu

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A35 :
We will analyze the two terms separately. Since for every Mu�1 � k < Mu�1 C n, Pk D Qu

and Pk�n D Q,
Pk�n .xk ; xkC1/

Pk .xk ; xkC1/
�

Q1;3

.Qu/1;3
D
1C '�u

1C '
� �u:

Similarly for Nu � k < Nu C n, P .k/ D Q and Pk�n D Qu . Therefore

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/
�
.Qu/1;1

Q1;1

� �u;
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and

��2nu �

0@Mu�1Cn�1Y
kDMu�1

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A �0@NuCn�1Y
kDNu

Pk�n .xk ; xkC1/

Pk .xk ; xkC1/

1A � �2nu ;
here the lower bound is achieved by a similar analysis. This gives

QIt D

1Y
uDtC1

�
�˙2nu

�
D

1Y
uDtC1

�
�˙2mu�1u

�
(since 8u > t , n < mt < mu/

(3.1)
D e˙

P1
nDtC1

1
2n ���!

t!1
1:

Consequently there exists t0 2 N so that for all x 2 †A, t > t0 and Nt � n � mt ,

.T n/
0
.x/ D .1˙ �/It :

By noticing that for k 2
St
jD1

��
Mj�1; Nj

�
[
�
Mj�1 C n;Nj C n

��
;

Pk�n .xk ; xkC1/ ¤ Pk .xk ; xkC1/

if and only if xk D 1, one can check that

It D

tY
kD1

"�
1C '

1C '�k

�LkıT n.x/�Lk.x/
�
VkıT

n.x/�Vk.x/

k

#
:

C 31. – The shift
�
f1; 2; 3gZ; �; T

�
is conservative and ergodic.

Proof. – Since the shift is a K-automorphism it is enough to prove conservativity.

For every j 2 N, 0 � Lk.x/;Dk.x/ � nk . Whence�
1C '

1C '�k

�LkıT n.x/�Lk.x/
�
VkıT

n.x/�Vk.x/

k
�

�
1C '

1C '�k

�LkıT n.x/
�
�Vk.x/

k

� �
�2nk
k

� �
�2nk
1 ;

and for every t 2 N,

tY
kD1

"�
1C '

1C '�k

�LkıT n.x/�Lk.x/
�
VkıT

n.x/�Vk.x/

k

#
� �

�2
Pt
kD1 nk

1 � �
�2Nt
1 :

By Lemma 30 there exists t0 2 N such that for all t � t0, Nt � n � mt and x 2 †A,

.T n/0 .x/ �
�
�2Nt
1

2
. Therefore for all x 2 †A,

1X
nD1

.T n/
0
.x/ �

1X
tD1

mtX
nDNt

.T n/
0
.x/ �

1X
tDt0

1

2
.mt �Nt / �

�2Nt
1

(3.9)
D 1:

By Hopfs criteria the shift is conservative.
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A.0.1. Proof of the type III1 property. – In order to prove that the ratio set is Œ0;1/ we are
going to use the following principle: sinceR.T / is a multiplicative subset it is enough to show
that there exists yn 2 R.T /nf1g with yn ! 1 as n!1.

T 32. – Let � be the Markov measure constructed in Subsection 3.2.2. For
every n 2 N, �n �

1C'
1C'�n

2 R.T / and therefore the shift is type III1.

Fix n 2 N. The first stage in proving that �n �
1C'
1C'�n

2 R.T / is to show that the ratio set
condition is satisfied for all cylinders with a positive proportion of the measure of the cylinder
set. Then for a general A 2 BC, we use the density of cylinder sets in B.

Given t 2 N, denote by C .t/ the collection of all Œc�Nt0 cylinder sets such that

(A.1) Lt .c/ D

Nt�1X
kDMt�1

1ŒckD1� 2
�nt
4
;
nt

2

�
and

Nt�1X
kDMt�1

1ŒckD2;ckC1D3� �
nt

15
:

Since

�
�
Œc�
Nt
Mt�1

�
D ��Mt�1 ;Qt

�
Œc�
nt
0

�
;

it follows from (3.5) and (3.6) that for all t large enough,

�

0@ [
C2 C.t/

C

1A � 1 � 1

2t
:

In order to shorten the notation, given M; j 2 N, B 2 B and � > 0, let

RSC .M;B; j; �/ WD B \ T �MB \

��
TM

�0
D �j �

1C '

1C '�j
� .1˙ �/

�
;

and for M 2 N,

†A .M/ WD f1; 2; 3gM \†A:

L 33. – For every Œb�n�n cylinder set, � > 0 and j 2 N, there exists a t0 2 N so that
for all t > t0 the following holds:

For every C D Œc�
Nt�1
0 2 C .t/ there exists d D d.b; C / 2 †A .Nt C n/ such that for

every N 3 l � mt=kt ,

(A.2) C \ Œd �
lktCNt�1
lkt�n

� T �lkt Œb�n�n \

��
T lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

�
:

Recall that kt > Nt is defined as a
�
1˙ 3�3Nt

�
mixing time for Q.

Proof. – Let Œb�n�n; � > 0 and j 2 N be given. By Lemma 30 there exists � such that for
every t � � and 1 � l � mt=kt (here lkt 2 ŒNt ; mt /),�

T lkt
�0
.x/ D .1˙ �/

tY
kD1

"�
1C '

1C '�k

�LkıT lkt .x/�Lk.x/
� �
VkıT

lkt .x/�Vk.x/

k

#
:

Choose t0 to be any integer which satisfies t0 > max .�; j / and Mt0 > n.
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Let t > t0 and choose a cylinder set Œc�Nt0 2 C .t/ which intersects Œb�n�n: That is ci D bi
for i 2 Œ0; n�. We need now to choose d 2 †A .Nt C n/ which satisfies (A.2). Notice that
for x 2 Œd �lktCNt

lkt�n
\ Œc�

Nt
0 ;

tY
kD1

"�
1C '

1C '�k

�LkıT lkt .x/�Lk.x/
� �
VkıT

lkt .x/�Vk.x/

k

#

D

tY
kD1

"�
1C '

1C '�k

�Lk.d/�Lk.c/
� �
Vk.d/�Vk.c/

k

#
;

in this representation we look at Œd �Nt�n. For all k 2 Œ0;Mt�1�, let

dk D ck

and for all k 2 Œ�n; 0/,

dk D bk :

Notice that this means that for k 2 Œ�n; n�, dk D bk and thus

Œd �
lktCNt
lkt�n

� T �lkt Œb�n�n:

Let p.j; t/ � nt
20

be the integer (condition (3.4)) such that�
�t �

1C '

1C '�t

�p.j;t/
D �j �

1C '

1C '�j
:

Set dk D 1 for all k 2 ŒMt�1;Mt�1 C Vt .c/C p.j; t/� and then continue repeatedly with the
sequence “321,” Lt .c/� Vt .c/ times. Since c satisfies (A.1), this construction is well defined
(e.g., we have not reached yet k D Nt � 1). Continue with sequences of 32 till k D Nt � 1.

Thus we have defined d in such a way that

Lt .d/ � Lt .c/ D p.j; t/

and
Vt .d/ � Vt .c/ D p.j; t/:

In addition for all 0 � k < t , Lk.d/ D Lk.c/ and Vk.c/ D Vk.d/. Thus for all
x 2 Œd �

lktCNt
lkt�n

\ Œc�
Nt
0 ,�

T lkt
�0
.x/ D .1˙ �/

tY
kD1

"�
1C '

1C '�k

�Lk.d/�Lk.c/
� �
Vk.d/�Vk.c/

k

#

D .1˙ �/

�
�t �

1C '

1C '�t

�p.j;t/
D .1˙ �/

�
�j

1C '

1C '�j

�
:

This proves the lemma.

In the course of the proof one sees that the event�
Œb�n�n \ Œc�

Nt
0

�
\

�
T �lkt Œb�n�n \

��
T lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

��c
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is F .lkt � n; lkt CNt / measurable and does not depend on F .lkt CNt ; lkt C 2Nt /.

R 34. – Given Œc�Nt0 2 C t we have defined d D d.c/ 2 †A .Nt C n/. The defini-
tion of d is not necessarily one to one. This is because if Œ Qc�Mt�10 D Œc�

Mt�1
0 , Vt .c/ D Vt . Qc/

and Lt .c/ D Lt . Qc/ then d.c/ D d . Qc/. In order to make it one to one we will use

Œd.c/; c�
lktC2Nt
lkt�n

instead of Œd.c/�lktCNt
lkt

where by Œa; b�lClength.a/Clength.b/
l

we mean the concatenation of a
and b. This can be thought of as putting a marker on d.c/. In order that the concatenation
will be in †A we need that

Q .d.c/Nt�1; c0/ > 0:

This can be done by possibly changing the last two coordinates of d.c/. This will change the
value of

�
T lkt

�0
by at most a factor of �˙4t , which is close enough to one. We will denote

by d.c/ WD . Qd.c/; c/. We still have

Œd.c/�lktC2Nt
lkt�n

� T �lkt Œb�n�n \

��
T lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

�
;

but now the map c 7! d.c/ is one to one.

In the proof of the next lemma we will make use of the fact that for every cylinder set�
Œa�lm

�c
is F .m; l/ measurable.

L 35. – For every Œb�n�n cylinder set, � > 0 and j 2 N there exists t0 2 N such that
for all t > t0,

�

0@mt=4kt[
lD1

RSC
�
4lkt ; Œb�

n
�n; j; �

�1A � 0:8� �Œb�n�n� :

Proof. – Let Œb�n�n be a cylinder set and t0 be as in Lemma 33. For all t � t0, Œc�Nt0 2 C .t/

which intersects Œb�n�n and 1 � l � mt=4kt ,�
Œc�
Nt
0 \ Œb�

n
�n

�
\
�
RSC

�
4lkt ; Œb�

n
�n; j; �

��c
� Œc�

NT
0 \ Œb�n�n \

�
Œd.c/�4lktCNt

4lkt�n

�c
:

As Q1;3 D min
˚
Qi;j W 1 � i; j � 3

	
,

��Q;Q

�
Œd.c/�

4lktCNt
4lkt�n

�
� �Q .3/Q2NtCn�1

1;3 &
1

33Nt
:
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Therefore, one has by repeated applications of (3.7) (mixing time condition),

�

0@�Œb�n�n \ Œc�Nt0 �
\

0@mt=4kt[
lD1

RSC
�
lkt ; Œb�

n
�n; j; �

�1Ac1A
� �

0@�Œb�n�n \ Œc�Nt0 �
\

8<:mt=4kt\
lD1

�
Œdc �

4lktCNt
4lkt�n

�c9=;
1A

� �
��
Œb�n�n \ Œc�

Nt
0

��mt=4ktY
1D1

h�
1C 3�3Nt

� �
1 � ��Q;Q

�
Œd.c/�

4lktCNt
4lkt

��i
� �

��
Œb�n�n \ Œc�

Nt
0

�� ��
1C 3�3Nt

� �
1 � 3�3Nt

��mt=4kt
(3.8)
�

1

t
�
��
Œb�n�n \ Œc�

Nt
0

��
:

Notice that in the application of the mixing time condition we used that

.4 .l C 1/ kt � n/ � .4lkt CNt / > .4l C 3/kt � .4l C 1/ kt D 2kt :

If t is large enough then

�

0@†An
[

C2 C.t/

C

1A < 0:1� �Œb�n�n� ;
and for all Œc�Nt0 D C 2 C .t/,

�

0@Œb�n�n \ Œc�Nt0 \
0@mt=4kt[

lD1

RSC
�
lkt ; Œb�

n
�n; j; �

�1A1A >

�
1 �

1

t

�
�
�
Œb�n�n \ Œc�

Nt
0

�
� 0:9�

�
Œb�n�n \ Œc�

Nt
0

�
:

The lemma follows from

�

0@mt=4kt[
lD1

RSC
�
lkt ; Œb�

n
�n; j; �

�1A
� �

0B@ ]
Œc�
Nt
0
2 C.t/

Œb�n�n \ Œc�
Nt
0 \

mt=4kt[
lD1

RSC
�
lkt ; Œb�

n
�n; j; �

�1CA
� 0:9

X
Œc�
NT
0
2 C.t/

�
�
Œb�n�n \ Œc�

Nt
0

�
� 0:8�

�
Œb�n�n

�
:

Proof of Theorem 32. – This is a standard approximation technique. Let j 2 N, A 2 B,
�.A/ > 0 and � > 0. Since the ratio set condition on the derivative is monotone with respect
to � and

1 < �j �
1C '

1C '�j
< 2;
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we can assume that

(A.3) 1 � �j �
1C '

1C '�j
.1˙ �/ � 2:

Since F .�n; n/ " B as n!1, there exists a cylinder set b D Œb�n�n such that

� .A \ b/ > 0:99� .b/ :

By Lemma 35 there exists t 2 N for which

�

0@b\
8<:mt=4kt[

lD1

T �4lkt b \

��
T 4lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

�9=;
1A > 0:8�.b/:

Denote by

B D b\

8<:mt=4kt[
lD1

T �4lkt b \

��
T 4lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

�9=; :
We can assume that for x 2 B, there exists C.x/ D Œc�Nt0 2 C t so that x 2 C.x/. Then by the
proof of Lemma 33 there exists d.C.x// 2 †A .2Nt C n/ such that if x 2 Œd.C.x//�4lktC2Nt

4lkt�n
,

then

(A.4)
�
T 4lkt

�0
.x/ D �j �

1C '

1C '�j
� .1˙ �/ and x 2 T �4lkt b:

Define � W B ! N

�.x/ WD inf
n
l � mt=4kt W Œx�

4lktC2Nt
4lkt�n

D Œd.C.x//�4lktC2Nt
4lkt�n

o
and S D T � W B ! S.B/ � b. We claim that S is one to one. Indeed, since the map
Œc�
Nt
0 7! d.c/ is one to one, for every x; y 2 B such that C.x/ ¤ C.y/,

ŒSy�2Nt�n D Œd.C.y//�
2Nt
�n ¤ Œd.C.x//�

2Nt
�n D ŒSx�

2Nt
�n ;

consequently Sx ¤ Sy. In addition, by the definition of �, if x ¤ y and C.x/ D C.y/ then
Sx ¤ Sy.

It follows from (A.4) and (A.3), that for all x 2 B,

S 0.x/ WD
d� ı S

d�
.x/ D �j �

1C '

1C '�j
� .1˙ �/ 2 Œ1; 2� :

Therefore d�ıS�1

d�
.y/ � 1

2
for all y 2 S.B/. A calculation shows that

�.S.B/ \ A/ > �.S.B// � �.bnA/

> �.B/ � �.bnA/

D 0:79� .b/ ;

and

�
�
S�1 .S.B/ \ A/

�
>
� .S.B/ \ A/

2
> 0:39�.b/:
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So
mt=4lktX
lD1

�

�
A \

�
T �4lktA \

��
T 4lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

��
\ Œ� D 4lkt �

�
� �

�
.B \ A/ \ S�1 .S.B/ \ A/

�
fNotice that B; S.B/ � bg

� � .B \ A/ � �
�
bnS�1 .S.B/ \ A/

�
� 0:18� .b/ ;

and thus there exists l 2 N such that

�

�
A \ T �4lktA \

��
T 4lkt

�0
D �j �

1C '

1C '�j
� .1˙ �/

��
> 0:

This proves the theorem.
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ANALYTIC NORMAL FORMS
AND INVERSE PROBLEMS FOR UNFOLDINGS

OF 2-DIMENSIONAL SADDLE-NODES
WITH ANALYTIC CENTER MANIFOLD

 C. ROUSSEAU  L. TEYSSIER

A. – We give normal forms for generic k-dimensional parametric families .Z"/" of germs
of holomorphic vector fields near 0 2 C2 unfolding a saddle-node singularity Z0, under the condition
that there exists a family of invariant analytic curves unfolding the weak separatrix ofZ0. These normal
forms provide a moduli space for these parametric families. In our former 2008 paper, a modulus
of a family was given as the unfolding of the Martinet-Ramis modulus, but the realization part was
missing. We solve the realization problem in that partial case and show the equivalence between the
two presentations of the moduli space. Finally, we completely characterize the families which have a
modulus depending analytically on the parameter. We provide an application of the result in the field
of non-linear, parameterized differential Galois theory.

R. – Nous donnons des formes normales pour les familles génériques .Z"/" à k paramètres
de germes de champs de vecteurs holomorphes au voisinage de 0 2 C2, et déployant une singula-
rité Z0 de type col-nœud, sous la condition qu’il existe une famille de courbes analytiques invariantes
déployant la séparatrice faible deZ0. Ces formes normales donnent un espace de modules pour ces fa-
milles génériques. Dans notre article de 2008, nous avions donné un module de classification pour ces
familles génériques, lequel consistait en un déploiement du module de Martinet-Ramis, mais la par-
tie réalisation était manquante. Dans cet article, nous donnons la réalisation dans ce cas spécial, et
nous montrons l’équivalence entre les deux présentations de l’espace des modules. Finalement, nous
caractérisons complètement les familles dont le module dépend analytiquement des paramètres. Nous
donnons une application du résultat en théorie de Galois paramétrique non linéaire.
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1. Introduction

Heuristically, moduli spaces of holomorphic dynamical systems not only encode but also
describe qualitatively the dynamics itself, and to some extent allow a better understanding of
remarkable dynamical phenomena. This paper is part of a large program aimed at studying
the conjugacy classes of dynamical systems in the neighborhood of stationary points (up
to local changes of analytic coordinates). Stationary points and their invariant manifolds
organize the global dynamics while degenerate stationary points organize the bifurcation
diagrams in families of dynamical systems. Stationary points of discrete dynamical systems
correspond to fixed-points of the iterated map(s), while for continuous dynamical systems
they correspond to singularities in the underlying differential equation(s).

A natural tool for studying conjugacy classes is the use of normal forms. For hyperbolic
stationary points (generic situation), the system is locally conjugate to its linear part so that
the quotient space of (local) hyperbolic systems is given by the space of linear dynamical
systems. However, for most non-hyperbolic stationary points the normalizing change of
coordinates (sending formally the system to a normal form) is given by a divergent power
series. Divergence is very instructive: it tells us that the dynamics of the original system and
that of the normal form are qualitatively different. In that respect, a subclass of singularities
that has been thoroughly studied in the beginning of the 80’s is that of 1-resonant singu-
larities: these include parabolic fixed-points of germs of 1-dimensional diffeomorphisms,
resonant-saddle singularities and saddle-node singularities of 2-dimensional vector fields, as
well as non-resonant irregular singular points of linear differential systems. These various
resonant dynamical systems share a lot of common properties, among which is the finite-
determinacy of their formal normal forms (e.g., polynomial expressions in the case of vector
fields). Another property they share is that they can be understood as the coalescence of
special “geometric objects,” either of stationary points or of a singular point with a limit
cycle in the case of the Hopf bifurcation at a weak focus.

1.1. Scope of the paper

The present work is the follow-up of [41] in which we described a set of functional moduli
for unfoldings of codimension k saddle-node vector fields Z D .Z"/" depending on a finite-
dimensional parameter " 2

�
Ck ; 0

�
. Here we focus mainly on the inverse problem and on the

question of finding (almost unique) normal forms, as we explain below.

The most basic example of such an unfolding is given by the codimension 1 unfolding
(expressed in the canonical basis of C2)

Z" .x; y/ WD

"
x2 C "

y

#
; " 2 C:(1.1)

Real slices of the phase-portraits are shown in Figure 1.1. The merging (bifurcation) occurs
at " D 0: for " ¤ 0 the system has two stationary points located at

�
˙
p
�"; 0

�
which collide

as " reaches 0.
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()
" <

0

()
" D

0

()
" >

0

F 1.1. Typical members of the simplest saddle-node bifurcation.

1.2. Modulus of classification

Each merging stationary point organizes the dynamics in its own neighborhood in a
rigid way. The local models of these rigid dynamics seldom agree on overlapping areas
and in general cannot be glued together. If this incompatibility persists as the confluence
happens, then we have divergence of the normalizing series at the limit. In the case of 1- or
2-dimensional resonant systems the normalizing series is k-summable. The divergence is then
quantified by the Stokes phenomenon: there exists a formal normalizing transformation, and
a covering of a punctured neighborhood of the singularity by 2k sectors over which there
exist unique sectorial normalizing transformations that are Gevrey-asymptotic to the formal
normalization. Comparing the normalizing transformations on intersections of consecutive
sectors provides a modulus of analytic classification. This modulus takes the form of Stokes
matrices for irregular singularities of linear differential systems and functional moduli for
singularities of nonlinear dynamical systems (see for instance [20]).

The classification of resonant systems may seem rather mysterious. But if we remember
that we are studying the merging of “simple” singularities, then it becomes natural to unfold
the situation and study the “multiple” singularity as a limiting case. Indeed, analyzing
unfoldings sheds a new light on the “complicated” dynamics of the limiting systems.
The idea was suggested by several mathematicians, including V. Arnold, A. Bolibruch
and J. Martinet [30]. It was put in practice for unfoldings of saddle-node singularities by
A. Glutsyuk [15] on regions in parameter space over which the confluent singularities are
all hyperbolic. The system can be linearized in the neighborhood of each singularity, and
the mismatch in the normalizing changes of coordinates tends to the components of the
saddle-node’s Martinet-Ramis modulus [31] when the singularities merge. But the tools were
still missing for a full classification of unfoldings of multiple singularities, in particular on a
full neighborhood in parameter space of the bifurcation value.

The thesis of P. Lavaurs [24] on parabolic points of diffeomorphisms opened the way
for such classifications, for he studied the complementary regions in parameter space. The
first classification of generic unfoldings of codimension 1 fixed-point of diffeomorphisms
regarded the parabolic point [29], and then the resonant-saddle and saddle-node singu-
larities of differential equations [37, 38]. The first classification of generic unfoldings of
codimension k saddle-nodes was done by the authors [41] using the visionary ideas of
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A. Douady, J.F. Estrada and P. Sentenac [11, 2] that R. Oudkerk had used on some regions
in parameter space in his thesis [34]. Then followed classifications of generic unfoldings
of codimension k parabolic points [40] and of non-resonant irregular singular points of
Poincaré rank k differential systems [18].

In the spirit of this general context we obtained in [41] a (family of) functional data

.m"/" D
�
f s
" ;  

s
" ;  

n
"

�
"
:

For " D 0 this data coincides with the saddle-node’s modulus [31, 49, 44]. Although the
original work of J. Martinet and J.-P. Ramis already covered parametric cases, it was then
assumed that the (formal) type of the singularity remained constant. On the contrary we were
interested in bifurcations, which are deformations where the additional parameters change
the type (or number) of singularities. Our main contribution was to reconcile Glutsyuk’s and
Lavaurs’s viewpoint and devise a uniform framework valid for a complete neighborhood of
the bifurcation value of the parameter. That being said, the very nature of our geometric
construction prevented the modulus to be continuous on the whole parameter space. This
space needs to be split into a finite number of cells whose closures cover a neighborhood of
the bifurcation value, on which the modulus is analytic on "with continuous extension to the
closure.

1.3. The inverse (or realization) problem

At the time of the first works on the question, identifying the moduli space was still
out of reach. Performing this identification is called the inverse problem. It was first solved
for codimension 1 parabolic fixed-points and resonant-saddle singularities [9, 39], as well
as for the irregular singularities of linear differential systems with Poincaré rank 1 [23].
For codimension k the realization problem was first solved for unfoldings of non-resonant
irregular singular points of Poincaré rank k [19]. But the realization question is still open for
unfoldings of codimension k parabolic points.

Let us formulate the inverse problem in the case at hands.

I . – Among all elements of the vector space M to which m D .m"/"
belongs, to identify those coming as moduli of a saddle-node bifurcation.

The present paper answers completely this challenge in the case of bifurcations with a
persistent analytic center manifold. The common feature to that case and the one studied
in [19] is that solving the inverse problem ultimately provides unique normal forms (privi-
leged representative in each analytic class).

Having persistent analytic center manifold can be read in the modulus as the condition
 n D Id. Although any element of the specialization of M at " D 0 can be realized as the
modulus of a saddle-node vector field [31, 44], this property does not hold anymore for
bifurcations: the typical element of M \ f n D Idg can never be realized as a modulus
of saddle-node bifurcation. Let us explain how this is so. It is rather easy to get convinced
that there is no obstruction to realize any given deformation .m"/"2cl. E / of a saddle-node’s
modulus m0 over any given cell E in parameter space. By this we mean that for each fixed
" 2 cl . E / it is possible to find a holomorphic vector field Z" on a neighborhood U of .0; 0/
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such that comparisons between its sectorial normalizing maps coincide with m". Further-
more the dependence " 7! Z" has the expected regularity on the cell’s closure, and the
neighborhood U is independent on ". The sole obstacle lies therefore in gluing these cellular
realizations together over cellular intersections in order to obtain a genuine analytic para-
metric familyZ whose modulus agrees withm. Favorable situations can be characterized by
a strong criterion imposed on m, called compatibility condition. A necessary and sufficient
condition is that two realizations over different cells in parameter space be conjugate over
the intersection of the two cells, thus allowing correction to a uniform family. One difficulty
is to express this condition on the abstractly encoded dynamicsm (that is, before performing
the cellular realization). The compatibility condition takes the simple form that the abstract
holonomy pseudogroups generated by m be conjugate, a condition which can easily be
expressed in terms of the modulus. The general case of a bifurcation without analytic center
manifold remains open, and we hope to address it in the near future.

1.4. Summary of the paper’s content

Here we review the content of the present work. For precise statements of our main results,
as for more detailed proof techniques, we refer to Section 2. Recall that one can associate two
dynamical data to a vector field X D A @

@x
C B @

@y
:

— the trajectories of X parametrized by the complex time in the associated flow-system(
Px D A .x; y/ ;

Py D B .x; y/ I

— the underlying foliation FX whose leaves coincide with orbits of X , obtained by
forgetting about a particular parametrization of the trajectories. The foliation really
is attached to the underlying non-autonomous differential equation

A .x; y/ y0 D B .x; y/

rather than to the vector field itself.

The action of (analytic or formal) changes of variables ‰ on vector fields X by conjugacy is
obtained as the pullback

‰�X WD D‰�1 .X ı‰/ :

The vector fields X and ‰�X are then (analytically or formally) conjugate. When two folia-
tions FX and F eX are conjugate (when X is conjugate to a scaling of QX by a non-vanishing
function) it is common to say that X and eX are orbitally equivalent. While for unfoldings we
also allow parameter changes, we restrict our study to parameter / coordinates changes of
the form

‰ W ."; x; y/ 7�! .� ."/ ; ‰" .x; y// :

In this paper we focus on families Z D .Z"/"2.Ck ;0/ unfolding a codimension k saddle-
node singularity for " D 0 and the study of their conjugacy class (resp. orbital equivalence
class) under local analytic changes of variables and parameter (resp. and scaling by non-
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vanishing functions). Such families can always be brought by a formal change of variables
and parameter into the formal normal form (1)

u" .x/

�
P".x/

@

@x
C y

�
1C �"x

k
� @

@y

�
;

where

P".x/ D x
kC1
C "k�1x

k�1
C � � � C "1x C "0; k 2 N

u" .x/ D u0;" C u1;"x C � � � C uk;"x
k ; u0;" ¤ 0

and " 7!
�
�"; u0;"; : : : ; uk;"

�
is holomorphic near 0. A proof of this widely accepted

result seems to be missing in the literature, hence we provide one.

The first step in our previous work [41] consisted in preparing the unfolding .Z"/" by
bringing it in a form where the polynomial P" determines the @

@x
-component. Formal and

analytic equivalences between such forms must consequently preserve the coefficients of P",
which then become privileged canonical parameters. This process eliminates the difficulty
of dealing with changes of parameters and allows to work for fixed values of ". Then we
established a complete classification. The modulus was composed of two parts: the formal
part given by the formal normal form above, and the analytic part given by an unfolding of the
saddle-node’s functional modulus. The formal / analytic part of the modulus itself consists
in the Martinet-Ramis orbital part (characterizing the vector field up to orbital equivalence)
and an additional part classifying the time. For example �" is the formal orbital class while
u" is the formal temporal class.

We completely solve the realization problem for orbital equivalence (i.e., for foliations)
when each Z" admits a single analytic invariant manifold passing through every singularity.
But we do more: we provide almost unique “normal forms” (the only degree of freedom being
linear transformations in y), which are polynomial in x when �0 … R�0. In that generic
situation, an unfolding is orbitally equivalent to an unfolding over P1 .C/�.C; 0/ of the form

P".x/
@

@x
C y

0@1C �"xk C kX
jD1

xjRj;".y/

1A @

@y
;

where theRj are analytic in both the geometric variable y and the parameter ". In this generic
case the construction is a direct generalization of that of F. Loray’s [26, Theorems 2 and 4]
for " D 0 and k D 1, and only involves tools borrowed from complex geometry. In the
non-generic case (when �0 � 0) we also provide almost unique “normal forms,” which are
in some sense global in x: in this case the foliation is defined on a fiber bundle of negative
degree ��.kC 1/ < �0 for some positive � over P1 .C/ and is induced by vector fields of the
form

(1.2) X" .x; y/ WD P".x/
@

@x
C y

0@1C �"xk C kX
jD1

xjRj;"
�
P �" .x/y

�1A @

@y
:

(1) As is customary we write vector fields in the form of derivations, by identifying the canonical basis of C2 with�
@
@x
; @
@y

�
.
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This result offers a new presentation of the moduli space which has the advantage over that
of [41] to be made up of functions analytic in the parameter (it does not require the splitting
of the parameter space into cells).

As far as normal forms are concerned, we provide some also for the family of vector
fields. This requires normalizing the “temporal part”. The method used is an unfolding of
the construction of R. Schäfke and L. Teyssier [43] performed for " D 0. As a by-product we
provide an explicit section of the cokernel of the derivation X" (i.e., a linear complement of
the image of X" acting as a Lie derivative on the space of analytic germs).

An important observation is that the normalization we just described does not involve
classification moduli in any way (nor does it rely on the analytical classification for that
matter), at least in the generic case �0 … R�0. Therefore it does not answer the inverse (or
realization) problem which is posed in terms of classification moduli. This leads us to discuss
the compatibility condition.

As we mentioned earlier we can realize any unfolding m D .m"/"2cl. E / of a saddle-node’s
modulus m0 over a cell E in parameter space, but we have such control of the construction
that we can guarantee this realization is an unfolding in normal form (1.2), save for the
fact that the functions " 7! Rj;" are merely analytic on E with continuous extension to
the closure. It is possible to express the holonomy group of X" with respect to the analytic
center manifold (the geometrical dynamics) as a representation of an abstract group of words
formed with elements of the modulusm (acting in orbits space). The compatibility condition
simply states that the holonomy pseudogroups over the intersection of two neighboring cells
are conjugate by a tangent-to-identity mapping. If the condition is satisfied then two cellular
realizations are conjugate for values of the parameter in the cells’ intersection. Usually when
such a situation occurs, we need to apply a conjugacy to the vector fields so that they match
in the new coordinates. Here no need for it. Indeed, since the realizations over the different
cells are in normal form, they necessarily are conjugate by a linear map. The additional
hypothesis in the compatibility condition that the conjugating map is tangent-to-identity
allows to conclude that the cellular unfoldings actually agree and therefore define a genuine
unfolding analytic in " 2

�
Ck ; 0

�
.

Our analysis presents in an effective way the relationship between Rousseau-Teyssier
classification moduli and the coefficients of the normal forms, so that numerical, and in some
cases symbolic, computations can be performed. Also, we have refined our understanding of
the modulus compared to the presentation in [41]. The number of cells is now the optimal
number Ck D 1

kC1

�
2k
k

�
(the k-th Catalan’s number) given by the Douady-Estreda-Sentenac

classification [11, 10]. Moreover we have reduced the degrees of freedom: instead of having
the modulus given up to conjugacy by linear functions depending both on " and the cell, now
the modulus is given up to conjugacy by linear functions depending only on " in an analytic
way. This new equivalence relation in the presentation of the modulus was essential in getting
the realizations over the different cells to match when the compatibility condition is satisfied.

Last but not least we were able to completely characterize the moduli that depend analyt-
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ically on the parameter. These only occur when k D 1 and their normal forms are given by
particular Bernoulli unfoldings (Definition 2.11)

(1.3) P" .x/
@

@x
C y

�
1C �"x

k
C xr" .x/

�
P" .x/

� y
�d� @

@y

with d 2 N and d� 2 Z (in particular � must be a rational constant, which is seldom the
case). This proves that the compatibility condition is not trivially satisfied by every element
of M \ f n D Idg. On the contrary, the typical situation is that of moduli which are
analytic and bounded only on single cells. This reminds us of the setting of Borel-summable
divergent power series, in particular in the case k D 1 where the cells are actual sectors and
it can be proved that the moduli are sectorial sums of 1

2
-summable power series (as in [9]).

When k > 1 the lack of a theory of summation in more than one variable prevents us from
reaching similar conclusions, although the moduli are natural candidates for such sums and
a general summation theory should probably contain the case we studied here. We reserve
such considerations for future works, perhaps using the theory of polynomial summability
recently introduced by J. Mozo and R. Schäfke [33, 5].

1.5. Applications

Our main results can be used to solve problems outside the scope of finding normal forms
or addressing the local inverse problem. Let us mention two applications, the second of which
we develop in Section 2.3.

The first (and most straightforward) one concerns the global inverse problem, also known
as non-linear Riemann-Hilbert problem, posed by Y. Ilyashenko and S. Yakovenko in [20,
Chapter IV]. Being given a (germ of a) complex surface M seen as the total space of a
fiber bundle over a divisor P1 .C/ � M , the problem is to characterize the holonomy
representations of complex foliations on M tangent to (and regular outside) the divisor and
transverse to the fibers, except over kC2 singularities (which are all assumed non-degenerate)
where the fibers are invariant by the foliation. Using a sibling of Loray’s technique, they solve
it for fiber bundles of degree 0 and�1, although they only provide details for the former case.
Our results open the way to generalizations in several directions:

— allowing saddle-node(s) with central manifold along the divisor and adding to the
holonomy representation the components of the modulus of the saddle-nodes, simi-
larly to the generalized linear Riemann-Hilbert problem when irregular singularities
are allowed;

— allowing foliations depending analytically on the parameter;

— considering realizations on fiber bundles of negative degree: we obtain here realizations
on bundles with degree given by an arbitrary non-positive multiple of kC1 (see Conjec-
ture 8.5 for a brief discussion of possible improvement to any non-positive degree);

— allowing resonant nodes: in our paper all nodes were linearizable because their
Camacho-Sad index was greater than 1. But nodes with smaller Camacho-Sad index
pose no additional problem.

We propose to address this matter in the near future.
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The other application regards differential Galois theory: heuristically, classification
invariants carry Galoisian information (pertaining to the integrability in Liouvillian closed-
form). For instance, in the limiting case of a saddle-node singularity it is well-known that
Martinet-Ramis moduli play the same role for non-linear equations as Stokes matrices
do for linear systems near an irregular singularity. A Galoisian formulation of this fact in
terms of Malgrange groupoid [28, 27] can be found in the work of G. Casale [6]. When the
differential equation depends on a parameter ", the recent thesis of D. Davy describes a
form of “semi-continuity” for specializations of its parametrized Malgrange groupoid M.
Davy proves that the size of the groupoidM" is constant if " is generic, more precisely if the
parameter does not belong to a (maybe empty) countable union � of hypersurfaces, while
for " 2 � the groupoidM" can only get smaller. The present study illustrates and refines
this phenomenon.

Consider the extreme case P" .x/ @
@x
C y

�
1C �"x

k C "R" .x; y/
�
@
@y

for R arbitrary: the
vector field X0 is surely “not less integrable” (it is the formal normal form) than for " ¤ 0.
This is actually the only possible kind of degeneracy near the saddle-node bifurcation, for
we will establish that�\

�
Ck ; 0

�
is either empty or a germ of an analytic variety. We obtain

the latter property by unfolding a result by M. Berthier and F. Touzet [1], characterizing
vector fields admitting a local non-trivial Liouvillian first integral near an elementary singu-
larity. We deduce that normal forms of integrable unfoldings are necessarily a Bernoulli
unfolding (1.3). Both proofs are very different in nature, and we obtain a particularly short
one by framing the problem for normal forms, revealing the usefulness of their simple
expression and of the explicit section of their cokernel.

