quatriéme série - tome 54 Jascicule 1 Janvier-février 2021

ANNALES

SCIENTIFIQUES
de

I/ ECOLE
NORMALE
SUPERIEURE

SOCIETE MATHEMATIQUE DE FRANCE



Annales Scientifiques de 'Ecole Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Yves DE CORNULIER

Publication fondée en 1864 par Louis Pasteur Comité de rédaction au 1°¢ janvier 2021
Continuée de 1872 a 1882 par H. SAINTE-CLAIRE DEVILLE P. BERNARD  D. HARARI
de 1883 a 1888 par H. DEBRAY S. Boucksom C. IMBERT
de 1889 a 1900 par C. HERMITE G. CARON S. MOREL
de 1901 a 1917 par G. DARBOUX G. CHENEVIER P. SHAN
de 1918 4 1941 par E. PICARD A. Ducros J. SZEFTEL
de 1942 a 1967 par P. MONTEL B. FAyaDp S. VU NGoc

G. GiacoMIN  G. WILLIAMSON

D. HAFNER

Rédaction / Editor

Annales Scientifiques de I'Ecole Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.
Tél. : (33) 144 32 20 88. Fax : (33) 1 44 32 20 80.

annales@ens.fr

Edition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy
13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64
Fax : (33) 0491 41 17 51
email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 420 euros.
Abonnement avec supplément papier :
Europe : 551 €. Hors Europe : 620 € ($930). Vente au numéro : 77 €.

(©) 2021 Société Mathématique de France, Paris

En application de la loi du 1¢* juillet 1992, il est interdit de reproduire, méme partiellement, la présente publication sans ’autorisation
de I’éditeur ou du Centre frangais d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Fabien Durand
Périodicité : 6 n°s / an



Ann. Scient. Ec. Norm. Sup.
4¢ série, t. 54,2021, p. 1 24 68

REGULARITY OF ENTROPY, GEODESIC CURRENTS
AND ENTROPY AT INFINITY

BY BARBARA SCHAPIRA anD SamMureL TAPIE

ABSTRACT. — In this work, we introduce a notion of entropy at infinity for the geodesic flow of
negatively curved manifolds. We introduce the class of noncompact manifolds which admit a critical
gap between entropy at infinity and topological entropy. We call them strongly positively recurrent
manifolds (SPR), and provide many examples. We show that dynamically, they behave as compact
manifolds. In particular, they admit a finite measure of maximal entropy.

Using the point of view of currents at infinity, we show that on these SPR manifolds the topological
entropy of the geodesic flow varies in a Gl-way along C!-uniform perturbations of the metric. This
result generalizes former work of Katok (1982) and Katok-Knieper-Weiss (1991) in the compact case.

RESUME. — Dans ce travail, nous introduisons une notion d’entropie a !'infini pour les flots géodé-
siques des variétés a courbure négative. Nous introduisons la classe des variétés, dites fortement positi-
vement récurrentes (SPR), dont ’entropie a I'infini est strictement inférieure a 'entropie topologique.
Nous donnons de nombreux exemples de telles variétés. Nous montrons que d’un point de vue dyna-
mique, ces variétés ressemblent a des variétés compactes. En particulier, elles admettent une mesure
finie maximisant ’entropie.

A T'aide du point de vue des courants a I'infini, nous montrons que sur ces variétés SPR, 'entropie
topologique varie de maniére Clle long de perturbations C!-uniformes de la métrique. Ceci généralise
des résultats passés de Katok (1982) et Katok-Knieper-Weiss (1991) dans le cas compact.

1. Introduction

1.1. Variation of the topological entropy: An overview

The initial motivation of this work was to answer the following simple question. Consider
a hyperbolic surface of finite volume and a smooth compact perturbation of the metric. Does
the topological entropy of the geodesic flow vary regularly? More generally, what happens
for a smooth perturbation of the metric of a noncompact negatively curved Riemannian
manifold?

0012-9593/01/(C) 2021 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2455
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2 B. SCHAPIRA AND S. TAPIE

The answer has been known on compact manifolds since almost thirty years [31, 30, 21],
and has been extended to the convex-cocompact case in [52]. A similar argument gives the
regularity of the topological entropy for a perturbation of an Anosov flow, cf [31].

Compactness of the underlying space is crucial in the above results, and no result was
known until now for manifolds with a non-compact non-wandering set. Even the case of
a smooth compact perturbation of the metric of a finite volume hyperbolic surface was
not accessible with their arguments. Let us recall the two main steps of their argument to
understand why.

The key step is the following inequality, due to Katok in [29] for surfaces, extended in [31]
to all dimensions.

THEOREM 1.1 ([29]; [31]). — Let g1,82 be Riemannian metrics with negative sectional
curvature on the same compact manifold M. Then the entropies of their geodesic flows satisfy

() hop(g1) < hiop(g2) X / 052 g, (v),
SE1M

where |v]|5? = \/g2(v, v) and m¥\; is the normalized Bowen-Margulis measure on the g-unit
tangent bundle S&' M for the g1-geodesic flow.

Reversing the role of g; and g» also provides a lower bound for A,,(g1), and a first order
power expansion gives the following smoothness result.

THEOREM 1.2 ([31]). — Let (g¢)eec(—1,1) be a C*-family of C* Riemannian metrics with
negative sectional curvature on the same compact manifold M. Then & — hiop(gs) is C', and
its derivative is given by

d d

2 — h =—h —

@) G hente) = —hapteor x [ 5
80

where my}, is the normalized Bowen-Margulis measure on the go-unit tangent bundle S&° M
for the gg-geodesic flow.

[v]#* dimggy (v),
e=0

In the previously quoted works, the proofs of (1) strongly use the compactness of the non-
wandering set. In the first part of our paper, we use a different approach to generalize it to
the non-compact setting. This improves it even in the compact case, providing an explicit
transformation rule for the entropies, equality which immediately implies (1), and has other
interesting consequences.

The previously known proofs of (2) use the compactness of M for a crucial point: to
ensure the finiteness and the continuity of the normalized Bowen-Margulis measures iy,
in the weak-* topology as ¢ varies. Neither finiteness of the Bowen-Margulis measure nor
its continuity under a variation of the metric can be ensured in general. Maybe the most
striking fact of our work is that we introduce a new wide class of manifolds, which we
call SPR manifolds, SPR meaning strongly / stably positively recurrent. The terminology
Stably positively recurrent has been introduced by Gurevic-Savchenko [26] in the context of
countable Markov shifts. Sarig [48] modified it, in the same context, into strongly positively
recurrent, terminology which has been used later by other authors as Buzzi [8]. See also
the very recent work of Velozo [53], who follows also this terminology. Both terminologies
are meaningful, and had not yet been considered in our context. It turns out that the same
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 3

property also appeared recently and independently in the context of geometric group theory
in [3] under the name of growth gap.

The class of SPR manifolds that we define here has the remarkable property that the
Bowen-Margulis measure is finite, and moreover stays finite and varies continuously along
small perturbations. In particular, under C'-uniform variation of such SPR Riemannian
metrics, the topological entropy is C' and its derivative is given by (2).

These SPR manifolds include finite volume hyperbolic manifolds, and more generally
almost all known examples where the geodesic flow admits a (finite) measure of maximal
entropy, as geometrically finite negatively curved manifolds with spectral gap [15], Schottky
product examples from [39], and unpublished examples of Ancona [2]. The class of SPR
manifolds is much larger than only the above mentioned examples. We postpone the extensive
study of SPR manifolds to a later paper [25]. Therefore, the second half of our paper will be
devoted to the presentation of a geometrical setting, as large as possible, where this finiteness
and continuity of Bowen-Margulis measures can be ensured.

Let us now present our main results with more details.

1.2. Invariant measures and change of Riemannian metrics

Let (M, g1) be a complete Riemannian manifold, and g, be another Riemannian metric
on M such that there exists C > 1 with é g1 < g2 < Cgy. We assume moreover that both g,
and g, have pinched negative sectional curvatures with uniformly bounded first derivatives:
this implies that g;-geodesics are g,-quasi-geodesics and the visual boundary of the universal
cover (M, g1) is canonically identified with the visual boundary of (M, g»); we will denote it
by M . We will use extensively this correspondance to compare the dynamics of the geodesic
flows on S&' M and S&2M.

Let ' = my (M) acting on the universal cover M, let m be a locally finite measure
on S$1M, invariant by the geodesic flow (g})ser, and m its lift to S8! M. We write
3>M = (OM x 9M)\Diag. In g;-Hopf coordinates (cf Section 2), S$1M ~ 3*M x R,
and 7 has a local product structure of the form dim = du x dt, where p is a T-invariant
geodesic current on 32 M . We write therefore m = m3!.

We can now define a measure m%? on S&2 M, given in g,-Hopf parametrization by the
same local product formula m%? = du x dt: by I'-invariance, this induces a locally finite
measure m5? on S¥2 M, which is invariant for the geodesic flow (g5);er. The ergodic prop-
erties of (S8 M, g\, m¥!) and (S82M, gi,, m§?) are strongly related.

Well known facts imply that if m$' and m£? are finite then one is ergodic or conservative
if and only if the other is. The reader may believe that, since % g1 < g2 < Cgq, then mﬁl is
finite if and only if m%? is. We will indeed show that it is the case and relate the masses and
entropies of these measures.

In this purpose, let us introduce the instantaneous geodesic stretch £' 782 : S&1 M —R
defined for all v € S&1' M by

d
81782 () = 22 v gtv) = 82 (0. gt V),
(v) _dt ot Jvil (v, wgyv) _dt ot z/vi]( Tg1v)

where 7 : S8'M — M is the canonical projection, and Jj’iﬁl (-,.) is the Busemann
+
function for g, based at the endpoint of the g;-geodesic generated by v. By I'-invariance,
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4 B. SCHAPIRA AND S. TAPIE

it induces a map £%' 782 : §81 M — R. We will see in Section 2.3 that this is the derivative
along g;-geodesics of a natural Morse correspondance V81782 : S&1M — S§82 M between
the g; and g, geodesic flows. This Morse correspondence is a global homeomorphism,
which sends g;-geodesics to go-geodesics up to a time rescaling. In particular, it induces a
homeomorphism from the non-wandering set 28! of the geodesic flow on S8 M to the non-
wandering set 282 of the geodesic flow on S82 M ; see next section for precise definitions. This
implies the following.

PROPOSITION 1.3. — For every m$2-measurable map G : S82M — R, the map G o
WE1=82 g mEl -measurable and

/ deﬁz — / G o WE17>82 » £81782 dmil.
SE2M SE1M

In particular, the masses of m&? satisfy

izl = [, € amy.

Some other versions of the geodesic stretch have already been considered in [20] or [32];
we explain in Section 2.3 the relationship with these references and the interest of our new
definition. We then introduce in Section 3 a notion of local entropy for invariant measures,
which is an analogous in the non-compact setting to Brin-Katok entropy, and which coin-
cides with the classical measure-theoretic entropy for Gibbs measures (V. This also allows us
to relate the local entropies of (S81 M, g4, m%') and (S82 M, g5, m%?).

THEOREM 1.4 (See Theorem 3.11). — Let (M, g;), i = 1,2 be two equivalent Rieman-
nian metrics on M with pinched negative curvature and uniformly bounded derivatives.
Let p be any geodesic current and m&! the associated invariant measure on S% M under
the geodesic flow (gt). Assume that these measures are finite and ergodic. Then the local
entropies of (g4, m$') and (g5, m$?) are related as follows.

hioc(mf?, g2) = 1,,(82, 1) X hioc(m§', g1),

where

1,(82.81) = EETE (v) dmf2 (v).

lm | Js<2m
The combination of the previous theorem with the variational principle for entropy

implies the following result, which is an optimal improvement of (1).

THEOREM 1.5 (See Corollary 3.18 and Theorem 3.19). — Let (M, g;), i = 1,2 be two
equivalent Riemannian metrics on M whose curvature is negatively pinched and has uniformly
bounded derivatives. Assume that the geodesic flow on S82M has a finite measure Bowen-
Margulis measure mi,, i.e., a finite measure with maximal entropy. Then

hop(82) < Iz (g2, &1) X hiop(g1)-

Moreover, equality holds if and only if the geodesic flow on S8'M also has a finite Bowen-
Margulis measure and there exists a Morse correspondence FE1782 : SEIM — S82 M which

(1 Riquelme showed recenty [44] that these entropies coincide for all ergodic measures.

4¢ SERIE - TOME 54 — 2021 —N° 1



REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 5

conjugates the flows on the non-wandering sets of S8 M and S82 M up to a global time scaling

hto
Y —hioﬁﬁi;i Sforallv e Q8 andallt € R,

g;’top(gZ)t ° Fg1—>g2(v) — F81782 gilwp(gl)t(v).

This has been shown by Knieper in [32] for compact manifolds. The relation between the
Morse correspondences F81782 and W81782 will be precised in Theorem 3.19. Note that in
general, when two negatively curved metrics are equivalent, one may have a finite Bowen-
Margulis measure whereas the other may not. The previous theorem has the following
striking corollary.

COROLLARY 1.6. — Let (M, g;), i = 1,2 be two equivalent Riemannian metrics on M
whose curvature is negatively pinched and has uniformly bounded derivatives. Assume that the
geodesic flow on S82M has a finite measure Bowen-Margulis measure m§3, and that

hop(g2) = 1,22 (82, 81) X hop(g1)-

Then the marked length spectra of g1 and g, coincide up to a global scaling by %.

Section 4 is devoted to the study of Gibbs measures and their behavior under change
of metrics. It happens to be crucial in the proof of the above Theorem 1.5. We show that
a (g!)-invariant measure m$' is a Gibbs measure for the potential G : S8 — R if and
only if the associated (g5)-invariant measure m4? is a Gibbs measure for the potential
G o W82781 x £827781 We also give some applications of this last fact to a comparison

between the length spectra of (M, g1) and (M, g,), see Corollary 4.4.

1.3. Entropy at infinity, SPR manifolds and Bowen-Margulis measures

Let (M, g) be a Riemannian manifold with pinched negative sectional curvatures
whose derivatives are uniformly bounded. We introduce a notion of entropy at infinity (see
Section 7), which measures the highest possible complexity of the (topological) dynamics
outside a compact set in the manifold. Note that another definition of entropy at infinity
appears in [8, 45, 53], which is somehow the maximal entropy of a sequence of invariant
probability measures diverging to infinity. See also [18, 19] for related works in finite volume
rank one homogeneous dynamics. It follows from [45] in the geometrically finite case
and [53, 25] more generally that this entropy at infinity coincides with our definition.

We call the Riemannian manifold (M, g) strongly positively recurrent, shortly SPR, if the
entropy at infinity is strictly smaller than the topological entropy of the geodesic flow. This
SPR property implies that the geodesic flow admits a finite Bowen-Margulis measure, which
is then the unique measure of maximal entropy, according to [36], see Theorem 3.16, and
also that this fact remains true under a nice small perturbation of the metric, and that these
measures vary continuously in the narrow topology (i.e., in the dual of bounded continuous
functions).

Let us comment on this terminology of strong positive recurrence. It comes from the world
of symbolic dynamics with the works of Gurevich-Savchenko [26] and Sarig [48]. In Pit-
Schapira [41], it is shown that their notion of recurrence is equivalent to the conservativity

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



6 B. SCHAPIRA AND S. TAPIE

and ergodicity of the Bowen-Margulis measure, whereas positive recurrence corresponds to
finiteness (and therefore conservativity and ergodicity) of this Bowen-Margulis measure.

Let us summarize the main results that we establish here on the SPR property. A more
detailed study of this property and its consequences is the aim of paper [25].

THEOREM 1.7. — Let (M, g) be a Riemannian manifold with pinched negative curvature.

1. The SPR property implies that the geodesic flow admits an invariant probability measure
of maximal entropy m%,,, the so-called Bowen-Margulis measure. In the terminology
of [41], the SPR property implies that the geodesic flow is positively recurrent.

2. Geometrically finite manifolds with critical gap (see [15]) have the SPR property,
3. Topologically infinite examples of [2] presented in Section 7.3.3 have the SPR property,
4. Schottky product examples of [39] have the SPR property.

Typical examples of manifolds which do not have the SPR property are infinite covers of
compact negatively curved manifolds, or geometrically finite manifolds without critical gap
(see [15] once again).

As mentioned above, this SPR property is stable in the following sense.

THEOREM 1.8. — Let (M, go) be a SPR manifold with pinched negative curvature and
bounded derivatives of the curvature. Let (g¢)se(—1,1) be a Gl-uniform variation of the metric.
Then there exists eg > 0 such that for all ¢ € (—ey, &), the manifold (M, go) is SPR. Moreover,
the Bowen-Margulis measures (myh,) vary continuously at ¢ = 0 in the narrow topology.

Let us recall here that the narrow topology is the dual topology of bounded contin-
uous functions, whereas the vague topology is the dual topology of continuous compactly
supported functions. In the above theorem, continuity in the vague topology is not a big
problem, whereas noncompactness of the manifold creates huge difficulties to get conver-
gence of the total mass of the measures, and therefore continuity in the narrow topology.
It is the key place of the paper where we really absolutely need the SPR property to get
convergence of the masses of measures, whereas at several other places the assumption is
either not needed, or could be slightly weakened.

This allows us to show the following regularity property for the topological entropy, which
answers our initial question. We refer to Section 7 for technical details on the assumptions.

THEOREM 1.9. — Let (M, go) be a SPR manifold with pinched negative curvature and
bounded derivatives of the curvature. Let (8¢)se(—1,1) be a C'-uniform variation of the metric
with negative sectional curvatures. Then the map & — hiop(gs) is C! near & = 0, with derivative
at0

d d
— h =—h x/ — v|%e dm82, (v),
de o top(ga) top(gO) ceop de o ” ” BM( )
20
the normalized Bowen-Margulis measure gy, = —BM- being the invariant probability

gy
measure of maximal entropy for the go-geodesic flow.

4¢ SERIE - TOME 54 — 2021 — Ne 1



REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 7

Let us emphasize the fact that this theorem is valid in a much greater generality than
what we thought initially possible. On the one hand, SPR manifolds are a very general and
interesting class of manifolds, much larger than the well known and well studied class of finite
volume, or even geometrically finite hyperbolic manifolds, as illustrated by Theorem 1.7. It
may be an optimal class to get such result in the sense that we guess that phase transitions
for the entropy can happen when the manifold is not SPR, analogous to those obtained
by Riquelme-Velozo [45] for the pressure when varying a potential on geometrically finite
manifolds.

On the other hand, we allow much more general perturbations than only compact ones
since we deal with noncompact Gz-perturbations of our metric, as soon as they are not too
wild at infinity.

The paper is organized as follows. In Section 2, we develop the point of view of geodesic
currents at infinity, which allows us to associate to an invariant measure m$! for the geodesic
flow for (M, g1) an invariant measure m§? for the geodesic flow on (M, g»), and compare
their ergodic properties.

In Section 3, we introduce different notions of entropy and develop methods of Section 2
to relate the entropies of m$! and m§2.

In Section 4, we recall general facts about Gibbs measures on non-compact manifolds,
we show that m$! is a Gibbs measure if and only if m$? is and give applications to the length
spectrum.

In Section 5 we show some continuity results for geodesics, Busemann functions and non-
normalized Bowen-Margulis measures which will be needed in the sequel.

In Section 6, we first show that for a fixed geodesic current p on 9>M, the measure-
theoretic entropy & +> h (g%, mf¢) is C' under a C'-uniform variation of the Riemannian
metrics g.. We then show in a very similar proof that, if under a C'-uniform variation of
Riemmanian metrics the normalized Bowen-Margulis measures m%;, vary continuously in
the narrow topology, then the topological entropy is also el

Eventually, in Section 7, we introduce entropy at infinity and SPR manifolds, we show
that they have finite Bowen-Margulis measure, and that under a small C'-uniform variation
of Riemannian metrics they remain SPR. On the way, we give some properties of the entropy
at infinity of independent interest.

Theorem 1.7 follows from results of Section 7.3, where we provide many examples of
SPR manifolds. Theorem 1.8 is a reformulation of the second part of Theorem 7.1. At
last, our main variational formula for the topological entropy, Theorem 1.9, follows from
Theorems 6.3 and 1.8 (or 7.1).
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8 B. SCHAPIRA AND S. TAPIE

2. Hopf parametrization and geodesic currents

2.1. Hopf parametrization and geodesic flow

Let (M, go) be a complete manifold with pinched negative sectional curvatures satisfying
—b? < Kz, < —a? < 0, and first derivatives of the curvature bounded. The bounds on
the curvature are crucial, particularly the upper bound, at many places of the paper. But the
assumption on the derivative will be used (implicitely) only when speaking about the Bowen-
Margulis measure and its entropy. Indeed, this allows to get regularity of strong (un)stable
foliations, which is used in the paper [36] that we shall use later, see Theorem 3.16.

Let M be the universal cover of M, equipped with the lifted metric which we will still
denote by go, and let agoﬁ be its visual boundary Let I' = 7 (M) be the fundamental
group, acting properly by dlffeomorphlsms on M. Denote by pr indistinctly the projection
M — M and its linear tangent map TM — TM.A metric g on M (or equivalently, a
I'-equivariant metric g on M ) will be called admissible if it has pinched negative sectional
curvature, if the derivatives of the curvature are bounded and if there exists a constant
C1(go,g) > 1l suchthatatall x € M,

1

3 — g0 < g < C1(g0, )
(3) Cl(go,g)go_g_ 1(g0. &) &o

This implies that g-geodesics are go-quasi-geodesic. By Morse-Klingenberg lemma (see
for example [9, Th. 1.7 p. 401] for a proof), they are contained in the C»(gy, g)-neighborhood
of go-geodesics, where C(gog, g) only depends on C1(go, &) -

In particular the visual boundary Bgﬁ of (ﬁ , &) 1s canonically identified to the visual
boundary of (1\7 ,g0), and they will therefore both be denoted by dM. Moreover, this
identification is Holder continuous w.r.t the visual distances induced by both g¢ and g, so
that 9M has a natural Holder structure.

The limit set Ar C dM is the set of accumulation points of any orbit I".x on the boundary.
The radial limit set AT, C Ar is the set of endpoints of geodesics which, on the quotient
manifold M, return infinitely often to some compact set. None of these limit sets depend on
the chosen admissible metric.

Let us fix once for all a point o € M. Let g be any admissible metric on M, and d$ the
distance induced by gon M and M. Denote by S&EM (resp. S¢ 1\7) the unit tangent bundle
of (M, g) (resp (M g)), and PM = (E)M X 8M)\D1ag We write 7 : TM — M and
n: TM — M the pI‘O_]eCtIOIlS from the tangent | bundle to its base, and by (g);er the
geodesic flow on S€M or S&M. For any v € S&M, write v& and vJr for the negative and
positive endpoints in dM of the geodesic {mg'v;t € R}.

REMARK 2.1. — We keep track in our notations of the metric g since we will soon
compare these quantities for two different admissible metrics g; and g.

Forall ¢ € M, let $§ be the Busemann function at £ defined, for any x, y € M, by
oBi (x,y) = lim d®(x,z) —d®(y,z).
z—§&

The map
HS v+ ( v8,vE, Bye (0 ﬂv))

4¢ SERIE - TOME 54 — 2021 — N° 1



REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 9

is a Holder homeomorphism from S#¢ M to 3*M xR, called the Hopf parametrization of the
unit tangent bundle.

The action of " by (differentials of) isometries on S& M can be written in these coordinates
as

y.(E, v8 1) = (y.vf,y.vi,t + c%)fi()/_l.o,O)) :

Let us emphasize the fact that this action of T" on 82M xR, and more specifically on the third
factor, depends strongly on the cocycle 3%, and therefore on the metric g.

2.2. Geodesic currents and invariant measures

In the coordinates given by the Hopf parametrization of S¢ M, the geodesic flow (g?) acts
by translation on the last factor: forallv € S M, and s € R,

if H&(w) = (v—,v4+,t) then HE(g’v) = (v—,v4,t +5).

Therefore, any positive Radon measure m on S& M invariant by the flow lifts to a measure i
on S&M of the form m = (H&)* (i x dt), where dt is the Lebesgue measure on R, and p is
a T-invariant locally finite positive measure on 92 M .

DEerINITION 2.2 (Geodesic current). — A ['-invariant geodesic current, or simply geodesic
current, is a I'-invariant positive Radon measure on 3> M .

Given any geodesic current p and any admissible metric g on M, we will denote by m?,
the unique measure on S M invariant by the geodesic flow (g*) whose lift on S& M is ey, =
(H®)*(dw x dt). The non-wandering set Q8 C S& M of the geodesic flow (g’) is the image
on S&M of the T'-invariant set Q¢ on S M defined by

Q8 = (H%)"' ((Ar x Ar)\Diag x R).

It was shown by Eberlein [17] that for the geodesic flow of a negatively curved manifold, this
definition coincides with the usual definition of the nonwandering set of a flow.

It follows from (3) and [9, Thm 1.7 p. 401] that Q¢ is compact (i.e., (M,g) is convex-
cocompact) if and only if Q280 is. We will mainly be interested in the case where Q¢ is not
compact.

The measure m$, is locally finite, but may have infinite mass as soon as (M, g) is not
convex-cocompact. We will use all over this paper the fact that many properties of the
measure m% only depend on the geodesic current 4 and not on the chosen admissible
metric g.

Recall first that an invariant measure is ergodic if every invariant set either has measure
zero or its complementary set has measure zero.

Recall also that a sequence of measures (m,) converges to my, in the vague (respectively
narrow) topology if for every continuous compactly supported (respectively bounded) func-
tion f, we have [ fdm, — [ [ dme.

An invariant measure is periodic if it is (proportional to) the Lebesgue measure on a
periodic orbit. The measure m is conservative if it satisfies the conclusion of Poincaré recur-
rence Theorem: for all sets A of positive measure m(A) > 0, and m-almost all vectors v,
the orbit (g’v) returns infinitely often in A. The measure m has a product structure if the
associated geodesic current is equivalent to a product of measures on 9M . The measure m is
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10 B. SCHAPIRA AND S. TAPIE

strongly mixing if it is finite and satisfies m(A N g' B) — m(A)m(B) when t — oo for all
Borel sets A, B. It is weakly mixing if it is finite and + fOT |m(A N g'B) —m(A)ym(B)| goes
to 0 when 7" — =00 for all Borel sets A, B.

First well known properties are given in the following proposition.

PROPOSITION 2.3. — Let u be a geodesic current, let g1 and g, be two admissible metrics
on M. Then

1. the measure m$} is supported by a (finite number of) closed geodesic(s) if and only if
g2 .
my’ is,

2. the measure m§ is ergodic for the geodesic flow (g%) if and only if m5? is ergodic for the

geodesic flow (g5);
3. the measure m$} is conservative for the geodesic flow (g}) if and only if m§? is conservative
for the geodesic flow (g5);

4. the measure m$}! has a local product structure iff the measure m$2 has a local product

Structure.

Proof. — The measure m§! is supported by a closed geodesic if and only if 4 is carried by
the I'-orbit of a couple (§_,&4) € 32 M where &_ and &4 are the fixed points of a hyperbolic
element y € I'. Since this property does not depend on g1, it shows 1.

The measure mj! is ergodic for the geodesic flow (g}) if and only if  is ergodic under
the action of I" on 92M (cf for instance [46, p. 19]). This property only depends on p, which
shows 2.

The measure m$! is conservative for the geodesic flow (g}) if and only if 4 gives full
measure to AL x AT [46, Proof of (b) page 19] where AT is the radial limit set, which does

not depend on the (admissible) metric g;. This shows 3. O

One should note that in general an invariant measure mﬁ, even with finite total mass, has
no reason to be a probability measure.

We will see further nontrivial relationships between m§' and m$? later. It would be inter-
esting to know if this kind of result can be extended to (strong) mixing property. All known
explicit examples of strongly mixing measures have a local product structure. But there exist
mixing measures without such a product structure, for which the above question is relevant.

2.3. Geodesic stretches

Let g; and g, be two admissible metrics. For all v € S&! M, define the quantity

d&2(nv, gt
@ 4178 () = liminf & 0 7E).
t—>+o00 t

where 7is a lift of v to S€ M. This does not depend on the choice of v. Knieper showed in [32]
that if m is any invariant measure for (g), then for m-almost every v € S81 M,
(5) 51782 (y) = lim M.
t—>+o00 t
This asymptotic geodesic stretch has been studied by many authors, among which
[20], [32], [23]. Sambarino uses a different point of view of reparametrization of the geodesic
flow (see for example [47]) which is very close to our point of view below.
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 11

Recall that, ¢ € OM being fixed, the Busemann function C‘B‘g (...) is C* on M? [28,
Prop. 3.1]. Therefore, for all v € S8 M, we can define

d ~
(6) E8TE(v) = — Bz, (70, wg(V) =
dt t=01+ vy
where T € S M is any lift of v, v&! is@ the positive endpoint in the boundary of the
g1-geodesic associated to v, and $g 1( .) is the Busemann function for g, based at the

g2 t
— 0, 72",
dt t=0+ 023011( gl~)

endpoint of the g;-geodesic generated by v. This definition was inspired by Ledrappier’s
paper [34]. In his notations, our geodesic stretch satisfies €% 7%2(v) = a#2(v), where a2 is
the harmonic 1-form on the g;-stable foliation associated to the Busemann cocycle of the
metric g,.

A g>-horosphere
—

jB (nv wghv

A g1-geodesic

Two g»-geodesics

F1GURE 1. Geodesic stretch

DEFINITION 2.4 (Geodesic stretch). — The maps e$1782 : S&'M — R and £5' 752 .
S8'M — R will be called respectively the asymptotic and instantaneous geodesic stretch
of g with respect to gi.

Anyway, we will most of the time call them both without distinction geodesic stretch.

By construction, for all v € S&' M, £%' 781 (v) = e81781(v) = 1. Observe that there
is no obvious relation from the definition between e8! 782 (resp. £%'7%2) and e82781
(resp. £827781),

If m is ergodic, then 41782 is m-almost everywhere constant. Of course its value strongly
depends on the measure m. On the opposite, the map £¢' 42 is defined everywhere and does
not depend on the chosen measure. It is in general non-constant, globally Holder on S8t M
[4, Appendix of Brin], [38, Thm. 7.3], and et along g;-geodesics (as Busemann functions
are C°, see [28]). We will need the following basic estimate.

LEMMA 2.5. — Let g1 and g, be two admissible metrics, and m any gi-invariant measure.
For m-almost allv € S8' M,

N
en@ys [l dm,
SS1M
() We omit the tilde for boundary points to avoid too heavy notations.
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12 B. SCHAPIRA AND S. TAPIE

whereas for all v € S81 ﬁ
8g]_>g2(v) f ||U||g2 .

Proof. — The first estimate was shown in [32, p. 44]. The second follows from triangular

inequality. Indeed, for all > 0, $f§1 (r(v), (glv)) < d&2(7(v), (gl v)), and these two
+

quantities vanish at 1 = 0 so that their derivatives at r = 0 satisfy the same inequality.

Moreover, d 82 (7 (v), (g} v)) is smaller than the g,-length of the curve (7 (g{v))o<s<s, Wwhose

derivative at zero is exactly ||v|¢,. O

Lemma 2.6 and Corollary 2.8 below justify the common name of geodesic stretch given
to the two maps e%1782 and £%' %2, Before stating them, recall a well known feature
of negative curvature. On a geodesic space X, each triangle (x, y,z) admits an interior
triangle (p, g, r) such that d(r, x) = d(q,x), d(q,z) = d(p,z) and d(p,y) = d(r,y). If g is
a metric with negative curvature, there exists a universal constant A(g) such that for any
geodesic triangle (x, y, z) in M, the associated interior triangle has sides smaller than A(g)
(see for example [9, p. 399] for a proof).

LEMMA 2.6. — There exists C3 = Cz(g1,82) > 0, depending only on the constant
C>(g1, g2) (defined just below (3) ) and the hyperbolicity constant A(g3), such that for all
v e S8 M and forall T > 0,

T
A% (nV, g ) = B (70 7g V)| = | (V.78 D) — / E817E2 (g1 0)d1 | < C3(g1. 82)-
0

Proof. — Letv € S€M and T > 0 be fixed. We write x = 77, x7 = nglv, and zr
is the intersection between the g,-geodesic (x, vi‘ )82 and the g,-horosphere centered at vi‘
passing through x7.

We will need at several occasions the following estimate.

Fact 2.7. — With the above notations, d82(xt,zt) < 2C3(g1, g2) + A(g2).

Let us first prove this fact. Consider the g,-geodesic triangle x, x7, vi‘ and its interior
triangle, say p € (xr,v§'),q € (x,x7),r € (x,v5").

g>-horospher
g>-geodesics

£1-geodesic

FIGURE 2. Proof of Lemma 2.6
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REGULARITY OF ENTROPY, GEODESIC CURRENTS AND ENTROPY AT INFINITY 13

Then by definition of zr, d82(z7,r) = d¥2(xT,q), so that
d8(xr,zr) < 2d®2(x1,9) + d%2(q, 7).

Now, the definition of (p,q,r) and Morse-Klingenberg lemma (see Section 2.1) imply
d®(xr,q) < d®(x7, (x,v5")) < C2(g1, g2). The fact follows.
By definition (6),

T
/ £ (D)t = B, (1T nglV) = d¥ (x. zr).
0 +
Thanks to the above fact, we get

|d82(x, x7) — d*®2(x,z7)| < d*2(xT,271) < 2C2(g1. &2) + A(g2).
The result of the lemma follows, with C5(g1, g2) = 2C2(g1, £2) + A(g2). O

COROLLARY 2.8. — Let m be a (g})-invariant probability measure on S8 M. Then
/ ef1782()dm(v) = / EETE2(n)dm(v).
SE1IM SEIM

Moreover, when m is ergodic, for m-almost every v € S8' M and all lifts v € S8! ﬁqfv,

d2(nv, gl 1T
fim E0V G oL / EOTE (V)1 = / EETE (wydm(w).
0 SE1M

T—+00 T T—o+oco T
Proof. — 1t follows from the previous lemma that for all ¢ > 0, there exists 7y > 0 such
thatforall T > Topand allv e S8' M,

<e.

1 _ T
T dgz(frv,ngﬁ)—/ EETE (gl D)d1
0

It yields the first equality.
When m is ergodic, for m-almost all vectors v € S81,

1 T
2182 — 8182 1
/sén & w)dm(v) = Tln}rqoo = [0 & (giv)dt

and

. d®2 (a0, ngT
/ 81782 (y)ydm(v) = e¥1782(v) = lim (nv—ngl'ﬁ')
SE1 M T—>+o00 T

which concludes the proof of the corollary. O

Let us emphasize the fact that the measures that we will consider will usually have finite
mass, but may not be probability measures. We will denote by ||m| the mass of a finite
measure m on TM.

DEerINITION 2.9 (Geodesic stretch with respect to a geodesic current).
Let | be a geodesic current on 2 M such that m$, is finite. We will call (average) geodesic
stretch of g5 relative to g with respect to u the quantity

EETE (v)ydm (v) = L 1782 (v)dm8! (v).

1,(g1,82) =
: lmE | Jserm

lmE N Jserm
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14 B. SCHAPIRA AND S. TAPIE

By Corollary 2.8, 1,,(g1, g2) coincides with the definition of the geodesic stretch studied
in [32] (note that Knieper only considers invariant probability measures).

When (M, g) has finite volume and p is the Liouville geodesic current of gy, then

1,,(g1.82).Vol(S8' M) = i(g1.82).

where i (g1, g2) is the intersection between the metrics g; and g, studied in [20].

It follows from the definition that for all geodesic currents w such that m¥, is finite,

1,(g1,81) = L.

REMARK 2.10 (Geodesic stretches and Thurston metric). — Given two negatively curved
metrics g; and g, on a compact surface S, the Thurston distance d7j(g1, g2) is defined as
the supremum over all periodic orbits of the ratios of their lengths:

L82(y) 81 (V))
si(y) L82(y) )

With our notations, this distance could also be defined as the following supremum

drr(g1,82) = sup (
V4

drn(g1,g2) = sup (1,(g1. g2), 1u(g2, g1))
w

over all currents u associated to ergodic measures. Indeed, considering periodic measures
immediately shows that Thurston distance is smaller than the above supremum. In the other
direction, the density of periodic measures in the set of ergodic measures, see [13], gives the
above equality.

2.4. Morse correspondences and geodesic stretches

To compare dynamics of the geodesic flows on S8 M and S82 M, it is natural to consider
their dynamics modulo the I'-action on S8 M and S82M. Hopf coordinates are a good
motivation to consider the map

D182 .— (H®) ' o H®! - SEIM — S8,

It is a Holder homeomorphism, but it is unfortunately not I"-equivariant, as both I"-actions
on each unit tangent bundle S& M are different. In other words, as said earlier, on 3> M x R,

these I'-actions involve different cocycles on the R component.

Despite its non-invariance, this map is sometimes useful, because it has the nice property
to commute with both geodesic flows. But we need to find another map from Sé'M
to S82M which will be T'-equivariant. We proceed as follows. For all v € S81 M, let
w = W81782(y) be the unique vector in S8 M on the g,-geodesic joining vE! to v’_’;‘

satisfying p%iﬁl (r(v), w(w)) = 0.
+

LEMMA 2.11. — The map V&1782 js Holder continuous. Moreover, for all v € S&1 M we
have

d& (v, 1 W8 782 (v)) < C3(g1. &2),

where C3(g1, g2) is the constant given by Lemma 2.6.
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g,-horosphere

FIGURE 3. Morse correspondence

Proof. — It is Hoélder continuous as composition of the maps ®81782 and some time g
of the geodesic flow, with t = 781782 (v) depending Holder-continuously on v (see formula
in Lemma 2.12 (4) below).

The bound on d82 (v, 7 W81782(v)) has already been proved in Fact 2.7. O

By construction, the correspondence W&1~82 is [-invariant. We denote by W81782 the
induced map from S8' M to S82M. It is a homeomorphism homotopic to identity sending
g!)-orbits to (gh)-orbits, i.e., a (g1, g2)-Morse correspondence in the sense of [20].

1 2

By definition of both correspondences, the following lemma holds. It says that the
geodesic flows (g/) and (g3) on the unit tangent bundles S& M are conjugated by ®&1 782,
and conjugated up to reparametrization by the Morse correspondance W81 782,

LEMMA 2.12. — With the above notations, we have for all v € S8! M
1. ®81782 ¢ gi (v) = gé o q>g1—>g2(v)_

2. P&2781 — (cpgl—hgz)_l.

3. WE TR0l (0) = g3 Y oWEI TR (), with s$1782 (1, v) = B, (n(v). w(ghv)).
+

4. wame ) = gt 0 o pnoe ), with

81782 (v) = B, (0, 7(v) — Bk, (0. 7(v)).
vy vy
5. w8278l o W1 TE2(y) = g‘fgl_)gz(v)(v), with 081782 (v) = B8, (m(v), m(WE7E2y)).
vy

Let us emphasize that ®81782 and its inverse are not [-invariant, W81782 and its
inverse are ['-invariant, the map t81782 is not I'-invariant, whereas 681782 and the cocycle
581782 (¢, v) are I'-invariant.

Proof. — The fact that ®41782 commutes with the geodesic flows of g; and g, is imme-
diate by definition of Hopf coordinates. The property about its inverse is also obvious.

By definition of w8182 the vectors W&1782(glv), for r € R, all lie on the g,-geodesic
joining v! to v42. The only question is to compute

SEI7E (1, v) = B, (T(WETE (1)), 7 (WEE (gh)).
Ut
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16 B. SCHAPIRA AND S. TAPIE

By definition of W&1782,
ggi’% (nq;gl—xgz(gtl v), It(gtl V) =0= "%f%l (T W8 82 (), 7 (v)).

Using the cocycle properties of $§§ . » we deduce immediately that s81782(z, v) is the alge-

+
braic g,-distance JS?,I (7 (v), (g4 v)).
+
The next affirmation follows from the computation

TR () = B (957 (0), W TR () = BE, (0.7(0) — BE (0, 957 (v)
v+ U+ U+

= B (0.7(0) ~ B 0.0).
The last statement follows easily from the previous one. O

2.5. Change of mass

We will need the following variant of Lemma 2.6, which shows once more that %742

behaves asymptotically as the infinitesimal reparametrization of the flow given by Morse
correspondance WE1782 : S81 M — S22\,

PROPOSITION 2.13. — Let G : S82M — R be a continuous map and G :S%M — Rbe
its (T-invariant) lift to S82M . Then for allv € S8 M, T > 0, and w = V81 782(v), we have

sE1782(Tw) T _
/ G(gow)ds = / G o WE1782(gly) x 51782 (glv) dt,
0 0

with s81782(T,v) = ?1 (mr(v), w(gTv)) as in Lemma 2.12.
+
If moreover G is bounded, then there exists C = C(G, g1, g2) such that for all v € S81 M,

T >0, and w = V81782 (v), we have

ng(v,ngv) . T _
/ Glggw.ds— [ Gowni=e(gho) x £97% gy ar| < C.
0 0

If G is not bounded, then for all compact sets K C S8 M there exists another constant
C'=C'(G,K, g1, g2) such that for allv € S8 M and T € R such that both v andg{v belong
to K = pr'(K) C S8 M, we have

d®2(v,glv) _ T _
/ Glggw).ds— [ §o w1 (gho) x €97 (ghu)dr| < C'.
0 0

The geodesic stretch €542 can therefore be understood as the instantaneous repara-
metrization of the flow (g}) in the correspondance W&1782,

Proof. — The first equality is a simple change of variable using Lemma 2.12. The second
follows using Lemma 2.6 and the fact that G is bounded. Indeed,

df2(v,gTv) _ T _
/ Glgzw). ds _/ G o WEI™E2 (glu) x E81 782 (glv) d1
0 0
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G(giw)ds

d#2(n(v),m(glv)) _
/

(T,v)

< [Glleo %

d®(n(v), 7(g] v)) - c/% (7 (v), Jf(giv))‘

T
= G loo x |d#2 (x(v). 7(gTv)) — / E51782 (gt y) dy
0

= C1[Glloo-

The last assertion is a variation on the second one. If v and g7 v are in a compact set K, for
any parameter s such that |s| < C3(g1, £2), ngiSv belongs to the C5(g1, g2)-neighborhood

of K, on which G is bounded. The above computation therefore applies verbatim. O

REMARK 2.14. — Proposition 1.3 follows immediately. Given any ms?-measurable map
G : S%2M — R, the map G o W&1782 js m§! -measurable and G on S2M, and we have

/ G dmﬁz — / G o W817>82 y £81782 dmﬁl.
SE2M SE1M

The corollary below follows immediately from the above remark. It gives a nice interpre-
tation of the geodesic stretch 7,,(g1, g2).

COROLLARY 2.15 (Mass transformation law). — Let u be a geodesic current such
that m§! has finite total mass, denoted by |m%||. Then

lmi2 || = I.(81. 82) % [m!].

In particular m$} has finite mass if and only if m&? has finite mass. Moreover, when it is the
case,

A
Lu(g2.81)  |lm§]|

1,(g1,82) =

REMARK 2.16. — The previous formula is very natural if 7,,(g>. g1) is interpreted as the
average dilation of the reparametrization of the flow via the Morse correspondance W81 782,
Indeed, in the case where (g%) and (g5) are suspension flows over a (fixed) compact basis for
distinct ceiling functions, the above formula is well known [1].

2.6. Periodic orbits and geodesic stretch

In this section we relate geodesic stretch and lengths of periodic orbits. The results will
not be useful in the sequel of the paper, but are enlightening about the geodesic stretch.

Fori = 1,2, for any hyperbolicelement y € T, let y&i be the closed g;-geodesic associated
to the conjugacy class of y. Let £%i (y) be its g;-length, and d(ﬁ" be the Lebesgue measure
along the geodesic y%i. Observe that, up to normalizing constants, the periodic measure
d Eﬁ" ,i = 1,2, induce the same current at infinity.

Since m§! is finite and ergodic, there exists a sequence (yx )xen of hyperbolic elements such
that in the weak topology,

dl_ s g
lim 7! = mul
k—oo L81(yr)  |Imy!||
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18 B. SCHAPIRA AND S. TAPIE

see for instance [13, Lemma 2.2]. This convergence holds a priori in the dual of contin-
uous functions with compact support. But as all measures involved above are probability
measures, this convergence also holds in the dual of bounded continuous functions of S&1 M .
We can moreover suppose that limy_, o £81 () = +o00.
The following proposition shows that the same happens on S&2 M, and that the ratio of
lengths of periodic orbits in both metrics allows to recover the geodesic stretch.

PROPOSITION 2.17. — Let (M, g;), i = 1,2, be two admissible Riemannian structures with

pinched negative curvature. Let ju be a geodesic current such that both measures my! are ﬁnite
. ae)
Let (yx) be a sequence of hyperbolic elements such that ﬁ converges weakly to —4%— ” — K
my
&2

g
the dual of bounded continuous functions. Then gz (y Jﬁ‘k) converges weakly to —5%— ] in the dual

of bounded continuous functions.
Moreover, the ratios of lengths satisfy

€22 (yk)
k—+o00 £81 (Vk)

= 1,(g1,82).

The proof is separated in two lemmas. The first one asserts that viewed on S&2M,
82

the sequence of periodic probability measures associated to (y,) also converges to %

w
in the dual of bounded continuous functions. The second says that the ratio of lengths
£82(y) /€81 (y) converges to the average geodesic stretch /,,(g1, g2).

LEmMMA 2.18. — With the previous notations, for the same sequence (yy), in the dual of
continuous bounded functions of S82 M,

g2 g2
dty; M

im .
k—oo L82(yk) — |mf2||

. o dey)
Proof. — First, as the sequence of probability measures (gl—(y") converges to the prob-
o 81 . . . dey)

ability measure ”:Zfﬁl”, the I-invariant lift of zre/s to S M converges in the dual of

continuous functions with compact support towards

~g]

mg, i Using Hopf coordinates, we

e

deduce that the geodesic current on 92M associated through H3! to [gl(gl) converges
weakly (in the dual of continuous functions with compact support) to u. Using the sagr?e
argument in the other direction, we obtain that the sequence of probability measures %
converges weakly (in the dual of continuous functions with compact support) to some
multiple of m$? /||m&2||.

It is not exactly the desired result. To get the convergence towards the probability measure
mi? /|m2 |, and in the dual of bounded continuous functions, we need to avoid a possible

loss of mass at infinity. To establish this convergence, it is necessary and sufficient to prove
é2

de
that 52~ =00 does not diverge. In other words, we want to check that for all € > 0, there exists
a compact set e C S8 M, such that for all k > 0 large enough,

5
o =
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It follows easily from the fact that there exists a constant C = C(g1, g2) such that any
g>-geodesic of M staysina C(g1, g2)-neighborhood of the g;-geodesic with same endpoints
at infinity. Let us write the detail of the argument.
ml KD Sy gy
i
£r (SE1KY) Sl
fg 1(vk)

Now, choose a relauvely compact prelmage Ky €M, its g>-convex closure K> and
K;DK>a larger compact convex set of M containing a 2C(g, g2)-neighborhood of K,
for both metrics g; and g,.

Consider a lift ;' of the g1-geodesic y;' which intersects K1, and the associated lift V2
of the g,-geodesic y , at distance at most C(gy, g2) from 75‘ . Let a, b be two points on 7;;’2
such that the length €52 ((a, b)) = €52 (yx). We want to estimate the proportion of g,-length
of [a,b] outside T". & = I".582Kj;.

Choose first some ¢ > 0, and some compact set K; C M such that
deg‘
By convergence of gz O , for all k > k¢ large enough, we also have

a ai bl _ b 7152
0 l B

N )

Ez K3 ')7:'1

F1GURE 4. Proof of Lemma 2.18

By convexity of K3, we can write (a,b)N (F.Eg)c as the disjoint union U(a;, b;) of finitely
many intervals. Thus, we have to show that

E52(F°) Z ﬁgz(aub)
£82(yy) £82(yy)

Choose two points ¢; and d; on 7¢' whose projections (for the metric g>) on the
g2-geodesic %gz are exactly a; and b;. Such points are not necessarily unique but always
exist: take ¢; in the intersection of ’)7,?‘ with the hyperplane orthogonal to ’f,fz at a;. Denote
by (¢;, d;) the g;-geodesic segment on T/f‘, and let A > 0 be such that %gz < g1 < Agz. We

have

€82 (a;, b)) = d®2(a;, b;) < d®(ci.d;) < €52(c;. di) < NALEV (ci. dy).
We deduce that
ggz(c% ) 081(c;, d;) - Aggl ((Sgll"'El)C) n’);]’fl)
() — 08 () T €81 (yx)
the last inequality coming from the fact that, as a; and b; are in the boundary of I.K3, and

¢; and d; are at distance at most C (g1, g2) resp. from a; and d;, they cannot belong to F.EZ,
so that the segment (¢;, d;) does not intersect I'. K. This proves that

G (H°)
< Ae,
082 (y)
which concludes the proof (up to changing ¢ in g/A). O
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Moreover, the lengths £81 (y;) and £82(yy) are related as follows.

LEMMA 2.19. — With the previous notations, for the same sequence (Vr),

g
im () _
k—>+o00 £81(yy)

1.(g1.82).

Proof. — For allk € N, let v{' (resp. v§>) be a tangent vector to yg' (resp. y;?) such
that d&2(wvf', 7vi?) < Ca(g1.82), where C2(g1.€2) > 0 is the constant defined just
after (3). Let v§' € S& M and T2 € S8 M be lifts of v{' and vg? such that again,
d&2 (a5, 70%?) < C2(g1. &2). It follows from Proposition 2.13 applied to F = 1 that there
exists ¢; > 0, only depending on C,(g1, g2) and the bounds on the curvature, such that

L8 (yk)
- [ e
0

<c.

Therefore,

022 () 1 /fg'w) N
- EETE2 (g dt
1 (ye) €51 (k) Jo (&)

ggl_)g2

C1
< .
€81 (yk)

is bounded and continuous, we know that

By Lemma 2.18, as

1 Zgl(yk) 8gl 82 t
-— - dt — 1 ,82),
o (D)1 — Lu(g1.22)

so that the conclusion follows. O

3. Entropy of finite measures

In this section, given two admissible metrics g and g5 as before, and a geodesic current p
on 92M, we wish to compare the entropies of the measures mé!' and m$?. Theorem 3.11
establishes that their ratio is the average geodesic stretch between g; and g, w.r.t i, but in
the reverse direction compared to the relation between their masses, which leads to Corol-
lary 3.12, which states that the product of the entropy of mf by its mass |mj; | remains
constant under an admissible change of metric.

First, we will recall some definitions and relations between dynamical balls (Subsec-
tion 3.1). In Subsection 3.2, we compare two notions of entropy of a measure, the
Kolmogorov-Sinai entropy and the local Brin-Katok entropy, recalling well and less known
results of Brin-Katok and Riquelme. It allows us to prove Theorem 3.11 and Corollary 3.12
in Subsection 3.3.

3.1. Dynamical balls and shadows

If (¢") is a continuous dynamical system on a metric space (X, d), a dynamical ball is a
ball for the dynamical distance dr (x, y) = supg<, <7 d(¢'x,¢"y).

We will restrict ourselves to geodesic flows associated to a Riemannian metric g on S€ M.
For such geometric dynamical systems, it is more convenient to work with the Riemannian
distance induced by the metric g on M or M instead of the distance coming from the Sasaki
metric on TM or T M. We refer to [4, p. 70] and [38, p. 19-20] for a discussion about the fact
that it is the good thing to do in this case.
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Foralle,7 > Oandv € S¢ M , we will call dynamical ball of center v, diameter ¢ and
length T the set
B8(v,T,e) = {w € S¥M, d8(n(g'v), n(g'w)) <&, forall0 <7 < T}.
Note that B8 (v, 0, ¢) is the e-ball with center v for the distance d¢ defined above.

REMARK 3.1. — On the quotient, for v € S&M, one can either consider the quotient
dynamical ball B&(v,T,e) = pr(B8(,T,¢)), v being any lift of v to S¥ M. There is also
a more dynamical definition, as

Bgyn(v, T.e) ={we S5M, d8(w(g"v), m(g"w)) <e forall0 <t < T}
Of course, if 7€ SEM and v = pr(v) € S8 M, one has the obvious inclusion

(7 B8(v,T,¢)) = pr(B4(W,T,¢)) C Bgyn(v, T, ¢).

One can easily see that this inclusion is an equality when the injectivity radius of M is
uniformly bounded from below, as soon as ¢ is small enough. However, when the injectivity
radius of M is not bounded from below, one can build examples where this inclusion is not
an equality [6].

It turns out that in many cases, the most natural dynamical ball to consider is the
small ball pr(B& (v, T, ¢). Therefore, we will call it the small dynamical ball and denote it
by B8(v, T, ¢).

This problem has not been emphasized in [38], where only these small dynamical balls
are considered (see [38, 3.15]). However, in various definitions of local entropies, the large
dynamical balls have to be considered.

We will also need the following variant, for v € S¢ M and T,T' > 0:
BS(v:T. T, ¢) = {w € SEM,d%(x(v), m(w)) <e, forall —T' <t <T}.

Observe that BE(v;T,T,¢) = g7 (B4(g~T'v,T + T’,¢)). As mentioned in the above
Remark 3.1, we consider on S8 M the small dynamical balls

BE(v;T.T',e) = pr(BE(W;T.T',¢)).
Recall the following well known fact in negative curvature.

LeEmMA 3.2. — Let (M, g) be amanifold with pinched negative curvature. For all0 < a < b,
there exists a constant ¢ = c(a,b) > 0 such that for all vectors v,w € S8M, and all T > 2c,
if d8(m(gev), m(grw)) <b forall0 <t <T,thend8(g,v,gw) <aforallc<t<T—c.

Proof. — This is an exercise using standard comparison results. Note that the constant
c(a, b) also depends on the upper bound of the curvature. O

LEMMA 3.3. — Let (M, g) be amanifoldwith pinched negative curvature. For all0 < &1 < &,,
there exists C(g, e1,&2) > 0 such that for allv € SEM and T, T’ > 0, we have

B8(v;T + C(g,e1,2), T+ C(g,€1,62),62) C BE(v; T, T',e1) C BE(v; T, T', &2).

Proof. — The right inclusion is obvious. The left one comes from Lemma 3.2 above. [J
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The shadow C% (B2 (y, R)) of the ball B¢ (y, R) viewed from x w.r.t. the metric g is the set
of positive endpoints in dM of g-geodesic rays starting from x and intersecting B4 (y, R).

Recall Lemma 3.17 from [38].

LeEmMA 3.4 ([38]). — Forallr,a>0and T, T'>0, andv e S&M such that c‘/}f;g (m(v),0) =0,
+
if x; denotes the footpoint of g;(v), we have

BE@:TT',r) € (HE)™ (05, (BF (xr.20) x 0%, (BE (x-1,2r) x |-r.r[) . and
(H®)™! (0§7T,(Bg(xr,r) x C%, (B® (x_77,7)) x ]—a,a[) C BE(w;T, T, 2r + 20).

When g; and g, are two admissible negatively curved metrics on M, recall that any
g1-geodesic between any two points is at distance at most C,(g1, g2) of the g,-geodesic
joining the same endpoints, and vice versa, for some constant C,(g1, g2) depending only
on g1 and g,. This leads immediately to the following lemma.

LEMMA 3.5. — Let g1 and g, be two admissible negatively curved metrics on M, and x, y
two points on M. Then
O3 (BE (y. R)) C O (B*2(y, R + C2(g1.82))) C CF' (BE' (v, R + 2C2(g1. 82)))-
These lemmas will have the following very convenient corollary.
COROLLARY 3.6. — Let g1 and g, be two admissible negatively curved metrics on M. For
all ¢ > 0, there exists C > 0 and &' = &'(¢) > 0 such that for all v € S8 M, we have
B82(WE1782(y), S + C, 8"+ C,e) C WEI7E2(B8 (v, T, T, ¢)) C B82(WE1782(v), S, 8", &),
where
S = B (). 7 (g7 v)).
+
S = B (x(v), w(gr " v))  and
+
¢ = e(5+ Ci(g1,82)) + C2(g1. 22) +2C3(g1. £2).

Proof. — As the sets considered in the above statement are typically small, we can prove
them on TM instead of TM. Without loss of generality, we can assume that 7(v) = o.
Indeed, all lemmas stated above are valid with o an arbitrary point, for example the basepoint
of v. In particular, we have W81782(p) = P817>82(p),

We start with the right inclusion. Given u € B8!(v, T, T’,¢), we want to control the
distance d 82 (g5 W1 782y, ¢S WE1~82y). Asu € B8 (v, T,T', ¢), 18182 (u) < e(1 + C1(g1. 82)),
where 781°82 was defined in Lemma 2.12, so that

d82 (D178 (u), WETE2 (u)) < e(1 + C1(g1, 82))-
Therefore, W81 782B81(v; T, T, ¢) is included in the (1 + Ci(g1,g2))-neighborhood
of @81 782(BEL(v; T, T', ¢).
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Let w = W81782(y) = P&1782(y). Denote by wy (resp. zy) the basepoint 7 (g3w),
for s € R, of g5w. (resp. of g5z). Let S = 5*2"1 (0,m(gTv)and S’ = —J/Bfﬁl (0, m(g7T V).
+ +
By Lemma 2.6, we know that
|S — d®(x(v), 7(g7v))| < C3(g1,g2) and | —d*(z(v), w(gLrv))| < C3(g1, £2).

Moreover, the distances d82(ws, vr) and d82(w_g/, v_7) are uniformly bounded. Indeed,
by Lemma 2.12, w8182 (ngv) = gf W81782(y) so that

d®2 (ws,vr) = d*2(m(V(g] v). 7(g] v)) < C3(g1.82).

Lemma 3.5 and elementary geometric considerations in negative curvature give the inclu-
sion
Ofl_r/ (B2 (vr.2¢)) x 051 (B8 (x—17,2¢)) x ]—¢,
C Oy, (B#2(ws, 26 + C2(g1, 82) + 2C3(g1, 82)))

w_g
x 052 (B%2(y-s', 26 + C2(g1, 82) + 2C3(g1. 82))) X ]—¢, ¢.
Lemma 3.4 implies the right inclusion
QEITE2BEN (0, T, T' 6) C BE2(w; S, 8', 4e + Ca(g1, g2) +2C3(g1. £2)).
The relation between ®81782 and W81782 gives

WIS BE(0; T, T' &) C BE2(WE1782(v), S, 8", e(5 + C1(g1.£2)) + C2(g1. &2) + 2C3(g1, 82))-

We proceed in the same way for the left inclusion, but we need in addition the help of
Lemma 3.3.

Reasoning similarly as above gives the inclusion
B&2(w: S, 8" ¢) C WE 782 (B8 (v: T. T', (48 + Ca(g1. £2) + 2C3(g1. 82))(1 + Ci(g1. £2))) -

As T, T’, ¢ are arbitrary, using Lemma 3.3, we obtain easily the existence of a constant C > 0
such that

B&2(w; S+ C, 8" + C,e) C W78 (B8 (v: T, T, ¢)). O

3.2. Kolmogorov-Sinai, Brin-Katok and topological entropies

The Kolmogorov-Sinai entropy, or measure-theoretical entropy, of a dynamical system T
w.r.t an invariant probability measure u is the supremum over all measurable partitions
of the exponential growth rate of the complexity of a partition, when iterated by 7', and
measured by u. By Shannon-McMillan-Breiman Theorem, it also equals (the supremum
over all partitions of) the exponential decay rate of a typical atom of the iterated partition.

Instead of iterating a measurable partition, when X is a metric space, endowed with the
Borel o-algebra, one can consider exponential decay rate of the measure of typical dynamical
balls, which will give us a notion of local entropy, introduced by [10].

When T is a continuous map on a compact space X, Brin-Katok [10] showed that for
ergodic measures this Kolmogorov-Sinai entropy coincides with the exponential decay of
dynamical balls, also called the local entropy. This equality also holds when T is a lipschitz
map of a noncompact manifold, as has been verified in [42, Thm. 1.32].
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We shall not define the classical Kolmogorov-Sinai entropy, denoted by hgs(T,m),
because we do not really use it in this work. But we recall below some definitions of local
entropy and the statements of Brin-Katok and Riquelme.

For (p") : X — X a dynamical system and m a finite invariant measure, define the lower
local entropy

e 1
®) hoo(T,m)) = eiselj?f slg% 11Trr_1>10r<1>f—flogm(den(x,T, g)),

and the upper local entropy relative to compact sets

9) Elc;):np(T, m)) = sup esssup lim limsup —l logm(Bgyn(x, T, €)).
K xeK 707 0007 xek
For the geodesic flow in negative curvature, dynamical balls should be defined relatively to
a distance on S& M, but, as mentioned in the above subsection, the “natural” Sasaki distance
on S&M is equivalent to the distance d(v,w) = sup_j<,<od®(m(g,v), m(g,w)), so that,
when studying asymptotic quantities as entropy, we can use the distance d€ on M instead of
the Sasaki distance on S€ M.

The following result is essentially due to Brin-Katok and Riquelme.

THeOREM 3.7 ([10],[42],[43]). — Let (M, g) be a Riemannian manifold with pinched nega-
tive curvature. Let m be an invariant ergodic measure under the geodesic flow on S8 M.

—-comp

(10) hKS(m’ g) = hloc(m? g) = h]oc (m7 g)

Proof. — This result is due to Brin-Katok in the compact case. Their proof of the
inequality hxs(m,g) =< h(m,g) extends verbatim to the noncompact case. In [42,
Thm. 1.32], Riquelme proved the equality hgs(m, g) = h;,.(m, g) for any Lipschitz dynam-
ical system. In [42, Th. 1.41], he established the inequality s .(m,g) < EIC::I p(m, g), and

the inequality Ef;?p (m, g) < hgs(m, g) is established in the proof of [42, Thm. 1.42]. O

As observed in Remark 3.1 there are two notions of dynamical balls and the small ones
are more relevant for us. Therefore, we define what we will call the local entropy, denoted
by L (m, g) in the sequel, as follows.

loc

. . 1
(1D hllz,c(m,g) = sup supess lim limsup ——logm(BE(v,T,¢)).
KCSEM  veK 707 00 oTyek

It follows from Theorem 3.7 and inclusion (7) that
(12) his(m,g) = oo (m,g) < iy (m, g),

with equality as soon as M has an injectivity radius bounded from below or m has compact
support. We learned recently that Riquelme [44] proved that the last inequality above is also
an equality

his(m,g) = e (m, g) = hi.(m, g)

in the case of the geodesic flow of a pinched negatively curved manifold.
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REMARK 3.8. — Let us emphasize that all definitions of entropies above are sensitive to
the scaling of the metric but not sensitive to the scaling of the measure. In particular, if m is
finite but not a probability measure, then

hige(m. )
v

REMARK 3.9. — Observe that contrarily to Kolmogorov-Sinai entropy, the above defini-
tions of local entropy make perfectly sense for an infinite invariant ergodic and conservative
Radon measure. In particular, the Bowen-Margulis measure (see Section 3.4) which, when
finite, is the measure of maximal entropy of the geodesic flow, always has a local entropy with
respect to small dynamical balls and return times into compact sets which coincides with the
topological entropy of the geodesic flow, see Proposition 3.17.

hi (m,g) = ht .(Am,g) and hi (m,Ag) =

Lemma 3.3 allows us to choose some ¢ > 0 without need to take the limit when ¢ — 0.
Moreover, the invariance of the measure allows to consider shifted dynamical balls. It is the
result below.

LEmMaA 3.10. — Let (M, g) be a manifold with pinched negative curvature, and j a geodesic
current. Let m§, be the g-invariant measure associated to jv on S M. One can compute its local
entropy as

hL (m#,g) = supsupess lim sup —

g 8 (- 4
loc / T T logm$ (B (v; T, T', ¢)).
K  veK T4T'—c0,gTveK,g=T vek

Geometers usually are more interested in topological entropy than measure-theoretic
entropy. We shall not define topological entropy topologically, but through the variational
principle. Denote by ¢#'(g) the set of invariant probability measures for the metric g.

The topological entropy of the geodesic flow (g”), denoted by /op(g), satisfies
(13) hiop(g) = sup  hgs(m,g).

me ' (g)
This variational principle is due first to [16, 24, 35] and later Handel-Kitchen [27] on
noncompact spaces. It follows from [36] that this supremum is achieved iff the so-called
Bowen-Margulis measure is finite (see later Subsection 3.4 for details). In this case, it is the
unique measure maximizing entropy.

3.3. Entropy transformation law

Our goal is to prove the following result.