2. Statement of the main results

In all that follows " is the parameter, belonging to some
�
Ck ; 0

�
for k 2 N, and we

study (holomorphic germs of) a parametric family of (germs at 0 2 C2 of) vector fields
Z D .Z"/"2.Ck ;0/ for which a saddle-node bifurcation occurs at " D 0. That is to say, when

" D 0 the vector field Z0 is of saddle-node type near the origin of C2:

— 0 is an isolated singularity of Z0,

— the differential at 0 of the vector field has exactly one non-zero eigenvalue (the singu-
larity is elementary degenerate).

The family Z D .Z"/" is called a holomorphic germ of an unfolding of Z0. We study in
details only “generic” unfoldings, those which possess the “right number” of parameters to
encode the bifurcation structure. Roughly speaking we require that for an open and dense
set of parameters the vector fieldZ" have kC 1 distinct non-degenerate singular points. The
latter merge into a saddle-node singularity of multiplicity k C 1 (codimension k) as " ! 0.
Let us make these statements precise.

D 2.1. – An unfolding Z of a codimension k 2 N saddle-node Z0 is generic
if there exists a biholomorphic change of coordinates and parameter such that, in the
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new coordinates .x; y/ and new parameter ", the singular points of each Z" are given
by P".x/ D y D 0, where

P".x/ WD x
kC1
C "k�1x

k�1
C � � � C "1x C "0:

R 2.2. – Generic families are essentially universal. In particular, the bifurcation
diagram of singular points is the elementary catastrophe of codimension k (in the complex
domain).

The analytic unstable manifold of Z0, tangent at 0 to the eigenspace associated to the
non-zero eigenvalue of its differential, is called the strong separatrix. The other eigenspace
corresponds to a “formal separatrix” fy Dbs0 .x/g called the weak separatrix (generically
divergent [36], always summable in the sense of Borel [17]). We say that a saddle-node is
convergent or divergent according to the nature of its weak separatrix.

D 2.3. – We say that the generic unfolding Z is purely convergent when there
exists a holomorphic function

s W
�
Ck ; 0

�
� .C; 0/ �! C

."; x/ 7�! s" .x/

such that:

— each graph S " of s" is tangent to Z" and contains Sing .Z"/ (the singular set of Z",
consisting in all zeros of Z"),

— S 0 is the weak separatrix of Z0 (in particular the latter is convergent).

We call Convergentk the set of all such unfoldings.

R 2.4. – 1. By applying beforehand the change of variables

."; x; y/ 7! ."; x; y C s" .x//

to the unfolding we can always assume that fy D 0g is invariant by Z" for all
" 2

�
Ck ; 0

�
.

2. There exist unfoldings Z of a convergent saddle-node Z0 such that, for all " close
enough to 0, no analytic invariant curve S " exist. We use the term “purely convergent”
to insist that in the present case every vector field Z" for " 2

�
Ck ; 0

�
must admit an

analytic invariant curve.

2.1. Normalization of purely convergent unfoldings

For z a finite-dimensional complex multivariable we write C fzg the algebra of convergent
power series in z, naturally identified with the space of germs of a holomorphic function at 0.
We extend this notation in the obvious manner so that C f"; xg is the space of convergent
power series in the k C 1 complex variables "0; : : : ; "k�1 and x.
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2.1.1. Formal classification. – We first give an unfolded version of the well-known Bruno-
Dulac-Poincaré normal forms [3, 13, 12]. Here we do not assume thatZ is purely convergent.

F N T. – Letk 2 Nbe given. For " D ."0; : : : ; "k�1/ 2 Ck

define the polynomial

P" .x/ WD x
kC1
C

k�1X
jD0

"jx
j :

Take a generic unfolding Z of a saddle-node of codimension k. There exists .�; u/2C f"g � C f"; xg
with ."; x/ 7! u" .x/ polynomial inx of degree at mostk and satisfyingu0 .0/ ¤ 0, such thatZ is
formally conjugate to the formal normal formbZ WD u bX;(2.1)

where bX" .x; y/ WD P" .x/
@

@x
C y

�
1C �"x

k
� @

@y
(2.2)

defines the formal orbital normal form. Notice that these vector fields are polynomial in .x; y/
and holomorphic in " 2

�
Ck ; 0

�
.

In general the parameter of the normal formbZ differs from the original parameter of Z.
However the formal change of parameter " 7! � ."/ happens to be actually analytic (as
proved in [37, Theorem 3.5] and recalled in Theorem 4.1). Moreover such normal forms are
essentially unique, in the sense that among all formal conjugacies only some linear changes
of variables and parameter preserve the whole family. For example, transforming x into ˛x
for some nonzero ˛ 2 C in P" @@x yields the vector field

1

˛
P" .˛x/

@

@x
D ˛kPe" .x/ @

@x

wheree" WD �
"j˛

1�j
�
j<k

. Therefore by taking ˛k D 1 the linear change .e"; x/ 7! ."; ˛x/

transforms
�bX"

�
"

into
�bXe"�e". It turns out this is the only degree of freedom for formal

changes of parameters (see Section 4), which makes the parameter of the normal form
special.

D 2.5. – The parameter of the normal form bZ (modulo the action of Z=kZ

on ."; x/) is called the canonical parameter of the original unfolding Z. In all the following a
representative " of the canonical parameter is always implicitly fixed and forbidden to change.

As a consequence, two formal normal forms with formal invariants .�; u/ and .e�;eu/ as
above are (for fixed canonical parameter "):

1. orbitally formally equivalent if, and only if, they have the same formal orbital invariant
� D e� ;

2. formally conjugate if, and only if, they have the same formal invariant .�; u/ D .e�;eu/.
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2.1.2. Analytical normalization

D 2.6. – For k 2 N a positive integer let us introduce the functional space in
the complex multivariable ."; x; v/ 2 CkC2:

Sectionk fvg WD

8<:f" .x; v/ D v kX
jD1

f";j .v/ x
j
W f";j .v/ 2 C f"; vg

9=; :
We let v figure explicitly in the notation Sectionk fvg since this variable (and this variable
only) will be subject to further specification.

N T. – For a given k 2 N we fix a formal orbital invariant
� 2 C f"g and choose � 2 Z�0 such that �0 C .k C 1/ � … R�0. For every Z 2 Convergentk
with formal invariant .�; u/, there exist Q;R 2 Sectionk fP �yg such that Z is analytically
conjugate to

Z WD
u

1C uQ
X(2.3)

where

X WD bX CRy @
@y
:(2.4)

R 2.7. – In case � D 0 (which can be enforced whenever the generic condition
�0…R�0 holds) normal forms induce foliations with holomorphic extension to P1 .C/�.C; 0/.
This is no longer true if � > 0 and if R is not polynomial in the y-variable.

Specializing the theorem to " D 0, we recover the earlier results [43, 26]. Let us briefly
present the unfolded geometric construction of F. Loray (performed at an orbital level
in [26] when k D 1) to get the gist of the argument. We define a holomorphic family of
abstract foliated complex surfaces .M ; F / D .M "; F "/"2.Ck ;0/ given by two charts. The

first one is a domain U0
WD
˚
0 � jxj < �0

	
� .C; 0/ together with some arbitrary convergent

unfolding Z, provided the following non-restrictive properties (see [41]) are fulfilled for
all " 2

�
Ck ; 0

�
:

— Z" is holomorphic on the domain and has at most kC1 singular points in U0 (counted
with multiplicity in case of saddle-nodes) each one located within U0

\ f0 � jxj < 1=�1g

for some �1 > 1=�0,

— Z" is transverse to the lines fx D cg whenever P" .c/ ¤ 0,

— Z" leaves fy D 0g invariant.

The other chart is a domain U1 WD f1=�1 < jxj � 1g � .C; 0/ equipped with a folia-
tion F 1"

— having a single, reduced singularity at .1; 0/,

— otherwise transverse to the lines fx D cstg,

— leaving fy D 0g invariant.
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Biholomorphic fibered transition maps fixing fy D 0g exist on the annulus U0
\ U1

precisely when Z" and F 1" have (up to local conjugacy) mutually inverse holonomy maps
above, say, the invariant circle �0�1C1

2�1
S1�f0g. The resulting complex surface M " is naturally

a holomorphic fibration by disks over the divisor L ' P1 .C/. In other words M " is a germ
of a Hirzebruch surface, classified at an analytic level [22, 48, 14] by the self-intersection
�b� 2 Z�0 of L in M ". From the compactness of L stems the polynomial-in-x nature of
the foliation F ". Other considerations then allow to recognize that F is (globally conjugate
to a family of foliations) in normal form (2.3).

Let us explain where F 1" comes from, and at the same time how the Hirzebruch classb� D .k C 1/ � is involved. When the construction of .M ; F / is possible, the global holomor-
phic foliation F " leaves the compact divisor L invariant and Camacho-Sad index formula [4]
applies. The sum of indices of Z" at its k C 1 singularities, with respect to L , is �" so F 1"
must have index� .�" Cb�/. By assumption the singularity at .1; 0/ can therefore never be a
(saddle-)node. Invoking the realization result of [43, Section 4.4] (more precisely in the chart
near .1; 0/) it is always possible to find a foliation F 1" with the desired properties. On the
contrary when �" Cb� � 0 then no such F 1" may exist at all except in very special cases
(detailed in [26, Theorem 2]) since, for instance, the holonomy along L of a node is always
linearizable while the weak holonomy ofZ" has no reason to be linearizable. We discuss this
problem in more details while dealing with the non-linear Riemann-Hilbert problem below.

Therefore one can always take � WD 0 except when �0 � 0, which accounts for the “twist”
P" .x/

� y �x!1 xb�y in normal forms (2.3).

2.1.3. Normal forms uniqueness. – To fully describe the quotient space (moduli space)
of Convergentk by analytical conjugacy / orbital equivalence, the Normalization Theorem
must be complemented with a description of equivalence classes within the family of normal
forms (2.3), leading us to discuss its uniqueness clause.

D 2.8. – 1. For Z 2 Convergentk we denote

n .Z/ WD .�; u;R;Q/(2.5)

o .Z/ WD .�;R/(2.6)

respectively the normal invariant of Z and its normal orbital invariant, where the func-
tional tuples on the right-hand side are given by the Normalization Theorem.

2. For c 2 C f"g� and f 2 C f"; x; yg define

c�f WD ."; x; y/ 7�! f" .x; c"y/ :

We extend component-wise this action of C f"g� to tuples of functions such as n and o
above.

U T. – 1. Two normal forms (2.3) associated to the same fixed � and
moduli (2.5) n and en are analytically conjugate (by a change of coordinates fixing the
parameter) if, and only if, there exists c 2 C f"g� such that c�n Den. For any conjugacy
‰ W ."; x; y/ 7! ."; ‰" .x; y// there exists a unique t 2 C f"g such that

‰ D c�ˆtZ ;
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where ˆt
Z

is the local flow of Z at time t 2 C. Moreover it is fibered in the x-variable if,
and only if, t D 0. In that case ‰ is linear:

‰ D c�Id W ."; x; y/ 7�! ."; x; c"y/ :

2. Let o andeo be the corresponding orbital invariants. The normal forms are analytically
orbitally equivalent (by a change of coordinates fixing the parameter) if, and only if, there
exists c 2 C f"g� such that c�o Deo. For any orbital equivalence ‰ there exists a unique
F 2 C f"; x; yg such that

‰ D c�ˆFZ :

Moreover ‰ is fibered in the x-variable if, and only if, F D 0. In that case ‰ is linear.

R 2.9. – In particular normal forms (2.3) are unique when only tangent-to-
identity in the y-variable, fibered in the x-variable conjugacies are allowed.

Again the proof is largely based on the strategy of F. Loray introduced in [26], although
the actual implementation in the parametric case calls for subtle adaptations. The idea is to
extend any local and fibered conjugacy between normal forms to a global conjugacy on a
“big” neighborhood of L , from which it easily follows that only linear maps can do that.

2.2. Inverse problem

For given k 2 N we can split the parameter space
�
Ck ; 0

�
intoCk D 1

kC1

�
2k
k

�
open cells E `

such that [
`

E ` D
�
Ck ; 0

�
n�k ;

where �k is the set of parameters " for which P" has at least a multiple root (�k is the
discriminant curve). We recall that we can associate [41] an orbital modulus to a purely
convergent unfolding Z

m .Z/ WD .m`/1�`�Ck

m` WD
�
�
j;s
`

�
j2Z=kZ

where for each j 2 Z=kZ and each ` the map

."; h/ 2 E ` � .C; 0/ 7�! �
j;s
`;"
.h/

is holomorphic, vanishes along fh D 0g and admits a continuous extension to cl . E `/�.C; 0/.

R 2.10. – 1. The upper index “s” is purely notational and refers to the fact that the
function �j;s

`;"
comes from the j -th “s”addle intersection, where the dynamics behaves

very much like a saddle point.

2. The diffeomorphisms  j;s
`;"

, which unfold the components  j;s0 of the (classical)

Martinet-Ramis modulus, are given by  j;s
`;"
.h/ D h exp

�
2i��"
k
C �

j;s
`;"
.h/
�

.
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Let us write H ` fhg the vector space of all such functions, so that

m .Z/ 2
Y
`

H ` fhg
k :

The data m .Z/ is a complete orbital invariant for the local analytic classification of purely
convergent unfoldings.

2.2.1. Orbital realization. – The definition of the compatibility condition involves notions
going beyond the scope of the present summarized statements. We refer to Section 7.3 for a
precise definition. Instead let us use the following terminology.

D. – We say that .�;m/ 2 C f"g �
Q
` H ` fhg

k is realizable if there exists a
generic convergent unfoldingZ with formal orbital class � and orbital modulusm D m .Z/.

For the sake of completeness, let us state the following fundamental result even though all
material was not properly introduced.

O R T. – Let � 2 C f"g be given. A functional data
m 2

Q
` H ` fhg

k yields a realizable .�;m/ if, and only if, .�;m/ satisfies the compatibility
condition (presented in Definition 7.16).

Although it is not directly used in the present paper, considerations akin to those from [43]
show that the map sending a normal form to its orbital modulus

o D .�;R/ 7�! .�;m/

is upper-triangular, in the sense that the n-th-jet of m` with respect to h is completely deter-
mined by � and the n-th-jet of R with respect to y. In that sense passing from modulus to
normal form is a (non-effective) computable process. In the case k D 1 we show how to
compute the diagonal entries. More details on this topic can be found in Section 10.1.

2.2.2. Moduli which are analytic with respect to the parameter. – Our final main result proves
that the compatibility condition defines a proper subset of the vector space C f"g�

Q
` H ` fhg

k .
Let us start with a definition.

D 2.11. – 1. A Bernoulli vector field of index d 2 Z��1 takes the form

X .x; y/ D a .x/
@

@x
C

�
b .x/C c .x/ yd

�
y
@

@y

for holomorphic a; b; c 2 C fxg.

2. A Bernoulli unfolding is a saddle-node unfolding .X"/" with members of the special
form

X" D bX" C g" .x/ y
dC1 @

@y

for some analytic germ ."; x/ 7! g" .x/ 2 C f"; xg. In particular each X" is a Bernoulli
vector field.

R 2.12. – Such a vector field is named that way because the underlying non-
autonomous differential equation is Bernoulli:

a .x/ y0 D b .x/ y C c .x/ ydC1:
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P A O M T. – Let there be given� 2 C f"g
and m D .m`/` 2

Q
` H ` fhg

k . Assume m is holomorphic, in the sense that m` DM j E `�.C;0/
for some M 2 hC f"; hgk . The following conditions are equivalent:

1. .�;m/ satisfies the compatibility condition,

2. either m D 0, or k D 1 and there exists d 2 N, ˛ 2 C f"g n f0g such that

� d� 2 Z (in particular � is a rational constant),

� M .h/ D � 1
d

log
�
1 � ˛hd

�
.

If one of the conditions is satisfied and m ¤ 0, then .m`/` can be realized by a Bernoulli
unfolding:

X " D
bX" C r"xP" .x/

�d ydC1
@

@y

for some r 2 C f"g n f0g.

R 2.13. – By letting C f"g� act linearly through ."; x; y/ 7! ."; x; c"y/ we may
normalize further r to some "� for � 2 Z�0. See also Section 10.1. Observe that r" in the
normal form does not depend on x because k D 1.

2.3. Application: non-linear differential Galois theory

M. Berthier and F. Touzet [1] proved that the Martinet-Ramis modulus of a convergent
saddle-node vector field admitting non-trivial Liouvillian first integrals [35] must be a rami-

fied homography h 7! ˛h
�
1C ˇhd

��1=d
, from which they deduce that the vector field is

conjugate to a Bernoulli vector field. It is indeed straightforward to compute the modulus
of a Bernoulli vector field (by solving explicitly the underlying differential equation) and
observe that it is a ramified homography, and that all such ramified homographies are
reached this way. (We refer to Lemma 9.3 for the computation.)

Roughly speaking Liouvillian integrability corresponds to differential equations admit-
ting “closed-form” solutions obtained by iteratively taking quadrature (or exponential
thereof) of elements of (algebraic extensions of) the base-field (here, meromorphic functions
on a polydisk containing P�1" .0/ \ fy D 0g).

I T. – Let .Z"/" be a generic, purely convergent saddle-node
unfolding and denote by L the germ of set consisting in those " 2

�
Ck ; 0

�
for which Z" admits

a Liouvillian first integral. The following statements are equivalent.

1. The locus of integrability L is full: L D
�
Ck ; 0

�
.

2. Its (analytic) Zariski closure is full: L
Zar
D
�
Ck ; 0

�
.

3. Its orbital normal form X is a Bernoulli unfolding.

R 2.14. – 1. The case L
Zar
¤

�
Ck ; 0

�
corresponds to L being a germ at 0 of

a proper analytic subvariety. Then L is the locus of parameters for which the
normal form is Bernoulli. For instance in case of the normal form given by
R" .t/ WD t

d C L ."/ tdC1 we have L D L�1 .0/, as we discuss after the proof of
the theorem.
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2. In the case k D 1 the second condition is equivalent to any of the following three
conditions: the germ L accumulates on 0, L is infinite, L ¤ f0g.

Proof. – The property of having a non-trivial Liouvillian first integral is both orbital
and invariant by change of analytic coordinates, so we do not lose generality by taking
Z D X in normal form (2.4). Integrability is equivalent to the existence of a Godbillon-
Vey sequence [16] of length at most 2, that is to the existence of two non-zero meromorphic
1-forms ! and � for which

d� D 0

d! D ı! ^ �; ı 2 f0; 1g

!
�

X
�
D 0:

(The multivalued map H WD
R

exp
�
ı
R
�
�
! is indeed a Liouvillian first integral of X ,

obtained by quadrature of closed 1-forms.) This in turn is (almost) equivalent to solving for
meromorphic, transverse Y ¤ 0 in the Lie-bracket equation�

X ; Y
�
D ıY; ı 2 f0; 1g ;(2.7)

since the dual basis .�; !/ of
�

X ; Y
�

is a Godbillon-Vey sequence and vice versa. There is a
subtlety here, because X may fail to meet this condition while there could exist an integrating
factor V for which V X does. We deliberately ignore this eventuality, because the case V ¤ 1
can be deduced from the particular case V D 1 by a direct (albeit cumbersome) adaptation.
For the same reason we only deal with the case �0 … R�0.

The implication (1)) (2) is trivial. The implication (3)) (1) comes from Remark 9.4,
where a Liouvillian first-integral is computed explicitly for all " 2

�
Ck ; 0

�
. Alternately one

can compute the Godbillon-Vey sequence as the dual basis of

.V X ; Y / WD

 
1 � �xk

d
X ; exp

 
d

Z x

0

�2z2k

1 � �zk
�

dz
P .z/

!
ydC1

@

@y

!
:

Observe that V X is in normal form and its temporal modulus is trivial.

Let us prove (2)) (3). The strategy is the following: we first show that the vector field
is Bernoulli for each " 2 L , then we invoke the analyticity of the normal form and the

fact that L
Zar

is full to cover a whole neighborhood of 0 in parameter space. Hence, let us
fix " 2 L and drop the index " altogether. According to the above discussion one can find
ı 2 f0; 1g and a vector field

Y D A .x; y/
@

@y
C B .x; y/ X

solving (2.7) for two functions A ¤ 0 and B meromorphic on a polydisk containing
P�1 .0/ \ fy D 0g. From (2.7) we deduce the relations8<:X � B D ıB;

X � A D

�
ı C 1C �xk C @yR

@y

�
A:

(2.8)
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The second equation tells us that fA D 0g [ fA D1g is a union of separatrices of X ,
therefore of the form

A .x; y/ D ydC1U .x; y/
Y

P.z/D0

.x � z/`.z/ ;

for some choice of d; ` .z/ 2 Z and for some holomorphic and never vanishing function U .
Let us prove that R D r .x/ yd , from which follows either d 2 N or R D 0.

The last equation of (2.8) becomes

X � logU D ı � d
�
1C �xk

�
�

X
P.z/D0

` .z/
P .x/

x � z
C

�
y
@R

@y
� dR

�
;

because X � logy D 1 C �xk C R. Evaluating this identity at any one of the k C 1 points
.x; y/ D .x; 0/ such that P .x/ D 0 yields 0 D ı � d

�
1C �xk

�
� ` .x/ P 0 .x/, since on the

one hand R and y @R
@y

vanish when y D 0 while on the other hand ` .z/ P.x/
x�z

evaluates to 0 if
z ¤ x and to ` .x/ P 0 .x/ otherwise. As a consequence we have equality of the polynomialsP
P.z/D0 ` .z/

P.x/
x�z
D ı � d

�
1C �xk

�
of degree k. Therefore

X � logU D y
@R

@y
� dR :

In the course of Section 6 we show that im
�

X �
�
\ Sectionk fyg D f0g (see Remark 6.3).

Hence, the fact that y @R
@y
� dR 2 xyC Œx�<k fyg D Sectionk fyg lies in the image of X � can

only mean y @R
@y
� dR D 0. From this we deduce at once that

R .x; y/ D xr .x/ yd ; r 2 C Œx�<k :

The condition that, for a specific ", the vector field X " be Bernoulli corresponds to the
vanishing of all coefficients in R" of yn but for n D d . Since ."; y/ 7! R" .y/ is analytic with
respect to " and L

Zar

D
�
Ck ; 0

�
, if d is independent on " then the identity principle implies

thatR" .x; y/ D xr" .x/ yd for all ."; x; y/ 2
�
CkC2; 0

�
. The fact that d is indeed independent

on " stems from Baire’s category theorem.

R 2.15. – The proof relies in an essential way on the analyticity of the orbital
normal form X with respect to " near 0. Compare with the method of proof of [1]: for " D 0
the argument is based on the fact that the existence of a Godbillon-Vey sequence forces
the Martinet-Ramis modulus to be a ramified homography. This argument works as well
for " ¤ 0, but we could not have argued on from there since the modulus is in general
not analytic at " D 0: although being a ramified homography is an analytic condition, an
accumulation of zeros of this relation as " ! 0 could arise without holding for all " (for
k D 1, say). This situation cannot occur, and our shorter argument does not involve the
unfolded modulus of classification.

The Galoisian characterization of the existence of Godbillon-Vey sequences of length at
most 2 is performed in [6], and for fixed " its length equals the (transverse) rank rk .M"/

of the Galois-Malgrange groupoidM". This rank takes values in f0; 1; 2;1g, integrability
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corresponding to finite values. For the normal forms (2.4) with R" .x; t/ D
P
n>0 r";n .x/ t

n,
we have

rk .M"/ D

(
1C # fn W r";n ¤ 0g if it is � 2;

1 otherwise:

Therefore " 7! rk .M"/ is lower semi-continuous: accidental values of the rank can only
correspond to more integrable systems.

E. – Taking into account Remark 2.13, in the case k D 1 and R ¤ 0 the vector
field X0 is “more integrable” (transverse rank 1) than the generic X " (transverse rank 2) if
and only if the exponent � is positive.

This is a special instance of a general result on parametrized Galois-Malgrange groupoids
obtained recently by G. Casale and D. Davy [7]. They show that for rather general deforma-
tions of foliations .F "/", the rank rk .M"/ of the specializationM" of the Galois-Malgrange
groupoid of the family is lower semi-continuous in ". Moreover, the locus of discontinuity is
contained in a countable union of proper analytic subvarieties. We showed that in the case
of purely convergent saddle-node bifurcations, the locus of discontinuity is at most a proper
analytic subvariety.

2.4. Structure of the paper

— We begin with fixing notations and providing precise definitions in Section 3. Readers
familiar with complex foliations may skip this section.

— The Formal Normalization Theorem is proved in Section 4.

We first present the generic case (for which one can take � D 0), since it is easier to highlight
the ideas than in the case � > 0.

— The orbital part of the Normalization and Uniqueness Theorems are established in
Section 5 when � D 0.

— The temporal part of the Normalization and Uniqueness Theorems are established in
Section 6 when � D 0.

— In Section 7 one finds the definition of compatibility condition, and the proof of the
Orbital Realization Theorem in the generic case � D 0.

— In Section 8 we prove the Orbital Realization Theorem in the case � > 0. This provides
a posteriori a proof of the orbital part of the Normalization and Uniqueness Theorems
when � > 0.

— In Section 9 we discuss the Bernoulli unfoldings and prove the Parametrically Analytic
Orbital Moduli Theorem.

— Finally, in Section 10, we conclude with a few words on computations.
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3. Preliminaries

3.1. Notations

3.1.1. General notations

— We let the set N WD f1; 2; : : :g stand for all positive integers, whereas the set of non-
negative integers will be written Z�0 D f0; 1; : : :g.

— For n 2 N we let .Cn; 0/ stand for any small enough domain in Cn containing 0.

— The domain D WD fz 2 C W jzj < 1g is the standard open unit disk.

— The unit circle of R2 ' C is denoted by S1 WD fz 2 C W jzj D 1g.
— The closure of a subset A of a topological space is written cl .A/.

— k 2 N is fixed, " D ."0; : : : ; "k�1/ 2
�
Ck ; 0

�
is the parameter and

P" .x/ D x
kC1
C

k�1X
jD0

"jx
j :(3.1)

— The parameter space
�
Ck ; 0

�
is covered by the closure of Ck D 1

kC1

�
2k
k

�
open and

contractible cells E `.

— The period operator T D
�
Tj
�
j2Z=kZ

is built near Definition 6.10.

— The very nature of constructions involves using more sub- and super-scripts than one is
generally comfortable with. To alleviate this downside we stick to a single convention:
subscripts are always parameter-related, while superscripts are in general related to the
geometric variables .x; y/ or to indices in power series expansions. Example: we write
V
j;s
`;"

for the “s”addle part of the j -th sector in x-variable, relatively to the parameter "
being taken in the `-th parametric cell. In the course of the text we try to drop indices
whenever possible.

— The dependency on the parameter " is implicit in most instances. For example, � 2 C f"g
stands for the formal orbital modulus while �" stands for the value of � at the partic-
ular value of the parameter ". Yet in many places where " is fixed we do use � instead
of �" in order to help reducing the notational footprint. This also applies for other
parametric objects.

3.1.2. Functional spaces. – In the following R is a commutative ring with a multiplicative
action by complex numbers.

— R
� is the multiplicative group of its invertible elements.

— R Œz� is the commutative ring of polynomials in the complex finite-dimensional
(multi)variable z D .z1; : : : ; zn/ with coefficients in R .

— After choosing a binary relation � among fD; <;�; : : :g we let R Œz��d be the subset
of R Œz� consisting of polynomials P such that degP � d .

— The projective limit R ŒŒz�� WD limd!1 R Œz��d is the ring of formal power series in z
with coefficients in R .

— C fzg is the algebra of convergent formal power series in the complex multivariable
z 2 Cn, naturally identified to the set of germs of a holomorphic function near 0 2 Cn.
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R 3.1. – We will mostly use the spaces:

— C ŒŒ"��, C ŒŒ"; x�� and C ŒŒ"; x; y��,

— C f"g, C f"g�, C f"; xg, and C f"; x; yg

— C f"g Œx�, C f"g Œx���k and

Sectionk fvg WD xvC f"; vg Œx�<k :

Let D�Cn be a domain containing 0 equipped with the affine coordinates zD.z1; : : : ; zn/.

— Holo
�

D
�

is the algebra of complex-valued functions holomorphic on D.

— Holoc
�

D
�

is the Banach subalgebra of Holo
�

D
�

of all holomorphic functions
f W D! C, with bounded continuous extension to cl

�
D
�
, equipped with the norm

kf kD WD sup
z2D

jf .z/j :

— Holoc
�

D
�0

is the Banach space of all holomorphic functions f W D ! C vanishing
on fzn D 0g with the norm

kf k0D WD sup
z2D

ˇ̌̌̌
f .z/
zn

ˇ̌̌̌
:

Notice that kf k0D �



 @f@zn 


D

whenever @f
@zn
2 Holoc

�
D
�

and D is convex in the

variable zn.

— We let

H ` fzg WD
[

DD.Cn;0/

Holoc
�

E ` � D
�0
;

where E ` is a parametric cell.

3.1.3. Vector fields and Lie derivative. – Let Z D
Pn
jD1Aj

@
@zj

be a germ of a holomorphic
vector field at the origin of Cn (or formal vector field at this point).

— If f is a formal power series or a holomorphic function in z D .z1; : : : ; zn/ 2 .Cn; 0/,
we denote by Z � f the directional Lie derivative of f along Z

Z � f WD

nX
jD1

Aj
@f

@zj
D Df .Z/ :

The operator is extended component-wise on vectors of power series or functions.

— We define recursively for n 2 Z�0 the n-th iterate of the Lie derivative, the operator
written Z�n, by

Z�0 WD Id

Z�nC1 WD Z � .Z�n/ :
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— The flow of Z at time t starting from z is the formal n-tuple of power series ˆtZ .z/
solving the flow-system

@ˆtZ .z/

@t
D Z ıˆtZ .z/ ;

which is a convergent power series in .t; z/ if, and only if, Z is holomorphic. At some
point we invoke the classical formal identity of Lie

f ıˆtZ D
X
n�0

tn

nŠ
Z �n f:(3.2)

— Two vector fields Z and eZ are formally / locally conjugate when there exists a n-tuple
of formal / convergent power series ‰ with invertible derivative at 0 such thateZ �‰ D Z ı‰:
In that case we write eZ D ‰�Z.

— Two vector fields Z and eZ are formally / locally orbitally equivalent when there exists
a formal power series / holomorphic function U with U .0/ ¤ 0 such that UZ and eZ
are conjugate (in the same convergence class).

3.2. Conjugacy and orbital equivalence

D 3.2. – Two unfoldings Z D .Z"/" and eZ D �eZe"�e" are locally conjugate
(resp. orbitally equivalent) if there exists a holomorphic mapping

‰ W ."; x; y/ 7�! .� ."/ ; ‰" .x; y//

such that:

1. " 2
�
Ck ; 0

�
7!e" D � ."/ has invertible derivative at 0,

2. for each " 2
�
Ck ; 0

�
the component ‰" is a local conjugacy (resp. orbital equivalence)

between Z" and eZ�."/.
If the above conditions are fulfilled we write

‰�Z D eZ:
We extend in the obvious way the definition for formal conjugacy / orbital equivalence.

R 3.3. – The very first step of any construction performed here consists in
recalling the preparation of the generic unfolding Z (Theorem 4.1). For unfoldings in
prepared form (4.1) the parameter " becomes a formal invariant. Hence we only use
conjugacies fixing ", that is ‰ W ."; x; y/ 7! ."; ‰" .x; y//. In that setting one can always
deduce ‰ knowing ‰", therefore when we use the notation ‰ we generally refer to the map
."; x; y/ 7! ‰" .x; y/, except when the context is ambiguous.

D 3.4. – Consider a formal transform ‰ W ."; x; y/ 7! ."; ‰" .x; y//. We say
that ‰ is fibered when ‰" .x; y/ D .x;  " .x; y//.

D 3.5. – ‰ is a symmetry (resp. orbital symmetry) of Z when ‰ is a self-
conjugacy (resp. orbital self-equivalence) of Z.
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R 3.6. – Hence, to determine the orbital symmetries ofZ it suffices to determine
the changes ‰ such that ‰�Z D UZ for some U with U0 .0; 0/ ¤ 0.

4. Formal normalization

The formal normalization is based on three ingredients, each one corresponding to a step
of the construction:

— a preparation à la Dulac of unfoldings: for " D 0 one recovers the Dulac prepared
form [12, 13];

— the existence of a formal “family of weak separatrices” which we can straighten
to fy D 0g;

— a variation on Lie’s identity (3.2) already used in [41, 44] to perform the analytic clas-
sification of saddle-nodes vector fields and their unfoldings. The formula reduces the
problem of finding changes of variables to solving an uncoupled system of cohomo-
logical equations.

4.1. Preparation

Take � 2 Z=kZ and set ˛ WD exp 2i��=k. For " WD
�
"j
�
j<k
2
�
Ck ; 0

�
we define

��" WD
�
"j˛

j�1
�
j<k

:

T 4.1 ([41, Proposition 3.1 and Theorem 3.5]). – Any generic unfolding is
analytically conjugate to an unfolding of the form

Z D UX(4.1)

X D bX C A @

@y
(4.2)

A .x; y/ D P .x/ a .x/C yR .x; y/

where bX and P are defined in (2.2) and (3.1), while a 2 C f"; xg, R 2 yC f"; x; yg and
U 2 C f"; x; yg with U0 .0; 0/ ¤ 0. In the particular case of an analytic weak separatrix one
can take a WD 0.

Besides if two such prepared forms .Z"/" and
�eZe"�e" are formally orbitally equivalent then

there exists � 2 Z=kZ such thate" D ��": the parameter is unique modulo this action and is
called canonical.

R 4.2. – Although the original result is stated in [41] at an analytic level, the proof
that " becomes an invariant modulo the action of Z=kZ stems from a formal computation and is
therefore valid for formal orbital equivalence too. The idea of the proof is that the parameter
completely determines the data of local eigenratios and vice versa, which are well-known
orbital invariants.

From now on we only deal with unfoldings in prepared form (4.1) and only consider
transforms fixing the canonical parameter ".
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4.2. Straightening weak separatrices

P 4.3 ([21, Proposition 2]). – For any unfoldingX in prepared form (4.2) there
exists a formal power series bs 2 C ŒŒ"; x�� P

solving the parametric family of differential equations

P" .x/
dbs"
dx

.x/ Dbs" �1C �"xk�C A" .x;bs" .x// :(4.3)

Performing the transform ."; x; y/ 7! ."; x; y Cbs" .x// sends Z to a prepared unfolding

Z D bU �bX C bAy @
@y

�
(4.4)

for some formal power series bU and bA in C ŒŒ"; x; y�� withbU ."; x; 0/ DW bU" .x; 0/ D u" .x/CO .P" .x//bA ."; x; 0/ DW bA" .x; 0/ D O .P" .x// ;

with u 2 C ŒŒ"�� Œx� a polynomial (in x) of degree at most k such that u0.0/ ¤ 0. In the
particular case when Z is purely convergent the latter power series (and the coefficients of u)
are convergent.

The proof of [21] is done for k D 1 but the general case is similar. It is based first on the
following classical lemma, the proof of which is included for the sake of completeness.

L 4.4. – Let eg 2 C ŒŒx; y�� and g 2 xpC ŒŒx�� be given with p 2 Z�0, such that
either p > 0 or eg.x; y/ D O .x/. Let h 2 C ŒŒx�� be such that h .0/ ¤ 0 and define
g.x; y/ WD g.x/C y2eg.x; y/.

The differential equation

(4.5) xkC1f 0 .x/C h .x/ f .x/C g .x; f .x// D 0

has a unique formal solution f , which moreover belongs to xpC ŒŒx��.

R 4.5. – Note that Equation (4.5) is nothing else than the differential equation
determining the center manifold of the saddle-node vector field

xkC1
@

@x
� .yh .x/C g .x; y//

@

@y

when g and h are holomorphic germs.

Proof. – Letting C WD h .0/ ¤ 0 and g.x; 0/ D g.x/ DW
P1
mDp b

mxm; then substituting
f .x/ DW

P1
mDp a

mxm into (4.5) and grouping terms of same degree m � p, we get

Cam C bm C Fm.ap; : : : ; am�1/ D 0

for some polynomial Fm depending on the m-jet of g and h. Hence, we can solve uniquely
for each am.

We then derive Proposition 4.3 from the following technical lemma which we will also use
later on.
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L 4.6. – (See [21] for the case k D 1.) Leteg" 2 C ŒŒ"; x; y�� and g" 2 C ŒŒ"; x�� P be
given, i.e., g" .x/ D P" .x/

P
jmj�0 g

m.x/"m where each gm.x/ is itself a formal power series
in x, and let h" 2 C ŒŒ"; x�� be such that h0 .0/ ¤ 0. Define g".x; y/ WD g".x/C y

2eg".x; y/.
The family of differential equations

(4.6) P".x/f
0
" .x/C h".x/f".x/C g".x; f".x// D 0

has a unique formal solution f , which moreover belongs to C ŒŒ"; x�� P .

Proof. – Let g".x; y/ DW P".x/
P
jmj�0 b

m;0.x/"m C
P
jmj�0

�P
n�2 b

m;n.x/yn
�
"m.

Substituting f" .x/ D P" .x/
P
jmj�0 a

m.x/"m into (4.6) and setting " WD 0 we first get

xkC1
da0

dx
.x/C

�
h0 .x/C kxk

�
a0 .x/C x�.kC1/g0

�
x; xkC1a0 .x/

�
D 0;

which admits a formal solution in xkC1C ŒŒx�� by direct application of Lemma 4.4 in the case
p D 0. Likewise, by grouping terms with same "m for jmj � 1 we obtain

(4.7) xkC1
dam

dx
.x/C

�
h0 .x/C kxk C `m.x/

�
am.x/C

�
bm;0.x/C Fm .x/

�
D 0;

where
`m.x/ D

X
n�2

nx.n�1/.kC1/a0.x/n�1b0;n.x/ D O
�
xkC1

�
;

and Fm 2 C ŒŒx�� is some formal power series depending polynomially on .an .x//jnj<jmj
and on the jmj-jet of g and h. By induction on jmj, we recursively find formal solutions
am 2 C ŒŒx��, for Equation (4.7) has the same type as (4.5) with eg WD 0, and hence, has a
formal solution given by Lemma 4.4. Uniqueness is straightforward.

4.3. Normalization and cohomological equations

The tool for proving the Formal Normalization Theorem is the following.

P 4.7 ([46, 45]). – Let W and Y be commuting, formal (resp. holomorphic)
planar vector fields. Let F 2 C ŒŒx; y�� (resp. a germ of a holomorphic function) be given with
F .0; 0/ D 0. Then ‰ WD ˆFY is a formal (resp. analytic) change of variables near .0; 0/ and

‰�W D W �
W � F

1C Y � F
Y:

This tool is used in the following manner.

— First if we could find a formal solution T of the (parametric families of) cohomological
equations

X � T D
1

U
�
1

u
(4.8)

for a convenient choice of u 2 C f"; xg�, then uX would be formally conjugate toZ by
the tangential change of variables T given by

T WD ˆTuX :(4.9)

This is the content of the proposition for Y WD W WD uX and F WD T .
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— From Proposition 4.3 we built the formal, fibered transform S given by

S W .x; y/ 7�! .x; y �bs .x//
such that S �

�bX C bAy @
@y

�
D X .

— Finally, since y @
@y

commutes with the normal form bX, if we could solve formally the
cohomological equation �bX C bAy @

@y

�
�O D �bA(4.10)

then bX would be formally conjugate to bXC bAy @
@y

by the fibered, transverse change of
variables O given by

O WD ˆO
y @
@y

W .x; y/ 7�! .x; y expO .x; y// :(4.11)

We explain below how those formal power series are built and to which extent they are
unique. We consequently obtain a formal conjugacy O ı S ı T between bZ and Z (notice
that u is left invariant by the fibered O ı S , so that it also conjugatesbZ to uX ).

L 4.8. – Let X be in the form (4.2) for A 2 C ŒŒ"; x; y��, and take G 2 C ŒŒ"; x; y��.
There exists a formal solution F 2 C ŒŒ"; x; y�� of the cohomological equation

X � F D G(4.12)

if, and only if, G .x; 0/ belongs to the ideal generated by P . In that case F is unique up to the
free choice of F .0; 0/ 2 C ŒŒ"��.

Proof. – Let

F .x; y/ DW
X
n�0

F n .x/ yn and G .x; y/ DW
X
n�0

Gn .x/ yn:

We proceed by induction on n � 0 by identifying coefficients of powers of y in (4.12). For
each n 2 Z�0 we must therefore solve

P
@F n

@x
C n

�
1C �xk

�
F n D Gn C o .n/ ;(4.13)

where o .n/ stands for terms containing Fm for m < n only, and are thus already known.

— The case n D 0 outlines the formal obstruction (notice that the choice ofF 0 .0/ is free).

— For n > 0 no additional obstruction appears and F n is uniquely determined. Then
Lemma 4.6 provides the unique formal solution of the family of differential Equa-
tions (4.13).

We finally derive the Formal Normalization Theorem by writing

U .x; 0/ D u .x/CO .P .x// ; u 2 C f"g Œx���k ;

and finding a (unique with T .0; 0/ D 0) formal solution T of (4.8) by Lemma 4.8. As
for the power series O, a (unique with O .0; 0/ D 0) formal solution of (4.10) exists by
Proposition 4.3, and Lemma 4.8, for X given in (4.2).
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D 4.9. – Let Z be an unfolding in prepared form (4.1). We write N WD Oı S ı T

the canonical formal normalization of Z satisfying N�bZ D Z where O, S and T are built
above.

4.4. Uniqueness

Addressing the uniqueness clause in the Formal Normalization Theorem boils down to
studying the case of the normal forms, because of the canonical choice of normalization
maps N done in Definition 4.9.

L 4.10. – Let ‰ be a formal orbital symmetry of the formal normal form bZ (fixing
the canonical parameter).

1. There exist unique F 2 C ŒŒ"; x; y�� and c 2 C ŒŒ"��� such that

‰ D
�
c�Id

�
ıˆFbZ

where c�Id is the linear mapping .x; y/ 7! .x; cy/. (The converse statement clearly
holds.)

2. ‰ is a symmetry ofbZ if, and only if, F 2 C ŒŒ"��.

3. ‰ is fibered if, and only if, F D 0.

Proof. – 1. By Remark 3.6 we want to determine V 2 C ŒŒ"; x; y��� such that
‰�bZ D VbZ. Because " is a formal invariant governing the eigenvalues of (the differen-
tial of) the vector fields at the singularities, ‰ cannot change the eigenvalues, so that
V .x; y/ D 1CO .P .x//CO .y/. According to Lemma 4.8 there exists a (unique) formal
solution F with F .0; 0/ D 0 to the cohomological equationbX � F D 1

uV
�
1

u
:

Therefore b‰ WD ‰ ı �ˆFbZ�ı�1 induces a symmetry ofbZ.

Write b‰ W ."; x; y/ 7! ."; �" .x; y/ ;  " .x; y//. By considering the @
@x

-component ofbZ one
obtains the relation

.uP / ı � D bZ � �:
Setting y WD 0 yields

.u"P"/ ı �" .x; 0/ D u" .x/ P" .x/
@�"

@x
.x; 0/

so that

�" .x; 0/ D ˆ
t"

u"P"
@
@x

.x/ D ˆ
t"bZ .x; 0/

for some t 2 C ŒŒ"��. Hence we may assume without loss of generality that F" .0; 0/ D t" and
�" .x; 0/ D x. Writing �" .x; y/ D x C

P
n�� �

n
" .x/ y

n with � > 0 we obtain for the term
of y-degree �

P 0�� D P
@��

@x
C �

�
1C �xk

�
�� ;
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whose unique formal solution is �� D 0, since it is the equation of the weak separatrix
ofP @

@x
Cy

�
�.1C �xk/C P 0

�
@
@y

. As a matter of consequence �" .x; y/ D x andb‰ is fibered.

Lastly, by considering the @
@y

-component ofbZ one obtains the relation�
1C �xk

�
 D bX �  :

Setting y WD 0 yields

 " .x; 0/ D 0

so that  " .x; y/ D y expN" .x; y/ for some N 2 C ŒŒ"; x; y��. The corresponding cohomo-
logical equation reads

0 D bX �N
and only admits N 2 C ŒŒ"�� as formal solution (uniqueness clause of Lemma 4.8). We then
set c WD expN . (2) and (3) are clear from the previous arguments.

We derive the following precise statement. Item (2) plays an essential role in proving the
(analytic) Uniqueness Theorem.

C 4.11. – Consider two unfoldings Z and eZ in prepared form (4.1).

1. Let‰ be a formal conjugacy betweenZ and eZ (fixing the canonical parameter), namely
‰�Z D eZ. Let N D O ı T ı S and fN D eO ı fT ı eS be the respective canonical
tangent-to-identity formal normalizations as in Definition 4.9.

(a) There exists unique c 2 C ŒŒ"��� and t 2 C ŒŒ"�� such that

‰ D N ı�1
ı
�
c�Id

�
ı fN ıˆteZ :

(The converse statement clearly holds.)

(b) If ‰ is analytic then so are t and c. (The converse statement does not generally
hold.)

2. If Z and eZ are analytically orbitally equivalent (by an orbital equivalence fixing the
canonical parameter) then there exists a fibered analytic orbital equivalence between them

S ı�1 ı Oı�1 ı
�
c�Id

�
ıeO ı eS

for some c 2 C f"g.

R 4.12. – The partial conclusion “there exists a fibered orbital equivalence” in
Claim (2) was proved in [41, Lemma 3.4] by unfolding the homotopy technique of [31,
Lemma 2.2.2]. We give here an alternate proof. In the other part of the conclusion, pay
attention that O ı S and eO ı eS are only formal power series, but the composition is a
convergent power series.

Proof. – 1. (a) follows from Lemma 4.10: the formal map N ı‰ ıfN ı�1
is a symmetry

of the normal form bZ, and fN is a formal conjugacy between eZ and bZ, hence conjugating
their flow (as formal power series):

ˆtbZ ı fN D fN ıˆteZ :
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1. (b) Here we assume that ‰ is analytic. Following (a) we have

‰ D T
ı�1
ı

�
S ı�1 ı Oı�1 ı

�
c�Id

�
ıeO ı eS ıˆt

u eX
�
ıfT :

Using both facts that b‰ WD S ı�1 ı Oı�1 ı .c�Id/ ıeO ı eS is fibered, and that

ˆt
u eX .x; y/ D

�
ˆt
uP @

@x

.x/ ; y .exp t C y� .x; y; t//
�
;

we first derive

‰ D T
ı�1
ı

�
ˆt
uP @

@x

;  
�
ıfT :

Because T .0; 0/ D eT .0; 0/ D 0, we have

‰" .0; 0/ D .t""0; : : :/

from which we deduce the convergence of t . We also have the identity

@ 

@y
.0; 0/ D c exp t;

from which the convergence of c follows also.

2. It is sufficient to assume that Z WD X is analytically conjugate by some ‰ (fixing the
canonical parameter) to eZ WD eU eX for some eU 2 C f"; x; yg�. In that setting we have u D 1
and T D Id, so that according to (1)

‰ D S ı�1 ı Oı�1 ı
�
c�Id

�
ıeO ı eS ıfT ıˆteZ ;

where t 2 C f"g. As a matter of consequence the mapping ˆteZ is analytic, and so isb‰ WD ‰ ı �ˆteX�ı�1. Because b‰ ıfT ı�1 is fibered, the x-component of b‰ (which is analytic)

is equal to the x-component of fT . The former is of the form .x; y/ 7! A
�
x; y; eT .x; y/�

for some holomorphic function A 2 C f"; x; y; tg with @A
@t
¤ 0, and where eT is the solution

of (4.8) for U WD eU . Thus eT is a convergent power series, and so is b‰ ıfT ı�1.

5. Geometric orbital normalization

Here we prove the orbital part of the Normalization and Uniqueness Theorems for � D 0.
Sections 5.2–5.5 are devoted to the construction of the normal form conjugacy, while its
uniqueness is thoroughly studied in Section 5.6. Before going into the details we start with a
brief description of the general strategy. Let us call D the unit disk.

For fixed

0 <
1

�1
< �0

we introduce two analytic charts:

— the original coordinates

.x; y/ 2 U0
WD �0D � .C; 0/ ;
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— the coordinates at infinity

.u; v/ 2 U1 WD �1D � .C; 0/

with (involutive) standard transition map on C� � .C; 0/

.u; v/ 7�!

�
1

u
; v

�
D .x; y/ :

For convenience we writeO0 andO1 the respective expressions of a holomorphic objectO
in the charts U0 and U1 respectively.

Start from an arbitrary X0 2 Convergentk in prepared form (4.2), with A 2 y2C f"; x; yg
holomorphic and bounded on U0, and such that �0 … R�0. It is always possible to make
this assumption thanks to Theorem 4.1, since a D 0 in that case. Notice in particular
that A is bounded since we can always take a smaller �0 and decrease similarly the size of
the neighborhood of fy D 0g: hence U0 can be taken inside a compact set on which A is
defined.

In the following we assume that " is so small that the k C 1 singularities of X0" lie
in f0 � jxj < 1=�1g � f0g. The following steps constitute what we refer to as the unfolded
Loray construction.

Gluing. We find a vector field family X1 on U1 whose holonomy over �1S1 � f0g is
the inverse of h", the corresponding “weak” holonomy of X0 (Section 5.2). Therefore
foliations induced by each vector field can be glued one to the other over the annulus
U0
\ U1 by an identification of the form

.u; v/ D

�
1

x
; y exp� .x; y/

�
(Section 5.3). This operation results in a family of foliated abstract complex surfaces
.M ; F /.

Normalizing. We construct a fibered biholomorphic equivalence between M and a stan-
dard neighborhood of fy D 0g ' P1 .C/, that is a complex surface with charts U0,
U1 and transition map exactly .u; v/ D

�
1
x
; y
�

(Section 5.4). Because P1 .C/ � f0g is
compact the expression of the new X0 is polynomial in x with controlled degree, thus
in orbital normal form (2.4) as expected by the Normalization Theorem (Section 5.5).

Uniqueness. From the special form of the normalized vector field, it can be seen that
the closure of the saturation of any small neighborhood of .0; 0/ contains a whole
P1 .C/ � rD. Therefore any local conjugacy between normal forms (which we choose
fibered thanks to Corollary 4.11 (2)) can be analytically continued by a construction à la
Mattei-Moussu on P1 .C/�rD. But this manifold has very few fibered automorphisms,
allowing to conclude (Section 5.6).

In the unfolded Loray construction, only what happens in the first chart .x; y/ is of a
different nature than when " D 0. As seen from the other chart .u; v/, the only important
ingredient for the construction is the “weak” holonomy h" of the unfolding (see Section 5.1
below). Hence the original arguments do not need to be unfolded near .1; 0/, although we
must take care that everything remains holomorphic in the parameter. The first two steps
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of the unfolded Loray construction require external results that need to be parametrically
controlled:

1. the realization of the weak holonomy h by a foliation near .1; 0/, obtained by the
construction of [43];

2. the normalization of the transition map between the charts .x; y/ and .u; v/ on the
annulus

A WD f1=�0 < juj < �1g � .C; 0/ ;

as done in [42].

Both proofs are similar in spirit and only rely on complex (holomorphic) analysis and (what
amounts to) a fixed-point method. Parametric holomorphy follows from the explicit integral
formulas. Because normalizing transition maps is relatively easy, we prove a parametric
version of Savelev’s Theorem in Section 5.4. It contains the main steps and ideas upon which
are based the respective proofs of the Normalization Theorem for vector fields (Section 6)
and of the Realization Theorem (Section 7). The latter is nothing but an unfolded version of
the main result of [43], retrospectively making the present article more self-contained.

5.1. Weak holonomy

We name

… W .x; y/ 7�! x

the projection on the invariant line fy D 0g and let

† � …�1 .x�/

be a germ of a transverse disk endowed with the coordinate y 2 .C; 0/. Starting from y 2 †

there exists a unique path


y W Œ0; 1� �! U0


y .0/ D .x�; y/

tangent to X0" such that


 WD … ı 
y D s 7�! x� exp 2i�s:

We define h" .y/ as the y-component of the final value 
y .1/. The weak holonomy mapping h"
as described is a germ of a biholomorphism near the fixed-point 0 whose linear part is
governed by the formal orbital invariant � in the following way:

h" .y/ D y exp 2i��" C o .y/ 2 Diff .†; 0/ :

The analytic dependence of trajectories of X0" on the parameter " ensures that h 2 C f"; yg.
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5.2. Parametric holonomy realization at .1; 0/

T 5.1 ([43, Main theorem and Section 4.4]). – Let
�
��
�
�2.Cn;0/ be an analytic

family of elements of Diff .C; 0/, that is .�; v/ 7! �� .v/ 2 C f�; vg and �00 .0/ ¤ 0.
Let � 2 C f�g be given such that �0� .0/ D exp

�
�2i���

�
and �0 … R�0. There exists an

analytic family of vector fields
�
X1�

�
�2.Cn;0/ of the form

X1� .u; v/ D �u
@

@u
C v

�
�� C u

�
1C f� .v/

�
C g� .v/

� @
@v
; f; g 2 vC f�; vg ;(5.1)

holomorphic on the domain U1 and satisfying for all � 2 .Cn; 0/:

1. .0; 0/ is the only singularity of X1� in U1,

2. the holonomy of X1� above the circle w�S1 � f0g, computed on a germ of transverse disk
fu D u�g with respect to the projection .u; v/ 7! u, is exactly ��.

R 5.2. – The result of [43] asserts the existence of a vector field of the form (5.1)
with f WD 0 whose holonomy on † is conjugate to � by some analytic family ‰. The
conjugacy .u; v/ 7! .u;‰ .v// transforms the vector field into the form (5.1) for different f; g
but its holonomy is exactly � on †.

In the generic case �0 … R the theorem is (almost) trivial. All holonomy maps

�� W v 7�!v exp
�
�2i��� C ı� .v/

�
; ı� .0/ D 0;

are hyperbolic and locally analytically linearizable for that matter (Koenig’s theorem), the
unique tangent-to-identity linearization being given by ‰� W v 7! v exp � .v/, where

 � WD

1X
nD0

ı� ı�
ın
� :

Local uniform convergence ensures that  is analytic in both t and �. The fibered mapping
.u; v/ 7!

�
u;‰� .v/

�
transforms the linear vector field �u @

@u
C �v @

@v
into a vector field X1�

fulfilling the conclusions (1)-(2) of the theorem (but not of the form (5.1)). However if �0 2 R
this construction fails: the linearization domain may shrink to a point (if �0 is not analyti-
cally linearizable). The form (5.1) has the advantage of being valid for all cases, analytically
in the parameter. Notice that the presence of the term�uv @

@v
in (5.1) discards any linear real-

ization even when �0 … R.

We define � WD " 2
�
Ck ; 0

�
,

�" WD �" … R�0;

�" W v 7�! h
ı�1
" .v/ ;

and apply Theorem 5.1, to obtain an analytic family X1 in the chart .u; v/. In order to
stitch the induced foliation with that of X0" we need to prepare it by changing slightly the
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coordinates on U1. Let eX0" be the vector field corresponding to X0" in the coordinates
.u; v/ D

�
1
x
; y
�
, that is

eX0" .u; v/ D �u2P" � 1u
�
@

@u
C v

�
�"u

�k
C 1CO .v/

� @

@v

D uP"

�
1

u

�
�

�
�u

@

@u
C v .�" C h" .u/CO .v//

@

@v

�
;

where

h" W u 7�!
uk C �"

ukC1P"
�
1
u

� � �" 2 Holo
��

Ck ; 0
�
� �1D

�
(5.2)

vanishes at 0. Notice indeed that the polynomial ukC1P"
�
1
u

�
2 C Œu��kC1 has its roots

outside the closed disk cl .�1D/, whereas it takes the value 1 at 0. Remark also that the
quantity uP"

�
1
u

�
needs to be factored out in order to recognize a vector field alike to X1"

near .1; 0/. This function is non-vanishing on the annulus A . Let eX1" be the vector field
corresponding to X1" through the inverse transform

.u; v/ 7�!

�
u; v exp

Z u

u�

.h" .z/ � z/
dz
z

�
:(5.3)

By construction we have

eX1" .u; v/ D �u
@

@u
C v .�" C h" .u/CO .v//

@

@v
;

which glues with eX0" through .u; v/ D
�
1
x
; y
�

as presented in the next paragraph.

5.3. Gluing

Both transformed vector fields eX0 and eX1 built in the previous section have same
holonomy�" on†. We glue the (foliations defined by the) vector fields eX0" and eX1" over the
fibered annulus A through a fibered map ˆ" fixing † and (classically) obtained by foliated
path-lifting, as we explain now. For .u; v/ 2 A we join u� to u in A \ fv D 0g by some
path 
 and define

ˆ" .u; v/ WD
�
u; h1";
 ı

�
h0";


�ı�1
.v/
�
;

where h0";
 (resp. h1";
 ) is the holonomy map obtained by lifting the path 
 through … in
the foliation induced by eX0" (resp. eX1" ). The map ˆ" is well-defined because when 
 is
a loop both mappings h1";
 and h0";
 coincide with the same corresponding iterate of �".
Clearly ˆ" depends analytically on " 2

�
Ck ; 0

�
and is a germ of a fibered biholomorphism

near A \ fv D 0g satisfying

ˆ� eX0 D uP � 1
u

� eX1;
ˆ .u; v/ D .u; v exp� .u; v// ;

� .u; 0/ D � .u�; v/ D 0:
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5.4. Normalizing

So far the construction yields an analytic family of complex foliated surfaces, written

.M ; F /, defined by the charts
�

U0
; F 0

�
and

�
U1; F 1

�
with transition map

.u; v/ 7�!

�
1

u
; v exp� .u; v/

�
D .x; y/ :(5.4)

R 5.3. – The foliation F " is transverse to the fibers of the global fibration by
disks … W M " ! L given in the first chart by .x; y/ 7! x, except along the k C 2 invariant
disks fP" .x/ D 0g and fx D1g.

Each manifold M " is a neighborhood of the invariant divisor L ' P1 .C/, corresponding
to fy D 0g and fv D 0g in the respective chart, while the natural embedding P1 .C/ ,! M

has self-intersection 0 according to Camacho-Sad index formula [4] (the singularities
near .0; 0/ contribute for a sum of Camacho-Sad indices equal to �" while the singularity
at .1; 0/ does for ��" D ��").

D 5.4. – For r > 0 we define the standard neighborhood of radius r of the
Riemann sphere

Sphere .r/ WD P1 .C/ � rD;

the complex surface equipped with the (global) affine coordinates

.u; v/ 2 C � rD

and transition map on C�� rD given by .u; v/ D
�
1
x
; y
�
, i.e., by (5.4) with � WD 0. The other

chart of Sphere .r/ is the domain .x; y/ 2 C�rD. When speaking of a standard neighborhood
of the sphere we actually refer to Sphere .r/ for some r > 0 small enough.

T 5.5. – Let M be an analytic family of complex surfaces with transition
maps (5.4). There exists a standard neighborhood V D Sphere .r/ of L , for some r > 0, and
an analytic family of fibered holomorphic injective mappings

‰ W V �! M

agreeing with the identity on L .

The rest of the subsection is devoted to the proof of this theorem. We refer to Section (3.1.2)
for the definitions of the functional spaces in use. We are looking for ‰, or rather its expres-
sion in the charts U0 and U1, in the form

‰0 .x; y/ D
�
x; y exp 0 .x; y/

�
‰1 .u; v/ D .u; v exp 1 .u; v// :

The normalization equation becomes a non-linear additive Cousin problem on A :

 0
�
1

u
; v

�
�  1 .u; v/ D � ı‰1 .u; v/ :
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ρ
0

U0

U1

A

1

z

x =
1

w

1

ρ1

() For F 0 in .x; y/ coor-
dinates.

1

ρ0

U0

U1

A

ρ
1z

w =
1

x

() For F1 in .u; v/ coor-
dinates.

F 5.1. Integration contours in the respective charts.

Starting from  00 WD 0 and  10 WD 0 we build iteratively two bounded sequences of
holomorphic functions

 ]n 2 Holoc

��
Ck ; 0

�
� �]D � rD

�
; ] 2 f0;1g

solution of the linearized additive Cousin problem (or discrete cohomological equation)

 0nC1

�
1

u
; v

�
�  1nC1 .u; v/ D �

�
u; v exp 1n .u; v/

�
:(5.5)

The Cousin problem has explicit solutions given by a Cauchy-Heine transform. From these
solutions we obtain a priori bounds on the norm of  ]n, allowing to fix the radius r > 0
beforehand. We let

U0
r WD

˚
.x; y/ W jxj < �0; jyj < r

	
;

U1r WD f.u; v/ W juj < �
1; jvj < rg ;

be an atlas for Sphere .r/. We postpone the proof of the next main lemma to the end of the
section.

L 5.6. – Assume that �2Holoc
�

A �

�0 for some domain A � WD

n
1
�0
< juj<�1

o
� �D.

Let  2 Holoc
�

U1r
�

be such that the image of A r by .u; v/ 7! .u; v exp .u; v// is included
in A �. Define 8<:F1 .u; v/ WD 1

2i�

H
�1S1 � .z; v exp .z; v// dz

z�u
;

F 0 .x; y/ WD x
2i�

H
1

�0
S1 � .z; y exp .z; y// dz

xz�1
:

(5.6)

Then the following properties hold.
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1. F 0 2 Holoc

�
U0
r

�
and F1 2 Holoc

�
U1r

�
. Moreover for ] 2 f0;1g


F ]




U]r

� rK k�k0A�
exp k kU1r

;(5.7)

where

K WD

�
1C

2�0

�1�0 � 1

�
:

2. For all .u; v/ 2 A r we have

F 0
�
1

u
; v

�
� F1 .u; v/ D � .u; v exp .u; v// :(5.8)

3. These are the only holomorphic solutions of the previous equation which are bounded, up
to the addition of a function v 7! f 1 .v/ with f 1 2 Holoc .rD/.

R 5.7. – The integral Formula (5.6) shows right away that F ] depends holomor-
phically on any extraneous parameter on which � were to depend holomorphically.

It is straightforward to check that fixing some

0 < r � � exp
�
��K k�k0.Ck ;0/��D

�
inductively produces well-defined sequences

�
 
]
n

�
n2N

of Holoc

�
U ]
r

�
, for we have the impli-

cation

 1";n

U1r
< �K k�"k

0
�D

H)
ˇ̌
v exp 1";n .u; v/

ˇ̌
< r

ˇ̌
exp 1";n .u; v/

ˇ̌
< r exp

�
�K k�"k

0
�D
�
� �

for all .u; v/ 2 A r . Using (5.7) with  WD  1";n finally yields

 1";nC1

U1r
< �K k�"k

0
�D :

We establish now that both sequences converge in Holoc

�
U ]
r

�
. The hypothesis � .u; 0/ D 0

guarantees that  ]nC1 .u; v/ D  
]
n .u; v/C O

�
vnC1

�
, hence the bounded sequence

�
 
]
n

�
n2N

converges for the projective topology on C ŒŒ"; u�� ŒŒv�� (for the Krull distance actually).
Therefore the sequences converge towards holomorphic and bounded functions

 ] WD lim
n!1

 ]n 2 Holoc

��
Ck ; 0

�
� �]D � rD

�
according to the next lemma.

L 5.8. – [43, Lemma 2.10] Let D be a domain in Cm and consider a bounded
sequence

�
fp
�
p2N of Holoc

�
D
�

satisfying the additional property that there exists some point
z0 2 D such that the corresponding sequence of Taylor series

�
Tp
�
p2N at z0 is convergent

in C ŒŒz � z0�� (for the projective topology). Then
�
fp
�
p

converges uniformly on compact sets
of D towards some f1 2 Holoc

�
D
�
.
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R 5.9. – The limiting functions  ] are not obtained through the use of a fixed-
point theorem, although they are a fixed-point of (5.5). The method used here, based on
Lemma 5.8, does not use the fact that Holoc

�
D
�

is a Banach space, only that it is a Montel
space (any bounded subset is sequentially compact). Also the estimate (5.7) obtained
in Lemma 5.6 (1) is easier to derive than a sharper estimate aimed at establishing that
 
]
n 7!  

]
nC1 is a contraction mapping.

5.4.1. Proof of Lemma 5.6 (2). – This is nothing but Cauchy formula.

5.4.2. Proof of Lemma 5.6 (1). – Clearly the functionF ] is holomorphic on the domain U ]
r .

Notice also that modifying slightly the integration path does not change the value of the
function, so that F ] is bounded on U ]

r . Let us evaluate its norm.

Set ‰ W .u; v/ 7! .u; v exp .u; v// and define � > 0 by 2� WD �1 C 1
�0

. We prove the

estimate on kF1kU1r
and



F 0


U0r

in two steps: first we bound jF1 .u; v/j when juj � �

(resp.


F 0



U0r
when jxj � 1

�
), then when � � juj < �1 (resp. 1

�
� jxj < �0).

— For juj � � and jvj < r one has

jF1 .u; v/j � k� ı‰kA r
�
1

2�

I
�1S1

ˇ̌̌̌
dz
z � u

ˇ̌̌̌
:

On the one hand

1

2�

I
�1S1

ˇ̌̌̌
dz
z � u

ˇ̌̌̌
�

1

�1 � �
D

2�0

�1�0 � 1
< K;

while on the other hand, for all .u; v/ 2 A r ,

j� .u; v exp .u; v//j � jvj k�k0A�
exp k kU1r

:

Taking both bounds together completes the first step of the proof.

— This gives a corresponding bound for F 0 when jxj � 1
�

since

jxj

2�

I
1

�0
S1

ˇ̌̌̌
dz

xz � 1

ˇ̌̌̌
�

1

� � 1
�0

D
2�0

�1�0 � 1
:

Taking (5.8) into account, one therefore deduces for 1
�0
< juj � � the estimate

jF1 .u; v/j � j� .u; v exp .u; v//j C

ˇ̌̌̌
F 0

�
1

u
; v

�ˇ̌̌̌
� jvj k�k0A�

exp k kU1r

�
1C

2�0

�1�0 � 1

�
as expected.

— The bound for F 0 when 1
�
� x < �0 is obtained similarly.
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5.4.3. Proof of Lemma 5.6 (3). – Assume that
�eF 0; eF1� is another pair of solution. Then

for all
�
1
x
; y
�
D .u; v/ 2 A r we have

f 0 .x; y/ WD F 0 .x; y/ � eF 0 .x; y/ D F1 .u; v/ � eF1 .u; v/ DW f 1 .u; v/ ;
defining a bounded and holomorphic function f on Sphere .r/. The next lemma ends the
proof.

L 5.10. – If f 2 Holoc .Sphere .r// then @f1

@u
D 0. In other words there is a natural

isometry of Banach spaces

Holoc .Sphere .r// ' Holoc .rD/ :

Proof. – In the chart U1r expand f 1 into a power series f 1 .u; v/ D
P
n�0 fn .u/ v

n

convergent on C � rD. By assumption f is bounded so that from Cauchy’s estimate we get

jfn .u/j � kf kSphere.r/ r
�n

for all u 2 C. Liouville Theorem tells us that each fn is constant.

5.5. Normal form recognition (proof of orbital Normalization Theorem)

The aim of this subsection is to shortly prove that the vector field ‰�X0" resulting from
Theorem 5.5 is in normal form (2.4). Because Savelev’s normalizing fibered mapping ‰
agrees with the identity on L , each F " is induced in the chart U0

r by a holomorphic vector
field of the form

X0
" .x; y/ WD ‰

�X0" D P" .x/
@

@x
C y

�
1C �"x

k
C A" .x; y/

� @

@y
;

where A 2 Holo
��
Ck ; 0

�
� �0D � rD

�
and A .x; 0/ D 0:

We must prove the following result.

L 5.11. – There exists a sequence of polynomials an 2 C f"g Œx��k such that

A .x; y/ D

1X
nD1

an .x/ y
n

on U0
r .

Proof. – The expansion for A is valid for .x; y/ 2 U0
r and an holomorphic in x. In

the other chart .u; v/ D
�
1
x
; y
�

the vector field X0
" is orbitally equivalent (conjugate after

division by uP"
�
1
u

�
) to

X1" .u; v/ WD �u
@

@u
C v

 
�" C h" .u/C

1

ukC1P"
�
1
u

�ukA" � 1
u
; v

�!
@

@v

where h is given by (5.2). This particular vector field must coincide with the holomorphic
vector field defining F " in the chart U1r after application of (5.3), because every transform
used from the start is fibered so that the factor uP"

�
1
u

�
over A r remains the same and no

other function can be factored out. Therefore ukA"
�
1
u
; v
�

is holomorphic near .0; 0/, and the
conclusion follows.
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5.6. Proof of orbital Uniqueness Theorem (2)

Assume that there exists an orbital equivalence between two normal forms X and eX .
Those vector fields are in prepared form (4.2) thus they satisfy the hypothesis of the results
presented in Section 4, and in particular there exists a fibered analytical conjugacy ‰ near
.0; 0/ between X and eX , according to Corollary 4.11 (2).

Let .Sphere .r/ ; F / and
�

Sphere .r/ ;fF �
be the families of foliated standard neighbor-

hoods of the sphere induced respectively by X and eX . The fibered mappings ‰ are holo-
morphic and injective on a domain D � U0

� Sphere .r/ containing .0; 0/. By a foliated
path-lifting technique (as before) ‰ can be analytically continued on the domain

U " WD Sat F "

�
D
�
� Sphere .r/ :

Using the special form of the normal form X " we derive the following lemma in Section 5.6.2.

L 5.12. – There exists r 0 > 0 such that Sphere .r 0/ n fx D1g � U " for all " 2
�
Ck ; 0

�
.

This lemma implies that ‰" extends to a fibered, injective and holomorphic mapping
Sphere .r 0/ n fx D1g ! Sphere .r/. The fact that ‰" extends analytically to fx D1g uses
a variation on the Mattei-Moussu construction. The proof is standard, but we include it for
the sake of completeness.

L 5.13 ([32, Theorem 2]). – We consider two germs of a holomorphic vector field X
and eX , both with a singularity at the origin of same eigenratio � … R�0 and in the form

x
@

@x
C �y.1CO .x//

@

@y
:(5.9)

Fix a germ of a transverse disk † WD fx D x�; y 2 .C; 0/g, for x� small enough, and assume
that there exists an injective and holomorphic mapping  W † ! fx D x�g conjugating
the respective holonomies induced by X and eX , computed through the fibration .x; y/ 7! x

by turning around fx D 0g. Then there exists a holomorphic and injective, fibered mapping ‰
conjugating X and eX on a connected neighborhood of .0; 0/ containing†. We can even require
that ‰ coincides with  on †.

Proof. – Assume first that � < 0. We can consider that the holonomies � and e� are
defined on† WD fx D x�g�r 0D and set‰.x�; y/ WD .x�;  .y// on†. We then extend‰ over
the circle fjxj D jx�jg as a map of the form ‰.x; y/ D .x;  .x; y//, with  .x�; y/ D  .y/:
the extension is done by the path-lifting technique detailed in Section 5.3.‰ is of course well-
defined because conjugates the holonomies. To extend‰ to �D�r 0D, we use the path-lifting
along rays farg jxj D cstg. Starting at .x0; y/ we lift the ray through x0 up to jxj D � in the
leaf of X . We apply ‰ to the resulting point and then lift the ray back in the leaf of eX . The
corresponding point is called ‰.x0; y/. We must show that

fx0g � C1r
0D � ‰.fx0g � r 0D/ � fx0g � C2r 0D

for some positive constants C1; C2 independent of x0. For this purpose we can suppose that
the O .x/ part in (5.9) is bounded by 1=2 (this is the case if � is sufficiently small). Then

j�j jyj

�
1 �

1

2
jx0j exp t

�
<

d jyj
dt

< j�j jyj

�
1C

1

2
jx0j exp t

�
;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



172 C. ROUSSEAU AND L. TEYSSIER

yielding by Gronwall inequality that

jy.0/j exp
�
�t �

Z t

0

1

2
x0 exp t dt

�
� jy.t/j � jy.0/j exp

�
�t C

Z t

0

1

2
jx0j exp t dt

�
:

The conclusion follows since exp
�R t
0
1
2
jx0j exp t dt

�
2

i
exp �jx0j

2
; 1
h

is bounded and

bounded away from 0 for t < 0.