THEOREM 3.11. — Let (M, g;),i = 1,2 be two admissible Riemannian metrics with pinched
negative curvature on M. Let i be a geodesic current and mﬁi the associated invariant measures
on S8 M under the geodesic flow (g}). Assume that these measures are finite and ergodic. Then
their local entropies are related as follows:

r r
hloc(msz’ g2) = IIL(gZ’ gl) X hloc(mfbl ) gl)

Thanks to Corollary 2.15, the corollary below follows.
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COROLLARY 3.12. — Under the same assumptions, we have
r r
hloc(llnfj,27 g2) 2 ”miz ” = hloc(nli1 ’ gl) x ”mﬁl ”

As mentioned above, in the case of geodesic flows in pinched negative curvature,
Riquelme [44] proved that for ergodic probability measures, Kolmogorov Sinai entropy
and local entropy coincide. We deduce the following corollary.

COROLLARY 3.13. — Under the same assumptions, we have

mi? mé!
s (2 ) el = s (ot ) < I
llm 2 | a I "
Let us prove Theorem 3.11.

Proof. — 1t follows from Lemma 3.10 that for i = 1, 2, the entropy may be computed as

hi. (mfl, gi) = supsupess lim sup

logm§i (B®1 (v; =T, T', ¢))
K vek T+T’—>oo,gl-7_v€K,g[_T/v€K

T+
for some fixed ¢ > 0, the essential supremum being relative to mf/. The above limsup is
constant along (g;)-orbits, so that by ergodicity, it is mf -almost surely constant. Observe
also that when K grows, the quantity on the right also grows.

Choose some compact set K C TM large enough to contain an open subset of Q& N S& M
for i = 1,2, and to have positive m%/ -measure. Choose it large enough so that it allows to

estimate entropies hll;c (mﬁi , &i), up to some small arbitrary «. In other words,
W & 5.) _ li _ 1 1 8i(B8i(v; =T, T, ¢))| <
loc (M, &) sup ess im sup TIT ogm; v;—=T,T",¢))| <a.

veKNS&i M T+T’—>oo,giTv€K, g;T/vEK

Choose a typical v € S8 M N K, which realizes the above essential supremum on K,
and the almost sure conclusion of Corollary 2.8 when T — too. With the notations
of Corollary 3.6, let w = W81782(y). As observed in the preceding section, we have
mi? = 81782 x WEITE2 Bl But £%1 7782 is uniformly close to 1 on B81(v, €).

Thus, up to some constants e=¢-#)_ by Corollary 3.6, we have

e_c(”’g)mﬁz(Bgz(w; S+C.8"+C.&)<mb (B (v:T.T',¢))
< ec(”’g)mﬁ2 (B#2(w: S, 8", €"))
with
w = VETE(y), S =d®(n(w), 7(g] w)) £ C3(21, 2) and
§' = d®(w(v).7(g; " W) £ C3(81.82).

Observe also that the condition g7v € K (resp. gl_T/v € K ) implies that g5 w (resp.
g5 5"w) belongs to the C3(g1. g2)-neighborhood of K for any of the two metrics g; or g». It
remains true for gf +Cw and g5 §'=Cy inside the C3(g1, g2) + C -neighborhood of K for the

metric g2. Set K’ = V¢, (g,,62)+¢ (K) D K.
By definition of 7,77, S, S, we also have T + T’ — +o0iff S + §' — oo.
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Therefore, taking the limsup of < + <7 log of the above quantity, we get

lim sup -
S+S’—o00 g2 weK’, g _S wekK’

1
ST S logm$2(B%2(w, S, S', &)
T+T —1
= lim sup + - X -logm8' (B8 (v, T. T, ¢)).
T+T'—>00,gT veK,g7 7 vek S+§8 T+T

By Corollary 2.8 we know that
T+T T+T' B T+T
Y —T’ .\ T
S+8 & il ((gy v).m(grv)  [1, E81782(gl)di
converges when T + T' — 400 to

! g2gr AMIC
e € 22"
g1—>g> dmy S82M ”mu I

8
il

Jserm
We deduce easily, by taking the supremum in K, that

N dmg2
Mgy = [ e ] Moc ! 1) = Ii(g2. 1) X i 0. O
2

3.4. Bowen-Margulis measures and comparison of topological entropies

We define now the so-called Bowen-Margulis measure, and use it to deduce from
Theorem 3.11 a corollary about the comparison of topological entropies of two metrics g,
and g,. The construction below is due to Patterson [37] for compact surfaces, to Sullivan [49,
51] for geometrically finite hyperbolic manifolds, and Yue [56] extended Sullivan’s work in
variable negative curvature.

Let (M, g) be a negatively curved manifold, with pinched negative curvature. Choose some
point o € M. Consider the Poincaré series

PE(s) = Z e—sd@.y0)
yel
Let 8(g) be its critical exponent. This exponent is finite, and when I is nonelementary, it is
positive. The pair (T, g) is said to be divergent when the above series diverges when s = §(g).
The following lemma is immediate from the definition of §.

LeEMMA 3.14. — Let (g:)—1<e<1 be a family of negatively curved metrics on M = ]Ti/ r,
such that e~ gg < gs < e°go. Then e=*/28(gg) < 8(ge) < €°/28(go).

We need to ensure that the above series diverges at s = §(g), which could be false. We
will modify P£ (s) into PE (s) as follows. The Patterson trick [37] is the following. Define a
continuous map £ : (0, +00) — (0, +00) as the exponential of continuous piecewise affine
maps with slope & on the interval /i, with ¢, — 0 and I a sequence of adjacent intervals of
increasing length. It is possible to do it in such a way that % is positive, increasing, continuous,
with slow growth, and h g?l:)’)t) is bounded by exp(ext). Moreover, ¢ and I can be chosen in
order to ensure that

PE(s) = h(d® (0, yo)e "7
yel
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has exponent §(g) but now diverges at s = §(g).
Define for all x € M and s > 8(g) a probability measure

1
Vi = = h(d*¥(0.y0))e " T,
Pr (s) et

on M = M U M, where A, denotes the Dirac mass at the point x. Choose a decreasing
sequence sy — 8(g) such that v, converges to a probability measure v5 on M. Choose

—_~ Sk -
for all x € M a subsequence sg; of sx such that vy 4
By construction, as P(8(g)) diverges, all these measures are equivalent finite measures
supported on Ar C dM, the measure vj is a probability measure, and this family (v§), 57

satisfies two crucial properties for all x, y € M, almost all £e 9M and all yel:

converges to a measure v on M.

dvf
(14) ToH(®) = exp (<5(e) Be(r. ) and  yarf = v
Yy

A family of measures satisfying (14) is a I'-invariant §-conformal density on the boundary.
From these properties follows the Sullivan’s Shadow Lemma.

PROPOSITION 3.15 ([49]). — Let (v¥) be a T-invariant 8-conformal density on Ar. Then
for all R > 0 large enough, there exists a constant ¢ = c(R) > 0 such that

~ exp (-8(2)d4% (0, 70) = v (Co(B(yo., R)) < cexp(~5(¢)d* (0.y0)).

A Bowen-Margulis measure on S€ M is a measure obtained from such a family (v§ ) by the
following formula on S& M, with v = (H&)™1(v&, v‘i, t)

(15)  dm¥y(v) = exp (S(g) $§i (0, 7 (v)) + 8(2) B« (o, n(v))) dvg (v5)dv§ (v¥)dt.

This formula being I'-invariant, it induces on the quotient a Bowen-Margulis measure m&,,
on S¢M.

It is well known (see the above references, or Roblin [46] for the most general version)
that P§ diverges at s = §(g) iff the Bowen-Margulis measure is ergodic and conservative,
and in this case, the family of measures (v§) is in fact unique. In particular, when this
measure mé,, is finite, it is ergodic and conservative and Pl‘g diverges at 5(g).

Otal-Peigné proved the following result, due to Sullivan in the case of geometrically finite
hyperbolic manifolds.

THEOREM 3.16 ([51], [36]). — Let (M, g) be a manifold with pinched negative curvature and
bounded derivatives of the curvature. Then

8(g) = hiop(g)

is the topological entropy of (g"). Moreover, when m%, is finite and normalized into a probability

g
measure, it is the unique measure maximizing entropy in the sense that hgg( IIngII ,8) = hiop(8).

When m$,, is infinite, there is no probability measure maximizing entropy.

It follows from [38, Prop. 3.16] and [36] that, finite or not, the Bowen-Margulis measure
satisfies the following equality.
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ProrosSITION 3.17. — Let (M, g) be a negatively curved manifold with pinched negative
curvature and bounded derivatives of the curvature. Let miy, be a Bowen-Margulis measure.
Then

(16) hioc (M. 8) = 8(8).

Moreover, when m&,, is finite, it satisfies
(17) loc(mBM’ g) = S(g) = hKS(mBM» g)

Proof. — The first equality is a computation done in [38, Prop. 3.16], the second is one of
the main results of [36]. O

This equality suggests that we could be able to prove a variational principle for infinite
measures, using local entropies instead of Kolmogorov-Sinai entropies. We postpone this
study to a further paper.

COROLLARY 3.18. — Let (M, g;), i = 1,2 be two admissible Riemannian metrics on M
whose curvature is negatively pinched and has bounded derivatives. Assume that S82M has a

finite Bowen-Margulis measure mix, and let p%3, be its geodesic current. Then

hiop(g2) = 8(g2) = hiy.(m§3y. g2) = Iuglzvl (82.81) % hﬂ,c(mi‘;%&,gl)
= IMgz (g2,81) % hmp(gl)-
BM

Proof. — Let us first note that by Theorem 4.2, the measure m®%, is a Gibbs measure.

HBMm
Moreover, [38, Thm. 1.3] ensures that the Gibbs measure associated to a given potential,

when finite, is the unique equilibrium measure of this potential. Therefore A, (mg ‘, =

hgs (mLng ), and the variational principle ensures that hgg (mug2 ) < hiop(g1), Wthh gives
BM

the last inequality. O

In the compact case, the inequality hiop(g2) < Iuﬁ%w (82.81) X hiop(g1) is due to
Knieper [32]. Katok had a similar weaker inequality [29], proving that

huop(2) < / 10181 dmE, x heop(g1)-
S22 M

Our inequality above is valid on any manifold, compact or not, with finite Bowen-Margulis
measure. It follows from Lemma 2.5 that it implies Katok’s inequality. Let us mention
however that it is this weaker version which is really used in the proof of our main theorem
of differentiability of entropy.

Let us now study the equality case in Corollary 3.18, as was done in Theorem 1.2 of [32].

THEOREM 3.19. — Let (M, g;),i = 1,2 be two admissible Riemannian metrics on M whose
curvature is negatively pinched and has bounded derivatives. Assume that the geodesic flow
on S82M has a finite Bowen-Margulis measure mia, and

hiop(g2) = Iugil(gz,gl).htop(gl)
Then we have the following facts.

. . . gl
1. The geodesic flow on S8 M also has a finite Bowen-Margulis measure my,,.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



30 B. SCHAPIRA AND S. TAPIE

2. The geodesic currents p§\, and puia, associated to the Bowen-Margulis measures of g
and g, coincide up to normalization. In particular the Patterson-Sullivan densities of g,
and g, are equivalent.

3. Forallv € S8 M with vj‘;‘ € Ar, there exists a unique real number t(v) such that

dl) !
v
dU 2

J'[g;(v)olllgl_)gZ(v)

) =1.

Moreover, the map F81782 defined on S8! Mby
F&1782(y) = g;(v) o WE1782(y)

is T-invariant and induces a Holder-continuous Morse correspondance between the non-
wandering sets F81782 : Q81 — 82,

4. The map F81782 conjugates the flows on the non-wandering sets of S8' M and S82 M up

to a global time scaling by thzg;; Sforallv e Q8" andallt € R,

g;’lop(gZ)t o FE1782(y) = FEI782 gilmp(gl)t(v).
Proof. — Assume that the geodesic flow on $82 M has finite Bowen-Margulis measure m$3,,
with geodesic current g3,

Since m%3 is a Gibbs measure with maximal entropy, we have hop(g2) = hgs(m§3,) =

L (m%3,). Since by Theorem 4.2 the measure m*%, is also a Gibbs measure, we have

loc K

&1 _ 3, &1
hKS m g2 - thC m g2 .
HBm HBM

Therefore, if hiop(g2) = I/Lf;%/[ (82, 81) - hiop(g1), it follows from Theorem 3.11 that

h

hks (mi}ez ) = htop(gl)-

BM

Therefore, Theorem 3.16 by Otal and Peigné implies that mi %, (which is a finite measure by
BM
Corollary 2.15) is, up to normalization, the unique Bowen-Margulis probability measure méh,

of g1. This shows Item 1.
It implies that there exists A > 0 such that
M = A

By definition of these currents, see (15), it follows immediately that the Patterson-Sullivan

measure v5' is absolutely continuous with respect to v52. This shows Item 2. Moreover, (15)
also furnishes an explicit expression of the Radon-Nikodym derivative of v§' w.r.t. v§2, for
any two points x, y € M, which is therefore not only defined almost surely but is a positive

Holder continuous function defined everywhere on Ar.

The rest of the proof is inspired from [32, Prop. 3.8 p. 52], with the adaptations needed
due to the non-compactness of M.
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Let v € S€1 M. Since the Patterson-Sullivan measure for g2 18 §(g2)-conformal (see (14)),
forallv € S81 M and all t € R, we have

81 g1
dl)m, (vgl) _ e—&(gz)t dv?TU (vgl
dv®2 +/ dv®2 + /7t
ngéo\l!gl_>g2(v) n\Ilgl_’gZ(v)

In particular, for all v € S81 M such that vy = vi‘ € Ar there exists a unique 7(v) such

that ¢
dvzy
) @) =1
Vﬂ T(v) we1—82
g, © )
It follows from the I'-invariance of v81, v82 and W&1 782 that the map v — t(v) is also
I'-invariant. Therefore the map

F81782(y) = gé(v) o WEI82(y)

is well defined for all v € S&' M with vi‘ € Ar, is Holder continuous and is I'-invariant.
Since any non-wandering vector v € Q&1 is the image of a vector v € S8 M with vf_‘ € Ar
by the universal covering map, this shows Item 3.

The end of the proof follows [32, p. 53]. For allt € R and all v € S4! M with &= vil,

dvét, dv®! ,
S(g1)t gy TF 81782 (g1v)
St — &) =

22 2
dvyy dvanl_mz(v)

&) = 65(82)5,

where s € R is such that
F817>82 (giv) = g; o F81782(y),

Therefore s = gg;;t and we get for all 7 € R and all v € S8 M with v¥ e Ar

3 o FE1782 (v) = P82 (g]E0),
This concludes the proof of Theorem 3.19. O

Corollary 1.6 is an immediate consequence of the above few lines.

4. Gibbs measures

This section, particularly Theorem 4.2, is crucial in the proof of Corollary 3.18, and
therefore in our approach of Theorem 1.9.

Theorem 4.2 is new on noncompact manifolds, the explicit change of potential being new
even on compact manifolds. Corollary 4.4 is new even on compact manifolds.

Gibbs measures are, for a hyperbolic dynamical system, a family of measures with strong
stochastic properties, each one associated to a weight, i.e., a Holder continuous potential,
describing somehow that all possible dynamical behaviors typically happen w.r.t one of these
measures. For the geodesic flow on the unit tangent bundle of a compact manifold, their
geometric construction, adapted from the Patterson-Sullivan construction described in the
above section, has been done by Ledrappier in [33]. He proved there, on compact manifolds,
that being a Gibbs measure does not depend on the metric. In other words, if g; and g, are
negatively curved metrics on M, an invariant measure m§' on S M is a Gibbs measure iff
the measure m$? on S&2 M is also a Gibbs measure. However, his proof strongly relies on the
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compactness of M. Our goal in this section is to prove this result differently on noncompact
manifolds.

4.1. Definitions

We refer to [38] for details on all notions presented here. Let (M, g) be a negatively curved
manifold, with pinched negative curvatures and bounded derivatives of the curvature. Let
F : S8 M — R be a Holder continuous map. The pressure of F is the quantity

(18) P8(F)= sup (hKS(m,g)+/ de),
me M (g) SEM

the supremum being considered over all invariant probability measures m € M'(g) such
that [ max(—F, 0) dm < oo. An invariant probability measure m is an equilibrium state for F
if it realizes the above supremum.

Assume that P& (F) is finite. An invariant measure m under the geodesic flow (g?) satisfies
the Gibbs property for the potential F if for all compact sets K C S& M and ¢ > 0 there exists
a constant C(K, ) > 0 such that for allv € K and T > 0 with g7v € K, we have

(19)

T
CK.e) P (/0 F(gt”)df—TPg(F)) < m (B (v, T.¢))

T
(20) < C(K,¢e)exp (/ F(gtv)dt—TPg(F)) .
0

A variant of the Patterson-Sullivan construction presented in Subsection 3.4 provides a
measure m g which satisfies (19) see [38, Prop. 3.16]. Moreover, when finite and normalized
into a probability measure, it is the unique equilibrium state, i.e., the unique measure realizing
the supremum in (18) (see [38, Thm. 6.1]). When this measure mr is infinite, there is no
equilibrium state for F. Let us summarize what is useful for the present work in the following
proposition.

PROPOSITION 4.1. — Let (M, g) be a negatively curved manifold with pinched negative
curvature and bounded derivatives of the curvature. Let F : S8 M — R be a Holder potential.
If the measure mg is finite and normalized, then

PE(my) =th(mF,g>+/ Fdmp =h£,c(mF,g)+/ Fdmp.
SeM SEM

4.2. Being a Gibbs measure does not depend on the metric

THEOREM 4.2. — Let (M, g;) be two admissible metrics with pinched negative curvature and
bounded first derivatives of the curvature on M. Let F : S81 M — R be a Hélder map, and
m&! the associated Gibbs measure. We assume that m%' is ergodic and conservative. Let 1%} be
the associated current on 3*M. Let mi?gl be the g,-invariant measure associated to the same

F
current.

Then mi%gl is also ergodic and conservative, and satisfies the Gibbs property (19) for the

F
Holder potential
G = (F _ Pgl(F)) o 82781 832-’81'
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Moreover, P82(G) = 0. In other words, for all compact subsets K C S82M and ¢ > 0 there
exists C > 0 such that for allw € K and S > 0 with g5w € K, we have

1

c

If we assume moreover that the measure m%! is finite, and is therefore the equilibrium measure

associated to F, then m®%, /|m®%, || is the equilibrium measure associated to G.
HFE HE

e/ds‘ G(g5w)ds < mii'l (BEZ(w’ S,é‘)) < Cef(;9 G(g%w)ds'
F

REMARK 4.3. — Reversing the role of g and g,, we observe that the same result holds
with the potential H = ((F — P81 (F)) x (£%'782)71) o (¥&17¢2)~! Therefore, they must
be cohomologous.

Proof. — Conservativity and ergodicity depend only on the current at infinity and not on
the (admissible) metric, as said in Proposition 2.3.

Gibbs property for the potential G follows from Corollary 3.6. Let us explain it more in
details. We stated Theorem 4.2 in the most natural way, starting from g; and going to g»,
but in view of all the statements proved above that we shall use, we will reverse the role
of g1 and g5, F and G, in the proof below. Assume that mng is a Gibbs measure w.r.t. the
potential G on S82M, let u = uf;z be its current at infinity, and let us prove that m§! is a
Gibbs measure w.r.t. the potential F = (G — P82(G)) o W&1782 x £&1782

First choose some compact set K& C S8 M and some ¢ > 0. Letv € K8t and T > 0
such that g7v € K&!. Define a compact set K82 as the C-neighborhood of W&1>82(K81) U
(W&2781)"1 K&1 where C is given by Corollary 3.6.

We will use Corollary 3.6 and first part of Proposition 2.13, and the fact that m$? =
\p§1—>82(881%g2 X mﬁl)

As £817¥82 is continuous, it is uniformly continuous on K&! so that for all v € K&!
and u € B81(v,g), E81782(y) = eFc(K1.8) £81782(y) We deduce that

e KD g g g1 (&

Mmu (v (B#'(v,T,¢))) <mi! (B (v, T, ¢))
ec(Kgl )

= g

Now, using Corollary 3.6, with w = W&1>82y, and § = JB?, (r(v), m(gTv)), we get
+

m82 (W 782 (BE (v, T, ¢))).

e—c(Kgl ,€)

—8g]—>g2(v) mﬁz(Bgz(w S +C,C,e)) < mﬁ‘ (B8 (v, T,¢)

ec(Kgl ,€)
< —FSEn
85’1 82 (U)
S+C

As m§? is a Gibbs measure, and w, gg w, but also g5 Cw and g5~ w belong to K82, there
exists a constant C(G, K52, ¢') coming from the Gibbs property, such that

m&2(B&2(w, S, ¢)).

e—c(K816) L [5EC(G-P#2(G))(g5w) ds

EEITE(v) C(G,K#2,¢)

<mf (B#' (v, T,¢))

ec(Kgl ,€) < . S
= WC (G, K, ¢)elo (G-PL2(@)(g3w)ds
v
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As G is (Holder) continuous, it is bounded on K$2, so that the integral
S+C
[ G- re)@ s
-C

is, up to a constant ¢, uniformly close to fOS (G — P%2(G))(g5w) ds. The next ingredient is
Proposition 2.13, which gives

_ g _
e c(K¥81¢) c

e
8g1—>g2(v) C(G, ng,g’)

elo Fsiwdt < a1 (pe1(y, 7, g))
ec(Kgl ,€)

<

- 8g1—>g2 (U)

with F = (G — P82(G))o w8182 x £817782 Ttisexactly the Gibbs property for m$,! w.r.t. F.

It remains to show that P&1(F) = 0. To simplify notations, let us assume that P82(G) = 0.
Let p be any geodesic current on 9% M . By definition,

Pg‘(F)=Sup(th(m§‘,g1)+/ def;f‘),
o S8 M

C(G,ng,s/)efoT F(gfw)dt’

the supremum being taken over all currents p such that m5' is an invariant probability

measure. The change of mass and change of entropy (Corollary 2.15 and Theorem 3.11) give
PRE) = sup iz, z0) (2 Im? g0 + [ Gamge flmz ) <o
o
The same computations with p = yu = ,ung give P81(F) = 0. O

4.3. Length spectrum and change of metrics

Let g1 and g, be two quasi-isometric negatively curved metrics. There is a particular case
where the above results have an easy but striking illustration.

COROLLARY 4.4. — Let (M, gi)i=1,2 be two quasi-isometric complete negatively curved
metrics on the same connected manifold M. Assume that the Bowen-Margulis measure
of g1 is ergodic and conservative, and let 1§\, be the associated geodesic current. Then the

measure m%%, is also ergodic and conservative. It is a Gibbs measure associated with the

HBM

potential G = —hyop(g1) E527 8L
Moreover, for all primitive hyperbolic elements y € T, if w,, is a periodic vector of S82M
associated to y, for all ¢ > 0 there exists C > 1 such that for all T > 0, we have
1 221 (y) 51y

—h yga 1o’ —h T 726
Ee top@DT gz () < m#2, (Bgz(wy, T, 8)) < Ce wop(@DT 3250,y
KM

Proof. — It is an immediate application of Theorem 4.2 with F = 0. First write 7 as
T = nl82(y) + r, with 0 < r < £52(y). The only thing to notice is that
£82(y)
/ 8g2—>g1 (ggwy) ds = egz(y) x 82781 ()/)
0

so that

£81(y)
£82(y)

T
—f hiop(g1) E82 78 (g5wy) ds = —hiop(g1) X T % + constant,
0
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the error term in the above inequality being smaller than /op(g1)€%2 ()| €52 74! || oo O

5. Convergence of geodesics, Busemann functions and invariant measures

In this section, we study the continuity of geodesics, Busemann functions, and Bowen-
Margulis measures under a Lipschitz perturbation of the metric with uniform negative curva-
tures.

Let (gs)—1<e<1 be a family of metrics on M with sectional curvatures satisfying K e < —a?,
such that for all e > 0, at all x € ]\7, e fgo < ge < efgo.

We first show that the g.-geodesic between two points at infinity converge uniformly in the
Hausdorff topology of M to the go-geodesic with same extremities, and that the Busemann
functions of g, converge uniformly on compact sets to the Busemann functions of gg.

When the variation of metrics is continuous in C'-topology, this also implies that the
Morse-correspondances ®8078¢ and W&0~8¢ converge to the identity uniformly on compact
sets in the Oo-topology of S8 M, and that the geodesic stretch £%°7#¢ converges to 1.

Eventually, we show that under suitable assumptions, the Bowen-Margulis measures vary
continuously in the weak-* topology.

5.1. Convergence of geodesics and Busemann functions

The following lemma is a classical and very useful consequence of the uniform upper
bound on the curvature.

LEmMA 5.1. — Let a > 0 and (]T/f g) be a complete simply connected manifold with
sectional curvatures satisfying Ky < —a>.

1. ForallC > 0,all§ € Bﬁ, X,y € M with dé(x,y) < C,andt > C,if x; = yxg(t), we
have
B (x. ) = (d* (x.x;) —d* (y.x,)| < 2Ce™™.

2. Forall T,K,aa > 0, forall R > Ry =T — éln ﬁ, if (y1(t))zer and (y2(t))ser are
g-geodesics with
df(y1(=R),y2(=R)) < K and d*(y1(R),y2(R)) < K,
then for allt € [-T, T],
d¥(y1(1),72) <.

Proof. — We will omit the subscript g in the proof. Let us first prove 1.

Assume d(x, y) < C. We can also assume that Bg(x, y) > 0. Denote by x’ the unique
point on [x, §) such that (Bg(x’, y) = 0. By convexity of the horoball, d(x,x’) < C and
d(x',y) < C.Let x; (resp. ys) be the points on [x’, ) (resp. [y, §)) at distance s of x’ (resp. y).
It follows from [28] that for all s > C,

d(xs,ys) < d(X',y)e_‘” < Ce ™%,
Observe also that e%g(x,y) — (@8 (x.x5) —dE (. ys)| = | Be(xs.ys)| < d(xs.ys), 5O
that f/}g(x, y)—(d8(x,x5) —d8(y,xs5))| <2d(x5,ys) <2Ce™%5.
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To prove 2, denote by x; the point of [y1(—R), y1(R)] at distance s from y;(—R), ys
the point of [y1(—R), y2(R)] at distance s from y;(—R) and distance say d; from y,(R)
and z; the point of [y2(—R),y2(R)] at distance ds; from p,(R). Observe immediately
that |dy — 2R + 5| < K.

By the above, we have d (x5, ys5) < d(x2Rr, y2r)e~%*. But elementary considerations in the
triangle (x2r, y2R, ¥2(R)) lead to

d(x2r. y2r) = d(y1(R), y2r) < d(y1(R). y2(R)) + d(y2(R). y2r) = 2K.

Thus d(xs, ys) <2Ke™5,
Similarly we get d(ys, zs) < 2Ke™%4s < 2KeKe=2@R=9) We deduce that

d(xs,y2) < d(x5,25) < 2KeK (795 4 ¢70@R=9),

Now, choose Ry = T—%ln & . Fort € [-T,T], wehave y;(t) = xgr4sand R+t > Ro—T

4KeK "
and 2R — (R +1t) > Ry — T, so that
d(y1(t), y2) < d(y1(t), zr41) < 4KeKe™ @R < o, O
y1(—=R) Y1(R)
Xs
Vs
ds

Zs

y2(—R) y2(R)

F1GURE 5. Proof of Lemma 5.1

Let us now show that the g.-geodesic segments converge to the go-geodesic segments in
the Hausdorff topology of M.

PROPOSITION 5.2. — Let go be a complete metric on M with Kg, < 0. Forall0 < & < 1
small enough let g, be a complete metric on M such that at all x € M, e fgo < ge < efgy.

Then for all x,y € M, any minimizing ge-geodesic y. joining x to y is contained in the
D¢-neighborhood of the go-geodesic [x, y]o from x to y, with Dy < \/ed8°(x, y).

Proof. — Let go and g, as above, and x, y € M.Set Ly = d®(x,y)and L, = d&:(x, y).
Let yo : [0, Lo] = M and y, : [0, L] — M be minimizing geodesics from x to y respectively
for go and g, parametrized with unit speed. Note that y, is unique. Let [ € [0, L.] be such
that

d®(ys(1).[x, ylo) = max d*(ye(r),[x, ylo) = Ds.
tel0,L¢]

sbe

We call z = y.(I) € M. Consider the go-geodesic triangle with vertices x, y,z. Set
Iy =d®(x,z)and I, = d8°(z, ).
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We have
l Lg
@1 I < /0 ey, dt and L < /I 76(0) ], dt.

Since e™*go < gs < €°go, we have [s(1)],, < ¢*/2 foralls € [0, L] and |o(t)],, < e*/?
forallz € [0, Lo]. Therefore, by equation (21),

L L,
L, < / 7o), dt < L and L+ < / lve®lg, dt <e°L.
0 0

Since K, < 0, the distance d8° satisfies CAT (0)-triangle comparison property (cf [9]
pl61): D, is less than the height D from Z of the comparison triangle (%, 7,Z) in the
Euclidean plane with side lengths d®"(X, ) = Lg, d**°/(x,Z) = [; and d®"\(¥,%) = I,.
Moreover, for all such Euclidean triangles with [, + I, < e®Ly, the height D is maximal if

andonlyifl/y = [, = ESZLO. Therefore,

2672 2
pr<pr<to_Lo <elLj
& - - 4 4 =
as soon as e?® — 1 < 4g. It proves Dy < /ed€0(x, y) and ends the proof of Proposition 5.2.

O

Proposition 5.2 together with Morse-Klingenberg Lemma and Lemma 5.1 imply that
when the curvatures have a uniform negative upper bound, the complete geodesics on M
converge uniformly for the go-Hausdorff topology under a variation of the metric. Let
a > 0 be fixed.

PROPOSITION 5.3. — Let (g:)—1<e<1 be a family of metrics on M with sectional curvatures
satisfying Kq, < —a?, such that for all e € (=1, 1), e $go < g < e°go on each tangent space
ToM, x € M. Then there exists o (—1,1) — [0, +00), with limg—q a(g) = 0, such that for
alle € (—1,1) and all (n,§) € M, the ge-geodesic with extremities n and & is contained in

the a(e)-neighborhood of the go-geodesic with extremities n and &.

Proof. — First, recall (see Section 2.1) that the geodesics for go and g, are at uniform
bounded distance C2(go, g:) < C2(go, g1). Let yg be the go-geodesic from £ to . Choose its
origin Yo (0) arbitrarily. For any large p > 0, we have d(yo(£p), y.) < C2(go, g1). Consider
the go-geodesic segment y; joining the nearest point to yo(p) on y, with the nearest point
to yo(—p) on y.. This geodesic segment has gg-length equal to 2R = 2p £+ 2C,(go, 1)
Choose its origin in such a way that d80(yo(£R), y1(£R)) < 2C2(go, g1)-

For all @ > 0, Lemma 5.1 applied with K = 2C5(go, g1), /2 and T = 1 gives some Ry > 0
such that when R > Ry, forallt € [—1, 1], d8°(y1(2), yo(t)) < /2.

By Proposition 5.2, d8°(y1(0), y¢)) < 2R./e.
Therefore,

d® (y0(0), ve) < d®°(y0(0), ¥1(0)) + d¥°(y1(0), 7¢)) < /2 + 2R+/e.

Choose R > Rp and ¢ > 0 such that 2Rg+/¢ < /2 to get d8°(y0(0),y:) < a. As the
origin on yy is arbitrary, the result follows. O
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Observe that, in the above proof, the dependence between « and ¢ can be made relatively
explicit. For K = C5(go,g1), T = 1 and &/2 in Lemma 5.1 we get
2

~ 16R2

2C>(go, 2C2(go,
Ry =1+ 2(g0. &1) In 2(g0. &1) and & — 2
a o
Moreover, our proof only uses Kz, < —a? < 0 and the fact that for all g, the g.-geodesic
between two points at infinity is unique. The negative lowerbound on the sectional curvatures
K,, does not need to be uniform.

PROPOSITION 5.4. — Let (g:)—1<e<1 be afamily of complete metrics on M with Kg, <—a?

such that for all e > 0, and all x € M, e gy < ge < e°go on the tangent space Ty M .
Then the map B%° : (x,y,£) 073‘?8 (x,y) converges to B%° as e — 0, uniformly on
compact sets ofﬁx M x M.

Proof. — Any compact set K C M x M x 9M is contained in some (noncompact) set of
the form He = {(x,y.§) € M x M x dM:;d®(x,y) < C}, for some C > 0. It is enough to
show that B%* — B%° as ¢ — 0, uniformly on each Hc.

Let C > 0 be fixed. Forall ¢ € (—1,1) and all (x, y,£§) € Hc,

d&e(x,y) <2d%°(x,y) <2C.