The previous argument remains valid when� is not real. It suffices to replace j�j by j< .�/j.

R 5.14. – The proof clearly shows that ‰ depends analytically on " were X andeX to depend analytically on ".

The following lemma proved in Section 5.6.1 allows to complete the proof of the Unique-
ness Theorem (2) by observing that injective holomorphic mappings on some standard
neighborhood of the sphere are of a rather special kind.

L 5.15. – Take some analytic family of maps ‰ W Sphere .r 0/! Sphere .r/ satis-
fying the following properties:

� ‰ is fibered,

� ‰" is injective and holomorphic on Sphere .r 0/ for every " 2
�
Ck ; 0

�
.

Then

‰0" .x; y/ D

 
x; y

1X
nD0

 ny
n

!
;(5.10)

where, for all n 2 Z�0,

 n 2 C f"g

with a common radius of convergence, and  0 does not vanish for " D 0. Conversely, any
convergent power series ‰ as above defines an analytic family satisfying the above properties
for some r 0 > 0 small enough.

As a matter of consequence for every " 2
�
Ck ; 0

�
and for any .x; y/ 2 U0

r

‰" .x; y/ D .x; y " .y// ;  " .0/ ¤ 0:

To preserve globally orbital normal forms (2.4) is so demanding that  " ends up being
constant. Indeed, from

‰�" X " .x; y/ D bX .x; y/C y
A" .x; y/

y 0" .y/C  " .y/

@

@y
D eX " .x; y/ ;

where

A" .x; y/ WD x " .y/R" .x; y " .y// � y 
0
" .y/

�
1C �xk

�
;

we deduce by setting x WD 0 that

0 D A" .0; y/ D �y 
0
" .y/
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so that " is constant, for otherwise eX " would not be in normal form. In each case we obtain
finally

 " .v/ D c" 2 C�

as expected. The remaining claim is a straightforward consequence of the study performed
in Section 4.

5.6.1. Proof of Lemma 5.15. – The expansion (5.10) is valid on U0
r 0 provided  n depend

holomorphically on x. Let us show that  n is constant. Applying the transition mapping
.x; y/ 7!

�
1
x
; y
�

we obtain the expression of ‰ in the other chart:

‰1 .u; v/ D

 
u; v

1X
nD0

 n

�
1

u

�
vn

!
;

holomorphic in .u; v/ 2 U1r 0 . This implies in particular that each function u 7!  n
�
1
u

�
must

be holomorphic at 0; the conclusion follows. The converse statement is straightforward.

5.6.2. Proof of Lemma 5.12. – We can find �; r 0 > 0 such that cl .�D � r 0D/ � D, where
D is the domain of ‰. We show that, for some convenient choice of r 00 � r 0 every point
.x�; y�/ 2 fjyj < r

00g can be linked to a point of �D�r 0D by a path contained in a leaf of F 0
" .

Only the case jx�j > � is not trivial. Since the singularity at .1; 0/ is neither a node nor a
saddle-node, every small germ of a disk fu D u�g sufficiently close to fu D 0g, which is trans-
verse to the separatrix L , saturates a full pointed neighborhood .C; 0/2 n fu D 0g � U1r
under F 1" . Therefore there exists r 000 > 0 such that f0 < juj � ju�j ; jvj < r 000g � U ".
Because L is invariant by F " and Ln .fjxj < �g [ fjuj < ju�jg/ is compact we may reduce
r 000 to some r 00 in such a way that �S1 � r 00D � U " (flow-box argument), which settles the
proof.

6. Temporal normal forms

This section is devoted to proving the temporal part of the Normalization Theorem and
of the Uniqueness Theorem in the case � D 0 (which particularly implies �0 … R�0). Recall
how in Section 4 we obtained formal normal forms. The time-componentU of any unfolding
in orbital normal form (2.4)

Z D U X

can be written as
1

U
D C C I;

where

I 2 im
�

X �
�

C 2 coker
�

X �
�
; C .0; 0/ D

1

U .0; 0/
¤ 0;

for a given (arbitrary for now) choice of coker
�

X �
�
, an algebraic supplementary in C ŒŒ"; x; y��

to the image im
�

X �
�

of the (formal) Lie derivative X � W C ŒŒ"; x; y��! C ŒŒ"; x; y��.
According to the discussion following Proposition 4.7, Z is (formally) conjugate to 1

C
X .
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We have shown in Lemma 4.8 that

C ŒŒ"; x; y�� D im
�

X �
�
˚ C ŒŒ"�� Œx�<k ;

or more precisely that the following sequence of C ŒŒ"��-linear operators is exact:

0 �! C ŒŒ"�� �! C ŒŒ"; x; y��
X �
�! C ŒŒ"; x; y��

bT
�! C ŒŒ"�� Œx��k �! 0;(6.1)

wherebTmapsG to the remainder of the Euclidean division of its partial function x 7!G.x; 0/

by P . As a consequence we may take

coker
�

X �
�
WD C ŒŒ"�� Œx�<k ;

so that Z is formally conjugate to 1bT. 1U / X .

R 6.1. – The additional fact that

bT � 1
U

�
D

1bT .U / CO .P /

finally implies that Z is formally conjugate to uX where u WD bT .U /, as in the Formal
Normalization Theorem. This is because one can write (for u0 .0/ ¤ 0)

1

U .x; y/
D

1

u .x/CO .P .x//CO .y/
D

1

u .x/
�

1

1CO .P .x//CO .y/

D
1

u .x/
CO .P .x//CO .y/ :

The previous argument still works for convergent power series, by replacing C ŒŒ"; x; y��
with C f"; x; yg: if we provide an explicit cokernel in C f"; x; yg of X � jCf";x;yg then we can
describe an explicit family of temporal normal forms.

T 6.2. – Assume � D 0 (which particularly implies �0 … R�0). Let an orbital
normal form X be given. It acts by directional derivative on the linear space C f"; x; yg in such
a way that

C f"; x; yg D im
�

X �
�
˚ C f"g Œx��k ˚ Sectionk fyg :

(We refer to Section 3.1.2 for the definition of the functional spaces.)

R 6.3. – The construction of the cokernel of X � is eventually performed
for " fixed. Therefore the theorem can also be specialized in the following way: for
every " 2

�
Ck ; 0

�
such that �" … R�0 and every disk D � P�1" .0/ not containing any

root of 1C �"xk , we have the C-linear decomposition

Holoc .D/ fyg D im
�

X "�
�
˚ C Œx��k ˚ xyC Œx�<k fyg :

If �" 2 R�0 a section of the cokernel is given by xP �" yC Œx�<k fP"�yg.
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The aim of this section is to prove this theorem but, before doing so, let us explain how it
helps completing the proofs of the Normalization and Uniqueness Theorems. Every function
U 2 C f"; x; yg� can be written uniquely as

U D
u

1C uG

wherebT .G/ D 0, by simply taking u WD bT .U / as in Remark 6.1. Then Theorem (6.2) allows
decomposing G uniquely as

G D QC I

with Q 2 Sectionk fyg and I 2 X � C f"; x; yg, so that Z is analytically conjugate to
some u

1CuQ
X , unique up to the action of linear transforms .x; y/ 7! .x; cy/ as expected

(as follows from Uniqueness Theorem (2) which has been proved in the previous section).
This yields Uniqueness Theorem (1).

6.1. Reduction of the proof

We must study the obstructions to solve analytically cohomological equations of the form

X � F D G; G 2 C f"; x; yg \ kerbT:
First observe that this equation, restricted to the invariant line fy D 0g, is always satisfied by
a holomorphic function f W x 7! F .x; 0/ solving

f 0 .x/ D
G .x; 0/

P .x/
2 C f"; xg :

By subtracting f from F and x 7! G .x; 0/ from G, we may always assume without loss of
generality that

G .x; 0/ D F .x; 0/ D 0;

i.e., G 2 C f"; x; yg0 as defined in Section 3.1.2.
Let

�k WD
n
" 2

�
Ck ; 0

�
W #P�1" .0/ � k

o
be a germ at 0 of the discriminant hypersurface of P", so that each open set

�
Ck ; 0

�
n�k

consists in generic values of the parameter for which P" has only simple roots. Proving
Theorem 6.2 will require to work in the functional spaces

H ` fzg WD
[

DD.Cn;0/

Holoc
�

E ` � D
�0
; z WD .z1; : : : ; zn/

for some decomposition . E `/` of
�
Ck ; 0

�
n�k into finitely many (germs of) open cells as

explained in Section 6.3. (We recall that the definition of the space Holoc
�

D
�0

is given in
Section 3.1.2.) We choose these spaces because of the next property.

L 6.4. – We have

C f"; zg0 D
\
`

H ` fzg :

(By the intersection on the right hand side we of course mean the functions that have an extension
on the unions of the different domains.)
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Proof. – We certainly have

C f"; zg0 �
\
`

H ` fzg :

Conversely if f 2
T
` H ` fzg then f defines a bounded, holomorphic function on��

Ck ; 0
�
n�k

�
�.Cn; 0/, which extends holomorphically to

�
CkCn; 0

�
according to Riemann’s

Theorem on removable singularities.

Working over a fixed cell germ E ` is easy as compared to working on a full neighborhood
of the parameter space

�
Ck ; 0

�
.

P 6.5 ([41]). – Let E ` be a parameter cell. There exists T
`
, called the period

operator over E `, such that the sequence of Holoc . E `/-linear operators is exact:

0 �! Holoc . E `/ �! H ` fx; yg
X �
�! H ` fx; yg

T
`
�!

Y
Z=kZ

H ` fhg(6.2)

where h is a one-dimensional variable (meant to take the values of a first integral).

The surjectivity of the period operator T
`

has not been established in the cited refer-
ence, but it would have followed from an immediate adaptation of the argument of [44,
Lemma 3.4]. Here, though, we prove a stronger result by producing an explicit section to the
period operator (Proposition 6.6 to come). The construction of the period operator over E `
is explained in Section 6.2 below. It involves cutting up

�
C2; 0

�
n
�
P�1" .0/ � f0g

�
into k open

(bounded) spiraling sectors and building sectorial solutions of the cohomological equation.
The period operator measures how much solutions on neighboring sectors disagree on
intersections. Contrary to what would have make things easier

T`
�
C f"; x; yg0

�
¤

\
p

Y
Z=kZ

Hp fhg D
Y
Z=kZ

C f"; hg0 ;

so that T
`

is neither onto nor into the natural candidate
Q

Z=kZ C f"; hg
0. This situation differs

drastically from the case " D 0, and can be explained. It turns out that the variable h in the j -
th factor of

Q
j2Z=kZ Hp fhg stands for values of the canonical first integral of X on the j -th

sector (see the discussion preceding Definition 6.10). Different sectorial decompositions for
fixed ", corresponding to different cells E ` containing ", lead to incommensurable sectorial
dynamics: there is no correspondence between h-variables coming from different overlapping
cells (see also Section 9). Therefore we need to relocate the obstructions in geometrical
space .x; y/, by introducing a well-chosen section S

`
of T

`
.

P 6.6. – Let E ` be a parameter cell and assume � D 0 (which particularly
implies �0 … R�0). There exists a linear isomorphism

S` W
Y
Z=kZ

H ` fhg �! xH ` fyg Œx�<k

such that T
`
ı S

`
D Id. This particularly means that we recover a cellular cokernel of X � as

follows:

H ` fx; yg D
�

X � H ` fx; yg
�
˚ xH ` fyg Œx�<k :
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This proposition is showed later in Section 6.4 using a refinement of the Cauchy-Heine
transform, this time on unbounded sectors in the x-variable. Theorem 6.2 is proved once we
establish the next gluing property, as done in Section 6.5.

P 6.7. – For every parameter cells E ` and E èwith non-empty intersection we
have

S` ı T` D Sèı Tè
on H ` fx; yg \ H èfx; yg.

From Lemma 6.4 we deduce the identity

Sectionk fyg D
\
`

xH ` fyg Œx�<k ;

hence the proposition actually provides us with a well-defined, surjective operator

K W C f"; x; yg0 �! Sectionk fyg(6.3)

G 7�! S`
�
T` .G/

�
;

whose kernel coincides with X � C f"; x; yg0, i.e., the sequence of C f"g-linear operators

0 �! C f"; x; yg0
X �
�! C f"; x; yg0

K
�!Sectionk fyg �! 0(6.4)

is exact, as required to establish Theorem 6.2.

6.2. Cohomological equation and period operator

T 6.8 ([41]). – For every � > 0 there exists:

a covering of
�
Ck ; 0

�
n�k by finitely many open, contractible cells . E `/`,

for every " 2 E `, a covering of

V" W D �DnP�1" .0/

into k open, contractible squid sectors

V
j

`;"
; j 2 Z=kZ;

for which the following properties are satisfied. Recall that the closure of a subset A of a
topological space is written cl .A/.

1. Each map " 7! cl
�
V
j

`;"

�
is continuous for the Hausdorff distance on compact sets and

lim
"!

E `

0
cl
�
V
j

`;"

�
D cl

�
V
j
0

�
coincides with (the closure of) a usual sector of the limiting saddle-node, namely

V
j
0 WD

�
x W 0 < jxj < �; arg x 2

�
�
3�

2k
C �C j

2�

k
;

3�

2k
� �C j

2�

k

��
for some � 2

�
0; �
2k

�
.
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2. We let

V
j

`
WD

[
"2 E `

f"g � V
j

`;"
:

For every G 2 Holoc . E ` � �D � .C; 0//0 there exists a unique family
�
F
j

`

�
j2Z=kZ

such

that F j
`

is the unique solution of

X � F D G

in the space Holoc

�
V
j

`
� .C; 0/

�0
. Moreover

lim
"!

E `

0
F
j

`;"
D F

j
0

uniformly on compact sets of V j0 � .C; 0/, where F j0 is the canonical sectorial solution of
the limiting cohomological equation [45].

3. There exists a solution F 2 Holoc . E ` � �D � .C; 0// of X � F D G if, and only if, for
every " 2 E ` and j 2 Z=kZ

F
jC1

`;"
D F

j

`;"

on corresponding pairwise intersections of sectors V j
`;"
� .C; 0/.

We provide details regarding how squid sectors and parameter cells are obtained in

Section 6.3 below. The way sectorial solutions
�
F
j

`

�
j2Z=kZ

are built is explained in [41,

Section 7]. The third property encodes all we need to know in order to characterize alge-
braically the obstructions to solve analytically cohomological equations. It is, as usual,
eventually a consequence of Riemann’s Theorem on removable singularities.

R 6.9. – 1. A usual saddle-node sector is divided by rays separated by an angle
slightly larger than �

k
: allowing an extra �

2k
on each side yields sectors of opening

between �
k

and 2�
k

. However we are in the particular case of a saddle-node with analytic
center manifold, meaning that we need twice less sectors to describe the singularity
structure. Hence the angle between the dividing rays can be taken as big as 2�

k
: allowing

an extra �
2k

on each side yields an opening between 2�
k

and 3�
k

.

2. A corollary to this theorem is the fact that any generic convergent unfolding is
conjugate to its formal normal form over every region V

j

`
� .C; 0/. In particular

each X is conjugate over V j
`;"
� .C; 0/ to bX by a fibered mapping

.x; y/ 7�!
�
x; y expN j

`;"
.x; y/

�
built upon a sectorial solution of

X " �N
j

`;"
D �R"

as in Proposition 4.7.
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3. A really important property of the construction: it is performed [41, Section 7] for
each fixed " 2 E `, the holomorphic / continuous dependence on " of resulting objects
being a by-product. This greatly simplifies understanding what happens on overlapping
cells. This is also the reason why we omit to include the subscripts ` and " in the sequel,
whenever doing so does not introduce ambiguity.

The period operator T
`

is obtained as follows. Fix " 2 E ` and � > 0 as in the previous
theorem. Starting from any G 2 Holo .�D � .C; 0//0 we can find a unique collection�
F j
�
j2Z=kZ

2
Q
j Holo

�
V j � .C; 0/

�0
of bounded functions solving the equation X � F D G

over a squid sector. On each intersection we have X � F jC1 D G D X � F j so that
F jC1 � F j is a first integral of X . Therefore it factors as

F jC1 � F j D T j ıH j ; T j 2 C fhg0(6.5)

where H j D H
j

`;"
is the canonical sectorial first integral with connected fibers

H j
WD bH j expN j ;(6.6)

obtained from that of the formal normal formbH j .x; y/ WD y exp
Z x

�
1C �zk

P .z/
dz(6.7)

by composition with the sectorial normalization (Remark 6.9). We can fix once and for all a
determination of each first integral bH j D bH j

`
on V j

`
in such a way thatbH jC1

D bH j exp 2i��=k(6.8)

in V j;s. The linear factor appearing on the right-hand side is here to accommodate the

multivaluedness of exp
R x
�
1C�zk

P.z/
dz D x�� � holo .x/ near1, so that bH jCk D bH j .

D 6.10. – Consider a parameter cell E ` and � > 0 as in Theorem 6.8.
For G 2 Holoc . E ` � �D � .C; 0// define the period of G with respect to X as the k-tuple

T` .G/ WD
1

2i�

�
T j
�
j2Z=kZ

2

Y
Z=kZ

H ` fhg

whereT j" WD T j is build as above in (6.5) forG WD G" and " 2 E `. We defineTj
`
.G/ WD 1

2i� T
j

to be the j -th component of T
`
.G/.

R 6.11. – Following up on Remark 6.9 (1), it seems that the period ofRmust play
a special role regarding classification, since it measures the discrepancy between sectorial
orbital conjugacies to the formal normal form bX. It is actually the case that the unfolded
Martinet-Ramis modulus is linked to this period through the relationship

 
j;s
`
.h/ D h exp

�
2i��
k
C �

j;s
`
.h/

�
D h exp

�
2i��
k
� T

j

`
.R/ .h/

�
:

A similar formula holds for the temporal modulus, namely f j;s
`
D T

j

`

�
1
U
� 1

�
. We refer

to [41] for a more detailed discussion regarding these integral representations of the modulus
of classification.

We sum up the relevant results needed in the sequel as a corollary to Theorem 6.8.
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C 6.12. – Pick " 2
�
Ck ; 0

�
n�k and � > 0 such that P�1" .0/ � �D, as well as

some holomorphic function G 2 Holo .�D � .C; 0//0. The following assertions are equivalent.

1. There exists F 2 Holo .�D � .C; 0//0 such that X " � F D G.

2. There exists ` with " 2 E ` such that

T` .G/" D 0:

3. For all ` with " 2 E ` we have

T` .G/" D 0:

If moreover G 2 H ` fx; yg then

lim
"!

E `

0
T` .G/" D T .G0/

uniformly on .C; 0/, where T W C fx; yg0 !
Q

Z=kZ C fhg
0 is the period operator of the limiting

saddle-node [45].

Proof. – For fixed " and ` Theorem 6.8 asserts the equivalence between existence of
an analytic solution F of the cohomological equation X" � F D G and vanishing of the
period T

`
.G/". But the analyticity of F has nothing to do with the way the underlying squid

sectors are cut, therefore Tè.G/" D 0 as soon as " 2 E è.

6.3. Description of (unbounded) squid sectors and parameter cells

To characterize the dynamics, describe the modulus of analytic classification and more
generally build the period operator, we need to work over k open squid sectors in x-space
covering either �DnP�1" .0/ (bounded case) or CnP�1" .0/ (unbounded case). Since fy D 0g is
an analytic center manifold, each sector in this paper is the union of two consecutive sectors
described originally in [41]. The cited reference also guarantees that it is sufficient to limit
ourselves to the complement of the discriminant hypersurface �k 3 0 in parameter space.
Although we only reach parameters for which all roots of P" are simple, the construction
passes without difficulty to the limit " ! �k . For " … �k the squid sectors are attached to
two or three roots. When " ! 0 they converge to the sectors used in the description of the
Martinet-Ramis modulus for convergent saddle-nodes.

The singular points depend analytically on " 2
�
Ck ; 0

�
n�k . To obtain a family of squid

sectors suiting our needs, we must ensure that the sectors vary continuously as " does. This is
however not achievable on a full pointed neighborhood of�k in parameter space, for reasons
we are about to explain (we particularly refer to Remark 6.16). Even so, we manage to deal
with all values of " by covering the space

�
Ck ; 0

�
with the closure of finitely many contractible

domains . E `/` in "-space, which we call cells, on which admissible families of squid sectors
exist.
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1

() Neighborhood
of1 for k D 3

() The neighborhood
of �D

F 6.1. The separatrices of the pole at1 and the petals along the boundary
of the disk �D.

6.3.1. The dynamics of Px D P".x/. – Let us recall the main features of the vector field P" @@x .
When P" has distinct roots x", each singular point x" has an associated nonzero eigenvalue
�" D P

0
".x"/.

— The point x" is a radial node if �" 2 R. It is attracting (resp. repelling) if �" < 0 (resp.
�" > 0).

— The point x" is a center if �" 2 iR.

— The point x" is a focus if �" … R[ iR. It is attracting (resp. repelling) if< .�"/ < 0 (resp.
< .�"/ > 0).

The point x D 1 serves as an organizing center; indeed, the vector field P" @@x has a pole of
order k�1with 2k separatrices at x D1, alternately attracting and repelling (see Figure 6.1),
thus limiting 2k saddle sectors at1. The system is structurally stable in the neighborhood
of1 for " small. These saddle sectors give a phase portrait resembling 2k petals along the
boundary of any (sufficiently large) disk centered at the origin. The relationship between the
magnitude of the parameter and the size of the disk will be detailed in Section 6.3.4.

The dynamics is completely determined by the separatrices of1. Because all roots of P"
are simple, only two types of behavior occur.

— For generic values of ", following the separatrices from 1 (either in backward or
forward direction) one lands at repelling (t ! �1) or attracting (t ! 1) singular
points x" of focus or radial node type. In that case, each singular point is attached to
at least one separatrix and the system is structurally stable among polynomial systems
of degree k C 1. See Figure 6.2 for a phase portrait with generic ".

— The sets of generic " are separated by bifurcation hypersurfaces of (real) codimension 1.
For these non-generic values of " a homoclinic connection occurs between an attracting
separatrix and a repelling separatrix of infinity: there is then a real integral curve

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



182 C. ROUSSEAU AND L. TEYSSIER

F 6.2. An example of a structurally stable real foliation induced by a
complex polynomial vector field of degree 4 for " in some K`.

flowing out from infinity in the x-plane and flowing back to infinity in finite time. For
these bifurcation sets, the singular points P�1" .0/ can be split into two (nonempty)
subsets I1 and I2 satisfying

(6.9)
X
x2Im

1

P 0".x/
2 iR; m D 1; 2:

This can be seen by integrating the 1-form dt D dx
P".x/

along a homoclinic orbit,
and evaluating residues. When Im is a singleton, the corresponding singular point is
a center.

The union of the 2k separatrices of 1 is called the separating graph in [11] (see
Figure 6.3(A)). It splits C into k simply connected regions. In each of these regions we
can draw a curve 
j connecting the interior of a saddle sector at1 to the interior of another
saddle sector (see Figure 6.3(B)). There are exactlyCk D 1

kC1

�
2k
k

�
ways of pairing two by two

the saddle sectors of 1 by non-intersecting curves, thus providing a topological invariant
for the vector field (we also refer to [10]).

6.3.2. Rough description of the cells E ` in parameter space. – The non-generic values of "
form a set of (real) codimension 1 which partitions a convenient neighborhood of 0 in
parameter space (to be described slightly later) into Ck open regions K`, corresponding to
structurally stable vector fields with the same topological invariant. In each region K`, the
topology of the phase portrait is completely determined by the topological way of attaching
the 2k separatrices to the kC 1 singular points. If x" is a root of P" (depending continuously
on ") then<

�
P 0".x"/

�
has a constant sign for all " 2 K`. Each cell E ` in parameter space will

be a small enlargement of K`, so that the cells cover the complement of �k .

A. Douady, J.F. Estrada and P. Sentenac have also provided a very clever parametrization
of the domains K`, thus showing that they are simply connected.
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() The separating
graph

() The curves 
i

F 6.3. On the left, the separating graph formed by the separatrices landing
at the singular points and flow lines (in bold) between the singular points. On the
right, the curves 
i (in dotted lines) used to calculate the �i .

T 6.13 ([11]). – LetK` be a maximal domain corresponding to structurally stable
vector fields. Then, there exists a biholomorphism ˆ` W K` ! Hk , where H is the upper half-
plane. In particular, K` is contractible. The set ˆ�1

`

�
.iR�0/k

�
, which we call the spine of K`,

corresponds to polynomial vector fields with real eigenvalues at each singular point.

The map ˆ` is defined as follows: let
�


j
"

�
j2f1;:::;kg

be k disjoint loops attached to 1

and pairing the saddle sectors of 1, without intersecting the separating graph. Then
ˆ`."/ D .�

1
" ; : : : ; �

k
" /, where

�j" W D

Z


j
"

dt D
Z


j
"

dx
P".x/

;

the orientation of 
j" being chosen so that =
�
�
j
"

�
> 0.

Since �j" D 2i�
P
x2I

1
P 0".x/

, where I is the set of singular points in a domain bounded by 
j" ,

the sum �
j
" admits an analytic continuation outsideK`. In particular, when " is a boundary point

of K` for which there is a homoclinic loop through1, some of the �j" become real.

The cells have a very useful conic structure, induced by a multiplicative action of R>0 3 �
through linear rescaling

."k�1; : : : ; "0; x; t/ 7�!
�
��.k�2/"k�1; : : : ; "1; �"0; �x; �

�kt
�
;(6.10)

as indeed the differential equation Px D P".x/ is invariant under this action. The cones we
use are of the form n�

�2"k�1; : : : ; �
k"1; �

kC1"0

�
W � 2 �0; 1Œ ; " 2 K

o
;
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whereK is a relative domain within a sphere-like real hypersurface. This compact hypersur-
face takes the form fk"k D cstg with

(6.11) k"k WD max
�
j"k�1j

1
2 ; : : : ; j"1j

1
k ; j"0j

1
kC1

�
:

R 6.14. – The expression 6.11 does not define a norm because the homogeneity
axiom is not satisfied. However, if we take into account that the "j are the symmetric func-
tions in the roots .x0; : : : ; xk/ 2 CkC1 of P", it lifts to a norm on CkC1. Thus k"k measures
the magnitude of the parameter " and the k�k-balls form a fundamental basis of neighbor-
hood of 0. In the following we consider only these parametric neighborhoods.

The regions K` of structural stability defined above are cones of this form, and so will be
their enlargements to cells E ` covering the complement of�k . Also, when considering limits
for "! 0 it will be natural to consider limits for �! 0 along orbits of the R>0-action

(6.12)
n�
�2"k�1; : : : ; �

k"1; �
kC1"0

�
W � 2 �0; 1Œ

o
:

6.3.3. Saddle- and node-like singular points, admissible angles. – We want to stress that a
singular point x" of Px D P".x/ with non-real eigenvalue � D a C ib can be both attracting
and repelling depending on how we approach it along logarithmic spirals. Making sense of
this statement entails complexifying the time. Let us explain how.

— Consider the linear equation Px D �x. Its solutions are x.t/ D x0 exp .�t/. Now, let
us allow complex values of t along some slanted real line t D .c C id/T D T exp .i�/
in C-space for some fixed c C id 2 S1, with c > 0 (corresponding to � 2

�
�
�
2
; �
2

�
)

and T 2 R. Then

x .t .T // D x0 exp ...ac � bd/C i .ad C bc// T / ;

and limT!C1 x.t.T // D 0 (resp. limT!�1 x.t.T // D 0) when ac � bd < 0 (resp.
ac � bd > 0).

— Since b ¤ 0, it is always possible to find c1 > 0, d1 (resp. c2 > 0, d2) such that
ac1 � bd1 > 0 (resp. ac2 � bd2 < 0).

— Note that approaching the singular point along a line t D .c C id/T in t -space is
the same as approaching it along a real trajectory of the rotated equation
dx
dT D � exp .i�/ � x. Such a trajectory is a logarithmic spiral.

— All these properties hold for the original system too, since the vector field P" @@x is
analytically linearizable near the singular point (Poincaré’s theorem).

Locally around each root x" the squid sectors will coincide with domains bounded by
asymptotic logarithmic spirals, given by trajectories of rotated vector fields exp .i�"/ P" @@x .
The angular function ."; x/ 2 E ` � C 7! �" .x/ 2

�
�
�
4
; �
4

�
will be piecewise constant and

zero outside a neighborhood of @K`, and for x far from the singular points.

D 6.15. – Let E be a domain in the complement of �k .
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1. An admissible angle on E is a piecewise constant function � W E �C!
�
�
�
4
; �
4

�
such

that for any analytic family of roots .x"/"2 E of .P"/"2 E , the function
" 2 E 7! <

�
P 0" .x"/ exp .i�" .x"//

�
keeps a constant sign. In the following we use

the notation

# WD exp .i�/ :(6.13)

2. We say that an analytic family .x"/"2 E of singular points of Px D P".x/ is of node type
on E if there exists an admissible angle such that

<
�
P 0" .x"/ #" .x"/

�
> 0 .8" 2 E /

and of saddle type on E if

<
�
P 0" .x"/ #" .x"/

�
< 0 .8" 2 E / :

We use the notation
�
xn
"

�
"

(resp.
�
xs
"

�
"
) for a family of roots of node (resp. saddle) type

on the domain E .

R 6.16. – 1. The cells E ` in parameter space will be small contractible enlarge-
ments of the cones K`, on which there exist admissible angles. Additional constraints
will be demanded to these angular functions in order to guarantee that the cells and
sectors meet all technical requirements.

2. The choice of �
4

for an upper bound in the size of an admissible angle � is arbitrary
as any bound ˛ 2

�
0; �

2

�
would do. However the larger ˛, the smaller the bound �

on k"k. Indeed we approach each singular point along a trajectory of some vector
field #" .x/ P" .x/. When � is large and the singular points are not far enough from rS1,
the trajectory follows wide spirals and may escape rD before landing at the singular
point. An “absolute” (i.e., independent of the bound ˛) necessary condition for the
existence of an admissible angle such that .x"/" has node- (resp. saddle-) type on a
neighborhood of K` is that P 0" .x"/ … R<0 (resp. P 0" .x"/ … R>0) for " 2 K`. Therefore
no admissible angle exists on a full pointed neighborhood of �k .

3. We can illustrate on the formal normal form why admissible angles are of paramount
importance. In the flow system of #bX for real time(

Px D #" .x/ P" .x/

Py D #" .x/ y
�
1C �"x

k
�

the variation of the modulus � WD jyj2 D yy of a solution follows the law

P� D 2�<
�
#" .x/

�
1C �"x

k
��
:

Close enough to the singularity .x"; 0/ all non-zero solutions therefore accumulate
backwards exponentially fast on .x"; 0/ if x" D xn

" is of node type or, on the contrary,
diverge forwards exponentially fast for a saddle type root xs

". This behavior mimics that
of a node / saddle planar foliation near a point with real residue #" .x"/ P 0" .x"/. This
dynamical dichotomy is the cornerstone of the construction of the period operator (the
modulus of classification) in [41].
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6.3.4. Size of sectors and of the parameter. – The diameter � of the bounded part of the
sectors is such that j1 C �xkj > 1

2
when jxj < �. Note that the roots of P" all lie within

p
k k"k cl .D/. Indeed it suffices to show that if jxj >

p
k k"k, then P".x/ ¤ 0. On the one

hand
ˇ̌
xkC1

ˇ̌
> k

kC1
2 k"kkC1. On the other handˇ̌̌̌

ˇ̌k�1X
jD0

"jx
j

ˇ̌̌̌
ˇ̌ � k"kkC1 k�1X

jD0

k
j
2 � k"kkC1 k

kC1
2 :

In fact outside the disk
p
k k"k cl .D/ the trajectories of P" @@x are petals as depicted in

Figure 6.1 (B). Set

(6.14) �" WD 2
p
k k"k :

Then we choose " sufficiently small so that �" <
�
2

. Later in Lemma 6.23 we will further
reduce � and " so that ˇ̌̌

�xk
ˇ̌̌
C 2�

ˇ̌
P 00 .x/

ˇ̌
�
3

4
(6.15)

for jxj < �.

6.3.5. The ideal construction of sectors. – Let us now choose a cone K` and describe the

corresponding open squid sectors
�
V
j

`;"

�
j2Z=kZ

covering �D n P�1" .0/. On a “large” neigh-

borhood of the spine of K` (to be made precise below), i.e., not too close to the boundary
of K`, they are limited by real trajectories of P" @@x chosen as follows (see also Figure 6.4).

x0;n

x1;n = x2;n

x0;s = x2;s

x1;s

V 0

V 1

V 2

F 6.4. Curves involved in the ideal decomposition. Stable separatrices at1
in black, unstable ones in green, orange and purple.
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1. The unstable separatrices of P" @@x through1 split �S1 into k arcs. We enlarge slightly
these arcs to an open covering of the circle. Each arc is one piece of the boundary of a
sector V j" .

2. Two other pieces of the boundary of V j" are given by the forward trajectories of P" @@x
through the endpoints of the arc, which land in singular points xj�1;s and xj;s (not
necessarily distinct) such that<

�
P 0"
�
xj;s

��
< 0 (i.e., the roots are of saddle type). These

trajectories spiral as soon as =
�
P 0"
�
xj;s

��
¤ 0 (which is the generic situation).

3. Suppose xj;s ¤ xj�1;s. For a given boundary arc of �S1 there exists one stable
separatrix through1which cuts it at one point and lands at root xj;n of node type. This
singular point belongs to the boundary of V j" . The last two pieces of the boundary are
two complete trajectories of P" @@x , one joining xj;n to xj�1;s and the other joining xj;n

to xj;s. These trajectories are chosen in such a way that
�
V
j
"

�
j2Z=kZ

cover �DnP�1" .0/.

4. When xj;s D xj�1;s, we introduce two trajectories between xj;s and xj;n, thus intro-
ducing a self-intersection of V j" . This is motivated by the need of dealing with ramified
functions near xj;n. See Figure 6.13 (A).

V
0

V
1

V
2

ρ"

F 6.5. Decomposition into bounded, overlapping squid sectors induced by
the flow depicted in Figures 6.2 and 6.4.

6.3.6. The problem with the ideal construction of sectors. – Of course the ideal construction
will not always work. It can fail for the following reasons. For a set I � P�1" .0/ and " … �k
define

�" .I / WD
X
x2I

1

P 0".x/
:(6.16)
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— The first one is when " is not generic: the separatrices may form a homoclinic loop
preventing them to land at singular points. A homoclinic loop 
 through1 partitions
the set of singular points P�1" .0/ into I and I 0 such that

(6.17) < .�" .I // D <
�
�"
�
I 0
��
D 0:

— When " is close to a hypersurface corresponding to a homoclinic loop, it can also
occur that the trajectories through the endpoints of the arc first exit the disk �D before
landing at a singular point.

— When " crosses a hypersurface corresponding to a homoclinic loop, then <
�
P 0".x"/

�
can change sign, thus preventing the above construction to be continuous in " 2 E `.

— As " approaches 0 (or, more generally, �k) we would like the sectors to converge to
usual sectors associated to saddle-node singularities.

6.3.7. The remedy in the construction of sectors. – The remedy to all these problems is the
same. We want to keep the above picture all over the cell E ` and we want the cells to cover
the complement of�k . The boundary ofK` is composed of real hypersurfaces corresponding
to homoclinic loop bifurcations. On each such hypersurface we have (6.17) for some I , while
on K` the real part of the corresponding �" .I / has a fixed sign and so does =

�
�j
�
. But we

have seen in Section 6.3.3 that this is not an obstruction for having the points remaining of
node- or saddle-type: we just need to be sufficiently careful on how we approach them, by
adjusting the spiraling of the sectors. In practice, this boils down to replacing the piece of a
trajectory of P" @@x inside the disk �"D by the piece of a trajectory of exp .i�/�P" @@x for some
admissible angle � as in Definition 6.15 (with some additional specifications).

P 6.17. – Being given ı 2
�
0; �

4

�
and � > 0, there exists � > 0 such that the

following properties hold.

1. Let E ` be the open set in fk"k < �g n�k defined by the next conditions:

for each homoclinic-loop bifurcation hypersurface on the boundary of K`, sepa-
rating the singular points in two nonempty groups I [ I 0 as in (6.17), we have(

arg �" .I / 2
�
�
�
2
� ı; �

2
C ı

�
if < .�" .I // > 0 on K`;

arg �" .I / 2
�
�
2
� ı; 3�

2
C ı

�
if < .�" .I // < 0 on K`;

for the �j" defined in Theorem 6.13 we have

arg �j" 2 ��ı; � C ıŒ for all j 2 f1; : : : ; kg :

Then E ` is a conic contractible neighborhood of K` and
S
` E ` D fk"k < �g n�k .

2. There exists an admissible angle � (corresponding to a direction# D exp .i�/) on E ` such
that for each homoclinic-loop bifurcation hypersurface on the boundary ofK`, separating
the singular points in two nonempty groups I [ I 0, we have

(6.18)

(
arg

P
x2I

1
#".x/P

0
".x/
2
�
�
�
2
C ı; �

2
� ı

�
if < .�" .I // > 0 on K`;

arg
P
x2I

1
#".x/P

0
".x/
2
�
�
2
C ı; 3�

2
� ı

�
if < .�" .I // < 0 on K`:

3. Any trajectory of #"P" @@x , starting from a point of �S1 and entering the disk, does not
exit the disk �D before landing at a singular point.
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Proof. – 1. This is clear.
2. We build the angle � (piece-wise constant in x) in such a way that #" D 1 when " is on

the spine ofK`. When we approach a component of @K` corresponding to a homoclinic loop
separating the roots of P" as I [ I 0, we can rotate the vector field by an angle j� j � 2ı < �

4

so that arg
P
x2I

1
#".x/P

0
".x/

belongs to the given interval.
3. A more precise quantitative description of the sectors is needed to show that the

magnitude of � (in x-space) together with the choice of ı give constraints on the size � of the
k�k-ball in "-space, and that taking j� j large enough is sufficient to secure the conclusion. All
this is done in the time coordinate t D

R dx
P".x/

. We come back to this below in Section 6.3.9.

D 6.18. – 1. The contractile, conic domain E ` given by the previous proposi-
tion is called a cell in parameter space.

2. The k domains in x-space built like ideal sectors but bounded by trajectories
of #"P" @@x instead of P" @@x are called squid sectors.

6.3.8. Pairing sectors

x0;n

x1;n = x2;n

x0;s = x2;s

x1;s

V 1

V 2

V 0

F 6.6. Construction of the non-crossing permutation � ; here � D
�
0 1 2
0 2 1

�
.

D 6.19. – Recall that a non-crossing permutation � 2 Sk is a permutation
such that if p0; : : : ; pk�1 are circularly ordered points on a circle, there exist pairwise non-
intersecting curves within the inscribed disk joining pj and p�.j / for all j .

1. There exists a (non-crossing) permutation � D �" on f0; : : : ; k � 1g yielding a pairing
of the sector V j" with V �.j /" (see Figure 6.6) in the following way. If the sector V j"
shares its vertices xj�1;s and xj;n with a distinct sector V j

0

" , then we define �.j / WD j 0.
Otherwise we let �.j / D j .
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2. The squid sector V j" is introvert if � .j / D j , and extrovert otherwise (see Figure 6.7).

The permutation � is a complete topological invariant [11, 2] for structurally stable vector
field P @

@x
(i.e., for generic ") and any non-crossing permutation can be realized in this way.

In particular " 7! �" is constant on the conic domains K`.

x
j;n

= x
σ(j);n

V
j

x
j;s

x
j−1;s

= x
σ(j);s

() Extrovert squid sector:
� .j / ¤ j

x
j−1;s

= x
j;s

V
j

x
j;n

() Introvert squid sector

F 6.7. The two kinds of bounded squid sector for k > 1.

6.3.9. Practical description and quantitative estimates. – Here we end the proof of Proposi-
tion 6.17. As discussed earlier, finding an admissible angular function is equivalent to finding
suitable piecewise affine real curves in the complex time coordinates. Studying Px D P".x/ for
complex values of the time t is the natural point of view taken by [11, 2]. In that setting we
could view the whole x-line as a single complex trajectory of the flow of P" @@x . Although one
might consequently try to parametrize points in the x-variable by values of the time t .x/ 2 C
this is too simplistic: the time function is multivalued at 1. Nonetheless, the idea is very
powerful and fruitful if we limit ourselves to simply connected domains in time space. Let
us define the time function by

t .x/ WD

Z x

1

dz
P" .z/

:(6.19)

When " is generic we obtain

t .x/ D
X

x"2P
�1
" .0/

1

P 0".x"/
log.x � x"/:

We are interested both in the map t and in its inverse tı�1. As such the map (6.19) is not
well defined, since it depends on the homotopy type of the path from1 to x in the integral.
Hence its natural domain S is the Riemann surface given by the universal cover of CP1

punctured at the roots of P". Since the integral starts at x D 1 then t .1/ D 0. We have
to remember that1 is a pole of order k � 1 of the vector field: there the time function has
locally the form t D � 1

kxk
(and hence1 can be reached in finite time.) At all points of S

different from1 the map t is locally biholomorphic, giving a structure of Riemann surface
to the image t .S n f1g/. Also, if we turn around 1 once in x-space, then t will make k
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turns around 0. Hence, the natural domain of tı�1 is a ramified Riemann surface over the
t -space with branch points of degree k at each of the images of 1 by t over S . We can
consider it as a k-sheeted Riemann surface, and we change sheet when we turn around a
branch point. There is a unique branch point when " D 0. However, when " ¤ 0, there are
periods, which correspond to the different times to go from1 to1 along paths circling some
singular points. The distance between two images of1 (two branch points) on one sheet is
a period of a loop around singular points. These periods are all greater than some C k"k�k

(see Lemma 6.20 below).
The image of the complement in C of �D under the map t is therefore, for small ", a union

of holes (topological disks) of approximate radius 1

k�k
in the k-sheeted Riemann surface

(Figure 6.8) over Ct , with one central hole around 0. The ramifications (branch points) occur
at the images of1. Each hole contains an image of1 by t . A half-sheet around the central
hole in t -space, i.e., a sector of opening � centered at the center of the hole and bounded by
two horizontal half-lines, corresponds to an approximate angle of �

k
on @�D (or to a saddle

sector of1). Hence one �j of Theorem 6.13 is associated to each half-sheet, thus pairing the
half-sheets two by two. Since �j is a period in t -space, it is a distance between centers of holes
and, on each half-sheet, the next hole is obtained by translating the current hole by �j .

L 6.20. – There exists C > 0, depending only on k, such that

j�j j > C k"k
�k :

Proof. – It suffices to show that there exists C > 0 such that j�j j > C when k"k D 1, and
then to use the rescaling (6.10). This is done as follows. Changing the time t 7! t 0 WD e�i arg �j t ,
then � 0j D e�i arg �j �j is the time along a homoclinic loop between two separatrices of 1
for the transformed vector field. In Section 6.3.4, all roots have been shown to belong
to
p
kcl .D/. The time � 0j is then larger than twice the minimum time to go from 1

to fjxj D 2kg, and this minimum is positive on the compact set k"k D 1.

Let us first describe what happens on the spine of the cell. There, holes are aligned
vertically (the �j are pure imaginary) and each sector (which is an ideal sector) corresponds
to a horizontal strip as in Figure 6.8. If we want to cover �DnfP�1" .0/g then we should cover
a little more than a full turn around one hole. The width of the strip should be a little over �j

2

on the top side and over �jC1
2

on the bottom side. When moving to t -space the singular points
have been sent to1, to the left (resp. right) for the singular points of node (resp. saddle) type.
In such a picture we see the connected parts of the intersections of two consecutive sectors
that go to the boundary.

The internal intersection parts (that we later call gate parts) can only be seen by using the
periodicity of t . There are similar half strips on the �.j /-th sheet, with a hole at a distance �j
and on the �.j C 1/-th sheet, with a hole at a distance �jC1. Their translations by the
corresponding period �j and ��jC1 brings them on the j -th sheet where they intersect the
initial strip (Figure 6.8).

If we now move away from the spine of K`, then two things happen.

— On the one hand, the �j bend. When they approach the real line (horizontal direction),
then it is no more possible to pass a horizontal strip because the holes block the way:
the remedy is to slant the strip so that it avoids the hole altogether.
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x1;n

x0;s

x1;s

x1;n

x0;sx1;s

V 0

V 1

V 2

In x-space

In t-space

1

0

2

2

A horizontal strip and the
Strips intersections.

1 = σ(2)

τ2

local sheet numbering around
the central black disk.

F 6.8. The images of these horizontal strips in t -space are sectors V j" in x-space.

— On the other hand, in the t -space, each singular point x" turns, since it is located at
infinity in the direction of � 1

P 0".x"/
. An infinite half-strip in the direction # D exp .i�/

can only be sent to a sector with vertex at x" if

(6.20) <

�
�

#

P 0".x"/

�
> 0

(corresponding to the scalar product of � 1
P 0".x"/

and # being positive). This forces
giving an angle to the strip in the infinite end of the half-strip approaching a singular
point.
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The choice of ı in (6.18) guarantees that �j cannot turn of an angle larger than �
2
C ı. The

size of the holes is of the order of 1

k�k
, which is very small compared to the �j and 1

jP 0".x"/j
if

" is sufficiently small.

Now the strip has three infinite ends, a wide one on the left side attached to a point of node
type xj;n" , and two thinner ones attached to xj�1;s" and xj;s" . The slope #" for each infinite end
should be chosen so that (6.20) be satisfied for the singular point corresponding to that end
of the strip.

This is how it is done. In the ideal situation the curves 
j , used to pair the saddle sectors
(permutation � ) and to define the �j , split the disk into k C 1 regions, each containing a
singular point. When we are no more in the ideal situation, then several of the curves 
j have
disappeared, corresponding to the fact that some strips are either too thin to pass a trajectory
or have disappeared. Then there remains only a few 
j dividing the disk in m < k C 1

regions. Each of these regions contains some singular points. In a given region, we have two
possibilities:

1. either there are several singular points: then they have kept their saddle or node type
and are linked by trajectories that form a tree;

2. or there is a unique singular point, which is a center or a very widely spiraling focus.

For each 
j that has disappeared because =
�
�j
�

is too small, we bend the strip between the
holes while keeping its width a little more that �j

2
(resp. �jC1

2
) (see Figure 6.9). This process

restores that part of the strip and forces the bent separatrices to stay inside the disk.

Just before the disappearance of 
j , each separatrix was attached to a singular point. If
the singular point is close to a center as in (2) above, then the bent separatrix will spiral to the
singular point: we may add a little more bending so that it does not escape the disk before
doing so. In (1) the bent separatrix has no choice but to cross one of the trajectories of the
tree between two singular points, one of which is the singularity to which it was attached
before. When it does so, we turn to follow a parallel trajectory going to the singular point
then bringing back the strip to the horizontal direction. We make the same thing for the
three infinite ends of each strip. When doing so, we pay attention to take the same slope at
all infinite ends attached to a given singular point.

R 6.21. – When "! 0 along a curve (6.12) then P 0".x"/! 0 and the half-strips
are replaced by half-planes. More generally when " tends to a point of �k , some half-strips
are replaced by half-planes.

6.3.10. Large (unbounded) squid sectors. – When �0 … R�0, we will also need a covering
of the whole of C by k sectors. For that purpose, we append to the sectors V j" an infinite
part obtained in the following way: if x1 and x2 are the endpoints of the boundary arc of V j"
along �D, then we follow geometric spirals xm exp ..1C i�/R�0/ for m 2 f1; 2g and some �
such that

< .�0/ > �= .�0/ :

If we come back to the representation of the sector in t -space, this amounts to appending
some spiraling sector inside the holes (a neighborhood of1 in x-space is covered by a sector
of opening 2k� in t -space).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



194 C. ROUSSEAU AND L. TEYSSIER

F 6.9. A slanted strip in t -space whose image is a sector V j" in x-space.

x
s

x
n

Γ
+

Γ
−

F 6.10. Unbounded squid sector for k D 1 and< .�/ > 0. When< .�/ � 0
and � … R the shaded area bends to form a geometric spiral near 1. See also
Figure 6.14 for the case k > 1.

We still denote by V j" the resulting unbounded sectors, since the context will never be
ambiguous.

6.3.11. Intersections of squid sectors

D 6.22. – We let �j;C (resp. �j�1;�) be the part of the boundary of the
unbounded sector V j" joining xj;s (resp. xj�1;s) to 1 with this orientation. The intersec-
tion of two squid sectors V j" and V j

0

" is made of up to three parts in general, and up to four
parts when k D 2 (see Figure 6.13).
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— If j 0 D j C 1 (resp. j 0 D j � 1) a (connected) saddle part V j;s" (resp. V j�1;s" ), bounded
by the two curves �j˙ (resp. �j�1;˙) to the common point xj;s (resp. xj�1;s) of saddle
type. When k D 1, the saddle-part corresponds to a self-intersection.

— If j 0 D � .j / a gate part V j;g" included in �"D and adherent to the two singular points
xj;s and xj;n. When j D �.j /, the gate part of an introvert sector corresponds to a
self-intersection.

— If j 0 D � .j / and j D � .j 0/ for j ¤ j 0, a second gate part V j
0;g

" adherent to the
singular points xj�1;s D xj

0;s and xj;n (Figure 6.13 (B)).

V 0

V 0;s x0;n

x0;s
V 0;g

() " D ei�

V 0;s

x0;n

x0;s V 0;g

V 0

() " D ei15�=8

V 0;s

x0;n

x0;s

V 0;g

V 0

() " D ei17�=8

F 6.11. Squid sectors for different values of " when k D 1.
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6.3.12. Non-equivalent decompositions. – For the same value of the parameter " in the
intersection of two cells (or a cell’s self-intersection), the disk �D is split in non-equivalent
ways into bounded squid sectors (see Figures 6.12 and 6.13). By “non-equivalent” we mean
that at least one boundary of a squid sector is attached to another root of P" when passing
from one cell to the other.

E0

0

x
n
= x

s
= 0

x
n

x
s

x
n

x
s

x
n

x
s

F 6.12. The single (self-overlapping) cell E with diverse configurations when
k D 1. Non-equivalent decompositions are shown on the right. In each picture the
location of the node-like singularity xn is given by the analytic continuation of the
principal determination of

p
�".

6.3.13. Some useful estimates. – We shape the squid sectors in this way because in doing
so we gain control on the convergence and on the magnitude of integrals involved in the
Cauchy-Heine transform appearing in the next section, in the wake of Remark 6.16. In the
following lemma we use the boundary �j;˙ of saddle-parts of unbounded sectors as depicted
in Figure 6.10.

L 6.23. – Assume � D 0 (which particularly implies �0 … R�0). One can take �
and E ` sufficiently small so that the following properties hold.
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x
0;n

x
0;s

= x
1;s

V
0

V
s
0

V
s
1

x
1;nV

1

V
g
0

V
g
1

() With two introvert

squid sectors: � D

 
0 1

0 1

!

x
0;n

= x
1;n

x
1;s

V
0

V
s
0

V
s
1

x
0;s

V
1

V
0;g

V
1;g

() With two extrovert

squid sectors: � D

 
0 1

1 0

!

F 6.13. Non-equivalent decompositions for same " when k D 2.

1. For all r > 0 the model first integral (6.7) is bounded on V j;s" � rD, more precisely there
exists C > 0 such that

.8" 2 E `/ sup
V
j;s
" �rD

ˇ̌̌ bH j
ˇ̌̌
� rC:

2. Also bH j is dz
z�x

-absolutely integrable over any component � D �j;˙ of the boundary of
saddle part intersections (given the outgoing orientation): for all x 2 V j" n� and y 2 C
we have Z

�

bH j .z; y/
dz
z � x

DW yI j .x/ 2 C:

3. There exists a constant C > 0 such that for all " 2 E ` and all x 2 V j" n�ˇ̌
I j .x/

ˇ̌
�

C

jz� � x�j
;

where z� D � \ �S1 and x� is likewise the intersection of �S1 and the curve passing
through x built in the same way as �.

Proof. – Because bH j is linear in y we may only consider the case y WD 1. Letbh W x 7! bH j .x; 1/

be the corresponding partial function. The proof is done in two steps, corresponding to the
two different components “inner” (inside �D) and “outer” (jxj � �). We parametrize � by
a piecewise analytic curve z W R ! C detailed below, such that (with the obvious abuse of
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notations) 8̂̂<̂
:̂
z .�1/ D1

z .0/ D z
j
˙
2 �S1

z .1/ D xj;s

:

In what follows, C > 0 indicates a real constant (independent on ") whose value varies
according to the place where it appears.

1. We invoke again the variational argument presented in Remark (6.16). Over �0;1Œ we
follow the flow of #P @

@x
and we can indeed estimate the modulus

� .t/ WD
ˇ̌̌bh .z .t//ˇ̌̌ ;

as bh is solution of

dbhbh D �
�
1C �zk

� dz
P"
;

so that
P�

�
.t/ D �<

�
#
�
1C �zk

��
:

Since 1
2j�0j

> �k , and taking the hypothesis jarg#j < �
4

into account we obtain

P�

�
� �C < 0

and ˇ̌̌bh .z .t//ˇ̌̌ � ˇ̌̌bh .z .t"//ˇ̌̌ :(6.21)

Over ��1; 0Œ we follow the flow of

Pz D � .1C i�/ z;

above which the modulus of bh is governed by

P�

�
D <

 �
1C �zk

�
.1C i�/ z

P" .z/

!

D <

 �
1C �zk

�
.1C i�/

zk
�
zkC1

P" .z/

!
� C< .�C i��/ DW ˛ > 0

for jzj sufficiently large since � is chosen in such a way that < .�C i��/ > 0 for all

" 2 E `. To conclude the proof we only have to remark that supjzjD�
ˇ̌̌bh .z/ˇ̌̌ � ˇ̌̌bh .z .0//ˇ̌̌

converges uniformly towards supjzjD�
ˇ̌̌ bH j

0 .z; 1/
ˇ̌̌
<1 as "! 0.

2. and (3) We use the following trick. We work with the integral

J j .x/ D

Z 1
�1

bh.z.t// z0.t/dt

z.t/ � x.t/
;
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where t 7! x .t/ is defined similarly as t 7! z .t/ except for the fact that it passes
through x, uniquely defining x� D x .0/. To conclude we will need to bound away

from 0 (uniformly in ") the quantity
ˇ̌̌
z.t/�x
z.t/�x.t/

ˇ̌̌
. But this is clear from the pictures

because if dist .x; �/ is realized for z D z .t/ then x ' x .t/.

Now, to study J j .x/ we repeat the above argument but with the function

�] .t/ WD

ˇ̌̌̌
ˇbh .z .t// A] .z .t//z .t/ � x .t/

ˇ̌̌̌
ˇ ; ] 2 f0;1g ;

where A0 .z/ WD #P" .z/ and A1 .z/ WD �.1C i�/z. The variations of �] are governed
by

P�]

�]
.t/ D <

 
�
1C �zk

P" .z .t//
A] .z .t//C A

0
] .z .t// �

A]
�
z .t/ � A] .x .t//

�
z .t/ � x .t/

!
for t in the corresponding interval so that Pz D A] .z/ and Px D A] .x/. In the case
] D1, the sum of the last two terms vanishes and then

P�1

�1
� C > 0

for large z (hence t close to �1) from the choice of �. Let us now deal with the case
] D 0. We have chosen � > �" so that

sup
jzj<�

�ˇ̌̌
�zk

ˇ̌̌
C 2�

ˇ̌
P 00 .z/

ˇ̌�
�
3

4
:

Because for all x; z 2 �Dˇ̌
P .x/ � P .z/ � .x � z/ P 0 .z/

ˇ̌
� jx � zj2 sup

�D

ˇ̌
P 00
ˇ̌

we obtain

P�0

�0
� �C < 0

and

j�0 .t/j � j�0 .0/j exp .�Ct/

for t � 0.

Therefore the integralZ z.t/

z.0/

bh .z/ dz
z � x

D#

Z t

0

bh .z .t// P" .z .t//
z .t/ � x

dt

is absolutely convergent as t !1 andˇ̌̌̌
ˇZ z.1/

z.0/

bh .z/ dz
z � x

ˇ̌̌̌
ˇ � C j�0 .0/j :

But C j�0 .0/j � C
jx.0/�z.0/j

as expected.
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6.4. Cellular section of the period: proof of Proposition 6.6

The cellular sectionS
`

of the period operator is obtained from a variation on the method
introduced in Section 5.4 to normalize the glued abstract manifold by solving a linear Cousin
problem. It is an unfolding of the technique used in [43] for " D 0. The initial data is a k-tuple

T D
�
T j
�
j
2

Y
Z=kZ

H ` fhg

and we seek Q 2 xH ` fyg Œx�<k , that is

Q.x; y/ D x
X
n>0

Qn .x/ y
n

for some polynomial Qn 2 Holoc . E `/ Œx�<k in x of degree less than k, such that

T` .Q/ D T:

We then define the section as

S` .T / WD Q:

The construction goes along the following steps. They are performed for fixed " in a
fixed E `, with explicit control on the parametric regularity. Hence we omit mentioning
explicitly the dependence on " and `. For r > 0 define

Vj
r WD

˚
.x; y/ 2 V j � C W jyj < r

	
:

We define in a similar fashion the fibered intersections Vj;]
r for ] 2 fs; gg.

— Build sectorial, bounded functions F j on Vj
r such that

F jC1 � F j D 2i�T j ıH j(6.22)

on Vj;s
r , where H j is the j -th canonical sectorial first integral of X , as in (6.6). This

is done again by a Cauchy-Heine transform (Section 6.4.1).

— Because of the functional Equation (6.22) the identity X � F jC1 D X � F j holds and
allows to patch together a holomorphic function Q WD X � F j on a whole C � .C; 0/
which, by construction, satisfies

Tj .Q/ ıH j
D F jC1 � F j

D T j ıH j

(Section 6.4.2).

— Growth control near x D1 and a final normalization allows concluding that
Q 2 xC fyg Œx�<k (Section 6.4.3).
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V 0

V 1

V 2

Γ
1;+

V 1;s

V 2;s

V 0;s

Γ
2;−

Γ
0;+

Γ
1;−

Γ
2;+

Γ
0;−

F 6.14. Unbounded squid sectors and paths of integration (k > 1).

6.4.1. Cauchy-Heine transform

D 6.24. – In the following we fix a collection N D
�
N j

�
j
2
Q
j2Z=kZ Holoc

�
Vj
r

�0
,

which is a k-tuple of functions with an expansion

N j .x; y/ D
X
n>0

N j;n .x/ yn

uniformly absolutely convergent on every V
j
r 0 for all 0 � r 0 < r , whose norm is given by

kN k WD max
j

sup
Vjr

ˇ̌
N j

ˇ̌
:

1. We define the j -th sectorial first integral associated to N as the holomorphic function

H
j
N W Vj

r �! C

.x; y/ 7�! bH j .x; y/ expN j .x; y/ ;

where bH j is the sectorial canonical model first integral (6.7) continued over unbounded
squid sectors.

2. For a given � > 0 we say that N is �-adapted if H j
N

�
Vj;s
r

�
� �D.

Of course we prove in due time (Corollary 7.7) that N WD N", defined as the collection of
sectorial solutions of the normalizing equation X " � N

j
" D �R", satisfies the hypothesis of

the definition and that sup
ˇ̌̌
H
j
N

�
Vj;s
r

�ˇ̌̌
! 0 as r ! 0 (uniformly in " 2 E `), mainly because

it is already the case for the model first integral (Lemma 6.23 (1)). Therefore, for given � > 0,
it will always be possible to find r (independently on ") such thatN is �-adapted, allowing us
to use the next result, genuinely the key point in building the cellular section of the period.
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P 6.25. – Assume � D 0 (which particularly implies �0 … R�0). Let E ` be a
fixed cell as in Section 6.3. For every T 2

Q
Z=kZ Holoc .�D/0 holomorphic on a disk of radius

� > 0, for every �-adapted collection N , the k-tuple of functions

F D F .T;N / WD
�
F j
�
j
2

Y
j2Z=kZ

Holoc

�
Vj
r

�0
defined by

F j .x; y/ WD
X

p¤jC1

Z
�p;�

T p�1
�
H
p�1
N .z; y/

�
z � x

dz C
Z
�j;C

T j
�
H
j
N .z; y/

�
z � x

dz(6.23)

fulfills the next conclusions. The paths of integration �j;˙ bound the unbounded squid sectors
in the following way: the boundary of the saddle part V j;s of (unbounded) squid sectors is
�j;C [ �jC1;�, as in Figures 6.10 and 6.14, and we set

T 0

 WD max

j
sup
�D

ˇ̌̌̌
dT j

dh

ˇ̌̌̌
:

1. For every .x; y/ 2 Vj;s
r

F jC1 .x; y/ � F j .x; y/ D 2i�T j
�
H
j
N .x; y/

�
(6.24)

while for every .x; y/ 2 V�.j /;g
r

F j .x; y/ D F �.j / .x; y/ :

(When k D 1 we refer to (3) of the following remark for a fuller explanation.)

2. F j 2 Holoc

�
Vj
�0

.

3. There existsK > 0 independent on T , N , r and " such that the following estimates hold.

.a/ kFk � rK


T 0

 exp kN k :

.b/





y @F@y




 � rK 

T 0

 



1C y @N@y





 exp kN k :

.c/





x @F@x




 � rK 

T 0

 



1C x @N@x





 exp kN k :

R 6.26. – 1. The absolute convergence of the integrals involved in (6.23) is estab-
lished in the course of the proof, mainly thanks to the estimates given by Lemma 6.23.
Notice also that for fixed " and y the mapping x 7! F j .x; y/ is holomorphic on V j

since the squid sector does not contain any of the curves �p;� except for p D j C 1.

2. The integral expression (6.23) and Item (3) above clearly show that F, as a function
of " 2 E `, has the same regularity as T .

3. In the case k D 1 the expression (6.23) yields F .x; y/ D
R
�C
.� � � / dz, which

can be analytically continued in the x-variable on the self-overlapping squid sector
(Figure 6.10). As x reaches �� “from below” the analytic continuation coincides withR
��
.� � � / dz, because the difference of determination is given by

D .x; y/ WD

Z
�C���

T .HN .z; y//

z � x
dz;
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and Cauchy’s formula asserts that D .x; y/ D 0 whenever x is outside the saddle-part V s

enclosed by �C [ ��. On the contrary if x 2 V s then D .x; y/ D 2i�T .HN .x; y//,
which is the way to understand (6.24).

Proof. – This proposition follows the general lines of [43, Theorem 2.5] for " D 0.
A simpler instance of the strategy can be found in Lemma 5.6. Except when necessary we
drop every sub- and super-scripts.

1. This is nothing but Cauchy residue formula. We indeed compute (omitting to include
the integrand for the sake of readability)

F jC1 .x; y/ � F j .x; y/ D

Z
�jC1;C

�

Z
�j;C
C

X
p¤jC2

Z
�p;�
�

X
p¤jC1

Z
�p;�

D

�Z
�jC1;�

�

Z
�j;C

�
�

�Z
�jC2;�

�

Z
�jC1;C

�
:

The candidate singularity in the common integrand
Tp.HpN .z;y//

z�x
in
R
�pC1;�

�
R
�p;C

is z D x.
This happens only when x 2 V p;s. By hypothesis x 2 V j;s hence (6.24) holds.
Actually one needs to use a growing family of compact loops within V j;s converging
toward @V j;s, then to apply Cauchy formula to each one of them and take the limit. The
only possible choice for the connected component of Cn

�
�jC1;� [ �j;C

�
for which this

construction works is V j;s, since in that sector we can establish tame estimates for the
growth of the integrand (see (3) below), and we can also establish untamed estimates outside
a neighborhood of cl

�
V j;s

�
.

2. Taking for granted that the integrand defining F .x; y/ for .x; y/ 2 cl
�

Vr

�
is bounded

from above by a real-analytic, integrable function on @V s, the analyticity of F on Vr is clear
from the Definition (6.23). Integration paths used to evaluate F can be slightly deformed
outwards without changing the value of the integral, which shows that F can be analytically
continued to any point .x; y/ with x 2 @V nP�1" .0/ and jyj � r . Concluding that F extends
as a continuous function on cl

�
Vr

�
nP�1" .0/ is again a consequence of (6.23) for y is an

extraneous parameter. Dominated convergence of F .x; y/, continuity on cl .Vr /\P
�1
" .0/

and boundedness of F are established in (3).
3. We begin with proving (a). Since, for p 2 Z=kZ,

jT p .h/j � jhj


T 0

 ;

we deduce ˇ̌̌̌
T p .H .z; y//

z � x

ˇ̌̌̌
�

ˇ̌̌ bH .z; y/
ˇ̌̌

jz � xj



T 0

 exp kN k :

We then invoke the estimates derived for the model family in Lemma 6.23, showing domi-
nated convergence for F .x; y/. In order to bound F it is sufficient to consider only the
problem of bounding F near a single � WD �j;C. A uniform boundK for the rightmost sum
of integrals simply requires bounding uniformly 1

jz��x�j
where z�; x� 2 �S1. Of course no

uniform bound in x exists when x tends to � (i.e., x� tends to z�). To remedy this problem
we bisect V s with a curveb� parallel to � and passing through the middle of the arc �S1\V s.
When x is taken in the component of V j nb� not accumulating on � the value of 1

jz��x�j
is

uniformly bounded. When x is taken in the other part we use the functional relation (6.24):
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in that configuration x is understood as an element of V jC1 far from �jC1;� and we are
back to the situation we just solved.

A little bit more detailed analysis allows proving that x 7! F .x; y/ is Cauchy (2) near xj;s,
so that F extends continuously to

˚
xj;s

	
� rD. Items (b) and (c) are obtained much in the

same way, the details are straightforward adaptations of (a).

6.4.2. Holomorphy of Q". – Now all functions X " � F
j patch on intersecting squid sectors

to define

Q 2 Holo
��
CnP�1" .0/

�
� rD

�
:

If we show that Q is bounded near each disk
˚
xj;s

	
� rD then Riemann’s theorem on

removable singularities guarantees the holomorphic extension of Q to C � D. But

jQ.x; y/j � jP" .x/j





@F@x




 C �1C j�j jxjk C jR .x; y/j� 



y @F@y





(6.25)

so that taking Proposition 6.25 (3) into account brings the conclusion.

6.4.3. Growth control of Q" near x D 1. – In Section 7.2 we prove that the k-tuple of
sectorial solutionsN of the cohomological equation of normalization X �N j D �R satisfies

the conditions



x @N@x 


 � 1

3
and




y @N@y 


 � 1
3

if r is chosen small enough (Corollary 7.7).

L 6.27. – For every fixed y 2 rD the entire function x 7! Q.x; y/ is actually a
polynomial of degree at most k, and

Q.x; y/ D
X
n>0

qn .x/ y
n; qn 2 C Œx��k(6.26)

on C � rD.

Proof. – Since x 7! R .x; y/ is a polynomial of degree at most k, there exists a constant
C > 0 such that 1 C j�j jxjk C jR .x; y/j � C jxjk for every jxj � �. The bound (6.25)
on x 7! Q.x; y/ also holds near1 so that

jQ.x; y/j �

ˇ̌̌̌
P" .x/

x

ˇ̌̌̌ 



x @F j@x




 C C jxjk 



y @F@y





 :
From Prop. 6.25(3)(b,c) and the control on




x @Nj@x 


,



y @Nj@y 


 we infer




x @F j@x 


 ; 


y @F j@y 


 < C1,

from which we deduce P".x/
x




x @F j@x 


 D O
�
xk
�

and finally Q.x; y/ D O
�
xk
�

as well.

To complete the proof of Proposition 6.6 we need to modify Q so that Q.0; y/ D 0.
In order not to change the period of Q we can only subtract from Q a function of the
form X " � F with F holomorphic. This is done by setting

F .y/ WD

Z y

0

Q.0; v/

v
dv;

so thatQ� X " �F vanishes on fx D 0gwhile still admitting an expansion of the form (6.26).

(2) A function f from a metric space E to another one F is Cauchy at a if for all " > 0 there exists ı > 0 such
that x; y 2 B .a; ı/ implies d .f .x/ ; f .y// < ".
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6.5. Stitching cellular sections together: proof of Proposition 6.7

Fix
�
Ck ; 0

�
n�k and � > 0 not larger than what is allowed in Lemma 6.23, and take

G2Holoc .�D�.C; 0//0. We prove now that for any fixed "2 E `, at most oneQ2xC Œx�<kfyg
0

exists such that G �Q 2 im
�

X "�
�
, that is T .G/ D T .Q/. This amounts to showing

that im
�

X "�
�
\ xC Œx�<k fyg

0
D f0g for all fixed " 2

�
Ck ; 0

�
n�k .

Let G 2 im
�

X "�
�
\ xC Œx�<k fyg

0 and write

G .x; y/ D X " �

X
n�d

Fn .x/ y
n
D

X
n�d

Gn .x/ y
n
2 Holo .rD � .C; 0// ; d 2 NI

we claim that Gd D 0, which is sufficient to establish the result. It turns out that for its part
of least degree in y the cohomological equation only depends on its formal normal form:bX" �

�
ydFd .x/

�
D ydGd .x/ :

Such a relation holds if and only if the period of ydGd along the formal normal form
vanishes: bT �ydGd � D 0. Therefore we need to prove thatbT W xC Œx�<k yd �! Ckhd

ydGd 7�! bT �ydGd�
is injective if " is small enough. As recalled in Corollary 6.12 we know that for every a 2 N

lim
"�!0

E `

bT �xayb� D bT0 �xayb� ;
wherebT0 is the period of the model saddle-node bX0. The auxiliary result [46, Proposition 2]
states precisely that bT0 is invertible, and therefore so is bT for small " as expected.

7. Orbital Realization Theorem

In this section we address the inverse problem for the classification of unfoldings
performed in [41], in the special case of convergent unfoldings of formal invariant � with

�0 … R�0
and � D 0. The residual cases �0 � 0 or � > 0 are dealt with in Section 8. Also notice that
we only carry this study for the orbital part, the case of the temporal realization is explained
in [47] when k D 1. Generalizing this approach for k > 1 by using the tools introduced in
Section 6 should not be difficult.

We summarize in Section 7.1 how the invariants of classification are built. They unfold
Martinet-Ramis’s invariants [31] for the limiting saddle-node, obtained as transition maps
between sectorial spaces of leaves. Yet the construction can only be carried out analytically
on a given parametric cell E `, yielding a cellular invariantm` 2

Q
Z=kZ H ` fhg (see Section 6.1

for the definition of the functional spaces H ` and Section 7.1 for the definition of m`). The
orbital modulus m .X/ of an unfolding X consists in the whole collection .m`/`.

D 7.1. – We say that .�;m/ 2 C f"g�
Q
` H ` fhg

k is realizable if there exists a
generic convergent unfoldingX with formal orbital class� and orbital modulusm D m .X/.
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In Section 7.2 we prove the next result.

T 7.2. – Assume � D 0 (which particularly implies �0 … R�0). Fix a germ
at 0 2

�
CkC1; 0

�
of a cell E `. Given m` 2

Q
Z=kZ H ` .h/ and � with �0 … R�0, there exists a

unique R` 2 xH ` fyg Œx�<k such that

X `;" WD
bX C yR`;" @

@y

has m` for transition maps in sectorial space of leaves (i.e., for modulus).

The fact that this “analytical synthesis” gives unique forms of the same kind as those given
by Loray’s “geometric” construction bolsters the naturalness of the normal forms presented
here. Indeed the next corollary provides an indirect solution of the inverse problem.

C 7.3. – A couple .�;m/ with �0 … R�0 is realizable if and only if R`;" D Rè;"
for all " 2 E ` \ E è and all

�
`; è�.

Proof. – The equality R` D Rèon E ` \ E èdefines a bounded, holomorphic function R
in the parameter " 2

�
CkC1; 0

�
n�k , which extends holomorphically to a whole neigh-

borhood
�
CkC1; 0

�
by Riemann’s theorem on removable singularities. The corresponding

unfolding X has modulus m
�

X
�
D .m`/` by construction.