Let n > 0 be fixed. Choose x; at distance ¢ from x = xo on the go-geodesic (x, £), and let
v; be the point on the gg-geodesic (y, £) such that jﬁ?o (x,y) = 0. Let x¢ be the projection
of x; on the g.-geodesic from x to &. Proposition 5.3 ensures that d %2 (x,, x7) < a(¢). Let us
write

BE (. 9) = BE )| = [ BE (. 9) = (v, x) + A5 (v, x0)
1% (x, ) — d%e (3.x5) — d (x. x0) + d% (y.x1)]
+ 1d% (x,x;) — d®0(x, x;) —d®(y, x;) + d5°(y, x;)]

+ | BE () = d (v, x) + A0y x0)

For ¢t > 2C, by Lemma 5.1, the last term on the right hand side is bounded from the
above by 4Ce . For t > 2Ce® + w(e), we also have d%¢(x,xf) > 2C so that again by
Lemma 5.1, the first term is bounded from the above by 4Ce 94" (¥:X1) < 4Ce%(e)o—at/2 By
triangular inequality, the second term is bounded from the above by 2«/(e). The inequality
e gy < ge < e°gp allows to bound the third term by 2(e® — 1)(t + C).

At last, we get

BE(x.y) — B (x. y)| < 4Ce* e 4 2a(e) + 2(e — 1)(t + C) + 4Ce ™.

Let n > 0 be fixed. Choose first g¢ so that for ¢ < g¢, a(¢) < 1. Chose r > 2C large enough
to guarantee that the first and the last term are each bounded from the above by 1/4. Choose
g1 < go small enough to guarantee that for ¢ < 1, a(e) < n/4and 2(e®* — 1)(t + C) < n/4.
Thus, | BE° (x,y) — BE° (x, )| < 1. This gives the desired result. O

REMARK 5.5. — Even though this section is written in a Riemannian setting, all the
previous proofs apply verbatim to a family of distances (d¢)—1<¢<1 on X such that for all
¢ € (—1, 1), the metric space (X, d;) is CAT(—1) and e *dy < d. < €°d.
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5.2. Higher regularity, Morse correspondances and geodesic stretch

In this section, we consider metrics g — go in the C'-topology. To emphasize the
necessity of this assumption, observe that g, — go in the C°-topology does not imply the
convergence of the curvatures nor the convergence of the geodesic flow.

In particular, one can “add mushrooms” on a hyperbolic manifold, and make the mush-
rooms as small as we want, and build a sequence of manifolds with many points of nonneg-
ative curvature converging to a hyperbolic manifold. The geodesic flow of such g, will not
converge in general to the geodesic flow of g.

In view of its importance in the sequel, recall the convergence that we shall use.

DEFINITION 5.6. — A family (g:)—1<e<1 0of complete Riemannian metrics on M (or M)
converges in the C'-topology, uniformly on compact sets, to go if

1. (ge) converges to go uniformly on compact sets, i.e., for all compact sets K C ™,

lim sup |g-(v, v) — go(v,v)| = 0;

e>0yek

2. the first derivatives of g. also converge uniformly on compact sets to those of go.

By [22, Thm. 2.79], it implies for all fixed T > 0 the uniform convergence on compact sets
of the geodesic flows v — gsT v. As a consequence, we get the following result.

THEOREM 5.7. — Let (g¢)—1<e<1 be a family of metrics on M with sectional curvatures
satisfying Ko, < —a?, such that for all ¢ € (—1,1), at all x € M, e gy < g < e°gy,
and go — go in the et topology, uniformly on compact sets.

Let ®808¢ qnd W8078¢ be the Morse correspondances between S8 M and S8¢ M defined in
Section 2.4. Then ®80~8¢ — 1d and W&o~>8 — Id uniformly on all compact sets K C SsoM
in the uniform topology of C°(K, TM).

Proof. — Let K be af fixed compact set of S 2] and v € K, with v&° the endpoints
of its gg-geodesic in dM . Denote by (yo(t)):er the parametrization of this geodesic such
that y)(0) = v. Let y, be the parametrization of the g.-geodesic with the same endpoints,
with v, = y.(0) = PE08= ().

By Proposition 5.4 and definitions from Section 2.4, uniform convergence of W80~ on
compact sets will follow from the convergence of B0~ So let us prove the latter.

We will use the distance d(w, w') = sup,[o,1) d5°(m(ghw. ghw') on TM and show that
for all @ > 0, if ¢ is small enough, for all v € K and r € [0, 1], d8°(7(gfv), w(ghve)) < .

Choose some « > 0. By Propositions 5.3 and 5.4, for ¢ small enough, uniformly inv € K,
and ¢t € [—1, 1], we know that y, is in the «/2-neighborhood of yy, and y.(¢) is uniformly
close to yo(t). It implies that v, = p/(0) and vo = ¥}(0) are uniformly close. As g, — go
in the Gl-topology, uniformly on compact sets, it implies that for ¢ small enough, for all
t € [-1,1], n(gk(ve)) and 7 (gh(ve)) will stay a/2-close. In particular, 7 (g§(ve)) will stay
a-close from yy(¢), for ¢ € [—1, 1]. That is the desired convergence. O

REMARK 5.8. — Adapting Theorem 5.7 and the definition of the geodesic stretch in the
setting of CAT(—1) spaces would require a careful definition of the tangent bundle on such
spaces with its topology, which we will not do here.
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Let us conclude this section by a key technical ingredient.

THEOREM 5.9. — Let (g¢)—1<e<1 be a family of metrics on M with sectional curvatures
satisfying Ky, < —a?, such that for all e € (—1,1), atall x € M, e °gy < ge < €°go,
and go — go in the Gl—topology, uniformly on compact sets.

Then uniformly on compact sets of S 20 M, we have

limsup £%°7°8¢ (v) < 1.
e—0

Moreover, for any geodesic current w such that m%? is finite, we have

EEOTEE 1m0 — almost surely.

Proof. — Observe that Lemma 2.5 gives the obvious upper bound lim sup,_,, £4°7%¢ < 1,
uniformly on &0 M. For the same reason, lim sup,_,, 57 %° < 1, uniformly on S& M. By
Corollary 2.15, one easily deduces that

[EA
(22) m — 1 when ¢—0.
mu
Combined with the fact that lim sup,_,, €5°7%¢ < 1, this implies in turn that 5078 — 1
g0
my, -almost surely.

5.3. Narrow convergence of measures associated to a fixed geodesic current

Recall that if p is a I'-invariant geodesic current and g an admissible metric on M, we
denote by m¥, the locally finite Radon measure on S€ M whose lift to S M is given by

dmé (v) = (H®)"(u x dt).

The results of the previous paragraph imply the following fact.

PROPOSITION 5.10. — Let (ge)—1<e<1 be a family of metrics on M whose sectional curva-
tures satisfy Ky, < —a?, and such that for all ¢ € (—1,1), at all x € M, e fgo < g < egy,
and g. — go in the Ol-lopology, uniformly on compact sets. Let u be a T'-invariant geodesic
current such that |m$?|| < oo. Then the measures m$; converge to m§° in the dual of bounded

continuous maps on TM (i.e., in the narrow topology ).

Proof. — By definition, for all ¢ € (=1, 1) we have mff = (W80™8), (EE078 x miP).
Therefore the weak-* convergence (in the dual of continuous compactly supported functions)
is an immediate consequence of Theorem 5.7 and the dominated convergence theorem.

We also showed that [|m$ || — [[m£°|, see equation (22). It is classical that it implies the
convergence of the above measures in the dual of bounded continuous functions. The result
follows. U
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5.4. Weak convergence of Bowen-Margulis measures

We now show that, provided they are unique, the Bowen-Margulis measures are contin-
uous in the weak-* topology under Lipschitz deformations of the metric.

PROPOSITION 5.11. — Let (ge)—1<e<1 be afamily of metrics on M with sectional curvatures
satisfying Kg, < —a?, such that (T, go) is divergent and for all ¢, at all x € M, e fgo < g <e€°gp.

Then for all x € M, any Patterson-Sullivan measure for g, normalized at o converges:
limg_o v$® = v&° in the weak-* topology, uniformly in x on compact sets ofﬁ.

Proof. — Foralle € (—1,1) \ {0}, let v5¢ be any Patterson-Sullivan measure on Ar,
normalized into a probability measure. (Observe that such a measure is not necessarily
unique for & # 0, because only (I, go) is assumed to be divergent.) Let v, = lim,; o vg “ be
any of its weak limits. Define for all x € M a measure Uy on Ar by

DVx (o) = o3 BP0,

dv,
It is a I'-invariant, §(go)-conformal family of measures as defined in (14), normalized at o.
By uniqueness of such a family, it coincides with (v§°) .77 O

Recall that %, denotes the g-Bowen-Margulis geodesic current on PM given by
dyipn(1.§) = dvE (dvE (§) = ¢ T OIECDT TN 4u5 (dv 6).

where x is any point on the g-geodesic with endpoints (7, ). We get the immediate corollary
of Propositions 5.4 and 5.11.

COROLLARY 5.12. — Under the same assumptions, in the weak-* topology of M,
lim, ¢ /‘L%;\/[ = /Lg(l)v[
REMARK 5.13. — Once again, Proposition 5.11 and Corollary 5.12 are still valid if we

consider a family of I"-invariant distances (dg)ee(—1,1) On M such that (1\7 ,dg)isa CAT(—1)
and e ®dy < d, < efdy foralle € (—1,1).

We end this section by the convergence of Bowen-Margulis measures.

THEOREM 5.14 (Convergence of Bowen-Margulis measures). — Let (g¢)—1<e<1 be a
family of metrics on M with sectional curvatures satisfying Kg, < —a?, such that for all
ee (—=1L1),atalx € M, e gy < go < e°go and gs — go in the C'-topology, uniformly
on compact sets. Assume that T is divergent for all metrics g.. Then in the weak-* topology
of TM,

g0

lim m%, = m%2,.
i g BM

Proof. — Let ¢ be a continuous map with compact support on 7M. Write the difference

dm®s, — dm®%, as
Jrm @ e, Jrm @ uso,

™ BM ™ HBM ™ HBM ™ HeMm

By Corollary 5.12, the second difference converges to 0.
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Proposition 2.13 allows to rewrite the first difference as
f wdmii,g —/ (pdmi%s = / ((p o P808e L8078 —(/)) dmi‘f% .
™ BM ™ BM TM BM

By Corollary 5.12, mi%g converges weakly to m*%, in the dual of continuous functions

. BM HBM
with compact support.

By Theorem 5.7, as lim sup,_,, £5°7%¢ < 1, if ¢ > 0, we have
lim sup ¢ o W8O8 5 £EOTE _ ) <,
e—>0
As the support of these maps is included in a fixed compact set, we deduce that
lim sup/ (¢ o Y808 5 £80Es _ (ﬂ) dmg%g <0.
£—0 ™ HBM

Now, rewrite this first difference as

- (/ <pdmi‘§,,E —/ godmi’i,g ) = _/ (g o WE=80 x LE=TE0 _ o)) dmifgg ‘
™ BM ™ BM ™ BM

Observe first that, by the same arguments used in the proof of equation (22), the ratios of
Im*G, I
masses —-EM_ g0 to 1 when & — 0.
”mﬂﬁ‘fn I
For the same reason as above, lim sup,_,, £%¢7%° < 1, so that for ¢ > 0, by Theorem 5.7,

uniformly on 7M , the limsup of ¢ o w880 x £8780 _ o is nonpositive. By convergence

of the ratio of masses mentioned above, and by convergence of miogg to m®%, , its integral

80 »
BM MBMm
also has a nonpositive limsup, and the sign minus in the above expression gives
T 8¢ 80
lim inf edm®%, — edm®S, > 0.
=0 Jrpm HBM ™ HBM

The result follows. O

6. Differentiability of the metric and topological entropies

In this section, we show differentiability of topological and measure theoretic entropies
at ¢ = 0, along a variation (g:)ee(—1,1) Of metrics of a negatively curved Riemannian
manifold (M = M, /T, go). We will focus on two distinct situations.

First, let 1 be a T-invariant geodesic current on 82M, and forall & € (—1, 1), let méf be the
associated invariant measure for the geodesic flow (g?%) (see Section 2). Assume that the total
mass of m5° is finite. We will show that the measure theoretic entropy & > h(m¥’, g¢) is C',
with explicit derivatives.

We then focus on the topological entropy. Provided that Bowen-Margulis measures of
each geodesic flow (g’) are finite, and that their masses vary continuously, we show that the
topological entropy is also C', with a similar formula for its derivative. The proofs are similar
in both situations, and inspired from [31] and [52].

DEFINITION 6.1. — Let M be a (non-compact) manifold. We say that a family of complete
Riemannian metrics (g¢)se(—1,1) on M converges to g in the C'-uniform topology if:

1. go — go in the C* topology, uniformly on compact sets, as in Definition 5.6,
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2. there exists k > 0 such that for all e € (—1,1) and all v € TM with |v|z, <1,

gs(va U) f K

...
A (? variation of metric with compact support, or with non-compact support but
uniformly bounded first and second derivatives, is a typical example of such a uniformly et
family. If (g¢)ee(—1,1) is such a C'-uniform family of complete metrics on M, one immedi-
ately sees that there exists B = B(C;,¢) > Osuch thatatallx € M and foralle € (-1, 1),

—Be Be
e "780 =8 =¢e" "go,

which allows us to apply the results shown in the previous section.

6.1. Variation of metric entropy

This paragraph is devoted to the proof of the following result, which seems to us new even
in the compact case.

THEOREM 6.2. — Letb > a > 0, & > 0 and let (g5)ce(—1,1) be a family of complete metrics
onM =M /T whose curvatures and first derivatives of curvatures are uniformly bounded,
and moreover such that for all ¢ € (—1,1) and at all points, —=b*> < K,, < —a®. Assume
that g — go in the C-uniform topology. Let y be a T-invariant geodesic current on 92 M such
that m§® is finite.

Then the local entropy & +— hloc (mfF, ge) of the (gL)-invariant measures m5; is differentiable
at ¢ = 0 with derivative given by

d

d
_ F’ — s X _
de o loc(m ge) = loc(m go) [SgOM de o

dmiP (v)

lvl* ——zom
i

Proof. — Let y be a I'-invariant geodesic current on 92> M such that mi? is finite. It follows
from Proposition 2.15 that for all ¢ € (—1,1), the measures mif are ﬁmte. Moreover, by

Corollary 5.10, lim,—o m§* = m$° and limg o ok Tmse] gFH “ ‘ in the narrow topology.

By Theorem 3.7, if g; and g, are admissible metrics on M, we know that
(23) loc(mg ,82) = / EETE2(v)dm§? (v) x hloc(mf;l ,81).
S8 2 M

By Theorem 5.9, this implies that the local entropy hloc (m§F, g¢) converges to hloc (m8°, go)
when ¢ — 0. Moreover, (23) and Lemma 2.5 also imply that

r g 778 r g
o (m}?, g2) < /ngM lvllg, dmi?(v) X hy(m', g1).
Applying it with g1 = go and g, = g, first, and second with g; = g, and g, = g¢, we get
1

fsgoM ”U"gs dﬁﬁO (v)

hﬂc(mﬁ",go)< —1) hloe(m3e. ge) — hig (m30. go))

<ibeone ([ i dmg o -1).
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which yields to

[vl#0—|v]*€ ;- e
WL (m3° go)ngOM %dmi(’(v) < hlr:)c(mﬁ - 8e) _hlr;c(mio’gO)
o fsé’oM ||U||g£ dmio (v) - &

loc

<hr (mgo go) Mdmé’s(u)_
— "loc w SeAM e m

r

Lo (mFs . ge) ate = 0, and narrow

Now, dominated convergence theorem, continuity of ¢ — &
mse mgO .

convergence of —#%— towards —&-— give

i |l im0

d d
- WL (m8, g,) = —hY (m?o, / el & J77%0 (v).
de |,y loc(mu 8s) loc(mp, go) X scom de|,—o lvll my, (v)
This is the desired result. O

6.2. Variation of topological entropy

We now show differentiability of the topological entropy hop(gs) at € = 0. It is not a
corollary of Theorem 6.2 since we have to consider Bowen-Margulis geodesic currents pf
depending on the metric g.. However, the strategy of proof'is very similar, as by Theorem 5.14,
mysy — miay in the weak-* topology. The only missing ingredient is the convergence of
Bowen-Margulis measures in the dual of bounded continuous functions. It is therefore
required in the assumptions of Theorem 6.3. We refer to Section 7 for the study of the large
class of the so-called SPR manifolds, which will satisfy this assumption.

THEOREM 6.3. — Letb > a > 0, and let (8s)se(—1,1) be a family of complete metrics on M
such that

1. forall e € (—1,1) and at all point, —=b* < K,, < —a?;

2. g — go uniformly in the o topology as in Definition 6.1,

3. for all ¢ € (—1,1), the Bowen-Margulis measure m5y, of the geodesic flow (g%):er
on S8 M has finite mass;

4. the map & — |m%y,|| is continuous at & = 0.

Then the entropy & = hiop(gs) is C! at & = 0 with derivative given by

g0
jujee o)
0

il

d

de

d
hio = —hto —
oplee) = “hpteo) [

&= &=

Proof. — As the preceding one, our strategy of proof is inspired from [31] and [52].
Corollary 3.18 shows that if g; and g, are admissible metrics M with finite Bowen-Margulis
measures, then

dm§3,(v) dm83,(v)

huop(g2) < / gy DMy ey < [ ol 2By g,
S&2M S&2 M

ImEl ImEl
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where the last inequality follows from Lemma 2.5. Applying it to g, and go on both sides,
we get forall e € (—1,1),

I [o]£0—v|%e dmp,(v) hem(80) — o (20)
€ limgQl top\&e) — Ntopl&0
htop(go) X 0 (]ZI)VI =< .
fsgoM ”v”gs i
”mBM”
80 8e 8e
v[|F° — |v||®¢ dm v
Shtop(go)X/ Jvl [l B;\;I( )'
S8e M & ||m}3M||

The assumptions of the theorem are now exactly done to make the above integrals converge.
We deduce that topological entropy is differentiable at ¢ = 0, with

) [vI8s dim3, (). O
e=

d
h o =—h o N
0 t p(ge) t p(gO) X [SgOM de

4a
de

=

7. Entropy at infinity and Strongly Positively Recurrent groups

In this section, our goal is to propose a wide class of manifolds and metrics to which
Theorem 6.3 will apply. In view of this goal, proving differentiability of entropy, this section
is apparently technical. However, the definition of this class of manifolds, and the related
concepts studied here, is probably one of the main novelties in our paper. We refer to [3, 14,
55, 25] for further results on these manifolds.

We define the entropy at infinity §o(M, g) of a negatively curved manifold (M, g) (see
Definition 7.12), as the maximal exponential growth of the dynamics away from any given
(large) compact set. In particular, it is invariant under any > compact perturbation of a
negatively curved metric.

We introduce the class of strongly positively recurrent manifolds (M, g), defined as those
negatively curved manifolds whose entropy at infinity is strictly smaller than the total topo-
logical entropy of the geodesic flow.

As said in the introduction, the notion of strong positive recurrence appeared in [48] in
the context of symbolic dynamics over an infinite alphabet, and has been used later by
some other authors among which [8]. A former terminology due to [26] was stable positive
recurrence. This terminology could be more adapted to the kind of results that we prove here.
In any case, as will be seen below and in [25], the acronym SPR is perfectly adapted to the
concept.

The simplest nontrivial examples are geometrically finite hyperbolic manifolds, but this
class also includes most known examples of non-compact manifolds with negative curva-
ture whose geodesic flow has a finite Bowen-Margulis measure, and many new ones (see
Section 7.3).

Our main result is the following.

THEOREM 7.1. — Let (M, go) be a manifold with pinched negative curvature and bounded
derivatives of the curvature.

If (M, go) is a strongly positively recurrent manifold, then the Bowen-Margulis measure of
its geodesic flow is finite.
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Moreover, if (§¢)ee(—1,1) is a uniformly C'-variation of smooth complete metrics on M with
pinched negative curvature and bounded derivatives of metrics, then the following holds.

1. For e € (—e&y, g0) small enough, all metrics g, are strongly positively recurrent.

2. The mass of the associated (finite) Bowen-Margulis my4, varies continuously on (—&o, &o).

The first part of this theorem (finiteness of Bowen-Margulis) has been proven indepen-
dently and simultanecously by A. Velozo [53] by a different approach.

As a corollary, all assumptions of Theorem 6.3 hold for such a variation of metrics, so that
we get the following result, which answers positively the question at the origin of this work.

COROLLARY 7.2. — Let (g¢)se(—1,1) be a uniformly et Sfamily of complete metrics on the
manifold M with pinched negative curvature and bounded derivatives of the curvature. Assume
that (M, go) is strongly positively recurrent. Then the entropy & — hiop(gs) is C! around e = 0,
and its derivative is given by

< LA 0]
de M de|.— [mE|l

e=

htop(gs) = _htop(gO) X /
0 §£0

In view of the length of this section, let us present the strategy of the proof.

Heuristically, the SPR assumption allows to neglect the dynamical contribution of the
complement of a large compact set to the dynamics. We develop this idea in two introductive
parts 7.1 and 7.2, defining the growth of the fundamental group outside a compact set, the
entropy at infinity and the class of Strongly Positively Recurrent manifolds.

In Subsection 7.3 we provide an illustration of this concept, by describing different fami-
lies of examples of SPR manifolds.

A criterion of finiteness of the Bowen-Margulis measure from [41] is used to prove the first
part of Theorem 7.1. Subsection 7.4 is devoted to this proof.

All entropies considered here are continuous for a negatively curved perturbation
(ge)—1<e<1 satisfying e7®gy < g, < e°go. Thus, the SPR assumption, that is the exis-
tence of a critical gap between the entropy at infinity and the topological entropy is stable
under such small perturbations. And the existence of a large compact set concentrating the
most part of the dynamics allows to prove that its complement is of small Bowen-Margulis
measure, uniformly in the perturbation. These ideas are developped in Subsection 7.5, where
we prove that for a variation of a SPR metric as above, the mass of the Bowen-Margulis
measures varies continuously.

As said in the introduction, these results imply all theorems stated in the introduction.
Theorem 1.7 is an immediate consequence of Section 7.3 and the first part of Theorem 7.1.
Theorem 1.8 is a reformulation of the second part of Theorem 7.1. At last, our main result,
Theorem 1.9, follows from Theorems 6.3 and 1.8 (or 7.1).
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7.1. Fundamental group outside a given compact set

Let (M,g) be a complete Riemannian manifold with pinched negative curvature
—b?> < K; < —a* < 0, whose fundamental group I' = m1(M) is non-elementary. Let
pr: M — M be the universal covering map. Let o € M be a point, fixed once for all. For
any set W C M, we will write W¢ = M\W.

DEFINITION 7.3. — Let W C M be a compact pathwise connected set which is the closure
of its interior, and whose boundary is piecewise C'. A nice preimage of W is a compact set
W C M such that

1. pp(W) = W and the restriction of pr to the interior 0fV~V is injective;

2. Whasa piecewise et boundary.

REMARK 7.4. — We will often refer to and use results of [41]. In this reference, W is a
subset of S8 M and 9 is an open set inside pp! (%) such that pr : % — 9 is onto. As
we deal with several metrics and several unit tangent bundles, it is better here to work with

W C M. The reader can think to %%/ as S8 W. The fact that W is compact here, and %% open
in [41] is just a matter of taste in some arguments.

We gather in the following lemma elementary useful facts.

LEmMA 7.5. — Let W be a compact pathwise connected set with piecewise et boundary,
which is the closure of its interior.

1. A nice preimage w of W exists.

2. If Wo D W4, then they admit nice preimages Wz D Wl.

3. Ify #id theny W 0 W= 0.

4. Theset{y e T'; )/W nw % 0} is finite. We call such yW the adjacent elements ofﬁ;.

Proof. — Choose some w € W, lift it to W € pr' (W) and construct the Dirichlet domain
W ={zepr' (W), Vy €T, d*(z,W) < d*(z,yD)}.

It is a compact set with Cl-boundary which satisfies the properties stated in the lemma. If
Wi C W, choose some w € pr!'(Wy) C pp'(Wa). Fori = 1,2 the Dirichlet domains
Wi C W, C prt (W) satisfy Fact 2. O

The following notion was introduced in [41].

DEFINITION 7.6. — Let W C M be a compact set and W a nice preimage of W. The
fundamental group of M out of W is the set Fé’W of elements y € T such that there exists

X,y € W and a g-geodesic segment ¢, joining x to yy such that for all h € T,
cyﬂpl?lecyﬂFWCWUyW.

By compactness of W we will always assume that x,y € aw.
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Heuristically, as explained in [41], F% represents loops pr([x, yy]) which go outside W at
the beginning, and come back to W only at the end. This heuristics does not work perfectly,
depending on the topology of W, for example when it has holes.

The set I‘I‘% will help controlling what happens far at infinity. In particular it follows
immediately from the definition that it is not sensitive to small compact perturbations of the
metric g, as stated in the proposition below.

ProPOSITION 7.7. — Let (M, go) be a complete negatively curved metric and W C M be

~ o
a compact set, with nice preimage W . For any proper compact subset K CW and any metric g
such that g1 = g, outside K, we have F% = F%.

By definition, idr € TS, and y € I'% iff y~' € T'%. When (M, g) is a geometrically finite
manifold, for suitable choice of W, F§W~ is a union of groups. But in general, FEW isnot a group
at all, as shown in the following proposition.

ProrosiTION 7.8. — With the previous notations, let W C M be a compact pathwise
connected set with piecewise et boundary and W be a nice preimage of W. If y € I'grisa
hyperbolic element whose axis A, intersects the interior of W, then there exists N = N (y)>0
such that for alln > N, y" ¢ Fgw.

Proof. — Lety € I“gW be such an hyperbolic element. Its axis 4, intersects W, and there-

fore also yW and all iterates y” W . Choose some xq € AyN W and let do = d¥ (xo,dW) > 0.
Let x,y € w. By Lemma 5.1 (2), with K = diam(VT/), o =dy/2, we know that if
d8(x,y"y) =nls(y) £ 2diamW > 2R, all points in the middle interval of length 27 =
L8 (y) of the g-geodesic segment from x to y”y would be at distance less than dy/2 from 4,,
and therefore some of them would be inside yk W, for some 1 < k < n — 1. This proves the
proposition. O

The set I';j7 depends on W and the choice of its preimage W, but not too strongly as
illustrated by the following proposition.

PROPOSITION 7.9. — 1. Let W C M be a compact set (with piecewise et boundary ), and
W be a nice preimage. Let o € T'. Then Fffi = aF%a‘l.

2. If Wy and W are compact sets of M (with piecewise C' boundary) such that Wy CWs
with respective nice preimages Wi C W,, there existsk > 1 anday, . ..,ar € I such that

k

-1

FWZ C U OliFWI(Olj) .
Q=1

3. Ile and W, are nice preimages of W, then there exists a finite set {a1,...,ar} C I
such that

p
-1
Iy, C U o; Uy, ().
i,j=1
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Proof. — The first item of the proposition is obvious. Let us show 2. Set
D = 2diam(W,) and n = inf{d®(w,dWs); w e Wi} > 0.
Lety € I‘g%. There exist x5, y, € dW, such that the g-geodesic segment [x,, yy,] intersects
I‘Wz only in Wz U yI/T/Z. Now, choose some x1, y; € BWI.

By Lemma 5.1, there exists L = L(D,n) > 0 and R = R(D,n) > 2L such that for all
X1,Y1,X2,y2 € M with d8(x1,x2) < D, d%(y1,y2) < D and d&(xz,y2) > R, the
g-geodesic segment (x1, y1) is contained in the g—neighborhood of (x5, y») except inside the
balls B8 (x;, L) and B8 (yy, L).

Let ay,...,a; € T be the (finitely many) elements such that

d8(Wy,a;Wy) = inf{d®(a,b), a € W;,b € a; Wy} < L.

Let Wl - Wz be included nice preimages of W; and W,, and let y € I'y, such that
d8(o,y0) > R + 2D. Then there exists x5, y, € dW, such that (x2, yy2) does not inter-
sect pr 1(W,). By construction there exists x;,y; € W), such that d8(x;,x,) < D and
d8(y1,y2) < D.The geodesic (x1,yy;) is 2 —close to the geodesic (x2, yy,) outside the balls
B8 (x1,L) and B8 (yy;, L), hence does not intersect prl(Wl) except maybe in these balls.
Thus, there exist St oy, o) in the above finite set, such that the geodesm segment (xq, yy;) does
not intersect FW1 between «; W1 and yo; W1 Therefore, o ya] € I'yy, or in other words,

— 1
y € ail'y a;

The proof of the last item is similar, and we let it to the reader. O

7.2. Entropy at infinity
PRrOPOSITION 7.10. — Let W C M be a compact set and W a nice preimage of W. The
critical exponent Sw (g) of the Poincaré series Zyerw e=34%:79) s equal to
log#{y e, R—1<d&(o,y0) < R}
R

dw(g) = limsup
R—o0

and does not depend on the choice of a nice preimage W c ﬁofW noro € M. We call it the
entropy out of W of (M, g).

Proof. — 1t follows from the triangular inequality that §y (g) does not depend on the
choice of 0. Let us show that it does not depend on the choice of preimage. Let W; and W,

be two nice preimages of W. By Proposition 7.9, there exists k > 0 and oy, ..., o, € I" such
that
k
(24) Iy, € |J el e
ij=1
Set
k
D =max{d8(w,0); we WU U OliFWl(O[j)_l
ij=1

Define fori = 1,2and R > 0,
Iy (R) = {y €Ty d8(o,y0) < R}.
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It follows from (24) and triangular inequality that for all R > 0,
k
T, (R) € ) aiTy;, (R +2D)(e)) ™",
i,j=1

and therefore # I'7, (R) < k*#T i, (R + 2D). This gives immediately

. 1 ) 1
lim sup 7 log#I'7;, (R) < limsup R log #I'7, (R).
R—+o0 R—+o0

By symmetry, the reverse inequality also holds, and the result follows. O

ProrosITION 7.11. — Let (M, g) be a complete negatively curved metric.

1. For any proper compact subset K CW and any metric g, such that g, = g, outside K,
we have 8w (g1) = Sw(g2).

2. For all compact sets Wy, Wy such that Wy CW,oC M, we have Sw, > Sw,.

Proof. — Ttem 1 follows from Proposition 7.7. Item 2 can be proven similarly to Proposi-
tion 7.10, thanks to Proposition 7.9. O

For a global variation of the metric (i.e., beyond W), even small, the behavior of 5y (g) is
not clear since the set I'; depends on the metric.

DEFINITION 7.12. — The entropy at infinity of (M, g) is
8oc(g) = Inf{dw(g), W C M compact set }.

Proposition 7.11 implies the following natural characterization of the entropy at infinity.

ProPOSITION 7.13. — Let (M, g) be a complete negatively curved manifold and (W;);en be
an increasing exhaustion of M by compact sets. Then

boo(g) = lim éw; (g).

Moreover, it is invariant under any negatively curved perturbation of the metric with compact
support.

This entropy at infinity is a dynamical analogous to the bottom of the essential spectrum
of the Laplacian in spectral geometry. We will use this fact in some of the examples given in
Section 7.3.

DEFINITION 7.14. — The complete manifold (M, g) is called strongly/stably positively
recurrent (SPR), if o0 (g) < 8r(g). We will also call this property a critical gap at infinity.

By definition, if (M, g) is strongly positively recurrent, there exists a compact set W C M
such that Sy < ér.
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REMARK 7.15. — The reader may have noticed that the definition of I'gy given in [41, p. 4]

~ o
is slightly different from ours, since it is written for an open set U which projects onto U =W .
Nevertheless, these definitions almost coincide in the following sense. Let W C M be a compact

set with nice preimage W c M, letU C M bean open set which projects onto U :Wo/. Let
Iy be defined as in [41], and 'y be defined as above. Then there exists ay, ... ,ax € I' such

that
k k

I'g C U a; T ()™t and Ty C U o; T ()7t
ij=1 ij=1
Therefore 'y and I'y; have the same critical exponent and all results stated in [41] to charac-
terize the finiteness of Gibbs measures in terms of I'gy are also valid for our definition of T'y.

7.3. Examples of SPR manifolds

We present here three classes of SPR manifolds. The first examples are geometrically finite
manifolds with critical gap studied in [15]. Schottky products furnish also plenty of examples,
generalizing the examples of [39]. At last, we describe examples inspired by Ancona’s exam-
ples in [2].