Conversely, the Normalization Theorem tells us that we can as well assume that the vector
field is in normal form X (2.4), without changing the orbital modulus m D m

�
X
�
. More-

over, the normalization can be performed by tangent-to-identity mappings in the y-variable.
According to Theorem 7.2, R` is uniquely determined by the component m` of m, hence
R D R` on E `.

Somehow this characterization is not satisfactory since it involves the auxiliary unfol-
ding X `. In Section 7.3 we present an intrinsic characterization of realizable .�;m/ as a
compatibility condition imposed on the different dynamics induced by each pair .�;m`/
on the sectorial space of leaves (Definition 7.16). Roughly speaking the condition requires
that the abstract holonomy groups be conjugate over cells overlaps. In case of an actual
unfolding X (i.e., realizable .�;m/) these groups represent in the space of leaves the actual
weak holonomy group induced by X in .x; y/-space.

7.1. Classification moduli

Starting from a generic convergent unfolding X of codimension k in prepared form (4.2)
with given orbital formal invariant � (with no restriction on �0), we can build the following
k-tuple of periods (Definition 6.10) on a germ of a cellular decomposition . E `/1�`�Ck , called
the orbital modulus of X :

m .X/ WD .m` .X//1�`�Ck ;

m` .X/ WD
�
�
j;s
`

�
j2Z=kZ

;

�
j;s
`
WD 2i�Tj

`
.�R/ 2 H ` fhg :(7.1)

We state the main result of [41] in the specific context of convergent unfoldings.
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D 7.4. – 1. Fix a germ of a cell E `. For c 2 C f"g�, � 2 Z=kZ and
f D

�
f j
�
j2Z=kZ

2 H ` fhg
k define

.c; �/� f W ."; h/ 7�!
�
f jC�" .c"h/

�
and extend component-wise this action to tuples.

2. We say that two collections m;em 2Q` H ` fhg
k are equivalent if there exists

c 2 C f"g� and � 2 Z=kZ such that

.c; �/�m D em:(7.2)

R 7.5. – The presentation of Definition 7.4 is equivalent to that of [31] for " D 0.

The transition functions there are simply given by  j;s.h/ D h exp
�
2i��
k
C �j;s

�
. This fact

will be explained in more details in Section 7.3.

T 7.6 ([41]). – Two generic, prepared convergent unfoldings X and eX , in the same
formal orbital class � with respective orbital moduli m .X/ and m

� eX�, are equivalent by some
local analytic diffeomorphism if and only if their respective orbital moduli m .X/ and m

� eX�
are equivalent. Moreover X is locally equivalent to its formal normal form bX if and only if
m .X/ D 0.

The pair .c; �/ involved in the equivalence between moduli has a geometrical interpreta-
tion. First set � WD exp 2i��=k and apply the diagonal mapping

."0; : : : ; "k�1; x/ 7�!
�
"0�
�1; : : : ; "j�

j�1; : : : ; "k�1�
k�2; x�

�
to X so that the moduli of the new unfolding, still written X , differs from the original by a
shift in the indices j of offset � , as explained in Section 4.1. According to Corollary 4.11 we
may as well restrict our study now to fibered conjugacies‰ betweenX and eX fixing fy D 0g.
Under these assumptions we have

‰ W ."; x; y/ 7! ."; x; y .c C o .1///:

This very fact explains why c is independent on the cell E ` in the equivalence relation (7.2).

7.2. Parametric normalization: proof of Theorem 7.2

In this section we solve the inverse problem on a given parametric cell E ` when �0 is not
in R�0. Given any collection

m` WD
�
�j;s

�
j
2

Y
Z=kZ

H ` fhg

we can fix � > 0 such that every �j;s belongs to Holoc . E ` � �D/0. The strategy is to
synthesize a k-tuple of sectorial functions

�
H j

�
j

whose transition maps over saddle parts
are determined bym` as in (7.3) below, then to recognize that they actually are sectorial first-
integrals of a holomorphic vector field X" in normal form.

We repeat the recipe of Theorem 5.5 in order to solve the nonlinear equation

H jC1
D H j exp

�
2i��=k C �j;s ıH j

�
;(7.3)

by successively solving the linear Cousin problem of Proposition 6.25 in the way we explain
now. For " WD 0 this is precisely the technique of [43].
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We want to find a solution ofN D 1
2�i
F .m`; N / withN 2 Holoc

�
V
j

`
� rD

�0
, where F is

given in (6.23), and we build one through an iterative process. We start from

N0 WD .0/j

and build

NnC1 WD
1

2i�
F .m`; Nn/

given by Proposition 6.25. The fact that each sequence
�
N
j
n

�
n

converges uniformly to

some N j 2 Holoc

�
V
j

`
� rD

�0
for some r > 0 follows in every other respect the argument

presented in the proof of Theorem 5.5, thus we shall not repeat it here.
So far we have built a k-tuple of bounded, holomorphic functions N D

�
N j

�
j

satisfying
the next properties.

C 7.7. – Assume � D 0 (which particularly implies �0 … R�0). Let

H j
WD bH j expN j

be the canonical first-integral associated with N j .

1.
�
H j

�
j

is a solution of (7.3).

2. Up to decrease r > 0 we can assume that:

(a) N is �-adapted (as in Definition 6.24), more precisely:

H j


 � rC

for some constant C > 0,

(b)
ˇ̌̌
x @N

j

@x

ˇ̌̌
�

1
3

and
ˇ̌̌
y @N

j

@y

ˇ̌̌
�

1
3

on V j � rD.

Proof. – 1. Because H j D bH j expN j and bH jC1 D bH j exp 2i��=k (see (6.8)) we have

H jC1

H j
D exp

�
2i��=k CN jC1

�N j
�
:

Because
�
N j

�
j

is obtained as the fixed-point of the Cauchy-Heine operator�
N j

�
j
7�!

1

2i�
F
��
�j;s

�
j
;
�
N j

�
j

�
;

according to Proposition 6.25 (1) the identityN jC1�N j D �j;s ıH j holds, which validates
the claim.

2. We have:

(a) This is clear thanks to Proposition 6.25.

(b) Up to decrease slightly �we can assume that the derivative of each component ofm` is
bounded on �D. From the construction of N j and Proposition 6.25 (3) we have


y @NnC1@y





1C




y @Nn@y 


 �
rK

2i�



m0

 exp kNnk �
1

4
;

if r is taken small enough. The conclusion follows by taking the limit n ! 1. The
argument for x @N

@x
is identical.
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Now define

Xj WD bX C yRj @
@y

with

Rj WD �
P @N
@x
C y

�
1C �xk

�
@N
@y

1C y @N
j

@y

:(7.4)

L 7.8. – We have

1. Xj �N j D �Rj or, equivalently, Xj �H j D 0.

2. RjC1 D Rj on Vj;s.

Proof. – This is formally the same proof as for " D 0: we refer to [43] for details.

1. It follows from elementary calculations.

2. It is equivalent to showingXj �H jC1 D 0. But this condition is met because of (1) and
the fact that H jC1 is a function of H j , as per (7.3).

The lemma indicates that all pieces of
�
Rj
�
j

glue together into a holomorphic functionR.

From (7.4) and the estimates on the derivatives ofN j obtained in Corollary 7.7 we conclude
thatR is bounded near the roots of P" (hence Riemann’s theorem on removable singularities
applies). The argument of Section 6.4.3 can now be invoked identically with Q WD R to
obtain

R .x; y/ D
X
n>0

rn .x/ y
n

for some polynomials rn in x of degree at most k. We can simplify R further by applying
to bX CRy @

@y
the change of coordinates

.x; y/ 7�! .x; y expN .y// ; N 2 yC fyg ;

where

N 0 D �
R .0; y/

y .1CR .0; y//
:

The new vector field bX C eRy @
@y

satisfies eR 2 xH ` fyg Œx�<k , as sought.

R 7.9. – Notice that Lemma 7.8 asserts .x; y/ 7!
�
x;N

j

`
.x; y/

�
is a fibered

normalization of X over squid sectors.

7.3. Compatibility condition

Here we impose no restriction on �0.
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7.3.1. Node-leaf coordinates. – To each squid sector V j
`

we attach a unique natural coor-
dinate h which parametrizes the space of leaves �j

`
over that sector: this coordinate corre-

sponds to values taken by the canonical first-integral H j

`
(with connected fibers) as defined

in Corollary 7.7. Moreover,

H
j

`

�
V
j

`
� .C; 0/

�
D C:

This comes from the fact that the sector’s shape adheres to the point in a node-like configura-
tion, forcing the model first integral bH j

`
to be surjective: a complete proof of the above state-

ment can be found in [41]. This space of leaves is customarily compactified as the Riemann
sphere�j

`
by adding the point1 corresponding to the “vertical separatrices”

˚
x D xj;n

	
of

the node-type singularity.

Because we deal with convergent unfoldings, this coordinate is completely determined by
the space of leaves of the singular point xj;n of node type attached to V j , with two distin-
guished leaves corresponding to 0 (along fy D 0g) and1 (along

˚
x D xj;n

	
). In particular,

it remains the same when we change the point(s) of saddle type xj;s and x�.j /;s attached to
a sector V j but leave the point of node type xj;n unchanged, while passing from one cell to
another.

Let us prove briefly the result on which the compatibility condition is built. We recall
that �" is the radius of a disk containing all roots of P", as defined by (6.14).

L 7.10. – For every x� 2 V
j

`
n�"D the partial mapping

h
j

`
W y 7�! H

j

`
.x�; y/

is a local diffeomorphism near 0 whose multiplier at 0 does not depend on `. In particular for
any èsuch that E ` \ E è¤ ;, the diffeomorphism

ı WD h
jè ı �hj`�ı�1

is tangent-to-identity. Moreover there exists �1; �2; r > 0 such that for all " 2 cl
�

E ` \ E è�
�1D � ı" .rD/ � �2D

and ı" is injective on rD.

In the sequel we write this map ıè `.
Proof. – According to Corollary 7.7 we have

H
j

`
.x�; y/ D y bH j

`
.x�; 1/C o .y/ :

Since x� lies outside the disk containing the roots of P the value of bH j

`
.x�; 1/, as fixed by

the determination chosen in (6.7), does not depend on ` (but it does on j ). The existence
of �1; �2; r > 0 satisfying the expected properties is a consequence of [41, Corollary 8.8] and
Lemma 6.23 (1).

D 7.11. – For a choice of xj� 2 V j n�"D we call hj
`

the node-leaf coordinate of
the unfolding X` above x� in the sector V j

`
and relative to the cell E `.
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0

0

first integral

first integral

In geometric space (x; y) In orbits space (h)

H

H

F 7.1. Passing from geometric to orbits space via the sectorial first inte-
gralH j . Colored arrows show how the change of determination inH j takes place
as a mapping between two sectorial spaces of leaves: the necklace dynamics.

7.3.2. Necklace dynamics. – Here we work in a fixed germ of a cell E ` for fixed " 2 E `; we
drop the ` and " indices whenever not confusing. According to the constructions performed
in [41], and hinted at by Theorem 7.2, the orbital modulus .�;m .X// of a convergent
unfolding encodes the way the different node-leaf coordinates glue above the intersection of
squid sectors: (

H jC1 D H j exp
�
2i��=k C �j;s ıH j

�
above V j;s;

H �.j / D L�j ıH
j above V j;g;

where

Lc W h 7�! ch; c ¤ 0;

and �j D �
j

`
2 C� relates to the dynamical invariants � and the residues

�
1

P 0".x
m/

�
m

at

the roots .xm/0�m�k : indeed, the ramification at the linear level of the first integral at a

singular point, given by exp
�
�2i� 1C�".x

m/k

P 0".x
m/

�
, is equal to the product of all ramifications

when crossing sectors while turning around the point, i.e., to the product of one factor
exp 2i��=k for each crossed sector V j;s and one factor �j for each crossed sector V j;g. It is
therefore rather natural to consider the germs of diffeomorphisms in node-leaf coordinate

 
j;s
`
W h 7�! h exp

�
2i��=k C �

j;s
`
.h/
�
;(7.5)

 
j;g
`
W h 7�! �

j

`
h;

where .m`/` D m .X/ and m` D
�
�
j;s
`

�
j

. Obviously one can do the same construction

starting from any tuple m 2
Q
` H ` fhg

k .
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V
2

V
1

V
0

V
4

V
3

x∗

γ
0

0

0

0

0

 2;s

 1;s

 0;s

 4;s

 3;s

 1;g

 0;g

 4;g

 2;g

 3;g

Ω
3 Ω

2

Ω
4

Ω
0

Ω
1

F 7.2. Schematics of the necklace dynamics and of the corre-
sponding sectorial decomposition for k D 5 and � D

�
0 1 2 3 4
0 4 1 3 2

�
. The loop


 2 �1
�
�DnP�1" .0/ ; x�

�
corresponds to the word w .
/ D sC0 gC0 gC0 sC4 g�2 g�1 in

necklace dynamics.

R 7.12. – For some value of the parameter " in a given cell E `, the saddle
mappings  s are entirely determined by � and m, while the gate mappings  g are entirely
determined by �.

The dynamics induced by these germs is of interest to us only if it encodes the underlying
dynamics of the unfolding (weak holonomy group). A necessary condition is that the latter
group does not depend on `, i.e., on the peculiar way of slicing the space into sectors
which is imposed by our construction. Therefore we only want to consider the “abstract”
holonomy representation of �1

�
�DnP�1" .0/ ; x�

�
in the space of leaves. Let us describe this

representation (see Figure 7.2 for an example).

D 7.13. – We fix a base-sector V j� and a base-point x� 2 V j�n�"D, as well as

some m` D
�
�
j;s
`

�
j
2 H ` fhg

k .

1. To any loop 
 2 �1
�
�DnP�1" .0/ ; x�

�
we associate the multiplicative word w` .
/ in

the 4k letters
n
s˙j ; g

˙
j W j 2

Z=kZ
o

obtained by keeping track of bounded squid sectors

boundaries crossed successively when traveling along 
 . The superscriptC (resp. �) is
given to sj according to whether one crosses the saddle boundary from V j to V jC1

(resp. from V jC1 to V j ), “in the same direction” as  j;s (resp.
�
 j;s

�ı�1
) applies.

For gj we take the same convention for gate transitions j;g and postulate the algebraic

relations
�

s˙j
��1
D s�j ,

�
g˙j
��1
D g�j .

2. To any word w D
Q
n !
˙
jn

we associate the germ

 ` Œw� W h 7�! 
n

�
 
jn;!

`

�ı˙1
:
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For instance

 
�
sC0 gC0 gC0 sC4 g�2 g�1

�
D  0;s ı

�
 0;g

�ı2
ı  4;s ı

�
 2;g

�ı�1
ı
�
 1;g

�ı�1
:

3. We write

W` WD w`
�
�1
�
�DnP�1" .0/ ; x�

��
the image group of admissible words, that is all the words corresponding to all the
encodings (1) of a loop with given base-point x� in a disk of given radius � punctured
with the roots of P".

4. Let m D .m`/` 2
Q
` H ` fhg. The collection of image groups G .m/ D

�
G `
�
`

of germs
of a biholomorphism fixing 0 given by

G ` WD  ` ŒW`� ;

is called the necklace dynamics associated to .�;m/ based at the sector V j� .

R 7.14. – 1. To keep notations light we write  ` Œ
� instead of  ` Œw` .
/� for

 2 �1

�
�DnP�1 .0/ ; x�

�
. The context will never be ambiguous.

2. Obviously the morphismsw` andwèare distinct. The change of cell in E `\ E ècan
be translated algebraically as a group isomorphism W` �! Wè. For instance when
k D 1 the isomorphism acts on generators as(

gC 7�! g�sC

sCg� 7�! gC

with notations of Figure 7.3.

R 7.15. – 1. The groups W` and G ` do not depend on the particular choice of
the base-point x� 2 V j� , but do depend on the base-sector V j� .

2. Changing the base-sector from V j� to another sector V j induces an inner conjugacy
between respective necklace dynamics.

7.3.3. Compatibility condition

D 7.16. – Let m 2
Q
` H ` fhg

k and � 2 C f"g. We say that .�;m/ satisfies
the compatibility condition if the different necklace dynamics (i.e., abstract holonomy pseu-
dogroups) combined to form G .m/ are conjugate, in the sense that there exists x� 2 �Dn�"D
in a fixed base sector V j� such that for every `; è and any connected component C of
E ` \ E è¤ ; there exists a (perhaps small) subdomain ƒ � C such that for all " 2 ƒ there
exists ıè `;" 2 Diff .C; 0/ satisfying:

� ı0è `;" .0/ D 1,

� for all 
 2 �1
�
�DnP�1 .0/ ; x�

�
,

ı�è `;" `;" Œ
� D  è;" Œ
� ;(7.6)

where ı� D ı�1 ı  ı ı is the usual conjugacy for diffeomorphisms.
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s
+
~̀

g
+
`

s
+
`

x∗

g
+
~̀

x
s
~̀x

n
`=

x
n
~̀x

s
`=

F 7.3. The generators of the two holonomies on the self intersection of the
unique cell E .

F 7.4. A cell E ` having self-intersection around a regular part of �k .

R 7.17. – Notice that the compatibility condition also applies when èD `, i.e.,
E ` is a self-intersecting cell with self-intersection E \` around a regular part of �k as in
Figure 7.4, with the obvious adaptations. To avoid confusion we denote by " and e" the
“distinct points” corresponding to the same parameter " 2 E \` seen from two different
overlapping parts of the cell. More generally we decorate objects with corresponding signs,
like  or e in order to really stand for  `;" and  `;e" respectively.

L 7.18. – If .�;m/ is realizable then the compatibility condition holds.

Proof. – Fix some point x� 2 V 0n�"D and take ıè ` WD h0è ı �h0`�ı�1 on E ` \ E è as in
Lemma 7.10.
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R 7.19. – 1. Although we do not impose that the mappings ıè ` exist on the
connected component C of E ` \ E è, nor depend analytically on " 2 ƒ � C , it will
be true retrospectively and the dynamical conjugacies ıè ` are always of the form
described in Lemma 7.10. In particular the collection

�
ıè `�`;è is a cocycle:

ı`2 `1 ı ı`1 `0 D ı`2 `0

whenever all three mappings are simultaneously defined.

2. The compatibility condition could be weakened further. The existence of ıè ` as
above is only needed for " belonging to a setƒ of full analytic Zariski closure, i.e., such
that if a holomorphic function f on C satisfies f jƒ D 0 then f D 0. The cornerstone
of the proof of the Realization Theorem consists indeed in applying Corollary 7.3:
it suffices to check whether the identity R` � Rè D 0 holds on every connected
component C of E ` \ E è.

7.4. Normal forms stitching: proof of Orbital Realization Theorem when �0 … R�0 and
� D 0.

Thanks to Lemma 7.18, only the converse direction of the Realization Theorem still
requires a full proof at this stage. Assume then that the compatibility condition holds. Let us
fix a base point x� in a base sector V j� and pick " 2 ƒ � C � E `\ E èas in Definition 7.16.
Recalling Lemma 7.10, the tangent-to-identity mapping

‰ W .x�; y/ 7�!

�
x�;

�
h0è�ı�1 ı ıè ` ı h0`�(7.7)

conjugates the weak holonomy pseudogroups given by the representation

h` W �1
�
�DnP�1 .0/ ; x�

�
�! Diff .fx D x�g ; 0/ :

Let us formulate a direct consequence of the main results of [11] (see [2]) in a manner
adapted to our setting.

L 7.20. – The map " 2 E ` 7!
�
�
j
"

�
j2Z=kZ

is holomorphic and locally injective. In

particular there exists a subdomain ƒ0 � ƒ such that for all " 2 ƒ0, every singular point of X`
and Xè is hyperbolic.

Using an extension of the Mattei-Moussu construction for hyperbolic singularities (see
below) we can analytically continue‰ (defined in (7.7)) on a whole neighborhood of fy D 0g
as a fibered equivalence between X ` and X è. The argument developed in Section 5.6 (to
prove uniqueness of the normal form) is performed for fixed ", therefore there exists

c 2 C�

such that

R`;" .x; cy/ D Rè;" .x; y/ :
But the conjugacy ‰ is tangent to the identity in the y-variable thus c D 1. Therefore
R`;" D Rè;" on ƒ, thus on C by analytic continuation. Since this argument can be carried
out for any connected component C of any cellular intersection, Corollary 7.3 yields the
conclusion.
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R 7.21. – In fact ‰ itself must be the identity, therefore

ıè ` D h0è ı �h0`�ı�1
as in Lemma 7.10.

There only remains a single gap in the above argument, namely that of extending ‰
near each hyperbolic singularity. Let F ` be the foliation induced by X ` and take a germ
† � fx D x�g of a transverse disk at .x�; 0/ in such a way that‰ is holomorphic and injective
on †. The union of the saturation Sat F ` .†/ and the vertical separatrices P�1 .0/ is a full
neighborhood of fy D 0g since no singular point of F ` is a node. Therefore ‰ can be
extended as a fibered, injective mapping by the usual path-lifting technique except along
the separatrices P�1 .0/. Up to divide X ` and X è by a local holomorphic unit near each
singularity, we can assume that the hypotheses of Lemma 5.13 are met. This completes the
proof of the Realization Theorem when �0 … R�0.

8. General case � > 0

In this section we fix � 2 N such that

�0 C � .k C 1/ … R�0:

8.1. End of proof of (orbital) Normalization, Uniqueness and Realization Theorems

We explain now how to reduce the case � > 0 to the case � D 0 already dealt with. We
exploit the observation that formally Sectionk fP �yg is the pullback of Sectionk fyg by the
mapping

T W ."; x; y/ 7�!
�
"; x; P �" .x/ y

�
:(8.1)

Albeit not invertible along the lines fP" .x/ D 0g (its image is not a neighborhood of fy D 0g),
the mapping T transforms the model unfolding

bX .x; y/ D P" .x/
@

@x
C y

�
1C �"x

k
� @

@y
(8.2)

into bY WD T �bX D P" @
@x
C .1C �P 0" C �"x

k/y
@

@y
:

Observe that

�P 0 .x/C �xk �1 .� .k C 1/C �/ xk ;

so that involving P � in this way shifts the formal invariant by � .k C 1/. Apart from the
fact that bY is not in prepared form (4.2), all the theory developed before for the Realiza-
tion Theorem applies in this case too. Let us be more specific. The key property we used
intensively was to be able to perform most arguments for fixed ". This was proved sufficient
because automorphisms of prepared forms fixing the x-variable must also fix the canonical
parameter ".
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L 8.1. – 1. The group of (fibered) symmetries

."; x; y/ 7! .� ."/ ; X ."; x/ ; Y ."; x; y//

of (the unfolding of) vector fields defined by (8.2), is isomorphic to Z=kZ�C� through the
linear representation

�0 W Z=kZ � C� �! GLkC2 .C/(8.3)

.�; c/ 7�!
�
."0; : : : ; "k�1; x; y/ 7!

�
˛"0; "1; : : : ; "k�1˛

�.k�2/; ˛x; cy
��
;(8.4)

where ˛ D exp 2i��=k.

2. This statement continues to hold in the more general case of an unfolding

(8.5) P" .x/
@

@x
C .1CQ".x//y

@

@y
;

whereQ" 2 C Œx��k is a polynomial in x of degree at most k andQ".0/ D 0, save for the
fact that the representation �� W Z=kZ � C� ! Diff

�
CkC2; 0

�
has no reason to be linear.

3. In particular, any symmetry tangent to the identity is the identity.

Proof. – (1) is shown in [41]. For (2), there exists a diffeomorphism ‰ of the form
."; x; y/ 7! .�;X; Y / transforming a general formal normal form (8.5) to the standard
formal normal form (8.2). Then any symmetry of a general formal normal form is given
by ‰�1 ı �0 .�; c/ ı‰ for some .�; c/ 2 Z=kZ � C�. (3) follows.

R 8.2. – 1. In view of Lemma 8.1, we could have replaced (8.2) by some other (8.5)
in all our constructions regarding realization. In such a form, the parameters are again
canonical, as long as we consider changes of coordinates tangent to the identity.

2. The structure of sectors, and also the decomposition in cells E , are determined
from P" alone in (8.2): only the size of the neighborhoods of the origin in x-space
and in parameter space might need to be slightly adjusted when passing from the
coordinates .x; y/ to the coordinates .x; P � .x/ y/. Hence, instead of considering (8.2),
we could have taken a normal form (8.5) with the same sectors V j

`
and same cells E `.

The rest of our argument relies on the next transport result.

L 8.3. – 1. .�;m/ satisfies the compatibility condition if and only if .�C� .kC1/ ;m/
does.

2. Take X in orbital normal form (2.4) with � WD 0. Consider the corresponding unfolding

Y WD T �X D P"
@

@x
C y

�
1C �P 0" C �x

k
CR .x; P �y/

� @

@y
;

for T as in (8.1). Then X and Y have same orbital invariant m
�

X
�
D m

�
Y
�
.

We postpone the proof till Section 8.1.4. In the meantime we finish establishing the main
theorems.
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8.1.1. End of proof of Orbital Realization Theorem. – Let .�;m/ satisfy the compati-
bility condition and let us prove it is realizable as the orbital modulus of some convergent
unfolding. Normalization and Realization theorems so far hold when � D 0 (in particular
�0 … R�0): in that case m is the modulus of an unfolding in normal form

(8.6) P" .x/
@

@x
C y

0@1C �."/xk C y kX
jD1

xjRj .y/

1A @

@y
:

To consider the case � > 0, we need to use the following remark: the whole proof for � D 0
would have worked verbatim with the formal part and parameters given in some alternate
form (8.5). This would have produced a realization of the form

(8.7) P".x/
@

@x
C y

0@1CQ".x/C y kX
iDj

xjRj .y/

1A @

@y
;

with new canonical parameters. Let � be a positive integer such that �0 C �.k C 1/ > 0 and
consider the new formal normal formbY .x; y/ D P".x/ @

@x
C .1C �P 0".x/C �."/x

k/y
@

@y

corresponding to Q" WD �P 0" C �."/x
k in (8.5), with formal invariantb� WD �C �.k C 1/:

But according to Lemma 8.3:

1. .b�;m/ is compatible,

2. it is realized in the form (8.7),

3. the change .x; y/ 7!
�
x; P��" .x/y

�
transforms (8.7) back into an unfolding

P".x/
@

@x
C y

0@1C �."/xk C kX
jD1

xjRj .P
�
" .x/y/

1A @

@y
;

4. the latter unfolding is holomorphic on a whole neighborhood of
�
CkC2; 0

�
, and is

therefore a realization of .�;m/.

8.1.2. End of proof of Normalization Theorem. – The proof we just finished shows that any
realizable .�;m/ can be realized in normal form.

8.1.3. End of proof of Uniqueness Theorem. – Each vector field X " of the unfolding in
normal form (2.4) is holomorphic on a domain

D .r/ WD
[

"2.Ck ;0/

f."; x; y/ W jxj < �; jP �" .x/ yj < rg :

LetE be a neighborhood of 0 in CkC2 and‰ W E !
�
CkC2; 0

�
be a local conjugacy between

normal forms X and eX , which can be assumed fibered thanks to Corollary 4.11 (2). We
can use the Uniqueness Theorem in the coordinates .x; P � .x/ y/ (given by the Uniqueness
Theorem for �0 … R�0, already proved) at the cost of showing that T �‰ D T ı ‰ ı T ı�1

is holomorphic and injective on some small neighborhood of .0; 0/ uniformly in ". This is
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not trivial since the image of E \ f" D cstg by T can never be such a uniform neighborhood
of .0; 0/ ifE is bounded in the y-variable. But T .D .r/ \ f" D cstg/ is, so we wish to extend‰
to someD .r 0/ � D .r/. The usual path-lifting technique in the foliation F " induced by X "

allows to extend ‰" on

U " WD f"g � Sat F " .E/ � D .r/ :

Using the special form of the normal form X " we conclude the proof of the Uniqueness
Theorem.

L 8.4. – Assume that � > 0 is small enough so that
ˇ̌
�"x

k C �P 0" .x/
ˇ̌
< 1

4
for all

x 2 �D and all k"k small enough. There exists r � r 0 > 0 such that for U " D U " .r/ defined
as above one has D .r 0/ �

S
"2.Ck ;0/ U " � D .r/.

Proof. – For a solution of the flow system(
Px D �P" .x/

Py D �y
�
1C �"x

k CR" .x; y/
�

with t 2 R and initial value .x�; y�/, the modulus of � .t/ WD jP �" .x .t// y .t/j satisfies

P� D ��<
�
1C �"x

k
CR" C �P

0
"

�
:

Since R" .x; 0/ D 0 we can choose r so small that
ˇ̌
�"x

k CR" C �P
0
" .x/

ˇ̌
< 1

2
for all

."; x; y/ 2 D .r/, and P� < ��=2. Hence starting at .x�; y�/ with jP �" .x�/ y�j < r and
jx�j < �, the trajectory for positive t never escapesD .r/. But t 7! jy .t/j is also exponentially
decreasing, therefore we eventually reach a point within E.

Again, this is the ideal situation, because it may happen that x .t/ exits cl .�D/. If
jx .t0/j D � then we modify the trajectory x by solving Px D ˙iP" .x/ from t0 on, the
sign being chosen so that ˙iP" .x .t0// points inside �S1, until we reach a point x .t1/
through which the solution of Px D �P" .x/ stays in �D in positive time (i.e., accumu-
late on an attractive singularity). While for t 2 Œt0; t1� we cannot control the sign of
P� D ˙�=

�
�"x

k CR" C �P
0
"

�
, resulting in a probable increase in �, the total amount

by which �
r

increases is bounded uniformly in .x�; y�/ and ". Therefore there exists a radius
r � r 0 > 0 for which, if .x�; y�/ 2 D .r 0/, the modified trajectory t � 0 7! .x .t/ ; y .t// does
not escape from D .r/ and thus eventually enters E.

8.1.4. Proof of Lemma 8.3. – First, as noted in Remark 8.2, we can choose the same sectors
in x and same cells in the parameter ", possibly after adjusting their diameter. Also, we have
chosen to take the linear parts of the  j;s

`
of the form exp 2i��=k. This choice is arbitrary.

What is needed is that the product of these linear parts be equal to exp 2i��. Because
.k C 1/� 2 Z, so that exp 2i�� D exp .2� i .�C .k C 1/ �//, we are perfectly entitled to take
the same linear parts for m

�
X
�

and m
�

Y
�
.

The Camacho-Sad indexe�j (resp. �j ) of the singular point .z; 0/ 2 P�1 .0/ � f0g in Y "
(resp. X "), relatively to the invariant line fy D 0g, is given by

e�j D P 0".z/

1C �P 0".z/C �"z
k
; �j D

P 0".z/

1C �"zk
:
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Hence, 1e�j D 1

�j
C � , yielding exp 2i�=e�j D exp 2i�=�j . This means that the gate transition

maps are the same for both dynamical necklaces induced by .�;m/ and by .b�;m/. Thus,
the holonomies involved in the compatibility condition are the same provided (2) holds. In
particular, this means that .b�;m/ satisfies the compatibility condition, proving (1).

Show now that m is the analytic part of the modulus of Y . It suffices to consider a fixed
" 2 E ` and a corresponding saddle part V j;s. Recall how a normalizing map between Y and
its formal model, as in Remark 6.9, defines the canonical sectorial first integraleH.x; y/ D yeE.x/ exp eN j .x; y/ ;

where eE.x/ D Qk
jD0.x � xj /�

1=e�j is the multiplier in the model first integral of Y ".
Let  j;s W h 7! h exp .2i��=k Cm .h// be the Martinet-Ramis invariant as in Section 7.1,
that is eH jC1

D e j;s ı eH j :

Let us now move to X . It is clear that a normalizing map over Vj transforming X " into its
normal form is given by

.x; y/ 7�!
�
x; y expN j .x; y/

�
Nj .x; y/ D eNj .x; P �" .x/y/:

Moreover, the domain of this map is of the form V j � fjP �" .x/yj < rg. Since

kY
jD0

.x � xj /
� 1
�j D eE.x/P � .x/

the canonical first integral of X has the form

H j .x; y/ D E.x/y expNj .x; y/ D eE.x/ .P � .x/y/ exp eN j .x; P � .x/ y/ :

It follows at once that
H jC1

D e j;s ıH j ;

yielding the conclusion  j;s D e j;s as expected.

8.2. Section of the period operator: end of proof of the Normalization Theorem

Let X be a generic unfolding in orbital normal form (2.4), understood as a derivation.
Theorem 6.8 holds regardless of the value of �0 or � . The study performed in Section 6 to
establish Theorem 6.2 can be repeated here but for the fact that the canonical section of the
period operator needs to be adapted. The mapping defined in (6.3) becomes

K W C f"; x; yg0 �! Sectionk fP
�yg

G 7�! S`
�
T` .G/

�
whose kernel coincides with X � C f"; x; yg0, i.e., the sequence of C f"g-linear operators

0 �! C f"; x; yg0
X �
�! C f"; x; yg0

K
�!Sectionk fP

�yg �! 0

is exact. Up to this modification the temporal part of Realization Theorem is established.
The most obvious reason why one must adapt the target space of the section operator is

computational. Proposition 10.5 below recalls the formula for the period of the formal modelbX for k D 1. For xym 2 Sectionk fyg, m 2 N, it may happen that bT .xym/ vanishes, exactly
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when m� 2 Z�0. This situation cannot happen if �0 … R�0, of course. Pre-composing xym

by P � .x/ y yields bT .xPm� .x/ ym/ D bT �xm�.kC1/C1ym�CO ."/ ;

and by hypothesis m.�0 C .k C 1/ �/ … Z�0. As already noticed, the presence of P � acts
as a shift by .k C 1/ � on powers of x. Here it guarantees thatS` remains invertible. Notice
that the map S` needs to undertake the same modification as in (8.1); compare (6.23). We
will not go into further details.

8.3. Alternate normal forms

The normal forms we propose in the Normalization Theorem are not strictly speaking
a generalization of [26, 43], which is what we expected to accomplish in the first place and
which we propose as a conjecture.

C 8.5. – Fix k 2 N, a germ of holomorphic function � 2 C f"g, andb� 2 Z�0
such that�0Cb� … R�0. Any generic convergent unfolding of a germ of saddle-node holomorphic
vector field with the formal invariant � is orbitally conjugate to an unfolding of the form

bX C ybR @

@y
; bR 2 xC Œx�<k nxb�yo :

Such a form is unique up to conjugacy by linear maps ."; x; y/ 7! ."; x; c"y/, c 2 C f"g�.

(A similar conjecture can be stated for the temporal part.) This conjecture is very likely to
be true as we almost managed to ascertain both the geometric normalization and the cellular
realization in that form. In both questions we encountered difficulties of a technical nature,
which can surely be overcome by bringing in tedious estimates.

9. Bernoulli unfoldings

The primary aim of this section is to establish that the compatibility condition is not
trivially satisfied by proving the Parametrically Analytic Orbital Moduli Theorem. The
most difficult direction is (1)) (2). The whole proof is geared toward using rigidity results
of Abelian finitely generated pseudogroups G < Diff .C; 0/. Let us briefly explain how
Abelian pseudogroups come into consideration here. Elements  ` Œ
� and  èŒ
� in over-
lapping cellular necklace dynamics are conjugate by the transition mapping ı` ` coming
from the compatibility condition. The parametric holomorphy of m forces the equality
 ` Œ�� D  èŒ�� for well-chosen loops �, from which stems the commutativity relation

 ` Œ�� ı ıè ` D ıè ` ı  ` Œ�� :
Such pseudogroups are completely understood and form now a classical topic of complex
dynamical systems, we refer for instance to [8, 25]. “Bernoulli diffeomorphisms” (defined
below) play a central role in this theory as archetypal examples of solvable and Abelian
pseudogroups.
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9.1. Bernoulli diffeomorphism

D 9.1. – We say that  2 Diff .C; 0/ is a Bernoulli diffeomorphism of index
d 2 N if there exist ˛; ˇ 2 C with ˛ ¤ 0 such that

 .h/ D
˛h�

1C ˇhd
�1=d DW Ber

 
d;
˛

ˇ

!
.h/ :

We define Ber .d/ the set of all such algebraic functions, regardless of the special values of ˛
and ˇ (these are in particular germs of analytic diffeomorphisms at the origin). Of course

when d ¤ ed the intersection Ber .d/ \ Ber
�ed� coincides with the group GL1 .C/.