These examples are almost the only known examples of non-compact manifolds with
finite Bowen-Margulis measure. To our knowledge, the only exception is a construction of
Peigné of geometrically finite manifolds with finite Bowen-Margulis measure but without
critical gap, see [40, 54].

7.3.1. Geometrically finite manifolds with critical gap. — The convex core CC(M) C M is
the image on M of the convex hull of the limit set Ar inside M. The nonwandering set
Q C S8M of the geodesic flow is the set of vectors v € S8 M such that v* € Ar. By defi-
nition, 2 C S8CC(M). A parabolic subgroup 2 of T is a subgroup which fixes a point at
infinity, and therefore stabilizes any horoball ¢# centered at this point.

A cusp is the image on M of such a horoball.

The manifold M is geometrically finite if its convex core can be written as a finite union
CC(M)=CouCyU---UCk,

where Cy is a compact set and the C; are finitely many cusps, images through pr of
horoballs §%; stabilized by parabolic subgroups «2; of I'. The complete reference on
such manifolds is [7]. Parabolic subgroups have a positive critical exponent. The preimage
on M of a cusp C; is the orbit of a horoball §#;, and the stabilizer of any horoball y §%; is
conjugated to the stabilizer 2; of §#; in T.

A convex-cocompact manifold is a geometrically finite manifold without cusps; in other
words, it is a manifold whose convex core is compact.

PROPOSITION 7.16. — Let (M, g) be a manifold with pinched negative curvature. If
(M, g) is convex-cocompact, its entropy at infinity is —oo. If (M, g) is geometrically finite with
k cusps represented by parabolic subgroups Py, ..., Px C T, then

8o0(g) = max {8331 (&) ’Scc/jk(g)} .
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In particular, a geometrically finite manifold is strongly positively recurrent if and only if
max {8 »,(g).....8.9, ()} < ér.

This condition is precisely the critical gap criterion introduced by Dalbo, Otal and Peigné
in [15]. It is satisfied in particular by locally symmetric geometrically finite manifolds and
their small compact c? perturbations. The notion of SPR manifold allows to generalize many
results of [15] and others on geometrically finite manifolds to all strongly positively recurrent
manifolds.

Proposition 7.16 follows immediately from Proposition 7.17 below.

ProprosITION 7.17. — Let (M, g) be a manifold with pinched negative curvature.

If (M, g) is convex-cocompact and W is a compact set such that CC(M) CI/IO/, then Ty is
finite.

If (M, g) is geometrically finite with k cusps, then there exists a compact set W C M withnice
preimage W, a finite set FPQV«, finitely many elements oy, ...,an € T, and parabolic subgroups
Py Py C T such that

re =TL U Jai (Pr1U---U Pr)aj .
i

Proof. — Assume first that (M, g) is convex-cocompact and CC (M) CI/IO/. Let D be the
diameter of W and n = inf{d8(w,dW); w e CC(M)} > 0. Lety € I‘I%, x,y € 0W and
choose x1, y; € Caﬂ) such that d(x,x;) < D and d(y, y1) < D. By Lemma 5.1, there
exists some Ry depending on D, 5 such that if £8(y) > R, there exists some z € (x,yy),
z1 € (x1,yy1)suchthatd®(z,zy) < n/2.But CC(M)isconvex,sothatz; € CC(M)andzis

at distance /2 of C/C_’\(A//I) and therefore inside TW. Thus, y & I'y7. Therefore, all elements
of I'z have bounded length less than Ry, so that I'; is finite, included in {y € T, £8(y) < Ro}.

Assume now that M is geometrically finite with cusps, and let CC(M) = Cy U (|_|f-(: 1 C)
be a decomposition of the convex core into a compact part and finitely many disjoint cusps.

Let W C M be a compact set such that I/IO/D CC(M). Choose some nice preimage W and
disjoint horoballs &#;, 1 < i < k whose boundary intersects W. Let <P; be the stabilizer
of &/; inT.

Let y € I'y7 be such that £8(y) > Rpand x,y € dW . As noticed above, by Lemma 5.1,
the geodesic segment (x, yy) is (except at the bg_g\i_n/ning and the end, inside balls B8 (x, L)
and B8 (yy, L)) in the n/2 neighborhood of CC(M). As already said in [41], if y € I,
except for a bounded amount of time at the beginning and the end, the geodesic segment
pr(x,yy) has to leave the compact part Cy and enter in some cusp C;. Therefore, there
exists a finite set {&y,...an} such that for some 1 < i,; < N, the geodesic segment
(aix, yojy) stays in some horoball ¢#;. As in the proof of Proposition 7.9, one deduces
that 'y C F9v17 U U; o Pyt with F%; C {y € T, ¢8(y) < Ry} as in the convex-
cocompact case. O
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7.3.2. Schottky products. — We present now a family of geometrically infinite examples first
studied in [39]. Let G and H be discrete groups of isometries of a complete manifold (M, g)
with pinched negative curvature. They are in Schottky position if there exist disjoint compact
sets Ug, Uy C M U dM such that for all g € G\{id} and all h € H\{id}, we have

g (M UdM)\Ug) cUg and h((MU3dM)\Uy) C Ug.

In particular, by Klein’s ping-pong argument, they generate a free product: I' = (G, H) =
G x H. The entropy at infinity behaves nicely under Schottky products, as shown by the
following theorem.

THEOREM 7.18. — Let G and H be discrete groups of isometries of a complete mani-
fold (M , &) with pinched negative curvature which are in Schottky position. Let " = (G, H) =
G x H. Denote respectively by My = H/ I, Mg = ﬁ/G and My = ﬁ/H the associated
quotient manifolds endowed with the quotient metric induced by g. Then

800 (Mr) = max {8ee(Mg). oo (MH)} -
As an immediate corollary, we get the following result.

COROLLARY 7.19. — Let G and H be discrete groups of isometries of a complete mani-
fold (M, g) with pinched negative curvature which are in Schottky position. Let Mg, My, and
Mg«g be the quotient manifolds. Their critical exponents satisfy

(25) 8Gxm = max{8G, 8} = Max{8oo(Mg). 600 (MH)} = Soo(MGxH)-
In particular,
1. if G and H are Strongly Positively Recurrent, then G x H is also;
2. if dgxm > max{loo(Mg), 800 (Mp)}, then G x H is strongly positively recurrent.

In both cases (ﬁ /T, g) has a finite Bowen-Margulis measure.

It was originally shown by M. Peigné in [40] that if T > max{dg, g} then (ﬁ/ I', g) has
a finite Bowen-Margulis measure. The above corollary with Theorem 7.1 guarantees this
finiteness under a weaker condition.

It was shown in [15] that if G C T is a divergent subgroup, then §g < §r. We get therefore
the following corollary.

COROLLARY 7.20. — Let G, H be discrete divergent groups of isometries of a complete
manifold (M, g) with pinched negative curvature which are in Schottky position. Then
I' = (G, H) = G x H is strongly positively recurrent.

This last corollary allows a lot of topologically infinite examples. For instance, if G and
H are discrete subgroups of the group of isometries of the hyperbolic space, whose limit
sets are not the whole boundary, they can be settled in Schottky position by taking suitable
conjugation with hyperbolic elements. If G and H are Z-covers of convex-cocompact groups,
they are divergent and their Schottky product gives a SPR manifold, hence with finite Bowen-
Margulis measure, whose fundamental group is not even finitely generated.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



54 B. SCHAPIRA AND S. TAPIE

~— <\/~

> Q>
< < o
\ Y%

FIGURE 6. Schottky manifold

Proof. — Our proof relies on the ideas of Section 9 of [41]. Let Ug and Uy be the sets
ensuring the Schottky position of G and H. Since they are compact in M U M and since
K, < —a®? < 0, a key point is that there exists p > 0 such that all geodesics from Ug
to Uy intersect the ball B& (o, p). Moreover, without loss of generality, we can assume that
the point o is neither in Ug nor in Ug.

Let Mt = ﬁ/l", Mg = M/G and My = M/H.Letpp ‘M — Mr, pg : M — Mg
and ppy : M — My be the associated covering maps.

For all R > p, define Wk = pr(B%(o,R)) C Mr,’VKGR = pg(B%(0,R)) C Mg

and WR = py(B%(0.R)) C Mpy. Let WR, WER WX C M be nice preimages (Dirichlet
domains viewed from o) of W&, WGR, W1§> respectively for the actions of I', G, H. By
definition of W&, WX, WR and of a Dirichlet domain, one easily checks that they all lie
inside B# (o, R). Moreover, as pg and pg are intermediate covers between M and Mr, we
have o € WR c WRNWR c B2(o, R).

Let FW]!? crl, Gwcz;e C G and Hypr C H be the fundamental groups respectively of I', G
and H respectively out of WIB, VI~/§, WR, according to Definition 7.6.

A key fact is the following.

LEMMA 7.21 ([41]). — For all R > 0, there exists a finite set S C T such that

FWCI;eCGUHUS.

It implies that §oo (MT) < SWIR (') < max{dg, Sy}, and therefore, if S > max{dg, 5y}
then T" is strongly positively recurrent.

We precise this inclusion in the following lemma, which implies immediately Theorem 7.18.

LEMMA 7.22. — With the previous notations, for all R > p + 1, there exists a finite set F
such that

FngR cSu GW(%R U HWI%R CSUFU U O‘FWIBﬂ‘
o,BEF
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Proof. — Let us first show the left inclusion. It follows from the previous lemma
that FWF2R C G U H U S. Moreover,

GW2ZR = GB%(0.2R) c TWER = T'B%(0.2R).
For each y € I'2r N G, there exist x, y € W2R ¢ W2R such that
X, yy] NT.WER ¢ WAR Uy 2R, whence [x,yy]n GW2R c W2R U yW2k,

so that y € GWéR. It shows that FWIgR NG C GWéR.
Similarly, FngR NHC HW;{R.

Let us now prove the right inclusion. We want to show that there exists a finite set ¥ C T"
such that GWéR C FUUq ger ‘XFWIB B, the case of HWEIR being similar.

Define Fyg as Fygr = {y € I, yB&(0,AR) N Bé(0, AR) # @}.
First observe that for A > 2, we have
(26) WERcwghc || ek

a€F R

Let g € GwéR, g ¢ F. By definition, there exist x,y € WGZR such that (x, gy) intersects

G.WGzR only in WCZ;R and gWCZ;R. We will show that (x, gy) intersects F.VT/FR =T WGR only
inside W3R and gW2R. By equation (26), as in the proof of Proposition 7.9, it will imply
that g € Ua, BeFin al“ng,B. In fact, we will show that if (x, gy) intersects some . WFR, then
either y or g~y is in the finite set F, so that by the same argument, g € U, pe Fir (XFWIR B.

By contradiction, assume that the geodesic segment (x,gy) intersects yWIB, with
y #id,g, and y,g"'y ¢ Fyg. In particular, d(0,y0) > 2AR and d(go,yo) > 2AR.
As g € Gﬁ;’(z}R, we know that y ¢ G. Denote by z, € (x,gy) the closest point to yo
in(x,y)N WFR By the above, we have d(x, z,) > d(0,y0) —3R > (21 — 3)R.

By definition of a Schottky product, as 0 ¢ Ug U Ug, either yo € Ug or yo € Ugy.
Assume first that yo € Upg. Recall that go € Ug. Therefore, the geodesic segment (yo, go)
intersects the ball B(o, p). As d(yo,go) > 2AR and d(yo,z,) < R, d(go,gy) < 2R,
the geodesic segment (z,, gy) intersects the ball B(o, p + 2R). Let w, be a point in this
intersection. Therefore, we get d(x,w,) < d(x,0) + d(o,w,) < 4R 4+ p < 5R. However,
d(x,wy) > d(x,zy) > (24 — 3)R, which leads to a contradiction as soon as A > 4.

Therefore, the first case holds, yo € Ug, so that y has a reduced form as y = g’h’y’, with
g e G\{id}, W € H\ {id}, y' € T. We will distinguish the cases g’ € F and g’ ¢ F.

If ¢ ¢ F, consider the segment [(g')"'o, ' y’0]. It goes from Ug to Uy so that it
intersects the ball B¢ (o, p). It follows that [o, yo] intersects g’.B(o, p) at a point y with
d(o,y) > 2AR — p. By Lemma 5.1, for A large enough, the point y is at distance less than p
from the geodesic segment (x, yo), and therefore at distance less than R+ 1 from the geodesic
segment (x, z,). Thus, we deduce that (x, z,) intersects the ball g'B(o,p + R + 1). As we
assumed R > p + 1, this ball is included in g’ B(0,2R) C G.WG2R. Moreover, as y’ ¢ F, this
intersection (x, z,) N g’ B(o, 2R) is disjoint from W2R andasy ¢ F,and the intersection is
between x and z,,, this intersection is also disjoint from g.WC%R. This is a contradiction with
the hypothesis g € GW(Z;R.
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It remains the case g’ € F, which implies in particular g’ # g. Consider in this case
the geodesic segment [A'y’0, (g') "' go]. It goes from Uy to Ug, so that it intersects the
ball B# (o, p). It follows that [yo, go] intersects g’ B(o, p). The same arguments on [z, gy]
instead of [x, z, ] lead once again to a contradiction with the hypothesis g € GWéR.

It concludes the proof, for F = F, g, for some A > 4 determined by the use of Lemma 5.1.
O

7.3.3. Ancona-like examples. — We present now a family of surfaces inspired by examples
of Ancona [2], which is particularly easy to handle using the entropy at infinity introduced
before.

THEOREM 7.23. — Any non-elementary hyperbolic surface S = H?/T with §t < 1 admits
a compact perturbation which is strongly positively recurrent: there exists a hyperbolic surface
S’ = H?/T’, homeomorphic to S, which is isometric to S outside a compact set and such
that 856(S") < ér.

By Theorem 7.1, all these examples have finite Bowen-Margulis measure.

Note that for topologically finite surfaces (i.e., when I' is finitely generated), this theorem
is an immediate consequence of Proposition 7.16 since all topologically finite hyper-
bolic surfaces are geometrically finite with critical gap (hence SPR), see [15] for a proof.
Theorem 7.23 is only interesting for topologically infinite hyperbolic surfaces S = H?/T
with 7 < 1. For instance, by [11], any nonamenable regular cover S of a compact hyperbolic
surface Sy satisfies these hypotheses.

FiGUure 7. SPR surface

Before beginning the proof, recall that on hyperbolic manifolds, the dynamics is strongly
related to the spectrum of the Laplacian. In particular, a well-known theorem of Patterson
and Sullivan relates the entropy §r of M = H"*! /T with the bottom of the spectrum of the
Laplacian A¢(M):

THEOREM 7.24 ([37], [49], [50], [51]). — Let M = H"™'/T be a complete hyperbolic
manifold. If §r < 5, then Ao(M) = é. If 8r > 3, then Ao(M) = 8r(n — dr).
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Proof of Theorem 7.23. — Let S = H?/T be a complete topologically infinite hyperbolic
surface with 5t < 1. Denote by g its metric. In any pair of pants decomposition of S, choose
finitely many pairs of pants Py, ..., Px. Change the metric of S to a metric g, which is equal
to go far from the pants P;, and modified in the neighborhood of the P; by shrinking the
lengths of the boundary geodesics of the pants P; to a length ¢. Let I'; be a discrete group
such that the new hyperbolic surface (S, g;) is isometric to H?/ .

As the perturbation is compact, for all € > 0, 8o0(gs) = 800(go) < 1. An elementary
computation (see for example [12, Prop. I1.2 (ii)] ) gives limy—q Ao(S, g¢) = 0, therefore
lim,,0r, = 1. This implies that for ¢ > 0 small enough, (S, g.) has a critical gap at
infinity : ér, > ér, > 800 (ge)- O

7.4. SPR manifolds have finite Bowen-Margulis measure

This paragraph is devoted to the proof of the first part of Theorem 7.1: if (M, g) is a
strongly positively recurrent manifold, then the Bowen-Margulis measure of its geodesic flow
has finite mass.

This finiteness result had been shown in [15] on geometrically finite manifolds, under the
assumption that max {8 », (g).....89,(g)} < &p, which is exactly the SPR assumption in
the geometrically finite context, although they did not introduce this concept.

As said earlier, this result (finiteness of Bowen-Margulis measure) has been obtained
independently, by a different approach, in [53].

Our proof will rely on the following theorem shown in [41].

THEOREM 7.25 ([41]). — Let (M, g) be a complete manifold with negative curvatures. Then
the Bowen-Margulis measure of (M, g) is finite if and only if T' = 71 (M ) is divergent and there
exists a compact set W C M with nice preimage W such that T'yy satisfies

Z d(0,y0)etrd@yo) « 4o

y€ely

Let (M, g) be a complete strongly positively recurrent manifold: there exists a compact set
W C M suchthat§y (g) < dr(g). The second condition Zyerw d(0,y0)erd@r0) « 4ois
then automatically satisfied for W a nice lift of W. Therefore, Theorem 7.1 follows immedi-
ately from the following.

THEOREM 7.26. — Let (M, g) be a strongly positively recurrent manifold. Then its funda-
mental group T is divergent.

We give first the strategy of the proof. Let (M, g) be a SPR manifold, with I" = 71 (M).
It follows from Hopf-Tsuji-Sullivan theorem (see [46, p. 18]) that I is divergent if and only
if any Patterson-Sullivan measure v§ (cf Section 5.4) gives full measure to the radial limit
set AT

Theorem 7.26 follows from a careful study of AL.. More precisely, if W' is a nice set with
dw < ér and nice lift W, we introduce a kind of limit set Ze of the subset 'z of T,
see Definition 7.27 and Proposition 7.28. We show in Proposition 7.31 that v3 (Zwc) = 0.
By definition, oM \ Zwe consists in asymptotic directions of geodesics returning infinitely
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often in the compact set W. In particular, it is included in the radial limit set. We deduce
that v5 (A}) = 1, which implies that I is divergent by Hopf-Tsuji-Sullivan Theorem.

DEFINITION 7.27. — Let W C M be a compact subset and WcMa nice preimage of W.
Introduce the set
A ={teArstIxeW,[x,§)NTW Cc W}.
We call the limit set of ' out of W the set Twe = T Ay

The following proposition shows that all elements of A7 are limit points of I'j7o in the
boundary at infinity, and that the only limit points of I'j;70 which are not in A are endpoints

of geodesic rays which do not come back inside the interior I' W, after leaving W but touch
the boundary o(I'W).

PROPOSITION 7.28. — Let W C M be a compact subset and W C M a nice preimage
of W. Then

Ay C I'go\l'gro C EGAFS.I.EIxGW,[x,E)ﬁF Wcw!.

Proof. — Without loss of generality, assume that o € W . We show first the left inclusion.
Let § € Ag C Ar. There exists a sequence (y,) of elements of I" such that y,0 — §.
Moreover, by definition of AW, there exists x € W such that the geodesic [x, £) does not
intersect W after leaving W . Thus, for n large enough, the geodesw segment [x, y,0] also
leaves W before returning to Vn) W.Let7, Vn W be the first i image of W crossed by the geodesic
segment [x, y,0] after leaving w. By construction, y, € FW. Moreover, we have
27) lim d%(x,y,0) =

n——+o0o
Indeed, for all R > 0, there exists > 0 such that inside the (compact) ball B8 (x, R),
the distance between [x, ) N B&(x, R) and FW\W is at least . Moreover, it follows from
Lemma 5.1 that the sequence of geodesic segments ([x, y,0])nen converges to the half
geodesic [x, £] uniformly on B¢ (x, R). Thus, for all n large enough, [x, y,0] N B&(x, R) and
[x.&] N B#(x, R) are 7-close, so that [x, y,0] does not meet FI/IN/\W on B&(x, R), whence
d&(x,y,0) > R.

It follows from the above that the sequence of geodesic segments ([x,7,0])nen also
converges to the half geodesic [x, £], so that

¢ = lim y,0 € I'yo\lyo.
n—-+o00
Let us now show that
T7o\l'70 C Jé € Arst.Ix e W, [x,§)NT Wc W

Let £ € T0\I'0. There exists a sequence (y,)nex of elements of Tz such that y,0 — & and
d® (o, y,0) — +o0o. By definition of ', for all n > 0 there exist x,, y, € W such that the
geodesic segment [x;,, y, V] intersects T’ w only in W and Yn w. Up to taking a subsequence,
we can assume that x, — x5 € W and Yn — Yoo € W asn — +4oo. Once again, it
follows from the compactness of W and Lemma 5.1 that the sequence of geodesic segments
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([X00s Yn Yool )nen converges to [Xso, £] uniformly on compact sets. Therefore [xo, §) cannot
intersect the interior of I'W. O

We gather in the following proposition elementary properties of the sets Ay and Zye.

PRrROPOSITION 7.29. — Let (M, g) be a manifold with pinched negative curvature. Let
W C M be a nice compact set, and W a nice preimage. With the above notations,

— the set Twe = U Ay is the set of endpoints of geodesics which eventually leave TW:

Iwe = TAjp = {vy € Ar; Jv € SEM, 3T > 05.1. ¥Vt > T,mg'v ¢ TW}.

— Thelimitset out of W, Zwe = I'Ayy does not depend on the choice of a nice preimage W.
— If W1 C Wa, we have Lye C L.

— Ar\ (iwc) C AL, where AT is the radial limit set.

Proof. — The first property is left to the reader.
The set {vy € Ar; 3ve SEM,3T > 0st. Ve > T,mg'v ¢ TW} only depends on
I'W = pr'(W), which is independent of the choice of W.

If W, C W, then for all nice preimages W, and VI~/2, we have
TWi = pr' (W) C pr' (Wa) = T,

which shows the third point.

The radial limit set is the set of £ € Ar such that there exists x € M and a compact
set K C M such that the geodesic ray [x, &) intersects infinitely often the preimage pr'(K).
If§ € Ar\ (A W)» by the above proposition, the geodesic ray [x, £] intersects infinitely often
the set TW = p;l (W), which shows the last claim. O

As seen in Section 7.3, basic examples are given by geometrically finite manifolds. The
following proposition is an immediate consequence of Propositions 7.17 and 7.28.

PropoOSITION 7.30. — Let (M, g) be a geometrically finite manifold with pinched negative
curvature, with k cusps Cy,...,Cy. Let W = B8(x, R) be a large ball. It admits a nice preimage W
such that

Ay =1L 6

each point &1,...,& € Ar being a parabolic point fixed by a parabolic group P; < T
representing the cusp C;.

The following proposition is a detailed version of Theorem 7.26, with additional proper-
ties which will be useful in Section 7.5.

Ifx € ]\7and§ € M UM, we write [x.Elr = (wg"v)refo,1], Where v € Sfﬁis the
tangent vector at x of the geodesic [x, £].
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ProrosiTION 7.31. — Let (M = ﬁ/ T, g) be a complete manifold with Ky < —a?, with
I' = my (M) its fundamental group. Assume that (M, g) is SPR. Then T is divergent.

Moreover, for all compact sets W C M such that Sy < 8, for all n € (0,8r — éw), there
exists C = C(g, W,n,a) > 0such that for all nice preimages W of W and all T > 4diamg (W),

if
Ur=Ur(W,g) ={ e MUIM ; Ix e W s.t.Vt € [0,T], [x,Elr NTW C W.},
then the unique Patterson-Sullivan density (v§), 7 on Ar such that v§ (AT) = 1 satisfies
vE(Ur) < Ce~Or=bwe=—mT

In particular,

v (Ag) =vE(() Ur) = 0.
T7>0

Proof. — We start with any Patterson-Sullivan density (v§) on Ar obtained as a weak
limit of an average as in Section 3.4. We will show that there exists C > 0 such that for all
T > 0 large enough,

(28) vE(Ur) < Ce=Cr=dwe=mT,

By definition, Ur is the (open) set of points joined by a geodesic from W which, after
exiting W, does not enter I'W before time T, so that
Ay = ﬂ Ur.
T>0
Therefore, (28) implies

v8 (A) =0 sothat vE(Zwe) =0 and vi(AL) =1.

By Hopf-Tsuji-Sullivan Theorem, it will imply that I' is divergent and the Patterson-Sullivan
density is unique.

Recall notations from Section 3.4. We omit the mention of the metric g here. As in [37],
choose a positive increasing map & : RT™ — R™ such that for all n > 0, there exists C;, > 0
such that

(29) Vr>0, V>0, h(t+r)<Cye"h(r),

and the series Pr (s) = Zyel" h(d(o, yo)e=sd(-ro) divefr:g/es at the critical exponent ér.
Construct a Patterson-Sullivan density (vy) s.t. for all x € M, the measure v, is a weak limit
ass — 5;5 of the positive finite measures

(30) v = 3 hd(x, yo)e w0 9,

N F]"(O, s) et

Forall y € 'y, define O (y W) as the set of y € M UM such that there exists v € S8 W
such that the first intersection of the geodesic ray (rwg’v),>¢ with T'W, after the first exit
of W is in yW, and the point y belongs to (7g'v);>0.

By definition of Ur and I'j7, and triangular inequality, for all T > Oand o e T, if
oo € Ur, there exists y € 'y such that ao € OW(yW) and d(o,y0) > T — 2D, with
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D = diam(W). Indeed, choose y so that yW is the first copy of W intersected by all geodesic
segments from W to wo after exiting W inside TW.

In other words, we have

(31) ToNUr C U O (yW).
y€ly,d(0,y0)>=T—2D

Fix s > ér and recall from (30) that for all x, y € 1\7and§ € To,

dvy o sdr—dengy 1A (. ©))
ag @ = hd(x.6)

Therefore, for all y € 'y,
v (O (yW)) = ooty (Oy—1W(W))
-/ o ton-don M 0.6 oy
0,15 (W) h(d(o.§)) —°
Moreover, there exists C > 0 such that as soon as d(o,y0) > 2D, forall £ € 0y_1 W(W),
d(y~'0,0) +d(0,§) —=C < d(y~"0,§) <d(y~'o,0) +d(0,%).
It implies by (29) that
o S@0.6)~d(0.6)) h(d(y~'o,§)) < 5C 0100 gnd(r0.0)
h(d(o.§))
Therefore, as v$(M U dM) = 1, for all y € Iy with d(0., yo) > 2D and 26r > s > 6,

V3 (O (yW)) < Cyestmdro),
By (31), forall T > 4D, we get
v,(Ur) < Cy Z e(—stmd(o,yo)

yeI‘W

d(o,yo)>T—2D

Taking any weak limit as s — Sff , as Ur is an open set, we obtain

Ug(UT) <, Z e(=8r+md(o.yo)
yeI‘ﬁ;
d(o,yo)>T—2D
Asér—n > Swe, the right hand side decreases exponentially fast as T — 4o00. As mentioned
at the beginning of the proof, by Hopf-Tsuji-Sullivan, we deduce that I' is divergent so that
Theorem 7.26 is proven.

Let us prove now the end of the statement of Proposition 7.31. The Patterson-Sullivan vs

is the weak limitas s — 8 of v = m > yer e=sdv9) ) . Repeating exactly the same
computations, setting 2 = 1, we get that there exists C, > 0, depending only on the curvature
upperbound, such that for all 7 > 4D

vE(Ur) < erCa Z e~ drd(o.y0)

velss
d(o,yo)>T—2D
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We get therefore that for all T > 4D,
vE (Ur) < fr(Cat2D)o=Cr=bw-nT Y™ ,=@Gwtndloyo)
yely

which is precisely the desired estimate with

(32) C(n.g. W.a) = ’r(Cat2D) N~ =Cwimd(.yo) -

vely

Under the above assumption, the Patterson-Sullivan measure v5 gives full mass to the set
of endpoints of lifts of geodesics of (M, g) which come back infinitely often in W. This set
is in general strictly smaller than the radial limit set. The product structure of the Bowen-
Margulis measure (see Section 3.4) implies the following useful fact.

COROLLARY 7.32. — Under the same assumptions, let W C M be any compact set such
that Sw(g) < 8r(g). Then the Bowen-Margulis measure of S M is finite and gives full mass
to the set of bi-infinite geodesics which intersect infinitely often W in the past and in the future.

7.5. Entropy variation for SPR manifolds

As mentioned earlier, the original motivation of this article was to find reasonable
geometric assumptions on non-compact manifolds with negative curvature such that the
entropy is regular under a small variation of the metric. In this subsection, our aim is to
finish the proof of Theorem 7.1.

Let (g¢)ee(—1,1) be a uniformly ct family of complete metrics on the manifold M such
that for all e € (=1, 1), —b% < K,, < —a? for some b > a > 0, and (M, go) is SPR.

Let W C M be a compact subset such that sy (go) < ér(go), and let W be a nice preimage
of W.Forr > 0, denote by W, = {x € M;d&(x, W) < r} the (go, r)-neighborhood of W.
Note that dw, (g0) < dw(go) < d00(g0) < dr(go). Denote by W, a nice preimage of W, such
that W C W,. Observe that )/W, is the (go, r)-neighborhood of )/W.

LEMMA 7.33. — For all r > 0, there exists a finite set F C I and g9 > 0 such that for all
e € (—&g, &9), we have

T, (80) € | ol (ge) and Ty (ge) C | oTg(g0)B
a,BeF o,BeEF

Proof. — We prove the right inclusion, the left one is proved similarly.

Let D = diamg, (W) and D’ = ' (D + 1), so that for all £ € (—1, 1), diamg, (W) < D'
It follows from Section 5 that there exists &g > 0 such that for all ¢ € (g9,&9) X,y € W,,
and y € I'yy , the gg-geodesic between x and yy is at distance less than r to the go-geodesic
between x and y. Reasoning as in Proposition 7.9 leads to the desired result. O

This lemma leads to the following corollary, which implies the first item of Theorem 7.1.
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COROLLARY 7.34. — Let (g¢)ee(—1,1) be a uniformly et Jamily of complete metrics on the
manifold M such that for all e € (—1,1), —=b*> < K,, < —a?® forsomeb > a > 0, and (M, go) is
SPR. Then for all o > 0 andr > 0, there exists g9 > 0 such that for all ¢ € (—eg, &¢), we have

e 8wy, (g0) < Sw, (g¢) < e*Sw(go).

In particular, the entropy at infinity € > 800(ge¢) is continuous at ¢ = 0, and if @ > 0 is small
enough, g, is SPR for ¢ € (—e&y, &¢).

Proof. — Let r,a > 0 be fixed, and choose ¢y as in Lemma 7.33. For all y € T", we have
d®:(0,y0)>e~*/2d%0 (0, yo). Therefore, for all £ € (—&g, £9) We get 8, (g¢) <e®/*8w (g0) <e*8w (go)
up to reducing gg. The other inequality is proved similarly. O

Let us show now the last item of Theorem 7.1, that is that the mass of the Bowen-Margulis
measure of g, varies continuously. This will rely on the following estimate, which is a uniform
version of Proposition 7.31.

LEMMA 7.35. — For all 9 € (0,8r(go) — §c0(g0)) and B € (0, 8y), there exists a compact
set W C M with nice preimage W, e > 0and C > 0 such that for all ¢ € (—¢o, €0), we have
8r(gs) — Swe(ge) = 8o and

vE(Ur (W, g0)) < Ce T,
where Ur (W | ge) is defined as in Proposition 7.31.

Proof. — Let 69 € (0,8r(go) — d00(go)) be fixed. By the above corollary, for |¢| small
enough, (M, g.) is SPR and has therefore a finite Bowen-Margulis. Choose @ > 0 small
enough and a large enough compact set W C M so that §o0(g20) < Swe(go) < €*800(g0).
Let r > 0 small enough and gy > 0 given by Corollary 7.34 be such that for all ¢ € (—&g, &),

e “Swe(go) < Ow,(ge) < e*Swe(go)-

Up to decreasing @ > 0, we can therefore assume that for all € € (—¢y, &¢),

dr(ge) _SWr(gS) > 8o > 0.
Let B € (0,8) and W, nice preimage of W, be fixed. Define D > 0as D = sup  diam(I¥;).

e€(—£0,60)
Forall e € (—s9, &9), let U7 = Ur(W;, g;) be defined as in Proposition 7.31. By the last esti-
mate in the proof of Proposition 7.31, there exists C, > 0, only depending on the curvature
upperbound of the metrics g, such that for all T > 4D,

Ve (UR) < (e (Cat2D) =BT §™ o=y (54 00)

YL, (ge)
Therefore,
Ugs(U;) < Ko BT Z 67(8753W(go)+a)678dg0(0,y0)’
Y€lw (g0)
where K € R is independent of . Up to reducing @« > 0 and gy > 0, we can suppose
that e™*Sw (go) + B)e ¢ > Sw(go) + g Therefore, we get that for all & € (—&y, &9),

(33) Ve (Us) < Ce T,
with C > 0 being independent of ¢. This concludes the proof of Lemma 7.35, the compact
set W of the statement being the set W, of the proof. O
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Let us now conclude the proof of Theorem 7.1. Let W C M, W c M and B,&0,C >0
satisfy the conclusion of Lemma 7.35. For all R>0, set as usual Wg ={x e M ;dg,(x, W) < R}.
We have shown in Theorem 5.14 that, under our current hypotheses, the Bowen-Margulis
measure & > myy, varies continuously for the weak-* convergence, i.e., on the dual
of compactly supported maps. In particular, for all fixed compact sets K C M with
m§8, (0S80 K) = 0, the map & > m§3, (S8 K) is continuous at ¢ = 0. Therefore the following
lemma will imply Theorem 7.1.

LEMMA 7.36. — With the above notations, for all @ > 0, there exists Ry > 0 such that for
all R > Ry and all ¢ € (—&y, &9), we have

mBM (S8 (M\Wg)) < a.

Proof. — Let R > 8diam(W) be fixed and let Og = M\Wg. By Corollary 7.32, for all
& € (—€9, &), since Swe (ge) < Sr(ge), the Bowen-Margulis measure mys, gives full mass to
the set of vectors which hit infinitely often W in the past and in the future. In particular,

ma, (S8 Or) = mSs, ]_[ ot .

n>R—1
where O/ is defined for all integersn > R — 1 by

O, ={veS%0Or; At enn+I1[st.Vse[0,1), g v ¢ Wandng;'veW}.

Therefore, since the Bowen-Margulis measure m&j, is invariant under the geodesic flow (g?),

mem (S5 OR) = Z MEM (08) = Z MEm (gE"(O ))
n>R—1 n>R—1
Now, by definition for all v € g;"(0?), there exists z € [0, 1) such that w = g;""v € S&W
and for all s € [0, n], we have mg5w ¢ W.
Let us write
Ar ={veSEW;3tenn+1)st.Vse(0,1),ngiv ¢ yW and ng'v e yW}.

The reader will easily check that { Jse(o 1) 8645 C S ge M projects onto g~"(O;). Moreover,
as soon as g is small enough, since g, > e gy > % go, all vectors v € Zf, have a point at
infinity v* which satisfies v4 € Uy, /2(W, g;). As the map

v 1 T (€ (Buy @.7V)+Bu_(0.70)

is uniformly bounded in v € W and ¢ € (—¢g, &9), the product structure of the Bowen-
Margulis measure (see Section 3.4) implies that

mi(05) = m§a (g7 (05)) < 2KvE: (Ar) x v (U, /2)
which eventually gives by Lemma 7.35
m§a,(05) <2KCe™ 5n,
where C and o do not depend on ¢. Therefore, we get

mE, (S8 0g) <2KC > 73" <
n>R—1

as soon as R is large enough. O
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CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T?
WITHOUT AN ABSOLUTELY CONTINUOUS
INVARIANT MEASURE

BY ZeMmMeER KOSLOFF

ABSTRACT. — We construct examples of C! Anosov diffeomorphisms on T2 which are of Krieger
type II1; with respect to Lebesgue measure. This shows that the Gurevic Oseledec phenomena that
conservative C 1% Anosov diffeomorphisms have a smooth invariant measure does not hold true in
the C! setting.

RESUME. — Sur T2, on construit des exemples de difféomorphismes C! d’Anosov qui sont de
type de Krieger I11; par rapport a la mesure de Lebesgue. Ceci montre que le phénoméne de Gurevic
Oseledec selon lequel tout difféomorphisme conservatif d’Anosov C 1% a une mesure invariante lisse,
n’est pas valable dans le cadre C' L.

1. Introduction

This paper provides the first examples of Anosov diffeomorphisms of T? which are conser-
vative and ergodic yet there is no Lebesgue absolutely continuous invariant measure.

Let M be a compact, boundaryless smooth manifold and f : M — M be a diffeomor-
phism. A natural question which arises is whether f preserves a measure which is absolutely
continuous with respect to the volume measure on M. In order to avoid confusion in what
follows, we would like to stress out that in this paper, the term conservative means the defini-
tion from ergodic theory which is non existence of wandering sets of positive measure. That
is f is conservative if and only if for every W C M so that { f" W}, o, are disjoint (modulo
the volume measure), vol(W) = 0.

It follows from [16] that for a generic C? Anosov diffeomorphism there exists no abso-
lutely continuous invariant measure (a.c.i.m.), [6, p. 72, Corollary 4.15.]. Following this
result, Sinai asked whether a generic Anosov diffeomorphism will satisfy Poincare recur-
rence. This question was answered by Gurevic and Oseledec [9] who proved that the set of
conservative (Poincare recurrent) C? Anosov diffeomorphism is meager in the C? topology
(restricted to the open set of Anosov diffeomorphisms). Indeed, they have proved that if
f is a conservative C2 Anosov (hyperbolic) diffeomorphism, then f preserves a probability
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70 Z. KOSLOFF

measure in the measure class of the volume measure which combined with the result of Livsic
and Sinai proves the non-genericity result. The proof in [9] uses the absolute continuity of
the foliations and existence of SRB measures to show that if the SR B measure for f is not
equal to the SRB measure for ! then there exists a continuous function g : M — R and
aset A C M of positive volume so that,

i 3 3 (7400) # fim 3 3 (). vee
k=0 k=0

It is then a straightforward argument to construct a set B C A of positive volume measure
so that for almost every x € B, the set {k eN: fkxe B} is finite, in contradiction with
Halmos Recurrence Theorem [1].

This result remains true for C't%, « > 0 Anosov diffeomorphisms. However, since there
exist C! Anosov diffeomorphisms whose stable and unstable foliations are not absolutely
continuous [17], this proof can not be generalized for the C! setting. This paper is concerned
with the question whether every conservative C !-Anosov diffeomorphism has an absolutely
continuous invariant measure.

An easier version of this question was studied before in the context of smooth expanding
maps. Every C? expanding map of a manifold has an absolutely continuous invariant
measure [14]. In contrast to the higher regularity case, Avila and Bochi [4], extending
previous results of Campbell and Quas [8], have shown that a generic C! expanding map
has no a.c.i.m and a generic C! expanding map of the circle is not recurrent [8]. It seems
natural to argue that these generic statements for expanding maps can be transferred to
Anosov diffeormorphisms via the natural extension. However there are several problems
with this approach which could be summarized into roughly two parts:

— The natural extension construction is an abstract theorem and in many cases it is not
clearifit has an Anosov model. See [22] for constructions of smooth natural extensions.

— In order for the natural extension to be conservative, the expanding map has to be
recurrent [19, Th. 4.4] and a generic C! expanding map is not recurrent.

Another natural approach in finding C! examples with a certain property is to prove that
the property is generic in the C! topology, see for example [5]. However since by the result
of Sinai and Livsic, a generic C! Anosov map is dissipative, it is not clear to us how to use
this approach to find a conservative example without an a.c.i.m. Nonetheless we prove the
following.

THEOREM 1. — There exists a C'-Anosov diffeomorphism of the two torus T? which
is ergodic, conservative and there exists no o-finite invariant measure which is absolutely
continuous with respect to the Lebesgue measure on T2.

In fact, the ergodic type III transformations ( a transformation without an a.c.i.m.) can
be further decomposed into the Krieger Araki-Woods classes III;, 0 < A < 1[13], see
Section 2, and our examples are of type I11;.

The examples are constructed by modifying a linear Anosov diffeomorphism to obtain a
change of coordinates which takes the Lebesgue measure to a measure which is equivalent to
a type III Markovian measure (on a Markov partition of the linear diffeomorphism). These
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examples are greatly inspired by the ideas of Bruin and Hawkins [7] where they modify the
map f(x) = 2x mod 1 using the push forward (with respect to the dyadic representation)
of a Hamachi product measure on {0, 1}" to the circle. Since by embedding a horseshoe in
a linear transformation one loses the explicit formula for the Radon Nykodym derivatives
of the modified transformations, we couldn’t use measures on a full shift space but rather
measures supported on topological Markov shifts. The measures which play the role of
the Hamachi measures in our construction are the type III; (for the shift) inhomogeneous
Markov measures.

This paper is organized as follows. In Section 2 we start by introducing the definitions
and background material from nonsingular ergodic theory and smooth dynamics which are
used in this paper. We end this section with a discussion on the method of the construc-
tion. Section 3 presents the inductive construction of the type III; Markov shift examples.
In Section 4 we show how to use the one sided Markov measures from the previous section
to obtain a modification of the golden mean shift. In Section 5 we show how to embed and
modify the one dimensional perturbations of the previous sections to obtain homeomor-
phisms of the two torus, which when applied as conjugation to a certain total automorphism
(the natural extension of the golden mean shift) are examples of type I1I; Anosov diffeomor-
phisms. Finally in the appendix we prove that these Markovian measures satisfy the afore-
mentioned properties (ergodic, conservative and type I11;).

2. Preliminary definitions and a discussion on the method of construction

2.1. Basics of nonsingular ergodic theory

This subsection is a very short introduction to nonsingular ergodic theory. For more
details and explanations please see [1].

Let (X , B, u) be a standard probability space. In what follows equalities (and inclusions)
of sets are modulo the measure x on the space. A measurable map 7 : X — X is nonsingular
if Tt := wo T~ is equivalent to u meaning that they have the same collection of negligible
sets. If T is invertible one has the Radon Nykodym derivatives

dipoT"

(T") (x) := i

Asset W C X is wandering if {T" W}, o, are pairwise disjoint and as was stated before we say
that T is conservative if there exists no wandering set of positive measure. By the Halmos’
Recurrence Theorem a transformation is conservative if and only if it satisfies Poincare
recurrence, that is given a set of positive measure A € 3, almost every x € A returns to itself
infinitely often. A transformation 7 is ergodic if there are no non trivial 7' invariant sets. That
isT7'4 = Aimplies 4 € {0, X}.

We end this subsection with the definition of the Krieger ratio set R(T). We say
that r > 0 is in R(T) if for every A € B of positive u measure and for every € > 0 there
exists an n € Z such that

p(ANT™™AN{xeX: |(T”)/(x)—r| <e€})>0.

x): X - Rs4.

The ratio set of an ergodic measure preserving transformation is a closed multiplicative
subgroup of [0, 0co0) and hence it is of the form {0}, {1},{0, 1}, {0}U{A" :n € Z} for0 < A < 1
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or [0, 00). Several ergodic theoretic properties can be seen from the ratio set. One of them is
that 0 € R(T) if and only if there exists no o -finite T-invariant y-a.c.i.m. Another interesting
relation is that 1 € R(T) if and only if T is conservative (Maharams Theorem). If R(T) =
[0, c0) we say that T is of type I1I;.

2.2. Anosov diffeomorphisms and topological Markov shifts

Smooth dynamics deals with the case where M is a Riemannian manifoldand f : M - M
is a diffeomorphism on M. In this paper we would only talk about the class of Anosov
(uniformly hyperbolic) automorphisms. A diffeomorphism f is Anosov if for every x € M
there is a decomposition of the tangent bundle at x, Tx M = E3 @ E¥, such that

— The decomposition is Dr-equivariant, here Dy denotes the differential of f. That is
(Dy), (E3) = Ej ) and (Dy), (E¥) = Ef
— There exists 0 < A < 1 and C > 0 so that
H(Dfn)x v| = CA" v, foreveryv e ES, n>0

and
[(Dg=n) u| < CA"|Ju|, foreveryu € E¥, n > 0.

A topological Markov shift (TMS) on S is the shift on a shift invariant subset & C SZ of the
form
Sai={xeS”: Ag iy, =1},
sres 18 2{0, 1} valued matrix on S. A TMS is mixing if there exists n € N
such that A, > 0 for every s, 7 € S.

Markov partitions of the manifold M asin [3, 20, 6, 2] are an important tool in the study
of C17® Anosov diffeomorphisms. They provide a semiconjugacy between a TMS and the
Anosov transformation f. One of the important contributions of this paper is that it uses
a connection between inhomogeneous Markov chains supported on a TMS to the Anosov
diffeomorphism with the push forward of the Markov measure.

where A = {As,}

EXAMPLE 2. — Consider f : T? — T? the toral automorphism defined by

Fy) = (x + yhox) = (1 (1)) (;) mod 1,

where {t} is the fractional part of ¢. Since \det ( 1 (1))| = 1, f preserves the Lebesgue measure
on T2. In addition for every z € T2, the tangent space can be decomposed as span {vg} &
span {v, } where v, = (1, 1/¢) and vy = (1, —¢) . Here and throughout the paper ¢ denotes

the golden mean (¢ := HT“E).

For every w € V,, := span {v,} and z € T?

11
Dr(z)w = w = Quw,
7 (2) (10) @

Forevery u € Vy := span{vs} and z € T?, Ds(z)u = (—%) u. These facts can be used

(cf. [2, 3]) to construct the Markov partition for f with three elements {R;, R,, R3}, see
Figure 2.1.
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Vs

FI1GURE 2.1. The construction of the Markov partition

The adjacency matrix of the Markov partition is then defined by 4; ; = 1if and only if
intR; N f~! (intR;) # @. Here the adjacency matrix is

101
A=]101
010

Let @ : £4 — T? be the map defined by ®(x) := (,2_., /" Rx,. Note that by the Baire

_ )\
Category Theorem since {ﬂf,\;, N "Ry, }N ) is a decreasing sequence of compact sets,

—0o0

®(x)is well defined. The map @ : ¥, — T?is C(;ntinuous, finite to one, and forevery x € 3,,
PoT(x) = fod(x).

In other words, ® is a semi-conjugacy (topological factor map) between (25, T') to (’]I‘z, f )
In addition, for every x € T2\, ¢z U?=1 S 7" (0R;) there exists a unique w € X, SO
that ®(w) = x . The Lebesgue measure mp2 on T? is invariant under f. One can check
that mp2 (U?=1 BR,-) = 0 and thus ®~! defines an isomorphism between (T2, my2, f) and

(ZA. Mg, T) Where jir, q is the stationary Markov measure with

[+

|H

J’_
<
-+
S

@.1) Pi=Q:=| -

[+
hS)
- O O

S +
S +
hS)

and

22) 7w =Bg:= (l/ﬁ, 1/9+/5, 1/¢¢§) = (mg2 (R1) ,mz2 (R) ,m2 (R3)).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



74 Z. KOSLOFF

2.2.1. Nonsingular Markov shifts:— Let { Pp},—_.. C Msxs be a sequence of aperiodic and
irreducible stochastic matrices on S. In addition let {r, },=_., be a sequence of probability
distributions on S so that for every s € S and n € Z,

23) > wuer(0) - P (1.5) = 7 (s).

teS

—00

Then one can define a measure on the collection of cylinder sets,
bl ={xeSt: x;=b; Vj ek IINZ}
by

-1
i (114) = 7 i) [ 25 (b By1)

j=k
Since the equation (2.3) is satisfied, u satisfies the consistency condition and therefore by
Kolmogorov’s extension theorem j defines a measure on SZ. In this case we say that u is
the Markov measure generated by {m,, P,},c; and denote u = M {n,, P,: n € Z}.
By M {r, P} we mean the measure generated by P, = P and n, = m. We say that p is
nonsingular for the shift 7 on SZ if Ty ~ p.

2.3. Local absolute continuity

Let (X, JB) be a measure space and ¢f, C oA be a filtration of X. That is an increasing
sequence of o-algebras such that &7, 1 3. The method in [10, 18] uses ideas from Martin-
gale theory in order to determine whether two Borel probability measures ., v are absolutely
continuous.

DEFINITION 3. — Given a filtration { ¥, }, we say that v <!°¢ u (v is locally absolutely
continuous with respect to u) if for every n € N, v, < p, where v, = v P

Suppose that v «'°° u w.r.t {F,}, set z, = %. The sequence z, is a nonnegative
martingale with respect to of,, and thus by the martingale convergence theorem there exists
a [0, oo] valued random variable zo such that lim, o 2, = Zeo a.s. It follows that if v «1°¢ 1
then v « wif and only if z, — 2 Zoo in L' (u). The latter holds if and only if the sequence

{zn}n— is uniformly integrable meaning that for all € > 0 there exists M > 0 such that for
alln €N, [ z,1[z,>mdp < €.

2.4. Section’s overview and explanation of the method of construction

The idea is as follows, let f(x,y) = (x + y,x)modl, {R, R,, R3} be the corresponding
Markov partition for f, %4 the resulting topological Markov shift and ® : X4 — T? the
topological semiconjugacy with the shift. In addition Q will always denote the transition
matrix corresponding to the Lebesgue measure.

— In Section 3 we present an inductive construction which produces a family of
nonatomic inhomogeneous Markov measures which are fully supported on
¥4 C {1,2,3}” and are of type I1I;.

4¢ SERIE - TOME 54 — 2021 —N° 1



CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2 75

— Let p be such a Markov measure generated by {mx, Px : k € Z}. Since p is conser-
vative O, gives zero measure to the images of the boundaries of the rectangles
of the Markov partition. The latter property implies that ® is an isomorphism
of (T2, ®xp, f) and (T, p, Shift) and thus (T2, @, pu, f) is a type III; dynam-
ical system.

The type III;, inhomogeneous Markov measures for the shift on ¥, have the additional
property that for every k& < 0 the transition matrices of p at k are the same as the ones
arising from the Lebesgue measure (Vk < 0, P = Q). This implies that (after a rotation
of the coordinates to the vy, vy coordinates) with ® : ¥, — T being the semiconjugacy map
arising from the Markov partition we have

d®.pu(x,y) = dvt(x)dy.

Here v7 is the image by the push forward on the stable manifold of the Markov measure
on {1,2,3}" given by {my, Px}7—,. This property will be used (see Subsection 2.5) to show
that there exists an homeomorphism G of T? such that mp2 o G = ®,u and the trans-
formation G o f o G™' : (T%, mp) — (T2 mqp2) is measure theoretically isomorphic
to (T2, @ p, f) D, hence a type I11; system.

The harder part in the proof of this theorem is to construct a homeomorphism H : T2 — T?
so that

1. moH ~ ®,u = m o G. Consequently the system (T2, B2, mq2, Ho fo H™')is
of type Il because it is measure theoretically isomorphic to (']Tz, Brz,mp2 0 H, f )
and the fact that the type I11; property is invariant upon changing the measure to an
equivalent measure.

2. Ho foH 'is C! and Anosov.

In order to obtain this goal and to explain the definition of G it is easier for us to build f as
the natural extension of the (non invertible) golden mean shift Sx = gxmodl.

2.5. The map f as the natural extension of the golden mean shift

The partition {J; = [0,1/¢?], J> = [1/¢.1], J3 =[1/¢? 1/¢]} is a Markov partition
for the golden mean shift with A (the same matrix as the one for f') as its adjacency matrix.
See Figure 2.2.

Denote by o the one sided shift on £ It can be verified that (27, vr.q. 0) is isomorphic
to (T, mr, S) where mr is the Lebesgue measure on T. The natural extension of (EI, V10,Q> o)
is (24, M {mq. Q} . o) which is isomorphic to (T2, mreb, f). This shows that f is indeed the
natural extension of the golden mean shift. To see the geometric picture of how S and f are
related one can look at the Markov partitions and move to the V,,, Vi coordinates. On those
coordinates f acts almost as

(u,v) (<pu mod 1,—<p_1v) — (Su’_(p—lv)’

() The isomorphism (T2, mp2 0 G = ®yp, f) N (T2, mp2,Go foG™1)isclearly r = G.Indeed G is
a homeomorphism, hence measurable and invertible (and G~! is measurable), G o f = (G f G*I) o G and
(mTz o G) oGl = my2.
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FIGURE 2.2. The Markov partition of ¢x mod 1

where the mistake is in the second coordinate. To make it precise let

M =[0,1/¢] x [—¢/ (¢ +2).¢*/ (¢ + D] U [1/@, 1] x [-¢/ (¢ +2). 1/ (¢ + 2)].

Define f ‘M — M by

- B (px,—¢71y), 0<x=1/g,

See Figure 2.3 for the way f maps its 3 rectangles, as can be seen by this picture the action
of f is the same as how f acts on its Markov partition.

FIGURE 2.3. Action of f on its (soon to be) Markov partition

In order that f will be the same as f, we identify by orientation preserving piecewise
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translations the following intervals (for a geometric understanding one can see that this
identification comes from the way the Markov partition of f tiles the plane):

{0} x[0,¢%/ (¢ +2)] = {1} x [~¢/ (¢ +2).1/ (¢ +2)]
{0} x [—¢/ (¢ +2),0] = {1/} x [1/ (¢ +2).¢*/ (¢ +2)]
[0.1/9°] x {¢*/ (¢ +2)} = [1/9*, 1/9] x {—¢/ (¢ +2)}
[1/0°,1/¢] x {¢*/ (¢ +2)} = [1/9, 1] x {=¢/ (¢ +2)}
[0,1/¢?] x {=¢/ (¢ + 2)} = [1/p, 1] x {1/ (¢ +2)}.
The resulting manifold (which is T?) will be denoted by M. in order to remind the reader of
this change of coordinates and the geometric relation between f and S.

In M, d®.u(x,y) = dvt(x)dy where vt is a non atomic measure on T. This means
that the circle homeomorphism 4 (x) = vT[0, x] takes the Lebesgue measure on T to v
andh (1/¢) = u(x; #2) = (%. The homeomorphism of M. defined by G(x, y) = (h(x), y)
takes Lebesgue measure of M. to ®.u. The perturbed homeomorphism H : M. — M.
which will be constructed is of the form H(x,y) = (hy(x),y), where for
y € [—(p/ (0 +2),0%/ (¢ + 2)], hy :T—T is a circle homeomorphism such that
mr o hy ~ vT. This construction is carried out by the following steps:

— the first step is to work on the action of f on the unstable manifold which is the golden
mean shift and to construct a circle homeomorphism i such that h o S o A1 is C!
expanding and mr o h ~ vt. A further important property of the homeomorphisms
which we construct is that / (J;) = J; for all elements of the Markov partition
of S. This will imply for example that (}; (x), y) is an homeomorphism of M. This
step involves adding another parameter for the inductive construction of the measure
w = M{Py,m; : k € Z} and is carried out in Section 4.

— in Section 5 we modify construction of these homeomorphisms / in order to construct
the functions %, in the definition of H. A major challenge in this step is to ensure

o No =1, .
that % is defined and continuous.

3. The type I1I; Markov shifts supported on X4

Here we present the inductive construction of the inhomogeneous Markov measures.

3.1. Markov Chains

3.1.1. Basics of Stationary ( Homogeneous) Chains. — Let S be a finite set which we regard
as the state space of the chain, & = {7(s)};cs a probability vector on S and P = (Ps ;) 5
a stochastic matrix. The vector 7 and P define a Markov chain {X,,} on S by

VnelZ, Pr(Xy,=0n@l) and P(X, =5 | X1,..., Xp1) := Px,_, s

P is irreducible if for every 5,1 € S, there exists n € N such that P, > 0 and P is aperiodic
if for every s € S, ged {n Y 0} = 1. Given an irreducible and aperiodic P, there
exists a unique stationary probability sp (that is pP = mp). In addition for every s,f € S,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



78 Z. KOSLOFF

P!, —— mp(¢). Since S is a finite state space, it follows that for any initial distribution 7
» n—>o0

onS,
Py (Xy = 1) = 2; ()P ——> 7p (o).
SE
An important fact which will be used in the sequel is that the stationary distribution is contin-
uous with respect to the stochastic matrix. That is if {P},—, is a sequence of irreducible and

aperiodic stochastic matrices such that

[Py — Plloo := max ’(Pn)s,t - Ps,t‘ —0
s,teS n—o00
and P is irreducible and aperiodic then ||7p, — 7p||,, — 0.

3.2. Type III; Markov Shifts

In this subsection, let @ := X5, B := Ay, and T is the two sided shift on Q. For
two integers k < [, write g7 (k, ) for the algebra of sets generated by cylinders of the form
[b].. b € {1,2,3}/7F . That is the smallest g-algebra which makes the coordinate mappings
{w; (x) := x; : i € [k,I]} measurable.

3.2.1. Idea of the construction of the type 111 Markov measure.— The construction uses the
ideas in [11]. For every j <0
Pj = Qandn,- = 7,

where Q and g are asin (2.1) and (2.2) respectively. On the positive axis one defines on larger
and larger chunks the stochastic matrices which depend on a distortion parameter A > 1
where 1 means no distortion. Now a cylinder set [b]”, fixes the values of the first n terms in
the product form of the Radon Nykodym derivatives. We would like to be able to correct the
values in order that we can enforce a given number to be in the ratio set. This corresponds to a
lattice condition on A which is less straightforward than the one in [11]. However this is not
enough for a Markov measure, since the states are not independent, this forces us to utilize
both the convergence to the stationary distribution and the mixing property for stationary
chains.

Another difficulty is that the measure of the set [b]",, N T~V []", N {(TN)/ A a} could

be of very small measure with respect to u ([b]’i n). To remedy this problem, and enable
approximation of general sets, we look for many approximately independent such events so
that their union covers at least a fixed proportion of []”,.

More specifically the construction goes as follows. We define inductively 5 sequences {A 7 },
{mj}, {n;}, {N;} and {M;} where

My =1
N; :=Nj_1 +n;
Mj = Nj + mj.

This defines a partition of N into segments {[M;_1, N;), [N;. Mj)};il. The sequence { Py}
equals Q on the [N;, M;) segments while on the [M;_;, N;) segments we have P, = Qy;»
the A; perturbed stochastic matrix. The Q segments facilitate the form of some of the Radon
Nykodym derivatives while the perturbed segments come to ensure that u 1. M {nQ, Q} and
that the ratio set condition is satisfied for cylinder sets.
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Notation: By x =a £t bwemeana —b <x <a+b.

3.2.2. The construction.— For A > 1 let

_|_
0

O
—_

Choice of the base of induction: Let Mo =1, A; > 1, ny =2, Ny =3 and Q; := Qjy,
be the A; perturbed matrix. Set P; = P, = Qy and nyp = 7g. The measures 7, 775 are then
defined by equation (2.3). Letm; = 3and thus M; = 6.Set P; = Qfor j € [N1, M) = [3,6)
and 73, 74, 5 be defined by equation (2.3).

Assume that {A;,m;,n;, N;, M; }j,_:ll have been chosen.

Choice of A;. — Notice that the function f(x) := x 1:"’ is monotone increasing and contin-
uous in the segment [1, co). Therefore we can choose A; > 1 which satisfies the following

three conditions:

1. Finite approximation of the Radon-Nykodym derivatives condition:
1

(3.1 (A)>™M=1 < e
This condition ensures an approximation of the derivatives by a finite product.

2. Lattice condition:

1 1 N
(3.2) Az_l-ie(xl- +‘”) ,

14+ ‘P)Ll—l 14+ (pkl
where a := {a" : n € N}.

3. LetQ; := Qy, and mq, be its unique stationary probability. Notice that when A; is close
to 1, then Qy is close to Q in the L, sense. Therefore by continuity of the stationary
distribution we can demand that

1
2_1.
Choice of n;. — It follows from the Lattice condition, Equation (3.2), that foreach k </—1,

1+¢ 14 ¢ )N
e ——— ) e n- .
(k 1+¢kk) (l L+ oA

Choose n; large enough so that for every k& < [ — 1 (notice that the demand on k = 1 is
enough) there exists N 3 p = p(k,l) < 7% so that

14+¢ \” ( 1+<p)
3.4 Ap- =(Ar - ——— ).
G4 (l 1+¢x,) T ok

Till now we have defined { P;, r; }ju . By the mean ergodic theorem for Markov chains
[15, Th. 4.16] and (3.3), one can demand by enlarging n; if necessary that in addition

(3.3) I = 7qlloo <

nj

1 I 1
(35) Vanilel X Z Zl[xj=1] = % +2 >1-— 7,

Jj=1

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



80 Z. KOSLOFF

and

3.6 1y 1 ! -
(3.6) Vam,_ Q| X - ”_l; [xj=2’x./+1=3]>E ~ o

where v is the Markov measure on {1, 2, 3}N defined by Qy and mpy,_, . The numbers inside
the set were chosen so that

‘an(l)—l/\/g‘ <2,

and similarly for / large enough

[ 102090 0= 700 @12 = (2 £ 5 ) i > 5
Choice of N;. — Let N; :== M;_; + n;. Now set for all j € [M;_;, N;),
Pi=Q
and {r; };VLM[_I 4, be defined by equation (2.3).

Choice of m;. — Let k; be the (1 + (%)3N’) mixing time of Q. Thatis foreveryn > k;, j € N,
Ae F(0,)), Be F(j+n,o0)and initial distribution 7,

(3.7 V7.0 (ANB) = (1 £373M) vz 0 (4) vrg.0 (T“HB) .
Demand in addition that k; > N;. Let m; be large enough so that

(3.8) (1- 9—3N,)'ﬂ1/4k1 < %’

and

(39) (mi— N) AN = 1.

To summarize the construction. We have defined inductively sequences {n;}, {N;}, {m;},
{M;} of integers which satisfy

My < Nipv =M +n; <Mpyy = Nigr +myq.

In addition we have defined a monotone decreasing sequence {4;} which decreases to 1 and
using that sequence we defined new stochastic matrices {Q;}. Now we set

Q /=0
(3.10) Pii=4Q, M_,<j<N
Q N =<j<M,

and r; = zp for j < 0. The rest of the 7;’s are defined by the consistency condition, equa-
tion (2.3). Finally let u be the Markovian measure on {1,2,3}” defined by {x;, P; };’i_oo.
Notice that for all j € N, suppP; = suppA = suppQ.

THEOREM 4. — The shift ({1,2,3}2,,u, T) is nonsingular,conservative, ergodic and of
type 111;.

The proof of Theorem 4 is given in the appendix.
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4. Type 111 perturbation of the golden mean shift arising from Markovian measures

4.1. A perturbation of the golden mean shift

Let v = M {my, Prlre_o be the type III; (for the shift on {1, 2, 3}%) Markov measure
from Section 3 for the two sided shift. It follows from [19, Thm. 4.4.] that the one sided
Markov measure vt = M {my, Px }3=; on {1, 2, 31 is a type IIT measure for the (one sided)
shift.

Let Sx = gx mod 1 and J; := (0,1/¢?), J» := (1/¢,1) and J3 := (1/¢>, 1/¢) be a
Markov partition for S. Denote by

oo 3
Bd(S):= | JJas™m).
n=0i=1

Themap © : f — [0, 1], © (w) = (2o S Ju, is a semiconjugacy of (X3, 0) and (T, S)
and for each x ¢ Bd (S), ®~!(x) consists of one point (point of uniqueness for the ® repre-
sentation). Since the support of v is contained in G (o) := ®~! (T\Bd (S)), the map © is
a metric isomorphism between (X3, v",0) and (T, ©, (vt), S) and therefore the measure
pt = O, (vF) is a type III measure for S. Since u* is a continuous measure, its cumula-
tive distribution function h(x) = u™ ([0, x]) is a homeomorphism of T such that u* oh=1 is
Lebesgue measure on T. It follows that the map (T, mr,hoSo h_l) is a type III transforma-
tion, where m denotes the Lebesgue measure. The problem is that hoSoh™! is not necessarily
smooth, so we construct h, as in the idea of the examples of Bruin and Hawkins, close to b
in the C° norm such that

e hooSoh !is C! and uniformly expanding.
e myobe~pt.

e We will have in addition that h(J;) = J; for every i € {1, 2,3}, this extra property is
crucial for the extension to two dimensions.

Before we go through the construction we would like the reader to recall that the Lebesgue
measure on T is the measure arising from M {z, Q}. The main idea is to approximate the
change of measure between Lebesgue measure and u™ on the semi algebras

n—1

Rn) = {Cyppn = ﬂ S_kak X E€ETar ={Cyp: we Iy}
k=0
The construction goes as follows: We first assume that we are given a type 111 Markovian

measure defined by {Ax, Mg, Nk}, . Then we would like to choose inductively, mostly by
continuity arguments a sequence € = {e} that will give us the perturbation. However in
the end we arrive at a problem, namely that we need that the size of M} is relatively large
with respect to 1/€;_1. This problem will be solved by modifying the induction process of
Section 3 and adding the choice of the sequence € to the induction. The new induction will
be explained in Subsection 4.2.2.