Let us quickly state without proof the next basic property.

L 9.2. – The set Ber .d/ is a group equipped with a semi-direct law. More precisely

Ber

 
d;
˛

ˇ

!
ı Ber

 
d;
ęě
!
D Ber

 
d;

˛ę
ˇęd C ě

!
:

The definition of Bernoulli diffeomorphisms is motivated by the following computation.

L 9.3. – The necklace dynamics of an unfolding of Bernoulli vector field
X D bX C ydC1r .x/ @

@y
consists in Bernoulli diffeomorphisms of index d . Moreover

m
�

X
�
D �

1

d
log

�
1C 2i�dbT �yd r�� :

Proof. – As in [46, Section 3.3] one tries and finds an expression for the sectorial first
integrals H j in the form

H j .x; y/ D
bH j .x; y/�

1 � df j .x/ yd
�1=d :

Because

X �H j
D

bH j�
1 � df j .x/ yd

�1=dC1 ��1 � df j .x/ yd�yd r .x/C X �
�
f j .x/ yd

��
D

bH j�
1 � df j .x/ yd

�1=dC1 �yd r .x/C bX � �f j .x/ yd�� ;
then H j is a first integral for X if and only ifbX � �ydf j .x/� D �yd r .x/ :(9.1)

This equation admits a formal solution (Lemma 4.8) because bX is linear in the y-vari-
able, and the f j .x/ yd are the sectorial solutions of this equation (Theorem 6.8). In fact

.x; y/ 7!

�
x; y

.1�dydf j .x//
1=d

�
is the canonical sectorial normalization of X .

First notice that by definition of the period operator for the formal model (Definition 6.10)
we have for all .x; y/ 2 V j;s � C:

ydf jC1 .x/ � ydf j .x/ D �bTj �yd r� � bH j .x; y/
�
:
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From the special form of H j we deduce

H jC1

H j exp 2i��=k
D

�
1 � dyd

f jC1 � f j

1 � df jyd

��1=d
D exp

0B@� 1
d

log

0B@1C d2i�
bTj �yd r� � bH j

�
� bH j

�d �
�
H j

�d1CA
1CA :

Because bH is linear in the y-variable we know that bT �yd r� .h/ D ˛hd for some complex

coefficients ˛ D
�
˛
j
"

�
j2Z=kZ

. Hence
bT.yd r/.cH/cHd � Hd D bT �yd r� .H/. The rest follows

from (7.3).

R 9.4. – In the course of the proof we establish in particular that Bernoulli
unfoldings admit families of Liouvillian first-integrals of the form

H .x; y/ D
bH .x; y/�

1 � dydf .x/
�1=d

for the Liouvillian solution f of (9.1) obtained by variation of the constant

f .x/ W D E .x/�1
Z x

E .z/ r .z/
dz
P .z/

where E is solution of

P .x/E 0 .x/ D dE .x/
�
1C �xk

�
:

9.2. Holomorphic modulus: proof of the Parametrically Analytic Orbital Moduli Theorem

The direction (2))(1) is a consequence of Lemma 9.3 above and of Proposition 10.5
below stating that the model period operatorbT �yd r� is analytic in the parameter when k D 1
and d� 2 Z.

Conversely let us suppose that .�;m/ is realizable and that m` D �j E `�.C;0/
for some

holomorphic k-tuple

� D
�
�j
�
j
2 hC f"; hgk :

If � D 0 then m D m
�bX� (Theorem 7.6), so we can as well assume that � ¤ 0. We first

establish that k D 1 by contraposition, and then present the case k D 1. That case can be
found originally in [47, Proposition 6] for� D 0. We generalize here the result to arbitrary�.

Recall that for c 2 C� we write

Lc W h 7�! ch:
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V j

x∗

γ
+

Γ

s
+

j x̄j;s

x̄j;n

g
+

j

γ
−

gjm

gj1

gj2

() In the parameter "

V j

x∗

γ
+

Γ

s+j ~xj;n

~xj;s

g+j

γ
−

gjm

gj1

gj2

() In the parametere"
F 9.1. The construction involved in Lemma 9.5.

9.2.1. Reduction to the case k D 1. – Assume then that k > 1 and prove � D
�
�j
�
j
D 0. For

each j 2 Z=kZ there exists a cell E ` for which xj;s is attached to only one saddle sector V j;s.
Let xj;n be the node point attached to xj;s in the boundary of V j;s. The cell E ` self-intersects
around a regular part of �k in such a way that the nature of the points xj;s and xj;n is
exchanged when seen from one part or the other of the intersection. With the conventions
discussed in Remark 7.17, by this we mean(

xj;s D exj;n
xj;n D exj;s:

We refer to Figures 7.4 and 9.1.

Fix a base-point and base-sector x� 2 V j n�"D and take 
�, 
C two loops based at x� of
index 1 around respectively xn

" and xs
", and index 0 with respect to the other roots of P as in

Figure 9.1. Let � WD 
C
� be a loop encircling only fxn; xsg. The compatibility condition
ensures the existence of a tangent-to-identity map

ı WD ı` `

which conjugates the respective necklace dynamics based at x�. In particular

ı� 
�

˙
�
D e �
˙� ;(9.2)

ı� Œ�� D e Œ�� :
L 9.5. – We follow the notations of Figure 9.1. Let k > 1, and let m � 1 be the

number of singular points different from xj;s and xj;n. Each passage of a gate by � in the figure
yields a linear gate mapL

�jp
(resp.Le�jp ) for some �jp 2 C� (resp.e�jp 2 C�) and 1 � p � m.

We also set  j;g DW L�j .

1. The equality  Œ�� D e Œ�� holds, defining a germ � 2 Diff .C; 0/.
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2. �0 .0/ exp
�2i��
k

D

mY
pD1

�jp D

mY
pD1

e�jp :
3. ı ı� D � ı ı:

Proof. – Observe that

e �
C� D Lec=e�j ; ec WD mY
pD1

e�jp :(9.3)

The linear part is invariant by conjugacy so that ec D �je�j exp 2i��=k. Similarly, consid-
ering 
� yields c D �je�j exp 2i��=k. Hence

c D

mY
pD1

�jp D �je�j exp 2i��=k Dec:
Since e Œ�� D Lec ı  j;s and  Œ�� D Lc ı  j;s the result follows.

Recall that the map

" 2 E ` 7�!
�
�j"
�
j2Z=kZ

is locally injective (Lemma 7.20). In particular�0 .0/ is not constant and therefore must take
non-rational values on a small subdomain ƒ � E \` . It follows that for " 2 ƒ the Abelian
group hı;�i < Diff .C; 0/ is non-resonant and therefore formally linearizable [25]. Hence
ı D Id.

L 9.6. – If ı D Id then �j D 0.

Proof. – According to (9.2), ı conjugates  "
�

C
�
D L

�j
ı j;s to  e" �
C�, but the latter

is linear thanks to (9.3), therefore  j;s itself is linear. It can only mean that �j;s D 0 D �j

using (7.5), the equality holding on the whole cell E ` by analytic continuation.

Since j is arbitrary we just established

.k > 1/ H) .� D 0/ :

9.2.2. The case k D 1: end of the proof of the Parametrically Analytic Orbital Moduli Theorem

Since k D 1 we drop the index j D 0. We work in the self-intersection E \ of the single
parametric cell, and use the notations and constructions involved just above. In particular
Figure 9.1 remains the same except for the fact that there are no gate passages j1; : : : ; jm on
the right-hand side of the pictures.

Recall that we consider a system with m ¤ 0. Lemma 9.6 forbids ı D Id, thus � D  s is
non-linear (�was introduced in Lemma 9.5). Then hı;�i is an Abelian group. Consequently
there exists [31] a formal tangent-to-identity changeb' in the variable h, unique d 2 N, � 2 C
and t 2 Cn f0g such that, writing bf WD b'�f for all f 2 Diff .C; 0/,bı D ˆ1Z.d;�/b� D ˛ˆtZ.d;�/; ˛ 2 C�

Z .d; �/ D
hdC1

1C �hd
@

@h
:
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Commutativity forces the relation

˛d D 1:

Since ˛ D exp 2i�� this gives d� 2 Z as expected. Observe that for all s 2 C

ˆsZ.d;0/ 2 Ber .d/ ;

therefore we aim at showing � D 0. This is ultimately done by applying the next lemma.

L 9.7 ([8, Assertions 1.1 to 1.4]). – In the following � is a formal diffeomorphism in
the variable h at 0.

1. Let Z; eZ be formal vector fields in the variable h at 0 belonging to hdC1C ŒŒh��� @
@h

.
If ��ˆ1Z D ˆ

1eZ then ��Z D eZ (the converse is trivial).

2. Assume that ��Z .d; �/ D aZ .d; �/ with a ¤ 1. Then � D 0 and � 2 Ber .d/ (in
particular � is analytic).

Let us show now that � D 0 and b' 2 Ber .d/ itself, forcing � D  s 2 Ber .d/ by
application of Lemma 9.2. The key is to exploit the fact (9.2), which can be rewritten as:

ı� 
�
gCsC

�
D e Œg�� D L1=e� :(9.4)

Indeed, referring to Definition 7.13 for the definition of the letters g˙; s˙ and their image
by  Œ��, and looking at Figure 9.1, we compare the holonomy maps around the upper
singular point. On the left, the singular point is of saddle type and the holonomy map is the
composition of  

�
sC
�

(crossing the saddle sector in the direction of the arrow) with  
�
gC
�

(crossing the gate sector in the direction of the arrow). On the right, the same singular point
is of node type. Turning around, it comes to crossing the gate sector in the inverse direction
of the arrow. Hence its holonomy map is e Œg��. The last equality in (9.4) follows from the
fact that e �gC� D Le� . Note that (9.4) means that ı linearizes  

�
gCsC

�
.

Of course the multipliers at the fixed point in (9.4) must be the same. On the left, this
multiplier is simply that of  

�
gCsC

�
, since conjugacy by ı preserves the multiplier. On the

one hand the multiplier at the fixed point of 
�
sC
�

is exp 2i��, according to (7.5) for k WD 1,
as indeed  

�
gC
�
D L� . On the other hand e Œg�� D L1=e� so thate� � exp 2i�� D 1:

We also have  
�
sC
�
D �, since it is the holonomy obtained by turning counterclockwise

around the two singular points. Hence, replacing in (9.4) yields L� ı � ı ı D ı ı L1=e� .
Composing both sides on the left with Le� and taking b'� on both sides yieldsbL�1=evbı D bLe� ıbı ı bL1=e� D bL�e� ı b� ıbı:
For the sake of simplicity we only deal with the case � 2 Z, the general case can be adapted
by taking into account thatbLıd�e� D Id. Under the current hypothesisbL�e� D Id, so thatbL1=e� is
a formal conjugacy between bı D ˆ1

Z.d;�/
and b� ı bı D ˆ1Ct

Z.d;�/
D ˆ1

.1Ct/Z.d;�/
for

some t D t" 2 C�. According to Lemma 9.7 with � WD bL1=e� and a WD 1 C t ¤ 1, we have
� D 0 and bL1=e� 2 Ber .d/.
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γ

F 10.1. The (asymptotic) path of integration used to compute the period,
which is a cycle when k D 1.

So far b' is a formal linearization of bL1=e� which is tangent-to-identity. For values " of the
parameter corresponding toe� … R (say = .e�/ > 0) the fix-point 0 of bL1=e� is hyperbolic: the
map b' is locally holomorphic at 0, unique and therefore given byb' WD lim

n!1
L�n=e� ı bLın1=e�

uniformly on a neighborhood of 0. Lemma 9.2 implies that for every n 2 N we have

L�n=e� ı bLın1=e� 2 Ber .d/ ;

therefore b' 2 Ber .d/ as requested, since the group Ber .d/ is closed for the topology of
local uniform convergence. This completes the proof of the Parametrically Analytic Orbital
Moduli Theorem.

10. A few words about computations

All the discussion regarding the actual (symbolic or numeric) computations of normal
forms and moduli of saddle-nodes, as presented in [43, Section 4] for saddle-nodes, can be
repeated verbatim in the case of convergent unfoldings: we will not reproduce it here. We
nonetheless present in Section 10.1 a consequence of one particular result, thus unfolding
the main result of [46], which leads us to try and compute the period associated to the formal
orbital normal form bX in Section 10.2.

10.1. Computation of the dominant term of the orbital invariant

The next lemma holds for a fixed value of " 2 E `.
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L 10.1 (See [43, Proposition 4.1]). – Let rn 2 xC Œx�<k be the coefficients of

R .x; y/ D
X
n>0

rn .x/ .P
� .x/ y/

n(10.1)

in the normal form X . Let cj;p
`
.n;m/ 2 C be the coefficients of the period

T
j

`
.xnym/ .h/ D

X
p>0

c
j;p

`
.n;m/ hp

relative to X . Then we have the following properties.

Triangularity: cj;p
`
.n;m/ D 0, if p < m and

c
j;m

`
.m;m/ hm D 2i�cT

`

j
.xnym/ .h/

is independent of R.

Algebraicity: For p > m; the coefficient cj;p
`
.n;m/ depends polynomially on the k .p �m/

variables given by the coefficients of r1; : : : ; rp�m and vanishes when R D 0.

Proof. – It is exactly the proof done in [43, Proposition 4.1] since exchanging xkC1

for P" .x/ does not modify anything in the actual computation. We give some brief elements
of the proof.

Let us drop all indexes and let x 7! y .x; h/ be the sectorial solution of the differential
equation induced by the vector field X with initial value H .x�; y .x�; h// D h (here x� is
fixed once and for all in V s). Computing T .xnym/ .h/ requires to compute the integralR


xny .x; h/m dx

P.x/
for an asymptotic path 
 � C�f0g joining the two nodes in the closure of

the union of consecutive squid sectors (see Figure 10.1). This integral is absolutely convergent
because m > 0 and 
 spirals in the right manner (see also Lemma 6.23). Since

H .x; y/ D bH .x; y/ expN .x; y/ ;

with bH linear in the y-variable, we necessary have

y .x; h/ D by .x; h/C hO .h/(10.2)

where by .x; h/ D hcH.x;1/ is the solution corresponding to the formal model bX. This gives

the triangularity. The algebraicity property stems from the fact that the computation can be
performed formally in the y-variable. The sought property is true for the expansion (10.2)
(by studying the inverse of the normalizing mapping) because it is true for solutions of
cohomological equations X �N D �R.

We extract from this statement useful consequences.

P 10.2. – 1. The quantity

inf fn W rn ¤ 0g D inf
˚
n W .9j / �jn ¤ 0

	
DW d 2 N

does not depend on the cell.

2. The valuation d is infinite if and only if the unfolding is analytically conjugate to its
formal normal form.
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3. If d <1 the dominant term of the invariant is given by the period of the formal model

2i�bT �rdyd� D �h 7! �
j

d
hd
�
j2Z=kZ

:

R 10.3. – The value of d does not depend on the cell but may differ from the value
obtained on the boundary �k . Yet the analytic continuation principle ensures that

min
"2�k

inf fn W rn;" ¤ 0g � d

because R is analytic.

From this proposition we deduce a final normalization ensuring uniqueness.

C 10.4. – Assume the generic convergent unfolding X is not analytically
conjugate to its formal normal form bX defined in (2.2). There exists a unique
.�; j; d/ 2 Z�0�f1; 2; : : : ; kg�N such thatX is conjugate to the normal form X D bXCRy @

@y

as in (10.1) where:

r";d .x/ D "
�xj C o

�
xj
�

r";n D 0 if n < d:

Notice that in the case � > 0 this normal form may fail to deliver meaningful information
at the limit " ! 0. Take the extreme case R" .x; y/ D "�xjyd with � > 0: for every " ¤ 0

the vector field X is not equivalent to the model bX" but X0 is.

10.2. Formula for the period of formal models

Unfortunately only the case k D 1 seems tractable enough to obtain closed-form expres-
sions involving the Gamma function. For the case k D 2 one could derive a closed-form
formula additionally using generalized hypergeometric functions, which is already stretching
a bit far what a “closed-form” is. There is no evidence that similar calculations can be
performed for k > 2.

P 10.5 ([47, Proposition 8]). – Here k D 1. Let us introduce the double
covering " D �s2 in the parameter space. Then for m 2 N and n 2 Z�0:

bTs .xnym/ .h/ D hm � .�m/nCm�

� .nCm�/
� ts;n;m � Ts;m

ts;n;m WD
1

2n

X
pCqDn

 
n

p

!
p�1Y
jD0

�
1 � s

�
�C

2j

m

�� q�1Y
jD0

�
1C s

�
�C

2j

m

��
Ts;m WD

�
�
2s
m

�m�
1C s�

�
�
�
�
m
2s
C

m�
2

�
�
�
�
m
2s
�
m�
2

� :
This period is holomorphic and bounded in the parameter s on the sector

S WD

�
0 < jsj <

1

2 j�0j
;
�

4
< arg s <

7�

4

�
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and extends continuously at 0 by

bT0 .xnym/ .h/ D hm � .�m/nCm�0

� .nCm�0/
:

For given s small enough, the period is zero if and only if nCm�" 2 Z�0. The period is an even
function of s (i.e., holomorphic in the parameter ") if and only if m� 2 Z. In that case � is a
rational constant.

The result is shown by using the Pochhammer contour integral formula for the Beta
function. Indeed an affine change of coordinates sends .x � s/˛ .x C s/ˇ to a multiple
of .1 � z/˛ zˇ . The final expression comes from diverse classical properties of the Gamma
function. The eventual lack of evenness of the period comes from the term Ts;m. If m� is
not an integer then Ts;m is multivalued and has an accumulation of zeros and poles as s ! 0

outside the sector S . Only the coincidence of these two infinite sets whenm� 2 Z allows the
period to be holomorphic through lucky root / pole cancelations.

Since Ts;m is independent on n, any nonzero periodbT .ymg/ of a germ g 2 C f"; xg is holo-
morphic in " if and only if m� 2 Z. From Lemma 9.3, Theorem 6.2 and the Parametrically
Analytic Orbital Moduli Theorem we can generalize this observation.

C 10.6. – Let G 2 C f"; x; yg with G .�; 0/ D O .P /. Let us assume that the
period bT .G/ is nonzero. Then, bT .G/ is holomorphic in the parameter if and only if all three
conditions hold:

k D 1 ,

there exists d 2 N such that d� 2 Z,

there exist two germs F 2 C f"; x; yg and Q 2 Section1
˚
P d�yd

	
n f0g such that

G D QC bX � F:
The fact that the period is never a holomorphic function of the parameter if k > 1 is

probably a sign that a “simple” formula for bT .xnym/ does not exist.
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A SHARP FREIMAN TYPE ESTIMATE
FOR SEMISUMS IN TWO AND THREE
DIMENSIONAL EUCLIDEAN SPACES

 A FIGALLI  D JERISON

A. – Freiman’s theorem is a classical result in additive combinatorics concerning the ap-
proximate structure of sets of integers that contain a high proportion of their internal sums. As a con-

sequence, one can deduce an estimate for sets of real numbers: “IfA � R and
ˇ̌̌
1
2 .AC A/

ˇ̌̌
� jAj � jAj,

then A is close to its convex hull.” In this paper we prove a sharp form of the analogous result in di-
mensions 2 and 3.

R. – Le théorème de Freiman est un résultat classique de la combinatoire additive concer-
nant la structure approximative des ensembles d’entiers qui contiennent une forte proportion de leurs

sommes internes. En conséquence, on déduit l’estimée suivante : “SiA � R et
ˇ̌̌
1
2 .AC A/

ˇ̌̌
�jAj � jAj,

alors A est proche de son enveloppe convexe.” Dans cet article, nous prouvons une forme optimale du
résultat correspondant en dimensions 2 et 3.

1. Introduction

Given a set A � Rn, define the semisum by

1
2
.AC A/ WD

n
xCy
2
W x 2 A; y 2 A

o
:

Evidently, 1
2
.ACA/ � A, and for convex setsK, 1

2
.KCK/ D K. Also,

ˇ̌
1
2
.AC A/

ˇ̌
D jAj > 0

implies that A is equal to its convex hull co.A/ minus a set of measure zero (see [3,
Théorème 6]).

The stability of this statement is a natural question that has already been extensively
investigated in the one dimensional case. Indeed, by approximating sets in R with finite
unions of intervals, one can translate the problem toZ and in the discrete setting the question
becomes a well studied problem in additive combinatorics. More precisely, set

ı.A/ WD
ˇ̌
1
2
.AC A/

ˇ̌
� jAj;
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236 A. FIGALLI AND D. JERISON

where j � j denotes the outer Lebesgue measure. The following theorem can be obtained as a
corollary of a result of G. Freiman [9] about the structure of additive subsets of Z (see [5] for
more details, and also [11] and the references therein for more recent developments on this
one dimensional problem):

T 1.1. – LetA � R be a measurable set of positive Lebesgue measure, and assume
that ı.A/ < jAj=2. Then

jco.A/ n Aj � 2 ı.A/:

Note that the assumption ı.A/ < jAj=2 is necessary, as can be seen by considering the
set A D Œ0; 1� [ ŒR;RC 1� with R� 1.

In [5, Theorem 1.2] we extended Theorem 1.1 to every dimension, but with a dimensional
dependence in the exponent (see also [6] for a stability result when one considers the semisum
of two different sets). Our result was as follows.

T 1.2. – Let n � 2. There exist computable dimensional constants ın; Cn > 0 such
that if A � Rn is a measurable set of positive Lebesgue measure with ı.A/ � ınjAj, then

jco.A/ n Aj
jAj

� Cn

�
ı.A/

jAj

�˛n

; where ˛n WD
1

8 � 16n�2nŠ.n � 1/Š
:

Note that the dimensional smallness assumption on ı.A/ is necessary. Indeed, consider
t D 1=2 and the set

A WD B1.0/ [ fRe1g; R� 1:

Then jco.A/ n Aj � R is arbitrarily large, while ı.A/ D
ˇ̌
B1=2

�
R
2
e1
�ˇ̌
D 2�njAj, hence

ın � 2
�n:

The proof in [5] is based on induction on dimension and Fubini-type arguments, and
it leads to a bad estimate for the exponent ˛n. In fact, we believe that ˛n D 1, which we
formulate more precisely in the following conjecture.

C 1.3. – Suppose that A is a measurable subset of Rn, of positive Lebesgue
measure. There exist computable constants Cn and dn > 0, depending only on n, such that the
following holds: if ı.A/ � dnjAj, then

jco.A/ n Aj � Cn ı.A/:

In this paper we introduce a completely new strategy that allows us to prove this sharp
stability estimate in dimensions 2 and 3.

T 1.4. – Conjecture 1.3 is valid for n � 3.

The exponent ˛n D 1 may look surprising at first sight, as most sharp stability results
for minimizers of geometric inequalities in dimension n � 2 hold with the exponent 1=2.
In particular, the best possible stability exponent for the Brunn-Minkowski inequality on
convex sets is 1=2, see [8, 7]. In contrast, our stability inequality with exponent 1 is affine
invariant and additive under partitions of the set by convex tilings, and these properties
are crucial to the proof. Even though we have stopped at n D 3, the proof is by induction
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A SHARP FREIMAN TYPE ESTIMATE FOR SEMISUMS IN R2 AND R3 237

on n and is organized with the hope that parts of it will ultimately apply to the case of
general n. There is at least one other stability inequality in which the exponent 1 is optimal in
all dimensions, namely the one proved in [4]. (Observe that the exponent 1 becomes natural
when looking at critical points instead of minimizers, see for instance [2, Theorem 1.2], but
this is a consequence of the different definition of the “deficit” ı.)

Acknowledgments. – AF was partially supported by NSF Grants DMS-1262411 and DMS-
1361122, and by ERC Grant “Regularity and Stability in Partial Differential Equations
(RSPDE)”. DJ was partially supported by NSF grant DMS 1500771 and a 2018 Simons
Fellowship. The authors thank Emanuel Milman for pointing out to them reference [3].
The authors are very grateful to an anonymous referee, who found a major error in the
first version of this paper. In that version, we asserted that the conjecture was true in all
dimensions, based on the false claim that inequality (2.4) was valid with the exponent 1
rather than n. In this revision we had to make substantial changes that allow us to prove
the conjecture in dimensions 2 and 3. In Remark 2.5 we briefly comment on the case n � 4.

2. Proof of Theorem 1.4

As the reader will see, many of the arguments for the proof of Theorem 1.4 are valid in
any dimension. For this reason we shall work with a generic n for most of the proof, and we
shall use some geometric considerations specific to n D 2 and n D 3 only towards the end.

Basic considerations

Since Theorem 1.4 is known for n D 1 (see Theorem 1.1), we can assume that n � 2 and,
by induction on dimension, we can also assume that Theorem 1.4 holds in dimension n� 1.

Denote the convex hull of A by K WD co.A/. Since the theorem is affine invariant, after
dilation we can assume, with no loss of generality, that jAj D 1. Assuming that ı.A/� 1, it
follows by [1] and/or [5, Theorem 1.2] that (1)

(2.1) � WD jK n Aj � 1:

In particular, 1 � jKj � 2. Therefore, using the lemma of F. John [10], up to an affine
transformation with Jacobian bounded from above and below by a dimensional constant,
we can assume that K satisfies

(2.2) B1=
p
n � K � B

p
n

for balls of radius 1=
p
n and

p
n centered at the origin.

By approximation, (2) we can assume the set A is compact and that @K consists of finitely
many polygonal faces. In particular, 1

2
.ACA/ is compact, hence measurable. Furthermore,

(1) Although this estimate can be deduced as a consequence of [1], that result does not provide computable
constants, as the proof is based on a contradiction argument relying on compactness.

(2) One way to define a suitable approximation is to consider a sequence of finite sets Vk � VkC1 � A such that
the polyhedraPk D co.Vk/ satisfy jPk j ! jco.A/j as k!1, and a sequence of compact subsetsA0

k
� A

such that jA0
k
j ! jAj as k!1. Then letAk WD Vk [ ŒA

0
k
\ .1� 1=k/Pk�. Since jAk j ! jAj, it suffices

to prove the estimate of Theorem 1.4 for Ak and then let k!1.
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238 A. FIGALLI AND D. JERISON

since all vertices of the faces are extreme points, they belong to A. Finally, we may divide
each face into simplices without adding any vertices, so that @K can be seen as a finite union
of simplices, all of whose vertices belong to A.

Reduction to a set A that contains .1 � C�1=n/K

We get started with the proof by showing that points of K that are sufficiently far from
the boundary of K are in 1

2
.AC A/. Indeed, since kf � gkL1 � kf kL1kgkL1 for any pair

of functions f and g,

j�K=2 � �K=2.x/ � �A=2 � �A=2.x/j � j�K=2 � .�K=2 � �A=2/j.x/

C j�A=2 � .�K=2 � �A=2/j.x/

� 2k�.KnA/=2kL1 D 21�njK n Aj

� jK n Aj D � 8 x 2 Rn:

(2.3)

Because K satisfies (2.2), there is a dimensional constant Oc > 0 such that

(2.4) �K=2 � �K=2.x/ � Oc dist.x; @K/n 8 x 2 K;

therefore

(2.5) fx 2 K W Oc dist.x; @K/n > �g � f�K=2 � �K=2 > �g:

Since

0 < �A=2 � �A=2.x/ D

Z
Rn

�A=2.y/�A=2.x � y/ dy

) 9y 2 A s.t. y 2 A=2; x � y 2 A=2

) x 2 1
2
.AC A/;

(2.6)

it follows from (2.3), (2.5), and (2.6), that

.1 � OC�1=n/K � fx 2 K W Oc dist.x; @K/n > �g � f�K=2 � �K=2 > �g � 1
2
.AC A/

for some dimensional constant OC . Consequently, by the definition of ı.A/,

(2.7)
ˇ̌
Œ.1 � OC�1=n/K� n A

ˇ̌
� ı.A/:

Denote
� WD 2 OC�1=n; A0 WD Œ.1 � �/K� [ A:

Then, since A � K and

max
˚
1
2
.1 � �/C 1

2
; 1 � �

	
D 1 � �=2;

we have
1
2
.A0 C A0/ D

�
1
2
.AC A/

�
[
�
1
2

�
.1 � �/K C A

��
[ .1 � �/K

�
�
1
2
.AC A/

�
[
�
1
2

�
.1 � �/K CK

��
[ .1 � �/K

D
�
1
2
.AC A/

�
[ .1 � �=2/K:

Therefore, since �=2 D OC�1=n, thanks to (2.7) we get

ı.A0/ � ı.A/C
ˇ̌
Œ.1 � �=2/K� n A

ˇ̌
� 2ı.A/:
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Also, again by (2.7),
jK n Aj � jK n A0j C ı.A/:

Since co.A0/ D K, if we prove the theorem with A0 in place of A, then the result for A will
follow immediately. Thus, after replacing A with A0, we can assume that

(2.8) A � .1 � �/K with � WD 2 OC�1=n:

Recall that, by choosing dn small enough, we can ensure that � (and hence �) is arbitrarily
small.

Splitting A into “simpler” sets

Denote by f†igMiD1 the simplices whose union is @K, let Ki be the convex hull of †i with
the origin, and define

Ai WD A \Ki :

Note that (2.8) implies that

(2.9) .1 � �/Ki � Ai ; � D 2 OC�1=n � 1:

Also,

(2.10)
X
i

jKi n Ai j D jK n Aj:

Moreover, since the sets fKigMiD1 are convex and disjoint, the sets
˚
1
2
.Ai C Ai /

	M
iD1

are also
disjoint, therefore X

i

ˇ̌
1
2
.Ai C Ai /

ˇ̌
D

ˇ̌̌̌[
i

1
2
.Ai C Ai /

ˇ̌̌̌
�
ˇ̌
1
2
.AC A/

ˇ̌
:

Since
P
i jAi j D jAj, this proves that

(2.11)
X
i

ı.Ai / � ı.A/:

Main lemma and conclusion

Our main lemma is the following.

L 2.1. – Let Ai , Ki , and � be as above. Then, for n � 3, there exist dimensional
constants NCn � 1 and �n > 0 such that

(2.12) jKi n Ai j � NCnı.Ai /:

provided � � �n.

Assuming Lemma 2.1 has been proved, Theorem 1.4 follows immediately. Indeed,
choosing dn sufficiently small, it follows by [5, Theorem 1.2] and the definitions of � and �
(see (2.8) and (2.1)) that � � �n provided ı.A/ � dn. Then, adding the inequalities (2.12),
(2.10), and (2.11), we find

jK n Aj D
X
i

jKi n Ai j � NCn
X
i

ı.Ai / � NCn ı.A/;
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240 A. FIGALLI AND D. JERISON

as desired. Thus, we are left with proving Lemma 2.1.

Proof of Lemma 2.1

We begin by writing the lemma in a different normalized form. Fix an index i . Since
inequality (2.12) is invariant under affine transformations, we may take †i to be an equilat-
eral simplex of .n � 1/-Hausdorff measure 1, centered on the xn-axis and contained in the
hyperplane fxn D 0g. Moreover, we may move the vertex of Ki from the origin to the point�
0; : : : ; 0; 1

2�

�
, so that (2.8) implies that Ki \

˚
xn �

1
2

	
� Ai . It suffices to prove (2.12) in

this normalized situation.

To simplify the notation further, we remove the subscript i , renaming†i ,Ki ,Ai , with the
letters†,K,A, respectively. With these changes, we can rewrite Lemma 2.1 as follows. (Note
that, in this new normalization, jKj is comparable to 1=� and (2.2) is not satisfied anymore.)
Here and in the sequel, H s denotes the s-dimensional Hausdorff measure.

L 2.2. – Let † be an equilateral .n � 1/-simplex centered on the xn-axis satisfying

Hn�1
.†/ D 1; † � fxn D 0g:

LetK be then-simplex with one vertex at
�
0; : : : ; 0; 1

2�

�
and base†. Suppose thatA is a compact

set satisfying

K \
˚
xn �

1
2

	
� A � K;

and that all of the vertices of† belong toA. Then, for n � 3, there exist dimensional constants
NCn � 1 and �n > 0 such that

jK n Aj � NCn ı.A/

provided � � �n.

Proof of Lemma 2.2

The rough idea of the proof is to start with the set

K \ f1 � xn � 2g � A

and use the fact that the vertices of † belong to A in order to apply the semisum operation
repeatedly to generate more points of A up to errors estimated by ı.A/. As we shall see, a
more refined argument involving several steps will be needed. The first five steps, proving
(2.15), are valid in all dimensions, but the sixth step is restricted to dimensions 2 and 3.

Step 1: Setting up an iteration. – Let � > 0 be a small dimensional constant to be fixed later,
set 
 WD 1

2
C �, and define

(2.13) Kj WD K \ f

j
� xn � 2


j
g 8 j � 0:

The natural idea would be to consider consecutive layers 2�j � xn � 2�jC1, but we need to
introduce the ratio 
 > 1=2 to slow down the rate of decrease of xn for reasons that we will
explain after concluding Step 1. Note that, with this definition, consecutive sets Kj are not
disjoint, but rather overlap in a fraction of order � of their total volume.
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Let the vertices of † be denoted by f OxkgnkD1. We define the following sets iteratively:

(2.14) E0 WD K0; EjC1 WD KjC1 \

� n[
kD1

1
2
. Oxk CEj / [Ej [ .1 � �/K

�
:

Here .1��/K denotes the dilation ofK with respect to the origin, namely the n-simplex with
one vertex at

�
0; : : : ; 0; 1��

2�

�
and base .1 � �/†. We note that Ej D Kj when n D 2, while

the shape of Ej is much more involved for n � 3 (see Figure 1).

F 1. On the left, we consider n D 2. The overlapping shaded regions are
.1 � �/K, K0, 1

2 . Ox1 C K0/, and 1
2 . Ox2 C K0/. Note that their union covers

K1 D K \ f
 � x2 � 2
g; thus E1 D K1. On the right, we consider the horizontal
slice K \ fx3 D 
g for n D 3. The overlapping shaded regions are the intersection
of this slice with .1 � �/K, 12 . Ox1 C K0/,

1
2 . Ox2 C K0/, and 1

2 . Ox3 C K0/. Note that
this set does not cover K \ fx3 D 
g, hence E1 ( K1. For n � 3 the sets Ej have
a fractal structure, described in detail in the proof of Lemma 2.4 for n D 3.

Set E WD
[
j�0

Ej . We claim that there exists a dimensional constant C0 � 1 such that

(2.15) jE n Aj � C0 ı.A/:

The proof of this claim will be carried out in Steps 2–5 below.

Before proceeding with the second step, we explain some geometric features of the core of
the proof in Step 4. If most ofKj belongs toA, then the fact that Oxk belongs toA implies that
most of 1

2
. OxkCKj /, k D 1; : : : ; n, belongs toA. This relatively easy step is carried out in 4(e)

below. On the other hand, these n regions do not coverKjC1 nKj . As the picture on the left
in Figure 1 shows, even in dimension n D 2, the two regions miss a narrow inverted trapezoid
in the next layer,KjC1. When n D 3, the right-hand picture in Figure 1 ofK\fxn D 
g (the
lowest horizontal slice of K1) shows that the 3 regions cover the three equilateral triangles
at the corners of the large triangle. What is missing is a hexagon inside, with very short sides
coinciding with the sides of the large triangle. For higher slices ofK1, above the level x3 D 
 ,
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the missing portion is an even larger hexagon, just as the missing portion for n D 2 gets larger
as xn increases.

To fill more of KjC1 with elements of A, we consider horizontal slices that are at a lower
level than Kj by a factor 2�m � �2. In Steps 4(a) and 4(b), under the assumptions that (at
the appropriate inductive stage) the volume fraction ofA is suitably large (see (2.22)) and the
volume fraction of Œ.ACA/=2�nA is suitably small (see (2.33)), we show that there is a “large”
horizontal slice At D A\ fxn D tg at a height t � �2
j . In Steps 4(c) and 4(d), we then use
the semisum betweenKj and the sliceAt to show that most of .KjC1nKj /\.1��/K belongs
toA. This is why we are able to includeKj \ .1��/K in the definition ofEj , which is crucial
to conclude the proof in dimension 3. The fact that t can be chosen small enough relative
to 
j is what makes it possible to obtain the inequality 
jC1 > .
j C t /=2 used in Steps 4(c)
and 4(d) (see (2.39)). Such an inequality is essential in our proof, and this is what requires us
to slow the rate of descent towards the base † from 2�j to 
j for some 
 D 1

2
C � > 1

2
.