REMARK 5. — Before we continue with the construction we would like to remind the
reader that at each stage in the inductive construction of the Markovian measure in Section 3
we can take A, to be as close to 1 as we like and n,, M;/N; to be as large as we want. This
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is because the conditions on A, ((3.1), (3.2) and (3.3)) are that A, is small enough whilst the

conditions on n; ((3.4), (3.5) and (3.6)) and M;/n; ~ m;/n; ((3.8) and (3.9)) are to be large
enough.

Special interpolation functions. — Givena > 0 we would like to define a Lipschitz function g,
so that gu(0) = 0, g,(0) = 1, gg(1) = [, gl (x)dx = @ and g/, (1) = a. We will use the
functions g4 : [0, 1] — [0, @] defined by g (0) = 0 and

1+ 3x- 2222 0<x<4,
go(x) = 1221, 1<x=<2
M -Gx-2%h Fsxsl
which have the additional property that if « > 1 then
S5 —1
1= inf g/ (x)< su x <ao?
xeml]g“ xqﬁﬂ]g“( )=—
andif% <« < 1 then
S5 —1
o’ < = inf ga(x) < sup gh(x)=1.
4 x€[0,1] xel0,1]

REMARK 6. — Forall o, e > 0,

/:g:x (g)dx =e/01g(’1(x)dx=ea
/u:g(; (u;x)dx = eq.

4.2. Realization of the homeomorphism of change of measures

and for all u > e,

For0 <e < % and A > 1, let ¥ 5 : [0, 1] O be the function defined by v 2 (0) = 0 and

g 242y (2) O<x=<e
g 1
Tieo 6<x5a €,
) (7). me<rsy
() =
S CCORESEEED
qu,\ %+€<x§l—e,
g( 02 (I_Tx), l-e<x =<1
=0

If € = 0 then by a rescaling procedure one can use these functions to define the cumulative
distribution function of O, (vﬂQA,QA). The function ¥ ; is basically an interpolation of a
piecewise constant function in order to make it continuous and that the following properties
hold:

1. ¥, ,(0) = ¢, (1) = 1. This is needed in order to glue ¥ ; with the identity function
and still have a C! function.
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FIGURE 4.1. The graph of y/ ;

2. For every €, A, by Remark 6,

1 €, x A2 (1 )
— )= ~)d )
we’k(w) |:/o g(l*.é‘fw)(e) T e T
1
v, 1/ —x _ Ay
+/1 Eg(l)f)ip)( € )dx:| - 1+ Ap

similarly Ve (1) = Ve () + (Ver ) = ven () = 1

3. By Remark 6, ¥ 1 (¢€) = _l%lfpl_(p

-€. Thus for every e < x < % —€,

2

Ve (x) = (Ve r(x) — Yer(€)) + Ve nle) =

’

14+ Agp
and
Ver) _
WG,A(l/(p)

Similarly, V. 2 (% + e) — Ve <%) = %e, thus for every % +e<x<l—e,

we,l(-x) - I)IIG,A(]/(p) — (p2 (x _ 1/(p) — X — ]/(p

WG,A(l)_WE,)L(l/(p) 1_1/90

4. ¢!, is Lipschitz with Lipschitz constant of the order 1/e¢ when € — 0 and for
every x € T,
4.1 A7 <yl (x) < A%
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Given two sequences €, > 0 and Ax > 1, let Y denote ¥, , .
Define an order on 2: in the following way. For w, z € Z:{, let
jw,z) :=inf{n e N: w, # z,}.

Then w < z if either wjq, ) =1 or wjw,z) =3 and zj;q, ;) = 2 (notice that in the latter
case j(w,z) = 1). This order has the following property. If [w]] # [y]} for some n € N, then
Crwr 1s to the left of Cpyyr if and only if w < y.

In addition for n € N we write X,,, x,, : ¥4 — T to be defined by

For n € N, denote by X4 (n) the collection of words w = wyw, - -+ w, with [w]] C Za.

We will define inductively a sequence {h,},—, of diffeomorphisms of T. Since
T = Uwesy ) Cruwyr and each i, k <nis onto T,

T= |J Hu (C[w]?),
wEEA(n)
where H,_1 := hpy—y 0o hy—p0---0hy.
— If N, <n < M, for some ¢ € N, then £, is the identity.

— If M;—; < n < N, for somet € N, then &, is made from #X4 (n) scalings of ¥, or
the identity. Let w(n, 1),..., w(n,#X(n)) be an enumeration of X, (n) with respect
to <. Set i, (0) = 0. Assume we have defined %, on Ufc_:ll H, (Cw(n,k)), we will now
define i1, on Hy—1 (Cwn.1))-

— Ifw(n,l), = 1, we define for z € Hy—1 (Cyn.1))-

z—Hy (gn(w)))
l(n,w) ’

) 1= Hyer ey (0) + Sn e
where w = w(n,[) and
((n, w) :=mr (Hp—1 (w)) = Hp—1 (¥n(w)) — Hp—1 (x,(w)) .
— Ifw(n,l), # 1then forall z € Hy—y (Cy(n,p))s
hy(z) = z.

— Note that since we have ¥, (1) = 1 for all # € N, it follows that h, (Hu—1 (Cw(n,1))) =
H,_; (Cw(,,’l)) for all n and /. Consequently, /4, is continuous. The differentiability

of hy, at points {H,—1 (x,(w)) : w € Xa(n)} follows from y;(0) = y;(1) = 1.
We need to define &, for alln € {M,};,. Here we apply a statistical correction procedure
which we will now proceed to describe. In what follows we assume that € is small enough so

that
me (v (Cuppn)) = (91 (Cpu) ) e (G| )
The first equality follows from property 3 of ¥, provided that ¢; is small enough so that for

everyw € X, theend points of C,, v arein [e1.07 —e1]U[e ™! + 1.1 — € JU{0, 071 1},
1

Aig
1+A10

e (HN‘ (C[wlf“)) =nt (C[wlf“) :
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and we have good knowledge of where the point in % proportion in H,_ (C[w]’f) travels.
However, since M, is generally much larger than N, we loose this control and the useful
equality

@2 (i (Cpenn ) ) = (€ ) e (€, | )

needs no longer to hold true. The role of /3y, is to take care that equality (4.2) holds true.

The function H I/Vt being a product of bounded Lipschitz functions, is a bounded Lipschitz
function. Therefore if M, is large enough with respect to N;, then (here we use the fact

that h, = Id for N, < n < My) HI/V, = Hz/u,fl is almost constant on Hps,—1 (C[w]M,>.
1

That means that for every 0 # x € Hy,—1 (C[w]M,) in the interior of Hps,—1 (C[w]M, ),
1 1

me (o)
Hz/w,—l(s)ds

“Hy, () -1 <1

w]{wt

Te,

By using a similar idea as in the construction of ¢ with the g, we define ks, restricted

to Hyr,—1 (C[w]M,) so that equality (4.2) holds. This is done as follows: for aq,a; € R,
1

let Gy, o, : [0, 1] — [0, a2] be defined by Gg, ,«,(0) = 0 and

oy + 15(ai—a1)x7 0<x<1/3,
(4.3) Gy (%) 1= 1 2271, V3=x =203
5a24—a1 + 22 @3x—1) 2/3<x=<1.

This function is a C! function which satisfies G/, , (0)=a; and G/, , (1)=Gq, 0, (1) =a>.

o],02 o1,02

Define @ : N x X, — (0, 00) by

! HE (s)ds = (Hi- (C[w]?“».
e (C[w]?“)c ” e e (C[th’)

[wly
In addition for a finite word w € ¥, (M;) we denote by w™ the predecessor of w with respect

. a(t,w)
to < restricted on X (M,). We define h;ut o Hp,—1(x) on C[w]{u, to be equal to o @ off

a(t,w™)
s,
on the left endpoint (which is in the boundary of C[w] um;) and an interpolation in between
1

at,w) =

an €;41MLeb (C[w]iw') neighborhood of the left end point of the segment C[w]{”f ,

by using G, «, for an appropriately chosen «, . Here €41 has to be small enough so that

the end points of {HMt_l (C[w]N,+1) : [w]f’wrl N (Nt+1)} are not in an €, neighbor-
1

hood of the left end point of Has, 1 <C[w]Mt). Formally hpr, © Hyr, -1l Iy is defined by
1

[w]1 t
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hag, © Hyg,—1 (xpy,(w)) = Hpg,—1 (X, (w)) and

x—=xp, (W)

R LT
Hj/lfllfl(x) €t+1mT(C[w]{w,

a(t, w), I, (W) < x < Xp, (W),

. Xy (w) < x < Xy (w),
h;wtoHMt_l(x)z ) —M[( ) Mt( )

where Xp, (W) = xp, (W) + €4 1m7 (C[w]{”f) It follows from the chain rule that for

X € C[w];w,,

x—xpr, (W)

Hyy, (x) = oty att) ) o Xy, () = x < Sag, (),

€ mr|C
41 T< [w]{u,

at,w), Im, (w) <x < iy, (w).

€41 1

L, (w) fi‘]\,{t (11))

[w]{”’ when a(t, w) > a (t,w™)

FIGURE 4.2. The graph of HI/\/I, restricted to C

CLAIM 7. — There exists §;+1 such that if €,41 < §;41 then:
(a)forallw € X5 and M, <n < N;+q

g, (Cpugprr) = Hotit (Cpuppre) = v (Cpuppe).
(b) Equation (4.2) holds.

Proof. — Let §;+1 be small enough so that the end points of

%HMI—I (C[w]N,Jr]) : [w]llthrl € ZA (Nt+1)}
1
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are not in a 8,41 neighborhood of {Hpy, 1 (x;, (W) : W € Ta (M;)}. As a consequence
HI/M,(X) =a(t,w) forallw € X4 and x € {1Nz+l(w),5c;vt+l(w)}.
Fix w € X4 and €;41 < §;+1, we first prove (a). Write for convenience x = x,,, (w),

%= f,(w)and £ = X 4 11 (R—x) = xp, (W) + €q1my (C[w]Mt). In this notation
1

X —X = €yq1mr (C[w]Mt) and @ we have
1

Hy, -1 (C[w]{‘/”) = (Hy,—1 (x), Hyy—1 (X)) = Hyg—1 (x) + (0, Hpyg, -1 (X) — Hyp, -1 (1))
In addition, since hps, © Hy,_, (x) = Hpy,_, (x), then
Ht, (Coypt ) = Hity (&) + (0. Hyg, (¥) = Hyg, ()
= Hy,—1 (x) + (0, Hy, (X) — Hy, (X))
This shows that (a) is equivalent to showing that
Huy, (%) — Hu, (x) = Hyuy—1 (%) — Hpy—1 ()
Now

X

Hu, (¥) — Hy, (x) = | Hy, (s)ds

—

5 —X

X
- [ G-y attw) (—x — x) ds + a(t,w) (% — %)

X—X s
/ - A
- /0 a(t,w™)at,w) (fc —l) ds +a(t,w) (x —X).

For all o1, 5,8 > 0, f(f Goy o (5) dx = 8. Whence
Hpy, (X) — Hy, (x) = a(t, w) (X — x) +at, w) (X — X)
= a(t.wyms (Cryppn
= Hy,—1 (X) — Hyp—1 (),

we have finished the proof of part (a).
To see part (b) notice that if x ¢ C[ Ve then Hyy, restricted to C[ Ve is linear with
wlh wlh

slope (¢, w). This shows that
me (Hag, (Cpyppn )) = et wyme (C[w]fl\/z+1)
mr (C[w]i\m—] )
mr (C[w]{\/h)
= m (Har, (o)) (C[wh’i’,i‘l { C[wllM’) ’

@ For an interval / andapointx,x + 1 ={x+y: yel}.

=T (HMf (C[w]?“))
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as required. If x € C[w]/v,Jrl then C[w]/v,Jrl = [g YN,H(w)) and thus as in the proof of
1 1

part (a)

mr (HM, (C[w]f’f“ )) = Hu, (¥n,4, (W) — Ha, (%)

x—x s _ A
= \/0\ &(t,w—),a(t,w) (H) ds +a(t,w> (XNI+1 (U))—.x)
=a(t,w) (¥n,4, W) —X) = a(t, w)mr (C[w]fl’“) .

Continuing as in the case x ¢ C_ _~,,, one arrives at the conclusion. O

[w],

REMARK 8. — Animportant feature of this construction that will be used in the extension
to two dimensions is that for any 1 <[ < #3,(n),

4.4 hy (Hn=1 (Cwn,)) = Ha=1 (Cw@,p) -

This in turn implies that foreveryn € N, &#,(x, y) := (Hn(x), y) is a diffeomorphism of M.
and the Markov partition {R;, Ry, R3} for f defined by

2
. ) ;
R JixX |\ =gz o | 1 €il3h
P
_e 1 | =
J2X o2 o2 | i=2.

is preserved by &#,,.

THEOREM 9. — There exists a choice of Ay |, 1, {nx, my, Ng, My }rey C Nande = {€x}ren
so that:

(1) The Markov measure from the construction of Section 3 is a type 111} measure for the
shift on 3.

(ii) The function Y is a circle homeomorphism and we have mtobhe ~ pu™, where
put = O M{Pr, iR,

(i1) The functiong =h o S oh™"is C!, and for every x € T,

1.6 <g((x) <17

The proof of this theorem is by showing that we can realize smoothly the inductive
construction of Section 3 (with three extra conditions) and include a new sequence {¢, } in it
so that the following properties hold:

1. b := lim,— o0 Hy is a homeomorphism of T.

2. gn:= Hy 0 S o H, !is aconvergent sequence in the C! topology.

3. The limit function g = limy—00 gn = he © S 0 b1 satisfies 1.6 < g/(x) < 1.7,

4. mrohe ~ u™.
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4.2.1. The inductive choice of {€;}72,.— Before we continue we would like to set up some
notations which will be used.

— Givene = {e;};_,; andn < N, we denote by k , the function in the construction with
the sequence € at level n.
— Forj < Ny, He,j := he johe j—j0---ohe 1. The function H, ; only depends on {e;}:_,

— Hy,; will denote the function with € = 0.

LEMMA 10. — Assume that {es}gzl were chosen so that foralls < t andx € T, h’g’Ms (x) =

o2 If M, is sufficiently large with respect to N, and €;41 is small enough then the following

two properties hold:
(1) Forallx € T,

—N
L () =
(i) Let w € ¥ and M, < n < N;41. Denote by £(n, w) = x,(w) + % (*n(w) — x, (W)
the point in % proportion in Cluyr- Then

Hg,n—l (sn (w)) - Hg,n—l (ln (w)) _ 1

Hen—1 (Xn (0)) — He -1 (x,,(w)) Bl ¢
That is the (reference) point in é proportion in Cru travels under He ,—; to the reference

pointin H ;4 (C[w]’f).

Proof. — In the course of the proof we write for n < Nyy1, hy = hen and He, = H,.
Let$§ > 0. Since &, is the identity for N; < n < M, then Hy,—1 = Hp,. The function Hz/v, 1S
a product of N; bounded Lipschitz functions and inf;¢[g,1) H 1/\’; (x) > 0. Therefore there

exists K(t) > 1, which depends only on {Ag, Ny, Ms,es}g;ll and {Ny, A;, €;}, such that for
every x,y € T,

|Hig,—1(¥) = Hyg, )] = [Hy, (x) = Hy, )] < KO)|x = y|
and for every x € T,
(4.5) K@) < [Hpy,_1(x)] < K(1).

By uniform expansion of S, if M; is sufficiently large then

sup mr (HM,—l (C[w]Mt)) <o MVEK@) <
1

WEIA

K(1)?

This implies that for every w € £ and x,y € Hpr,— (C[w]Mt>,
1
| Higpo1(0) = Higy 0] = K@lx = y| < K@Omz (Hag-1 (Cpponr ) ) < 8/K).
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Averaging this inequality over all y € Hyy, 1 (C[w]M,), for every x € Hy,—1 (C[w]M,),
1 1
1

mr (C[w]zlwt ) C[w]zlvl,

|Hpg, oy (¥) =t w)] = [Hyy, 1 (x) = Hyy y(y)dy

< K(@)™'8.

If follows from this and the lower bound in (4.5) that for every x € C[w]Mt ,
1

a(t,w)

=
H1/1/1,—1(x)

< 4.

A consequence of the latter inequality which is proved by fixing x(w) = x,, (w) =Xp, (w™)
once on w and once on w—, is that

O[(t,ll)) _ Ot(t,w_)
Hy  (x(w))  Hy ) (x(w))

Part (i) follows by choosing an appropriate § and the definition of 7y, .

< 26.

Yw € Xa (My),

(it) By the definition of hyy,, if €;41 is small enough then equation (4.2) holds. Using
property 3 of v, .1, , a proof by induction shows that for all M; <n < J < Nyyq,

(4.6) m (Hn (Cpugy ) = me (Ha (Coyper ) ) mr (s, | Cluprs )

The conclusion follows since if w1 € {1,2} then Cy 2 = [Xp41 (W), Eng1(w))

Ho (1 (0)) — Hy (01 (0)) 77 (H (Curps2))

Hyp (Xn4+1(w)) — Hy (£n+1(w)) mr (Hn (C[w]7+1))
C[w]7+1)

=mqy(w2=1|w1=1)=—.
%

=m (g3

If w,+1 = 3 then C[w2l]'1’+3 = [{nﬂ(w), §n+1(w)) and then

Hy (§n+1(w)) — Hy (£n+1(w))
Hy (Xp+1(w)) — Hy (£n+1(w))

=mT(w2=2,w3=1|w1=3)=—. O
By part (i) of the previous lemma we can choose sequences {A;,n;, Ny, My, €:},en SO
that sup,er h, 5, (x) < e2 ™ forallf € N.

PROPOSITION 11. — Assume ¢ /A7 > 1.6, assume that for all t €N, supyep hl 5, (¥) < 2N

then
sup |h§,n(x) - x‘ <e(l1.6)7"
neN

and consequently lim,_, oo He n(x) = he(x) is a homeomorphism of T.
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Proof. — Ifforsomet < T + 1, M; <k < M, then,
4.7) sup h g (x) = sup Ve (5)] < 12 <A

Therefore for every n < M4,

mr (He,n—l (C[w]'{» < (;f[_l ilgr) h’g,Mk (x))) ){%”m'[r (C[x]*;)
(Z) () evor
< exp ZZ k (—) <e(l.6)™".

k=1 ¢

The invariance of He 1 (C[w];z) under & , implies that

sup |h€ n(x) — x| < sup mr (Hg,n_l (C[w]?)) <e(l.6)™".
wEXA
Consequently for every n < m,
m

|H§,m(z) en(z)i Z

ek+1(z) g,k(z)|

|

k=

= > heks1 (Her(2) — Hei(2)]
k

=n

3

Zsup|hek+1(z)—z| <eZ(1 6)7".

k=n

This shows that {Hg,m}:;l is a Cauchy sequence in C(T). Its limit, being a continuous and
strictly increasing function, is a homeomorphism of T. O

LEmMMA 12. — Assume {ex Yoo, are already chosen so that for all s < t and x € T,
eMY (X) _ e:l:z

that for all €;41 < Si41

Y If M; is large enough with respect to Ny then there exists gt+1 > 050

N¢t+2
(4.8) gy, () = A e gl (x).

’ — 1
Here gy, = He,n, 0 S o He y

Proof. — Assume first that €, = 0 and since we are not going to vary € we write Hj,
and A, to denote H¢ , and h¢ . Since €,4; = 0, by Lemma 10 if M, is large enough then
h;u, (x) = ef27"" for all x € T. We assume that M, is large enough for this to hold.

Let z € T, there exists a unique y = y(z) such that z = Hy,,(y). By the chain and
differentiation of inverse functions, if gy, , is differentiable at z,

o T 59)

’
oy, (2) =
a N )
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Therefore since iy = id for all N; < k < My, Hy, = Hp,—1 and
Oy, () Hy, (Sy)  Hy (v)

gy, (2)  Hy,(Sy) Hy., ()
Nig1 Nyt -
= TT ni Hemr Sy || TT #i He=1 )
k=M; k:MI

Fix j € [M,, N;41). Notice that H;_,(y) € Hj_, (C[w]-{) if and only if

Hj > (Sy) € Hj— (C[wZ...wj]> .
and that by Lemma 10.(ii), H;—1(y) and H;_, (Sy) are to the right of f(C[w]j)
1

and & (C[wz,“wj]> respectively if and only if y is to the right of the reference point in C[w] -
1
Thus under the assumption that ¢;,4; = 0 forall j € (M; + 1, Ns41],
h}—l (Hj—Z (Sy)) _
R (Hj-1(3))
The last equality together with Lemma 10(i) implies that if M, is large enough then,
Oy, () Ry, (Hagooa (S)) My, (e —1(Sy)) N0 1 (Hj (S)

I

0@ By Hao ) By a0 AL T (H0))

=1

- ()“?Jrlez_NlH)il
The last inequality uses the fact that for [ € {M; + 1, Nyy1} and z € T, |h)(2)| = A7,

In [7] they argue that the estimate on the derivative is continuous (uniformly) with respect
to €;41 since Wé, auyy CODVETEES pointwise to W(/), P when € — 0. However this convergence
is not uniform (and it can’t be as it converges to a step function) and therefore their argument
is not sufficient for convergence in the C! norm.

We proceed as follows. Forn € (M,, N;4+1] and w € ¥, with w,, = 1 denote by BS(n, w),
the Bad Set at stage n for w, to be the following set

A 2 2
Y €Cuyy : ¥6>0 326 (v =4,y +9), h;oHn_l(z)H v 3 }}

L+ 419" 14 A1
This set, which is a union of four small intervals, is the set of all y € C[w]rf where the derivative
of h), o H,_; is not constant on a neighborhood of y.

First we demand that §;4; is small enough so that the conclusion of Lemma 10 and
equation (4.6) holds for all €;4+1 < 8;41.

Secondly we demand that 6,47 is small enough so that for M; < n < m < N4, if

BS(m,w)NBS (1, w) # @ then one of the end points of H,,_; (C[w]'f’) is either an end point

of Hy,_4 (C[w]zf) or the point in % proportion in H,_ (C[w]rlz).
To understand why we choose these points, notice that in those marked endpoints

h,(x) = 1.
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v \J v
z, (W) &n(w) Zp(w)

F1GURE 4.3. The small intervals demonstrate the possibilities of locations of BS(m, w).

This can be done if for example @

) ()

—m
) UL N
> > 1+1-
e (Hé,n—l (C[w]'l')) P2AL 4 5

Indeed, if €41 < 8;+1, then BS(n, w) is the union of four subintervals of He ,—; (C[w]’l’) of

considerably smaller length than He ;1 (C[w]'{') and thus their bad sets can only intersect
in a unique interval if either X, (w) € {X,(w), &, (w)} or x,, (W) € {x,,(w), & (w)}.

In fact with such a choice of 8,41 one has that forall w € X, and M; <n <m < N;4q,
BS(n, w) N BS(m, w) is always one interval for which one of its end points satisfies

(4.9) Iy (Hye1 (x)) = 1.

In addition,

mr (BS(n, w) N BS(m, w)) . e T (C[wm)
hlo...oh N 1/
e @Sy = sp m) () (Ctur)

o\ n—m
< (ﬂ) <o,
@

By the definition of A ,, k., o H,—1 is a Lipschitz function with a Lipschitz constant of

&n

order Const./mt (BS(n, w)).

It follows from (4.9) and (4.10) that there exists a constant B > 0 such that for all
y € BS(n, w) N BS(m, w),

(4.10)

iy (Hy () = =50

The final argument is as follows: given x € T there is a unique y € T such that

x = Hpy, ,(y). Let w be such that y € C N,+1 Ify¢ Uflv’;,} +1 BS(n, w) then a similar

analysis as in the case €;41 = 0 yields the conclusmn Otherwise there exists a maximal
M; <J = J(y) < N¢41 such that y € BS(J, w). A similar argument as in the case €,41 = 0
yields

Nyt

’ hk (Hk 1 (Sy)) 44
4.11 = | | — 7 =) o Hy_ .
( ) gN,+1(Z) a iy (Hr—1 (7)) z+1gJ 1-1(y)

(3 Here notice that SUPp <k <N, 41.xET ARES) ( < A?—ﬁl irrespectible of the choice of €.

x) —
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For M; +2 <n < J— M,;/4, either y ¢ BS(k,w) for all kK < n and then we proceed as in
the case €,41 = 0 or y € BS(n, w) N BS (J, w) and then,

Iy 0 Hyoa(y) = 500",
In addition, S (BS(n, w) N BS (J, w)) is an interval of size gmt (BS(n, w) N BS(J, w)) with
one point x for which™® h} o H,_;(x) = 1. Therefore as before,
0 Huo(Sy) = e*P0O",

hy (Hg—1(Sy)) <4

Thus, using that for all M; <k < N;4q, W 0)) = Mt
" (Hy—

gyoHy—1(y)

Ry (Hpg,—1 (Sy)) JMi/4 eyt B (Hi—1(Sy))
< dly, (Hi, 1)) [T o™ T S g

By, Ha—100) 5L ety (e ()
< (g, () e® " 7) OO M,

The upper bound follows from the last equation together with (4.11) since M;/4 > N,. The
lower bound is similar. O

A consequence of Lemma 12 is that we can choose € = {e;}z~, so that gy, and Dy,
converge uniformly to a map g with

(412) Dg(x) =¢- (1_[ )L;tMt—l) . ez,oil 2_Nt+4’.

teN

By taking care that for each ¢ € N, Aﬁw"‘ is small enough and the N, are large enough,

o0
1.6<¢- (l_[ k,iM’_'> - exp (Z2‘N’+4) < 1.7,

teN t=1
thus the limiting transformation g is uniformly expanding. What remains to be shown before
we can explain the modified inductive construction of {Ag, My, N, €k }rw; is that we can
choose € so that mp o he ~ ut.

LEMMA 13. — Assume that u™ is a push forward via © of the Markovian type 111 measure
Sor the shift defined by {Ai, my,nk, My, Ni}rey . Then there exists a sequence & = {ex }pey
such that for every € = {ex}rwy Which satisfies Vk € N, € < &, the function Y defined
previously satisfies

mr o he ~ ,u,+.
Proof. — The proof of the lemma will be done by applying the theory of local abso-

N; - weEA}.

lute continuity of Shiryaev with &7, the sigma algebra generated by {C[w]
1

For € = {e;}32,, we will use the notation ¢, (x) := h[ , (Hen—1(x)).
Given € = {€;}3—;.

(mﬂ-obg)t = mﬂ-ob§|§r =mro He N,

) x is either an end point or the point in % proportion in Cpy, ... w,41]-
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and
(1*), == plg, =mro Hon,.
A calculation shows that

d(mTobé)t éNt( x)
e, VT H @

Writing Ijli,k,, for the function Hs k),n, With

z:(x) =

€, 1<j=<k

S (e, k); =
&b 0, >k,
and noticing that I-?g(g,o), N, = Ho,n, we get
‘o OH! (%)
(4.13) zi(x) = 1‘[ L

k=1 ek lt(x)

By [18, p. 527 Remark 2] it remains to show that we can choose ¢ such that if for all k € N,
€x < &, then {z;}7-  is uniformly integrable with respect to ;. We proceed to show how to
choose ¢. Let x € T\Bd (S).

Fix k € N. By the chain rule and the fact that Hs x),m,_, = Hs(e,k—1),M,_, One sees that
Ny N
ekt(x) B ﬁ Psek)l (X) | 1—1 P5(e.k).1 (X)
H, L) I=M 11 P3Ek=.1(X) 1=, Poek—1(X)

First we will want to prove that if €; is small enough, then

N;
4.14) I Pkl () 316~ Nic
I=n, Poek— 1)l(x)

To see (4.14), first notice that since for every s > k and Ny < n < Mj,

hs(ejyn = hsek—1),n = id,

thenforallk <s <t —1,

My—

l—ll P8 (e.k),1 (X) _

1= n, Poek—1,1(x)

Secondly, for s > k and Mg < n < Ngy, there exists w € 3, such that x € C[w]'1'~ Ifw, #1
then ps(e.k),1(X) = Ps(e,k),1(x) = 1. Otherwise notice that for n € {§(e,k),8 (e, k — 1)},
Ns+1 = 0and Hy ,_1(x) is to the right of the point in l proportion in Hy 1 (C[w]n) ifand
only if x is to the right of the point in 5 in Cluwyy Therefore foralls > kand My <1 < Ns4q,
P8 (e.),1 (X) = ps(e.k—1),1 (x) and by Lemma 10. ),

t—1 Ny

l—[ l—[ 05 (e.k),1 (X) _ﬁ 05 (e.k), My (X)

sk 1=, Pk (X) 5 Paek—1).M; (X)

t—1 (1 6)—Nt
e —N,
< < 316Nk
- e—(1.6)~ Nt —
s=k

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



96 Z. KOSLOFF

We remark here that similarly one can get that

t—1 Ny+1

10 Psek)l (X) S o300V

ok 1=, Poek— 1,1 (x)

which in turn shows that there exists ¢ > 1 such that

(4.15) 2(x) = ¢+ l—[ l—[ Psek)l(X)

k=1 1=y, Polek— Psek—10(X)

If for every t < k, we have chosen M, to be large enough so that Lemma 10.(i) holds then
there exists ¢ > 0 such that

‘ Nk
20 =TT ] P (e.),1 (X) _
k1 I=My_; +1 05 (e.k—1),1 (X)
Aser — 0,

Yr(x) =Yg 5, (X) = ¥, (%) pae x.

It follows that

05 (e.k).1 (X)

P8 (e.k—1),1(X) ex—0

lpae. x.
I=My_1+1

By Egorov’s Theorem there exists Ay € By, with u (Ag) > 1 — such that

1
2K [Tr =y (A)*"7

P8 (e.k),1 (X)
P8 (e.k—1),1(X) €x—0

1, uniformly in x € Ag.
I=Mj_1+1

The lower bound on the measure of Ay is chosen because for every €, > 0

ol Vi ™
(4.16) max 1_[ P () S(max Zekohk 7 ) = (Ap)*™ .

2VED ) ap T Poek—01 (7)) T \xreT Y5, (7)
Now we are finally in a position to define the sequence ¢. Let & be small enough so that for
every € with €, < g and x € Ay,

Ny
1 X 1
oo M <1+ L

k2 e Pk (X) T k2
Let € which satisfies for every k € N, ¢ < &. For large M, if for somen € Nand x € T,
zy(x) > M, then there exists ¢ = g(M) < n such that x € Ufzq A¢. Therefore by (4.15)

and decomposing the set [z, > M] by the last r < n for which x € A¢,

[, mednco =c [ 1 1‘[ Lred ) ) g

n>M) \ e =ty 1 Poek—1),1(X)

n Ny
< Z[ l—[ ﬁ 08 (e k)1 (X) du(x).

r gy A = 4] \ <t 1=ty 41 05 (e,k—1),1 (X)
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Ps(e.k).1 ¥)
—1+1 05 k—1).1(x)

8 N |y Iy P e PR
f—r145)

r=q(M) k=11=M; 108<g,k71),1(X)

. N; 1
SlnceforxeAj,]_[l;M =1+,

D> H( DL T e ) g

r=q(M)j=r+1 k=11=M;_ 1p5@,k—1),l(x)

o

n r Ny
<|T1 (1 + Lz) w(A)max [ [T T] Pkt ()

j= T | =g XT ot 1= by 1 PRI ()
4.16) | 1 n 1
< _ —_
S0+5)| 2 5
Jj=1 r=q(M)
s 1
S 279M) (1 + ,—) :
s [ (1

When M — oo then ¢(M) — oo and therefore

oo
1
sup/ Zp(x)dp(x) 5 2~a(M) | | (1 + —2) —0as M — oco.
[zn>M] J

neN j=1
This shows that {z,} is uniformly integrable and hence my o he ~ u*. O

4.2.2. The modified induction process for choosing {Ax, Nk, My, ng, mg, €} and the proof of
Theorem 9.— In the course of the construction here we arrived at two conditions on {€; } and
two extra conditions on {Ax, M }. In order to show the existence of these sequences one has
to modify the induction process of Section 3 as follows and insert the choice of {¢;} in the
induction.

In the proof of the previous lemmas we have an extra condition on the size of M, (or

= M; — N;) which is determined by {Ns, A5, Ms_1, es}gzl.

The choice of g;4 in Lemma 13, S,H in Lemma 12 and €,y in Proposition 10 is
determined by {N;, As, Ms_1, es}gzl and {N;41, M;}. We also need to take care that

oo
1.6<¢- (]_[ A?ZMf*) -exp (j: Zz—Nt+4) <17

teN t=1
This shows now that the order of choice in the induction is as follows

{As.ng, Ng,mg, M, €5} = Aiy1 = {1, Nep1} = €401 = {myg1, Myga} .