As a consequence of 
 > 1=2, there is an overlap betweenKj andKjC1. This overlapping
gives rise to an extra term �j (see (2.17)) in the bound (2.19), which will then be controlled
in the second part of Step 5.

Step 2: Setting the notation. – Define the numbers

(2.16) �j WD jEj n Aj; ıj WD
ˇ̌̌��

1
2
.AC A/

�
n A

�
\Kj

ˇ̌̌
;

and

(2.17) �j WD
ˇ̌�
Kj \KjC1 \ .1 � �/K

�
n A

ˇ̌
:

Note that

(2.18) jKj j � jEj j � jf

j
� xn � 2


j
g \ .1 � �/Kj D .1 � �/n�1jKj j:

We claim that there exist dimensional constants M;N � 1, with N integer, such that

(2.19) �jC1 �
8

9
�j C �j CM

NX
iD0

ıjCi 8 j � 0:

The proof of (2.19) will be split over Step 3 and Steps 4(a)-4(e) below.

Step 3: The case �j � jEj j. – Consider first the case

(2.20) �j �
2

3
jEj j:

Note that, for � � 1, the sets Kj are almost vertical cylinders of height 
j , and more
precisely (recalling that Hn�1

.†/ D Hn�1
.K \ fxn D 0g/ D 1)

(2.21) 
j � jKj j � .1 � C�/

j ;

where C > 0 is a dimensional constant. This implies that jKjC1j D
�
1C O.�/

�

 jKj j, so it

follows by (2.18) that

�j �
2

3
jEj j �

2

3
.1 � �/n�1jKj j D

2.1 � �/n�1

3

�
1CO.�/

� jKjC1j � 2.1 � �/n�1

3

�
1CO.�/

��jC1;
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which proves (2.19) because 3


2.1��/n�1

�
1CO.�/

�
�

8
9

provided � and � are sufficiently small

(recall that 
 D 1
2
C �).

Step 4: The case �j not too large. – We now consider the case

(2.22) �j �
2

3
jEj j:

Step 4(a): Finding some nontrivial fraction of A near the vertices. – Using (2.18), it follows
that

(2.23) jA \Kj j � jA \Ej j D jEj j � �j �
1

3
jEj j �

1

3
.1 � �/n�1jKj j �

1

4
jKj j:

Now, for any k D 1; : : : ; n, consider the sets (see Figure 2)

(2.24) Akj;` WD .1 � 2
�`/ Oxk C 2

�`.A \Kj / 8 ` � 0;

and note that, because of (2.23),

F 2. The larger grey area represents A \Kj . Small in the corner is the
set A1

j;`
for some `� 1.

(2.25) jAkj;`j D 2
�n`
jA \Kj j � 2

�n`�2
jKj j:

Our goal is to show that, provided the numbers ıjCi are small enough for sufficiently many
indices i , then Ak

j;`
\ A has almost the same measure as Ak

j;`
. To prove this, for convenience

we define the auxiliary numbers

ıkj;` WD
ˇ̌̌��

1
2
.AC A/

�
n A

�
\ Akj;`

ˇ̌̌
8 ` � 0:

Also, we iteratively define

Bkj;0 WD A \Kj ; Bkj;`C1 WD
1
2

�
Oxk C .A \ B

k
j;`/
�
:
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Since Oxk 2 A, one can easily see by induction on ` that the following inclusion holds:

1
2

�
Oxk C .A \ B

k
j;`/
�
�
�
1
2
.AC A/

�
\ Akj;`C1 8 ` � 0:

Therefore

jA \ Bkj;`C1j �
ˇ̌̌
1
2

�
Oxk C A \ B

k
j;`

�ˇ̌̌
� ıkj;`C1 D

1

2n
jA \ Bkj;`j � ı

k
j;`C1 8 ` � 0:

Since jA \ Bkj;0j D jA \Kj j D 2
n`jAk

j;`
j and A \ Bk

j;`
� Ak

j;`
, we deduce that

(2.26) jA \ Akj;`j � jA \ B
k
j;`j � 2

�n`
jA \Kj j �

X̀
rD1

ıkj;r D jA
k
j;`j �

X̀
rD1

ıkj;r 8 ` � 1:

We now start to fix some parameters. Choose an integer m such that

(2.27) �2 � 2�m � 2�2;

and then choose N large enough so that

(2.28) 2�.mC1/ � 
N � 2�m:

With these definitions, it follows that [mrD1A
k
j;r�[

N
iD0KjCi . Therefore, since the sets fAkj;rg1�r�m

are disjoint, it follows that
mX
rD1

ıkj;r �

NX
iD1

ıjCi :

Hence, by (2.26) applied with ` D m, we get

(2.29) jA \ Akj;mj � jA
k
j;mj �

NX
iD1

ıjCi :

We are now ready to prove (2.19). Consider first the case in which

NX
iD1

ıjCi � �jA
k
j;mj:

Then, since �jC1 � jKjC1j � jKj j for � small enough (see (2.21)), recalling (2.25) and
that 
�N � 2�m (see (2.28)), we deduce that

NX
iD1

ıjCi �
�

4

nN jKj j �

�

4

nN �jC1;

so (2.19) follows immediately with M D 4
�nN ��1:

Next, we must consider the case in which
PN
iD1 ıjCi � �jA

k
j;mj. In that case, (2.29) gives

(2.30) jA \ Akj;mj � .1 � �/jA
k
j;mj 8 k D 1; : : : ; n:

In other words, we proved that A covers almost all the sets fAkj;mg
n
kD1

, which are small
rescaled copies of A \Kj that live in a �2 neighborhood of the n vertices Oxk (recall (2.27)).

4 e SÉRIE – TOME 54 – 2021 – No 1



A SHARP FREIMAN TYPE ESTIMATE FOR SEMISUMS IN R2 AND R3 245

Note that whereas the sets Akj;m for different k are translates of each other, the sets
A \ Akj;m are not. To enforce this additional property, we first translate them to the same
point, intersect them, and then move them back. More precisely, recalling (2.24), we set

OAj;m WD

n\
kD1

�
.A \ Akj;m/ � .1 � 2

�m/ Oxk
�
; OAkj;m WD

OAj;m C .1 � 2
�m/ Oxk :

Now, thanks to (2.30),

(2.31) OAkj;m � A \ A
k
j;m; j OAkj;mj � .1 � n�/jA

k
j;mj 8 k D 1; : : : ; n;

and OAkj;m and OAk
0

j;m are the same set for any k; k0 2 f1; : : : ; ng, up to a translation orthogonal
to the xn axis. Also, it follows by (2.31), (2.25), and (2.21), that

j OAkj;mj � jA
k
j;mj D 2

�nm
jA \Kj j � 2

�nm
jKj j � 2

�nm
j ;

j OAkj;mj � .1 � n�/jA
k
j;mj � .1 � n�/2

�nm�2
jKj j � 2

�nm�3
j ;
(2.32)

provided � and � are sufficiently small.

Step 4(b): Finding an almost full slice in A at fxn D tg for some t � 2�m
j using Fubini and
induction. We look at the slab

Sj;m WD K \ f2
�m
j � xn � 2

�mC1
j g;

and define ıj;m WD
ˇ̌��

1
2
.AC A/

�
n A

�
\ Sj;m

ˇ̌
: Note that Akj;m � Sj;m for any k D 1; : : : ; n.

Recall that dn�1 is the dimensional constant corresponding to Theorem 1.4 in dimen-
sion n � 1. It will suffice to prove the existence of a suitable slice inside Sj;m assuming

(2.33) ıj;m � �
2nC8dn�1j OA

k
j;mj

(note that j OAkj;mj is independent of k). Indeed, since Sj;k � KjCN�1 [KjCN it holds

(2.34) ıj;m � ıjCN�1 C ıjCN :

Hence, if (2.33) fails then (recall (2.32) and (2.28))

ıjCN�1CıjCN � �
2nC8dn�1j OA

k
j;mj � �

2nC8dn�1.1�n�/2
�nm�2

jKj j �
�2nC8dn�1


nN

8
�jC1;

which proves (2.19) with M D 8
�nN ��2n�8d�1n�1.

Now we can proceed under the additional assumption (2.33). Define

At WD A \ fxn D tg �
�
[
n
kD1.

OAkj;m/
�
\ fxn D tg DW OAt ;

and consider ı.At / D Hn�1�1
2
.At C At / n At

�
. Since OAkj;m � A; it follows by (2.33) and

(2.32) that

(2.35)
Z 2�mC1
j

2�m
j

ı.At / dt � ıj;m � �
2nC8dn�1j OA

k
j;mj � �

2nC8dn�12
�nm
j :

Also, recalling (2.32), it follows that

1

2�m
j

Z 2�mC1
j

2�m
j

Hn�1
. OAt / dt �

1

2�m
j

nX
kD1

j OAkj;mj � n2
�.nC1/m�3:
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Hence, since Hn�1
. OAt / � Hn�1

.At / � 1, there exists a set J � Œ2�m
j ; 2�mC1
j � such
that (3)

H1
.J / � n2�.nC2/m�4
j ; with Hn�1

. OAt / � n2
�.nC1/m�4

8 t 2 J:

Combining this estimate with (2.35), we deduce that

1

H1
.J /

Z
J

ı.At / �
ıj;m

n2�.nC2/m�4
j
�
�2nC8dn�12

�nm
j

n2�.nC2/m�4
j

�
�2nC8dn�12

.nC3/mC8

n2
Hn�1

. OAt /

�
�2nC8dn�12

.nC3/mC8

n2
Hn�1

.At / 8 t 2 J:

Recalling (2.27), this proves that

1

H1
.J /

Z
J

ı.At / �
2nC6

n�nC2
j
ıj;m �

2nC11

n2
�2dn�1 Hn�1

. OAt / 8 t 2 J:

In particular, choosing � sufficiently small, by the Mean Value Theorem we can find
t 2 Œ2�m
j ; 21�m
j � such that

ı.At / �
2nC6

n�nC2
j
ıj;m � �

3=2dn�1 Hn�1
. OAt /; Hn�1

. OAt / > 0:

Hence, since Hn�1
. OAt / � Hn�1

.At /, we can apply Theorem 1.4 to At and we deduce that

(2.36) Hn�1
.co.At / n At / � Cn�1ı.At / � Cn�1

2nC6

n�nC2
j
ıj;m � Cn�1�

3=2dn�1:

Also, because Hn�1
. OAt / > 0, it follows that co.At / contains at least one point

in OAkj;m \ fxn D tg for any k D 1; : : : ; n. Recalling that OAkj;m � .1 � 2
�m/ Oxk C 2

�mKj

and that 2�m � 2�2 (see (2.27)), it follows that co.At / contains n points f Oxkt g
n
kD1

such
that j Oxkt � Oxkj � C�

2, thus

(2.37) co.At / �
�
.1 � �/K

�
\ fxn D tg:

In the next steps we use the slice At and a semisum to control a large fraction of �jC1.
Because the argument in dimension n D 2 is much easier than in higher dimensions, for
convenience of the reader we first treat this case.

(3) This estimate follows from a general simple fact: if f W I � R! Œ0; 1� satisfies 1

H1.I/

R
I f .t/ dt � � > 0,

then there exists J � I such that

H 1.J / �
�

2
H 1.I / and f .t/ �

�

2
8 t 2 J:

Indeed, if this was false, we would have thatf � �=2 on a set I 0 � I of measure larger than .1��=2/H 1.I /,
therefore (recall that 0 � f � 1)Z

I

f .t/ dt �

Z
I 0
f .t/ dt C

Z
InI 0

f .t/ dt � H 1.I 0/
�

2
C H 1.I n I 0/

�

�
1�

�

2

��
2

H 1.I /C
�

2
H 1.I / < � H 1.I /;

a contradiction.
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Step 4(c): Use the slice from Step 4(b) and a semisum to control a large fraction of �jC1:
the case n D 2. – Thanks to (2.36) and (2.37), there exists a point z D .z1; t / 2 A � R2

with jz1j � C�3=4 and t 2 Œ2�m
j ; 2�mC1
j �. In particular, recalling that t � �2
j and
that 
 D 1

2
C �, we have, for � sufficiently small,�

1
4
K
�
\ .KjC1 nKj / �

�
1
4
K
�
\

n

jCt
2
� x2 �

2
jCt
2

o
�

1
2
.z CKj / � KjC1 [KjC2

where 1
4
K denotes the dilation of K by a factor 1

4
with respect to the origin. Finally, since

Kj D Ej for n D 2, the definition of �j and ıj (see (2.16)) yields

(2.38)
ˇ̌��

1
4
K
�
\ .KjC1 nKj /

�
n A

ˇ̌
�
ˇ̌
1
2

�
z C .Kj n A/

�ˇ̌
C ıjC1 C ıjC2

�
1

4
�j C ıjC1 C ıjC2:

Step 4(d): Use the slice from Step 4(b) and a semisum to control a large fraction of �jC1: the
case n � 3. – Given s � 0, defineKs;� WD

�
.1� �/K

�
\fxn D sg and As;� WD A\Ks;". Then

1
2

�
As;� C At;�

�
n A sCt

2 ;�
�
�
1
2
.AC A/ n A

�
\
�
.1 � �/K

�
\
˚
xn D

sCt
2

	
:

Using the inclusion above for s 2 Œ
j ; 2
j �, and noticing that for � small

(2.39) KjC1 nKj � K \
n

jCt
2
� xn �

2
jCt
2

o
� KjC1 [KjC2;

we getˇ̌�
.1 � �/K \ .KjC1 nKj /

�
n A

ˇ̌
�

ˇ̌̌
.1 � �/K \

n

jCt
2
� xn �

2
jCt
2

o
n A

ˇ̌̌
�

ˇ̌̌
.1 � �/K \

n

jCt
2
� xn �

2
jCt
2

o
n
1
2
.AC A/

ˇ̌̌
C

ˇ̌̌��
1
2
.AC A/

�
n A

�
\

n

jCt
2
� xn �

2
jCt
2

oˇ̌̌
�

Z 2
jCt
2


jCt
2

Hn�1�
K�;� n

1
2
.AC A/

�
d� C ıjC1 C ıjC2

D
1

2

Z 2
j


j

Hn�1�
K sCt

2 ;�
n
1
2
.AC A/

�
ds C ıjC1 C ıjC2

�
1

2

Z 2
j


j

Hn�1�
K sCt

2 ;�
n
1
2
.As;� C At;�/

�
ds C ıjC1 C ıjC2:

To estimate the last integral, we define the “vertical semisum with slope �” of two sets Fs and
Ft contained respectively in two levels fxn D sg and fxn D tg with 0 � s; t � 1 by
1
2
.Fs Cv;� Ft / WD

˚
1
2
.z C w; s C t / W .z; s/ 2 Fs; .w; t/ 2 Ft ; .1 � 2�s/w D .1 � 2�t/z

	
:

Note that if � D 0 this is just a trivial one-dimensional semisum in the vertical variable (since
in that case z D w), namely

1
2
.Fs Cv;0 Ft / WD

˚
1
2
.z; s C t / W .z; s/ 2 Fs; .z; t/ 2 Ft

	
;

and it is clear that
(2.40)

Hn�1�1
2
.Fs Cv;0 Ft /

�
� min

˚
Hn�1

.Fs/; Hn�1
.Ft /

	
�
1

2

�
Hn�1

.Fs/C Hn�1
.Ft /

�
:
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In our case, since K is not quite a vertical cylinder but instead has a small angle 2�, we are
asking that the points .z; s/ and .w; t/ be collinear with the vertex

�
0; 1
2�

�
of K, and the

analogue of (2.40) for sets Fs; Ft � K becomes

(2.41) Hn�1�1
2
.Fs Cv;� Ft /

�
�
1CO.�/

2

�
Hn�1

.Fs/C Hn�1
.Ft /

�
:

Hence, since K sCt
2 ;�
D

1
2
.Ks;� Cv;� Kt;�/, one can easily check that

Hn�1�
K sCt

2 ;�
n
1
2
.As;� Cv;� At;�/

�
�
1CO.�/

2

�
Hn�1

.Ks;� n As;�/C Hn�1
.Kt;� n At;�/

�
:

Also, we observe that
1
2
.As;� C At;�/ �

1
2
.As;� Cv;� At;�/:

Combining together all these bounds, and recalling (2.36), (2.37), and (2.34), we getˇ̌�
.1 � �/K \ .KjC1 nKj /

�
n A

ˇ̌
�
1CO.�/

2

Z 2
j


j

Hn�1�
Ks;� n As;�/

�
ds

C
1CO.�/

2

Z 2
j


j

Hn�1�
Kt;� n At;�/

�
ds C ıjC1 C ıjC2

�
1CO.�/

2

ˇ̌�
.1 � �/K

�
\Kj

�
n A

ˇ̌
C
1CO.�/

2

Z 2
j


j

Cn�1
2nC6

n�nC2
j
ıj;m ds C ıjC1 C ıjC2

�
1CO.�/

2

ˇ̌�
.1 � �/K

�
\Kj

�
n A

ˇ̌
C Cn�1

2nC6

n�nC2
.ıjCN�1 C ıjCN /C ıjC1 C ıjC2:

Recalling the definitions of Ej , �j , and �j (see (2.14), (2.16), and (2.17)), this proves that
(2.42)ˇ̌�
.1� �/K \KjC1

�
nA

ˇ̌
�
1CO.�/

2
�j C �j CCn�1

2nC6

n�nC2
.ıjCN�1C ıjCN /C ıjC1C ıjC2:

Step 4(e): Use a semisum to control the remaining fraction of �jC1. – Since Oxk 2 A, we see
that � n[

kD1

1
2
. Oxk CEj /

�
n
1
2
.AC A/ �

� n[
kD1

1
2
. Oxk C .Ej n A//

�
:

Therefore, since [n
kD1

1
2
. Oxk C Ej / � KjC1, recalling the definition of �j and ıj (see (2.16))

we get

(2.43)

ˇ̌̌̌� n[
kD1

1
2
. Oxk CEj /

�
n A

ˇ̌̌̌
�
n

2n
jEj n Aj C ıjC1 D

n

2n
�j C ıjC1:

Note that for n D 2 we have

Ej D Kj and
� 2[
kD1

1
2
. Oxk CKj /

�
[
��
1
4
K
�
\KjC1

�
� KjC1;
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while n2�n � 3=8 for n � 3. Hence, combining (2.43) with (2.38) and (2.42), for any n � 2
we obtain

�jC1 �

�
1CO.�/

2
C
3

8

�
�j C �j CM

NX
iD0

ıjCi

for some dimensional constant M , concluding the proof of (2.19).

Step 5: Proof of (2.15). – Since �0 D 0 (becauseK0 � A by assumption), by summing (2.19)
with respect to j we obtainX

j�0

�j �
8

9

�X
j�0

�j

�
C

X
j�0

�j CM
X
j�1

NX
iD0

ıjCi :

Moreover, the last term can be bounded by

MN
X
j�0

ıj DMN
X
j�0

ı2j CMN
X
j�0

ı2jC1:

Noticing that the sets fK2j gj�0 and the sets fK2jC1gj�0 are disjoint, it follows thatX
j�0

ı2j � ı.A/;
X
j�0

ı2jC1 � ı.A/:

Hence, combining these estimates together, we proved that

1

9

�X
j�0

�j

�
�

X
j�0

�j C 2MN ı.A/:

Since
P
j�0 �j � jE n Aj, we get

1

9
jE n Aj �

X
j�0

�j C 2MN ı.A/:

Note that this would prove (2.15) if we did not have the additional term
P
j�0 �j . The idea

to get rid of this additional term is the following: since the volume of Kj \ KjC1 is only a
fraction � of the volume of Kj and KjC1, if A were uniformly distributed inside the sets Kj ,
then we would have

�j � C�.�j C �jC1/;

from which we would conclude easily. AlthoughA need not be uniformly distributed, we can
prove analogous inequalities starting our iteration at many levels, and then add them up so
that the average overlap of A with Kj \KjC1 is sufficiently uniform.

Thus, to handle the terms �j , we take � 2 Œ
; 1� and define the sets

K�j WD K \ f�

j
� xn � 2�


j
g;

E�0 WD K
�
0 ;

E�jC1 WD

� n[
kD1

1
2
. Oxk CE

�
j /

�
[
�
.1 � �/K \ f�2�
j � xn � ��


j
g
�
;

E� WD [j�0E
�
j ;

and the numbers
��j WD jE

�
j n Aj;
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ı�j WD
ˇ̌̌��

1
2
.AC A/

�
n A

�
\K�j

ˇ̌̌
;

� �j WD
ˇ̌�
.1 � �/K \K�j \K

�
jC1

�
n A

ˇ̌
:

Now, if we repeat the very same proof as above with these new sets, we obtain

1

9
jE� n Aj �

X
j�0

� �j C 2MN ı.A/

(note that we still have K�0 � A; therefore ��j D 0). Noticing that E D E1 � E� for all
� 2 .
; 1/ (in other words, the sets E� are monotonically decreasing in � ), this proves that

(2.44)
1

9
jE n Aj �

X
j�0

� �j C 2MN ı.A/:

We now observe that, since 
 D 1
2
C �,

K�j \K
�
jC1 D K \ f�


jC1
� xn � 2�


j
g D K \ f�
j � xn � .1C 2�/�


j
g;

hence the sets n
K
�m
j \K

�m
jC1 W j � 0; �m D 1 � 2m�; m D 0; : : : ; b



4�
c

o
are disjoint. This implies that

b


4�
cX

mD0

X
j�0

�
�m
j � jE n Aj;

that combined with (2.44) gives

b


4�
c jE n Aj � 9

b


4�
cX

mD0

X
j�0

�
�m
j C 18 �MN b



4�
c ı.A/ � 9jE n Aj C 18 �MN b 


4�
c ı.A/:

Choosing � sufficiently small that b 

4�
c � 10 proves (2.15).

Step 6: Getting control of A on all of K. – Note that (2.15) provides control on the measure
of A inside E. In particular, since Ej D Kj when n D 2, this already proves Lemma 2.1
(and therefore Theorem 1.4) in the case n D 2. Thus for the remainder of the proof we may
assume n D 3. In this case, the goal is to enlarge the set E on which we control the measure
of A to all of K.

For 0 � t < 1=2�, set

†.t/ D K \ fx3 D tg:

By hypothesis, †.t/ \ A D †.t/ for t � 1=2. Our approach to estimating †.t/ n A for
0 � t < 1=2 will be to intersect †.t/ nE with segments parallel to sides of the triangle †.t/
near the boundary, and show that these missing parts are sufficiently small and atomized
that we can apply the following one-dimensional lemma.

L 2.3. – Let J � R be an interval. Suppose that A � J and E � J , and

(2.45) �E=2 � �E=2.x/ �
1

10
dist.x; @J / for all x 2 J:

4 e SÉRIE – TOME 54 – 2021 – No 1



A SHARP FREIMAN TYPE ESTIMATE FOR SEMISUMS IN R2 AND R3 251

Then

jJ n Aj � j1
2
.AC A/ n Aj C 20jE n Aj:

Proof. – The proof of (2.3) applies with K replaced by E and shows that

j�E=2 � �E=2.x/ � �A=2 � �A=2.x/j � jE n Aj:

Therefore, if x 2 J and dist.x; @J / > 10 jE n Aj, we can use (2.45) to obtain

�A=2 � �A=2.x/ � �E=2 � �E=2.x/ � jE n Aj > jE n Aj � jE n Aj D 0;

thus x 2 1
2
.AC A/ (see (2.6)). Since

jfx 2 J W dist.x; @J / � 10 jE n Ajgj � 20 jE n Aj;

it follows that jJ n 1
2
.AC A/j � 20 jE n Aj, and consequently

jJ n Aj � j1
2
.AC A/ n Aj C jJ n 1

2
.AC A/j � j1

2
.AC A/ n Aj C 20 jE n Aj;

as desired.

To describe the complement of E in †.t/, we introduce several more notations. Recall
that the vertices of † D †.0/ are Oxi , i D 1; 2; 3, so that the vertices of †.t/ are given
by Oxi .t/ D .1 � 2�t/ Oxi C .0; 0;

1
2�
/. Denote the sides of †.t/ by †i .t/, with the convention

that the endpoints of†1.t/ are Ox2.t/ and Ox3.t/, and likewise for permutations of the indices.
Since † has sidelength

s0 WD 2 � 3
�1=4;

the length of the sides of †i .t/ is given by

s.t/ WD H1
.†i .t//; s.t/ D .1 � 2�t/s0:

Let t 2 Œ0; 1=2�, and let m � 1 be such that 2�m � t < 2�mC1. We will define, iteratively,
the set of open subintervals Ij;k.t/ of †1.t/, with j D 1; : : : m and k D 1; : : : ; 2j�1, whose
union is the complement of E in †1.t/. To begin, set

I1;1.t/ WD †1.t/ n
�
1
2
. Ox2 C†1.2t// [

1
2
. Ox3 C†1.2t//

�
:

Then I1;1.t/ is the open interval centered at the midpoint of †1.t/ of length s.t/ � s.2t/D2�ts0.
The set †1.t/ n I1;1.t/ consists of two closed segments. Define I2;1.t/ and I2;2.t/ to be the
open intervals with the same length as I1;1.t/ centered at the midpoints of these two closed
intervals. Continue iteratively, given 2` � 1 open subintervals of †1.t/

Ij;k.t/; j D 1; : : : ; `; k D 1; : : : ; 2j�1;

of equal length 2�ts0 and equal spacing. The intervals fI`C1;k.t/g1�k�2` are of length 2�ts0
and centered at the midpoints of the closed intervals complementary to the intervals we have
already defined.

Set

V` WD fi2
�`
Ox2 C .2

`
� i � 1/2�` Ox3 W i D 0; : : : ; 2

`
� 1g:
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Then, by construction,

(2.46) E \†1.t/ D
[
v2Vm

.v C 2�m†1.2
mt // D †1.t/ n

m[
jD1

2j�1[
kD1

Ij;k.t/:

There is, of course, a similar description of E \†2.t/ and E \†3.t/.

To describe the rest of E \ †.t/, we introduce more notations. For any 1-dimensional
segment I in R3, given h > 0 and ˛ � 1, define a “flared neighborhood" of I by

F h;˛.I / WD fx 2 R3 W dist.x; I �/ � h; dist.x; I / � ˛ dist.x; I �/g

where I � denotes the line containing I . Note that F h;˛.I / is symmetric with respect to I �,
and consists of the union of two trapezoids with I as shorter base.

For 2�m � t < 2�mC1, set

S ˛
1.t/ WD

� m[
jD1

2j�1[
kD1

F s02�jC1�;˛.Ij;k.t//

�
\†.t/;

and define S ˛
i .t/ as the image of S ˛

1.t/ under any rigid motion of R3 that maps †1.t/
to †i .t/, see Figures 3 and 4.

F 3. S ˛1 .t/ [ S ˛2 .t/ [ S ˛3 .t/ � †.t/ for ˛ D �=3 and t 2 Œ1=2; 1/.

With these notations we can now estimate the complement of E.

L 2.4. – For � and � sufficiently small and for all t , 0 < t < 1=2,

†.t/ nE �

3[
iD1

S 2
i .t/ :

Before proving this lemma we will use it to finish the proof of Lemma 2.1 and hence
Theorem 1.4.

Note that S 2
1.t/ \ †.t/ is a union of “upward” trapezoids whose shorter bases are the

2m � 1 intervals Ij;k.t/ of length 2�ts0 (2�m � t < 2�mC1, 1 � j � m, 1 � k � 2j�1). The
complements in †1.t/ of these bases are 2m intervals of equal length `.t/ given by

`.t/ WD H1
.2�m†1.2

mt // D 2�m.1 � 2�2mt /s0 > .1 � 4�/2
�ms0 :

4 e SÉRIE – TOME 54 – 2021 – No 1



A SHARP FREIMAN TYPE ESTIMATE FOR SEMISUMS IN R2 AND R3 253

For i D 1; 2; 3, let Ti .t/ be the isosceles triangle in †.t/ with base †i .t/ whose equal sides
are of slope 4� relative to the base (and hence of height less than 2�s0). We claim that

S 2
i .t/ \†.t/ � Ti .t/; i D 1; 2; 3;

see Figure 4.

F 4. Some illustrative part of the fractal set appearing in the proof of
Lemma 2.4. Note that the bases of the trapezoids have all the same length, given
by 2�ts0. By widening the trapezoids from ˛ D 2=

p
3 to ˛ D 2, we ensure that even

when later on in the iteration we may add some additional trapezoids to the lateral
sides of a previous one, these will still be included in the wider trapezoid. The dotted
lines represent the triangles Ti .t/, i D 1; 2; 3.

To see this, suppose, without loss of generality, that i D 1 and call the direction of †1.t/
horizontal. The left side of the smallest isosceles triangle with base †1.t/ that encloses
S 2
1.t/ \ †.t/ starts at the left endpoint of †1.t/ and passes through the upper left corner

of the short trapezoid in S 2
1.t/ \ †.t/ nearest that corner. That trapezoid has height

hm D 2
�mC1�s0, and horizontal distance from the endpoint of †1.t/ given by `.t/�

p
3hm.

Thus the slope is

hm

`.t/ � hm
�

2�mC1�s0

.1 � 4�/2�ms0 �
p
3 2�mC1�s0

D
2�

1 � 4� � 2
p
3 �
� 4�;

for � and � less than 1=100.

Next, for 0 � h � �s0, we consider segments parallel to the side †1.t/, excluding very
short segments at the ends corresponding to the thin triangles T2.t/ and T3.t/, and then
remove, in addition, S 2

1.t/:

J h1 .t/ WD fx 2 †.t/ W dist.x;†1.t// D hg n .T2.t/ [ T3.t//I Eh1 .t/ D J
h
1 .t/ n S 2

1.t/:

(See Figure 5.) We define Ehi .t/ � J hi .t/ analogously for i D 2; 3. Lemma 2.4 implies
that Ehi .t/ � E, and hence

(2.47)
Z 1

0

Z �s0

0

H1
.Ehi .t/ n A/ dh dt � jE n Aj; i D 1; 2; 3:
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F 5. The bold line represents the set Eh1 .t/. This is obtained by taking
an horizontal segment at height h connecting the triangles T2.t/ and T3.t/, and
removing the part covered by S 21.t/

To confirm that the one-dimensional Lemma 2.3 applies to Eh1 .t/ as a subset of the
interval J h1 .t/, observe that the set J h1 .t/ \ S 2

1.t/ that we excluded to form Eh1 .t/ consists
of equally spaced intervals of equal length

H1
.Ij;k/C 2

p
3 h D 2�ts0 C 2

p
3 h; s02

�jC1� � h; 1 � k � 2j�1:

The value of j ranges from 1 to j � with the maximum value determined by the constraints
j � � m and 2j

�

� 2s0�=h. The total number of intervals is

1C 2C � � � C 2j
��1
D 2j

�

� 1 < 2j
�

� min
�
2m;

2s0�

h

�
:

Since 2m�1t � 1 (by the definition of m), the total length of these complementary intervals
is less than

.2�ts0 C 2
p
3 h/min

�
2m;

2s0�

h

�
� 2mC1�ts0 C 4

p
3�s0 � 10.�C �/s0:

Note that J h1 .t/ has length .1�O.�C �//s0, and that J h1 .t/\ S 2
1.t/ is at most an O.�C �/

fraction of J h1 .t/. It follows that, for all x 2 J h1 .t/,

�Eh
1
.t/=2 � �Eh

1
.t/=2.x/ � .1 �O.� C �//dist.x; @J h1 .t//;

in which we abuse notation by identifying J h1 .t/ with its isometric image in a real line and
likewise the subset Eh1 .t/. (Note that although the 2m � 2 internal intervals of Eh1 .t/ have
equal length, the two on the ends are slightly longer. This only improves the convolution
inequality at the very ends. We excluded the triangles T2.t/ and T3.t/ from J h1 .t/ in order to
arrange this favorable situation at the ends: we do not want the interval on which we apply
Lemma 2.3 to intersect S 2

2.t/ and S 2
3.t/.)

Having confirmed the hypothesis of Lemma 2.3, and likewise for the analogous sets
Ehi .t/ � J

h
i .t/, we apply the lemma to conclude that

H1
.J hi .t/ n A/ � H1

.J hi .t/ \
1
2
.AC A/ n A/C 20 H1

.Ehi .t/ \ A/; i D 1; 2 3:
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Since

K.t/ � E.t/ [

� 3[
iD1

�s0[
hD0

J hi .t/

�
;

these three inequalities, along with (2.47) and Fubini’s theorem, imply that

jK n Aj � jE n Aj C

3X
iD1

Z 1

0

Z �s0

0

H1
.J hi .t/ n A/ dh dt

� jE n Aj C 3j1
2
.AC A/ n Aj C 60jE n Aj � 64C0 ı.A/

with the dimensional constant C0 � 1 of (2.15). This ends the proof of Lemma 2.1 and
Theorem 1.4, except for the proof of Lemma 2.4 that we now provide.

Proof of Lemma 2.4. – The complementary set †.t/ n E is a fractal built iteratively out
of (occasionally truncated) trapezoids arising as the complements of sets of scaled equilat-
eral triangles. Figure 3 shows the fractal in its simplest, starting layer 1=2 � t < 1. We will
organize the description of a superset of the fractal. Figure 4 shows the widened trapezoids
of the superset that we will use to enclose successive generations of smaller and smaller trape-
zoids in the fractal. Within T1.t/, the triangle with base †1.t/ defined above (see Figure 4),
we will refer to the “first generation” of the complementary set as the set involving semisums
with the endpoints Ox2 and Ox3 and trapezoids that touch†1.t/ only. This first generation is a
subset of S ˛

1.t/ with ˛ D ˛0 D 2=
p
3, corresponding to the angle �=3. The second genera-

tion of points in T1.t/ nE arise from first generation points in T2.2t/ and T3.2t/. Consider,
for example, the semisum of Ox3 with points of the first generation in T3.2t/. For any ˛ < 2,

S ˛
3.2t/ \†.2t/ � S 2

3.2t/ \†.2t/ � T3.2t/:

Therefore,

1
2

�
Ox3 C†.2t/ \ S ˛

3.2t/
�
n .1 � �/K � 1

2
. Ox3 C T3.2t// n .1 � �/K

is contained in a triangle of base size O.�/ and height O.�2/. More precisely, the base is a
non-parallel side of the trapezoid †.t/ \ F s0�;˛0

.I1;1.t//, and the other vertex is on the
line parallel to I1;1.t/ at distance s0�. Note the very important shrinkage that comes from
subtracting .1��/K. The set we are translating is contained in a triangle of sizeO.1/ byO.�/
but the part of the translation that is outside of .1��/K has diameterO.�/ and widthO.�2/.
The second generation exceptional set is covered by opening the neighborhood of I1;1.t/ by
changing the flare parameter from˛0 to˛1 D ˛0C10�. The same widening eventually occurs,
appropriately scaled, at all of the intervals Ij;k.t/ at least for sufficiently small t , but no other
additions occur if we only use one step with a convex combination involving a vertex and
an opposite side. In all, at the second generation, in which at most one such step is used, the
exceptional set is contained in the set

3[
iD1

S
˛1

i .t/; ˛1 D ˛0 C 10� :
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Repeating this argument, we find that the exceptional set generated using at most k steps
involving a vertex and an opposite side is contained in

3[
iD1

S
˛k

i .t/; ˛k D ˛0 C .10�/C .10�/
2
C � � � C .10�/k :

Evidently, for sufficiently small �, ˛k < 2 for all k. This covers the entire complement of E
in †.t/ and concludes the proof of Lemma 2.4.

R 2.5. – In closing, we note that in our inductive argument for n D 3, we proved that
the complement ofE contains only relatively short one-dimensional segments at all appropriate
scales near the boundary of K. When n D 4 the set E has nearly full H4 measure on many
suitably scaled subsets, but its complement has too many segments of large diameter near @K.
Therefore, further arguments are required to enlarge E enough to finish the case n D 4 and
higher.
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