The modifications needed to be done in the inductive construction are: first change the
condition (3.1) on A;4; with the condition

Aﬁ"f < exp (2_N’),

as this involves making A;4; smaller this choice is valid. This gives that

o0 o
Q- (H AfZM"‘) - exp (j: Z2‘N’+4) =@ -exp (:l: ZZ‘MH) )

teN t=1 t=1
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By demanding now that Ny > 20, we get

o0 o0
@ (]—[ )szMf—l) - exp (:l: Zz—Nr+4) =g-exp (j: Zz—Nf“) €(1.6,1.7)
teN t=1 =1

as we required. There is no further change in the inductive choice of A;, n;, N; as they will
not depend on €.

Given {Ag, ng, Ny, mg, M, es}§=1 and N, ;1 we choose €, to be small enough so that the
conclusions of Lemma 10.(ii), Lemma 12 and Lemma 13 hold true.

Then we choose m, 4 based on the original constraints from Section 3 together with the
restriction that M;4+; = m41 + Ny41 is large enough so that the conclusion of Lemma 10.(i)
is true. Since this involves perhaps enlarging m;, 1 it is consistent with the other constraints
of the induction.

Proof of Theorem 9. — Choose {Ag, Nk, My, ng, mg, €k } 5=, as in the inductive construc-
tion. Build the Markovian measure n = M {Py, 7y : k € Z} determined by {Ax, N, My,
N, mi 3o = Py () and pu = Ox (M {Py, 7 : k € N}).

Part (i) follows from Theorem 4 since {Ax, N, My, ng, my }5—, satisfy the constraints of
the inductive construction in Section 3 hence it is a type I1I; measure for the shift.

(ii) and (iii): Since we chose € = {€; } so that the conclusion of Lemma 13 holds, it follows
that mrp o he ~ u™. As we chose the sequences so that the conditions of Lemma 12 hold, for
allt e Nand x € T,

gy, (¥) = exp (£27 V) LM gl (x).

o0
Therefore { QIN,} . is a Cauchy sequence in C (T), its limit function satisfies
t=

o0
1l6<g(x)=¢- (]"[ A?ZMI—I) -exp (j: ZTN“L“) <17 O

teN t=1

5. Type I11; Anosov Diffeomorphisms

Let {Ag,mg,ng, My, Ni}r—; and € = {ex}r= as in Theorem 9 and let b be the resulting
function. Set H¢(x, y) := (he(x), y) and
(8(x).—¢7ty). 0<x<1/p,
-1 @2
(9(35),—90 ( —m)) l/p<x =1

In the construction of Section 3, P, = Q forall k& < 0. Writing my; for the Lebesgue measure
on M. one then has

&(x,y) :=Heco fonl(x,y) =

dmy o H(x,y) = dut(x)dy = du(x, y),
or in other words my; o ) = ®«M {Py, 7 : k € Z}. Therefore since my o he ~ put,
=D M{Py,7x : k € Z} ~my ° He.

Consequently (MN, B, My, QS) is a type III; transformation. This is because (M., B~ .
myy, ®) is measure theoretically equivalent to (M, B, my o $e, f ) which is orbit equiva-
lent to (M, B, i, f).
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By Remark 8, &, is one to one and onto. In addition, for every (x, y) ¢ 0M, & is differ-
entiable in a neighborhood of (x, y) as all the partial derivatives are continuous in M\ M,

and
gx) 0
Dg(x,y) = ( 0 _¢_1>-

The problem is that  when viewed as a transformation of M.. is not even continuous on the
horizontal lines of 0M.

We define a sequence of functions r,(x,y) : T x [—¢/(¢ +2),¢*/(¢ +2)] > T.n € N
using the construction of the previous section. This defines a sequence 4, (-) := r, (-, y) :
(T or [0, 1/¢]) — T and

by (x) := nli)ngo hp,y o hy—1,y 0---0hyy(x),

where we will take care that the limit exists. The new examples will then be of the form

(b-y/p 0 S0 b, (x).—y/9) . x <1/

-1 ) : M. - M..
(’H/wﬁ oSohy (x),—y/¢+ <o_+2) 1/p<x<1

3(x,y) =

Particular care in the definition of h, is taken in order to ensure that if (x,y) ~ (%, )
then by (x) = by (X) as this is needed for the continuity of 3 on oM.

5.1. Definition of the coupling time on the horizontal boundary of M

Denote by

2 2
% 1 % ® ® 1))
Up:=1{]0,1 X -, — ullt/e, x| —, —m— + — ,
' ([ /9] (<p+2 ¢1°¢+2D ([/(p] [<p+2 p+2 @10

— bt I
Uz'_((l/(p’l)x(erZ ¢1°’¢+2DU([1/¢’1]X[ p+2 ¢+2+¢1°))

and M\U := U; U U,. Then M\U is a neighborhood of the horizontal lines of M.
In our construction for any (x, y) € U,

Th(x,y) = hp(x),
with £, the functions in the one dimensional example in Section 4. This means that for any
(x.y) e,
by (x) = be(x).
We now will proceed to specify the construction of b, (x) for (x, y) € M\U.
On the horizontal lines there is a problem that there are points (x, y), (X, ) € oM that
are equivalent in M. and

(he(x). y) # (he(X). ).

For example, consider the case x = 1/¢3, y = (o‘/’—fz and & = 1/¢, J = —%5. The point

is a fixed point for he meaning b (1/¢) = 1/¢. Since b (1/¢%) = m # (p% we get
(he(x), ») # (he (%), 7) = (£, 7).

However if we took care that ﬁ is a fixed point for b, then we will have the desired equality.

It turns out that the correct way to do this will be by setting hl,y|[o Ve = ha,y |[o e?) =
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FIGURE 5.1. The bands are M\U

Id|[0 1/e?) and to start perturbing (similarly as in the definition of %, from the previous
section) from n > 3. In general we will have a decomposition of the horizontal lines of dM
to {V;}72, and we will start perturbing at V; fromn > i + 1.

To be more precise the horizontal boundary consists of the lines [0, 1/¢) x {g02 /(o + 2)},
[1/0,1) x {1/ (¢ +2)} and T x {—¢/ (¢ + 2)}. We look at a countable partition of the
horizontal lines 0M which are identified by ~ and couple them in a time 7 € N such that
in the symbolic space on T, the move w(T)r — 1 is possible for both pieces identified.

5.1.1. The partition of horizontal subsegments of IM

1.V == [0,1/¢?) x {—ﬁ} ~ [1/@,1) x {(plﬁ} In this case [0, 1/¢?) = Cpyyr and

[1/p,1) = CDH and T (V1) = 2.

2. V2 = [0.1/¢%) x {55} ~ [1/0%.1/0) x [=5%}. Here [0.1/¢%) = Cpyype and
[1/62.1/¢) = Cigp and T (V3) = 3.

3. Vs = [1/¢%,1/¢?) x {;—fz} ~ [1/@.1/9 + 1/¢*) x {_ﬁ} Here [1/g.1/¢?) =
C[132]§ and [1/9,1/¢ + 1/¢*) = C[zn]? and T (V3) = 4.

4. Vy = [1/¢%1/9* + 1/9°) x {f_jz} ~ [/ +1/9* 1/¢ +1/¢%) x {—#}. Here
Cra211] = [1/92, 1/9* + 1/¢°) and Cpaizz) = [1/@ + 1/9*. 1/ + 1/¢3).
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; o O N R N (i
5. For general j > 4, V; := C[w(j)]{ X {(p+2} C[W(j)]{ X { ¢+2} where w(j), w(j) are
the following words of length j,

32---32132 j odd

w(j) =
/) {32-«'3211, J even

23...23211, j odd

w(j) =
) %23---232132 j even.

As is expected for all j > 2, T (V,) = j + 1. The following is immediate from the
definition.

Cram 14. — Forany j > 2,

S (Vi) = Vi,

and
~ 1
S (1) =10,1/¢) x {(p )

}CU.

5.1.2. Definition of the perturbation maps hy . — For w € X4 and n € N, we write again
Crwyy = [x,(w), ¥n(w)). Let

2

. ) [ 1
R : 1 [ 1
min w+2—y,y+¢+2} afxfl

be the minimal distance of (x, y) to the horizontal lines of dM. In addition we will write
y(x,y) : M — {—wL_;z, (ﬁ, w‘p—;} to be the value so that
u(x, y) = [y(x.y) — yl.

Under that notation (x,y(x, y)) is the closest point to (x, y) in the horizontal boundary.
Let (x,y) € M.

Case 1: (x,y) € U. - We do the regular construction as in Section 4. That is for any
Ny < n < My, hy is the identity. For any M; < n < Ny, if w, = 1 then h"'H (C ) isa
n—1\ S wif
rescaling of ¥, to the interval H,_4 (C[w]'f) and ifw, # 1thenh, |H ( ) is the identity.
n=1\ S}

If for some t,n = M; then hyy, o Hy, 1] a, is the distribution correction function in the
[w]

1
construction. Finally we set

T, (x, y) = hn,y(x) = hy(x)

and

Kny(x):=hyyohp_1,y0---0hyy(x) = Hy(x).
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Case2: (x,y) ¢ U. — Inthiscaseu(x,y) < w“’ Let (x,y(x, y)) € 0M be the closest point
on the horizontal lines of dM to (x, y). Let j(x, y) € N be the integer so that

(x,¥(x,¥)) € Vix,y)-

This means that either x € C (ifx < 1/¢p)orx e C[ Dl 1/ < x < 1). We will

i, the other case being s1rn11ar First we define for any

w(i1{
define the construction for x € C ()
x €C

]
W)
Ki(x, )56 (X) = x.

Then for any (x, y) € M\U such that x € C[w(j)]j we set
1

Kiy () = (Hy(x) = ) [ 3¢ (u(x. ) = 20™u(x. )° ] + x

For n > j(x,y), assume that we have defined for all j <k <n, hg,:=rr(,y) and
X € C[w]? C C[w(j)]jl . We set

= hn-1,y 0+ 0 hjt1,y 0 Kjy(x),

and

(. w) i= mr (Kot (G ) ) = Knmty Gin () = Kty (3 ().

Ifw, #1or N, <n < M, forsomet €N, then forall x € K,_1, (C[w]’l’)a r,(x,y) = x.
Ifw, = 1and M; <n < Ny and j < n then

Kn-1,y Qn(w)))
(v, w) '

Finallyif j < M; = n then ry, , is the distribution correction function with Hps, —; replaced

by KM; —1,y-

£n (6, ¥) = Knovy (5, (0)) + b (v, 0) ¥ (X

REMARK 15. — The 2 variable function
qr(x,u) = (Hy(x) — x) [3¢*%0® = 2¢°°v’] + x

was chosen because of its following properties:

1. qy (x,¢7'%) = Hj(x) and qj(x,0) = x. This means that for y € dM, r,(x,y) = x
and therefore Kj , interpolates between the identity map and H, e
[w@T

2. A consequence of the previous property is that 3 (x,0) = 1and an U (x,071%) = aa% ().

0Ky y
ax

This is needed in order that will be contmuous iny.

3. aq_, (x,0) = au L (x,'%) = 0 which is necessary for continuity ofalg—”

4. SUPp<;<4-10 ‘a—?j(x, 2)| = 2¢'%|Hj(x) — x|. We will show that the right hand side is
uniformly exponentially small when j — oo. The control of the derivatives in the y
direction is to our opinion the hardest part in this section.
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The idea behind this construction can be summarized as follows: for a fixed (x, y) which is
close enough to the horizontal segment on the boundary we first look at the coupling time
of the interval which contains the point closest to (x, y) on the boundary. On the boundary
we start to apply the rescaling after the coupling time to ensure that the resulting map will
be a map of M. (respects the equivalence relation). Inside U we just start perturbing from
the start and in what remains we do an interpolation using gy, of the map on the boundary
and the map on U.

5.1.3. Definition of 3N and the new examples of Anosov diffeomorphisms
Define 3y : M. — M,

KN—yjp 080Ky (x), —y/<p) , (x,y) € Ry UR3,

3N(xv y) =
Ky —yjp+545 050 Kyl (x),—y/e + #2) (x.y) € R,.

REMARK 16. — In the construction of the previous subsection for every n € N,
x € {0,1/¢9? 1/¢} are fixed points for ., (Remark 8). This remains true for r, in the
sense that for all y and x € {0,1/¢2,1/¢} , 1, (x,y) = F4(x, y) = x. This shows that 3y is

continuous. In addition if x is an endpoint of the segment K, ,, (C[w n) for some w € Xa

and y, then ar” 2 (x,y) = 1. This gives that 3x is C". 1. The invariance of the Markov partition
{J1, J2, I3} of S under K , gives that 3y is one to one and onto and

71 _
. Kn—py o (Slyyur)  © Kn,ly(X),—w), B <V<.5
3, (x,y)= -1 . 02 1 02
Kn,—(py+(p2/((p+2) ° (S|J2) ° Kn,y(x)’ —Qy + m) ) (0+2 < y 5 T
Here (S|jlu_]3) (x ) '[O 1]—[1, 1/¢] is the inverse branch of S to the segment [0, 1/¢]

and (S|J ) (x) x£l [O 1/¢]—[1/¢, 1] is the inverse branch of S to the segment [1/¢, 1].
Since 3; isCl, 3,1 1s a diffeomorphism.

THEOREM 17. — The sequence 3, converges in the C' topology to a type 111 Anosov
diffeomorphism.

The proof of this theorem consists in a series of lemmas. The first step is to show
that K, ,(x) converges uniformly in M as t — oo.

LEmMma 18. — Ifx € C[W(J)]J UCW(J)J and J € [M;_1, Ny),

|Hy () = x| = mr (Cppy—) <9707,

where w(x) € {w(J),w(J)} is such that x € C[w(x)]lj.

Proof. — By the form of w(J) and w(J) one has that forall/ < J — 3, w(x); € {2, 3},
hence
Hjy_3(x) = X.
’ |C[w<x>]{*3
Since x ;_5(w(x)), ¥y—_3(w(x)) are fixed points of h;_»,h;_y and h; , Hy (C[w(x)]{*3) =

C (]! 3> the lemma follows. O
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COROLLARY 19. — The limit
nlingo Kn,y(x) = hy(x)

exists uniformly in Ml and is a continuous function and the function &H(x,y) = (F)y (x), y) isa
homeomorphism of M.

Proof. — The proof is similar to the proof of Lemma 11. First we claim that for every
neN,

(5.1) sup  |ra(x,y)—x| < (1.5™".
(x,y)eM

This is true since for every w € Xy,

Tn (Kn—l,y (C[w]q’) ,y> = Ku—1,y (C[w]’f) s

and consequently

ltn(x,y) — x| <mr (Kn—l,y (C[w]';» < (%)_n .

drje

|, S A3,
Proceeding as in Lemma 11, it follows that for every y, {Ky y(x)} _, is a Cauchy sequence
in the uniform topology. Thus, b, (x) is a continuous function in M as it is a uniform
limit of continuous functions. Notice that §, is a homeomorphism of the circle for
yel-¢/(@+2),1/(p+2)]orof [0,1/¢]if y € [1/ (¢ +2),¢*/ (¢ +2)].

It remains to show thatif (x, y) ~ (%, §) (for points on dM) then (b, (x), y) ~ (b3 (£) . ).
Let (x,y), (%, y) € 0M with (x, y) ~ (X, ). There exists j(x, y) € Nsuch that (x, y), (%, )) € Vj.
Since (x, y) ~ (%, ), it follows that for every n > j and a word w € X, (n),

The last inequality follows since ‘% (x)) < A? for every / € N and thus

X € Chgupti € X € Cggupti-

Since for alln < j, r, vy = Idr, this property and the definition of r, (-, -) yield that for all
neN,

(Kn,y(x), ) ~ (Kpn5 (%), 7).
The lemma follows by taking n — oo. O
Denote the function of the first coordinate by 3, (x, y). Our goal is to prove that the limit
3(x,y) = lim 3, (x, y)
o

exists for all (x, y) and 3 is a C! (M) function with

a

16< 2 (x,y)<17.
ox

The conclusion of hyperbolicity of 3 will follow from a standard lemma in the theory of
Lyapunov exponents.
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LemMma 20. — If'in addition

o0
1.6 < 0 A? (l_[A.;tZMt_l> -exp (:l: 22N1+4> <17,

teN t=1

then g—i is a continuous function in M. and

9
16< 2 (x,y)<17.
ox

REMARK. — The extra condition in this lemma can easily be inserted into the inductive
construction of the sequence {Ax, My, N, mp, ng, €} pey-

Proof. — Let (x,y) € M.. For the convenience of the reader, we will first show

that a%,;, L(x,y) converges pointwise and 1.6 < g—%(x, y) < 1.7 and then argue that the

convergence is in fact uniform.

Lett € Nand (x,y) € M. be fixed. There exists a w = w(x) € X, such that for all

teN,x € Kpn,,y (C N,>. As in the proof of Lemma 12, we write z, (x) to be the unique

[w]l
pointin C; N such that x = Ky, y (zy(x)). Recall that

(x,7) KNi—y/0 (‘PK;/},y(x)) ) 0<x<1/e
N X, Y) = ~
KN, ~y1o+olo+2 (@KN,l,y(x) - 1) . p=x=1
KN~y (S2y(x)) . 0<x=1/p

KN —y/o+0/0+2 (Szy(x)), l/p <x <1

By the chain rule, the lemma will follow once we show that uniformly in (x, y) € M. with
0<x=<1/p,

. (Kn,— Ky, . 16 1.7
62 gim (T2 (sn,m)) (T2 ) e (R,

and for every (x,y) € M. with1/p <x <1,

. KN, —y/o+o/o+2 0K n,, 1.6 1.7
fn (R sn ) (B 60 < (3 5)

We will separate the proof for three cases: we assume that (x, y) € R; U Rj, equivalently
0 < x < 1/¢, the proof when (x,y) € R, is similar and just involves changing the
appearance of —y /@ by —y /¢ + ¢/(¢ + 2).

Case I: (x,y) € UN371U. — In this case
3v, (x.y) = Hy, o S o Hy!(x).

and the conclusion is true by Lemma 12.
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Case 2: (x,y) € UN371UC. — Firstly since (x, y) € U then K,,,(x) = Hy(x). In addition,
because 3(x, y) ¢ U there exists J € N such that

w2, oo wysal] = (WD or WA
and consequently w, # 1forall2 <[ < J—2. Thisshows that K, , ‘C[ "= hyo---ohy_p0h
wi
and writing zy (x) € T for the point such that Ky, ,, (zy(x)) = x,

9K h N on
a’;t,y ( zy(x )) (Zy(x)) 1_[ Bxl (Hl I(Zy(x)))

k=J-2
By the definition of the construction

KN, — N ohy,
5x 119 (Sz,(x)) = 111 aXy/go (K1—1,-y/0(S2y(x))) ,

and, here A;(jy = Ag if Ny < J < N or 1 otherwise,

KN, - K, ) 5 _l
(Na—;cy/‘/’ (SZy(X))) ( aljc y (Zy( ))) = ’xt(J) ( axl (Zy(x))) -1,

where
-1
Nt Nt
3h1’_ ahl,
L= (T2 (ks g (5200 | (T2 (11 () |
=) 1=J
As in the proof of Lemma 12, assuming that ¢ = 0, one has that for / > J + 1,

,,,,,

ifand onlyif K;_1, (zy(x)) is to the right of the point in 1/¢ proportionin K; _y/q, (C[w]1+1 )
1
This means that in the case € = 0,

ohj_1 — ah -1
(% (Kl—z,—y/w(SZy(X)))) : ( a;y (K,_l,y(zy(x)))) =1.

By proceeding with the analysis of the bad sets as in Lemma 12 one proves that

t t
= l_[ /X:ZM]“I exp | + Z 27 Nkt4 |
k=t(J) k=t(J)
and thus
0K § —y/ Kn,, -t
(5—xy<0 (SZy(x))) : (a—ty ( y( )))

—1 t t
- {(ah‘ (&) (1'[ Aff””k-') e (ﬂ: > 2‘”"*“)]
O k=t(J) k=1(J)

This shows (5.2). In fact, because

o o0
lim (H A:ZM"‘I) exp (:t Zz_Nk+4) =1,

k=s k=s

the convergence is uniform as ¢t — oo.
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Case 3: (x,y) € U°. — In this case let J € N be such that the closest point to (x, y) on
the horizontal segments of dM is in V5. IfJ = 1 then (Szy (x),—y/¢) € U. Otherwise
(Szy (x),—y/ (p) is in U€ and the closest point to it on the horizontal segments of dM is
in V5_,. Consequently

0Ky, — 0K -1
( NE;x - (S2 (x))) . ( E;jchy (Zy (x)))
N on,

Ne o, _
= I léxy/w (Ki—1,-y/9 (Szy(x))) | - 111 8x7 (Ki—1,y (zy(x)))

Similarly as in case 2, one has
KN, ~y/o KN,y -
(T (Szy(x)) ) - Ix (z2y(0))

t t
+ +2Mj_ _N
=X | T1 A7 e £ 30 2770
k=1(7) k=t(J)

and the convergence is uniform. O

5.1.4. Proving differentiability in the y-direction.— Again we will prove differentiability in the
y direction for (x, y) € R; U R3. The idea of the proof here is as follows. If (x, y) € U then
K, 5(x) = Hen(x) for all y in a neighborhood of (x, y), hence alg';y () = 0. Otherwise,
for (x,y) € M\U, Kj(,y)—2,5(x) = x and the first (major) change between K, ,(x) and

K, 5(x) appears at time n = j(x, y). We will show that for our construction the y derivative
0Kj(x.y).y (%)
dy

of K, ,(x) can be bounded above by a (bounded) constant times , the uniform

convergence of 93, /dy will follow from the chain rule and simple arithmetic.

The following notation will be used in this subsection. Usually we will consider x € [0, 1/¢]
and work constantly with a fixed w € X, such that x € Cluwr for all n € N. If that is the
case we will write [x,,, X, ) to denote Cruy:-

For —# <y< w‘”—jz and n > N(y), let BS(n, w, y) C Crwyr to be the bad set as in the

rn.y

proof of Lemma 12 with /), o H,, replaced by (T) o Kp—1,y.

For an w € X we denote by w} = wiw; -+ wj, the finite word derived by w up to time 7.
Given a finite word w7, [w]] denotes the n-periodic word defined by w{. Finally given two
words w and W (in which case w is a finite word), the word ww denotes the concatenation
of w and w.

Recall the definition of Kj(x,y),y(xX) = Tj(x,y) (x, y) which is defined by

Titey) (6 ¥) 1= (Hje ) (X) = x) P(x,y) + x,
where
P(x.y) = [36™ (ux. )’ — 20 u(x. )?).
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In the following proofif j(x, y) = J we will need a different definition of the bad set forn = J.
Let

BS (J) = BSJ-2,w()), J odd
" IBSU -1, w@)UBSJT,w(d)) Jeven

if (x,y) € Ry U R3 (For (x, y) € R, change the odd to even and even to odd).

LEmMA 21. — Assume that M; < j < N;41, and x € C Nt+1 If x ¢ BS(J), for
every j <n < N;i1, there exists 0 < B,(x) < ¢ such that for every (x y)ywithj(x,y) =],

Kn,y(x) = Kpn,y (x,) + Bu (X)) (v, w),

in addition By, (x) is continuous in x.

Proof. — Let (x,y) € (M\U) U (R; U R3) so that j(x,y) = j (the case (x,y) € Ry is
similar). The proof is by induction on n. Since x ¢ BS(J), x;,; € {x;. x5+ ¢~ ! (X5 — x;)}
and

32---32132, Jodd,
w(l) =
32---3211, Jeven,
it follows that if J is even then by property (3) of v,

@Vi41(1/9))? (x = x541) . wy4+1 =1
(@Ve+1(1/9)) (9> (1 = Y111 (1/9))) (X = x541)» WN41 =3
_ Py-1 (wy—1, wy) Py (wy, wy+1) (

Q (wy, wy+1)  Q(wy, wyt+1)
=b(x—xp41).

Hy (x) — Hy (xy41(w)) =

_£J+1)

and if J is odd then

Hj (x) — Hj (£J+1) = ‘P2 (I =Y+1(1/9)) (x _EJ-H)
_ Pi2 (wy—2, wy-1) (r—xp01)
Q(wy—2, wy—1) =

=b(x —x544)-

It then follows that
Kyy(x) = Kyy (x541) 0 = 15 (v, 9) =15 (Xy41, )
= (x —£J+1) [(b—-1) P(x,y) + 1],
and
li+1(y, w) := Kjy (Xy+1) = Ky (xj41)
= (Y41 —Xy54) [(0—1) P(x.y) + 1].
This implies that

(5.3) Ky (x) — Ky,y (xy41) _ T X
+1(y, w) XJj+1 — Xy4q
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Therefore

M Re
KJ+1,y(x) = KJ+1,y (£J+1) + Vi1 | = ly+1 (v, w)
XJ+1 — Xjqq

=pj(x)
and the base of induction is proved.
For the inductive step notice that if the conclusion of the lemma is true for n € N, then

Ky (x) — Kn,y (En+1) _ Pn(x) — Pn (£n+1)
b1 (y, w) Bn (Fnt1) — Bn (Xn41)
does not depend on y. The conclusion then follows for n 4+ 1 with

Brn(x) — Bu (£n+l) )

Bn (Xn+1) — B (in-i-l)

and the continuity of 8,4+ follows from the continuity of 8, and ;1. O

Bn+1(x) := Vi1 (

The last lemma shows the importance of knowing how %L; decays when N(y) <n < N;41.
We will now show that it is exponential in n.

LEMMA 22. — Let M, <j<n < N;11, aw € X with wj1 =w(j)and —-2%5 <y < 0’

p+2 o+2’
then
ol a9
—.w)| < (1.6 | = (y.w)
dy dy
and
i1

-, w)‘ <167,
dy

Proof. — We assume (g Nisrs y) ¢ dU, the proof for the case (& Nisrs y) € U is similar.

In this case for small ||, <1N1+1’y + h) e U°.
Since Xy, , (w) is not in the bad set BS (j(x, y)), it follows from (5.3) that for small ||,

mr (Kj,y-‘rh (C[w]iVH_l )) . Kj,y+h ()_CNI-H) — Kj,y+h (ENH_I)

mr (Kj,y+h (C[w]j+l)> . K y+h ()_‘Hl) — K y+h (1j+1)
1

ANrt1 2N, 4

Xj+1 — Xjqq
_m (C[w]f“’“)
mr (C[w]jl+l)
It then follows by definition of 4, , for n > j that for || small,

Nit1

N O+ hw) =L (v +how) [T P (wr, wier)
k=j+1
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hence
N, (v + how) _ ir1(y + h,w)
N4 (¥, w) ir1(y, w)
This yields that
[Nt+1 (y’ U))

[Nt+1 (y+hw)— [Nz+1 (y,w) = [ i) +1(y + h,w) — e, yy+1(0, w)]

[J(X »)+1 (v, w)
dividing by % and taking limit 2 — 0 we get
BN, (o w)| Iy (7o) [l (v, w)
dy G w) dy
The last inequality follows from, for all N; <j <n < N;41,

A i=n A i=n .
t

=j

< (1.6)~Ni+1

i1 (y, w)
|

For the proof of the second part notice that for x € {ﬁj, )"cj},

(5.4) ‘“;J(x) -
y

a .
ﬂ(x,y)‘

IA

IA

P
' (50| gt ~
- 1"‘m(c -2) <3241 < Ly o)

wi?)[ =29 ¢ =500 %
for all large j. Thus (recall [41(y, w) = Tj(x,y) (Fj+1) — 15 (Xj51))

s
y

< (1.6)73, for all large j. O

Lemma 21 shows thatif x € Cw1r isnotinx € BS (j) then the y-derivative of K, | y(x)
(here ¢ is the number such that N; < j < N;41) is controlled by the derivative on a finite
collection of points plus the evolution of the lengths of the intervals. We would like to point

out that there is actually no bad setif N; < j < M, because then K - =idr. Thisidea
w1

will be reiterated with a slight modification for the derivatives 0K, ,/dy for My <n < N;
where Mg > j(x, y).

ch

For points in the bad set we will apply a correction point procedure which we call the
x-delta method. Assume that x € BS (j). For A-small (so that (x, y = A) € U¢)) there exists
a unique x (A) such that

(5.5) Kix,p),y+a X (A)) = Kjx,y),y+4 (—J(x y)+1) _ Kix,),y (X) = Kjx,),y (—_](x y)+1)
e,y +1(y + A, w) lice,+1(y, w)

We will use Lemma 22 to obtain a first order approximation for x (A) when A is small.

In the next lemma, if M; < j+ 1 < Nigp1 Bj+1(x) = ¥rq1 (M) and

li+1(y,w)
for My <j+1<n< N4

/3n+1(x) = wt—i-l ( ﬂn(X) _‘B" (£n+l) ) .

Bn (Xn+1) — Bn (ln+1)
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LEMMA 23. — Assume that M; < j < N;t+1, and x € C[w]N’“ with w‘i1 = w(j). The
1
following holds:

(1) Forevery y so that j(x,y) = jand A so that (x,y £ A) € M\U,
KN;+1,y+A (x (A)) = KN;+1,y+A <£Nt+1) + :3Nz+1 (X)ZN;+1 O+Aw),
(i) |x(A) — x| <4(1.6)"N+1A +0(A)as A — 0.

Proof. — (i) This is the same as the proof of Lemma 21 by using (5.5) as the starting point.
i) Ifx ¢ BSG) N C[w]Nt then by Lemma 21, x (A) = x. Since XN ¢ BS (j),
1

Kiy+a (£N1+1) — Kjy+a (ﬁj(x,y)ﬂ) AN T A+l

1 (y + A, w) Xj+1 — Xjq1

Kj:y (iNH-l) - ijy (i_l-‘rl)
i+1(y, w) '

Therefore by adding and subtracting Kj,,+a (&NHI) /G+1(y + A, w) on the right hand
side and Kj, (5 Nis 1) /li+1(y, w) on the left hand side of Equation 5.5, if follows that
Equation (5.5) is equivalent to

1y + A w)
(5.6)  Kjy+a(x(A) = Kjyra (thH) = Toiw) (Kj,y (x) — Kj,y (EN,H)) .

For the ease of notation we will write X := x, . and Hj(z) := H¢; (z). Since by Lemma 22,

410y + A w) = G (v, w) £ (1.6) TA + 0(A)

we have
l + A, 1.6)7A
J+[;_(i (v, w)w) (Kj,y(x) - Kjy (E)) = |:1 + [J(-i-l()W} (Kj,y(x) - Kj,y (l)) +o0(A).

In addition for all |A| small,
Kjy+a(x(A)) = Kjy+a (X) = (Hj(x(8)) = Hj (X) = (x(A) = X)) P(x,y + A) + (x(A) - X).

By Taylor expansion
0y
P(x,y+A) = P(x,y) + Ag(x,y) +o0(A).

Using this one can show that (5.6) yields,
(x(A) = x) + (Hj(x(A)) — Hj (x) = (x(A) = x)) Z(x,y) = AL +1D) + 0 (A),
where
(1.6)7

Lo (v.w) i — B =i~ Nit1+i
[j+1(y, w) (KJ’y(x) KJ,y (X)) = (16) J¢ +17TJ)

I =
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and

0
- = '(H,i(x(A)) ~H(X) — (x(A) — X)) goc, y)'

< [Atpy 1] max %(x,y) X(A) - X|
< At -1 (%‘PIO) p N
< g N1,
For both inequalities we used the fact that
max{)x(A) — XN, | X XN } < @ N4,

Since
|(Hi(x(A)) = Hj (x) — (x(A) = x)) Z2(x, )| < |47 — 1] X (D) — x|
we get by the triangle inequality that
X (A) = x| (1= [y, — 1)) < [x (&) = x + (Hi(x(A)) — H} () = (x(A) — x)) 2(x. )|
<A1+ |I)) + 0 (A)
<2A(1.6) N+t 4o (A).

Asl— Ay — 1| > % the conclusion of part (ii) follows. O

From now on, we work under the assumption that (1.62)/A3 > 1.6. As A; can be made
arbitrarily small this is compatible with the inductive procedure.

COROLLARY 24. — (i) For every (x,y) € Ry U R3, if Ny < j(x,y) < Ny41 then

KN, o1,y (x)
dy

In addition if (x, y) € U U 0M then
aKNtJrlay(x) _
dy

< 6(1.6) ),

0.

(il) Assume that {Ny, Mi_1, €x, Ak }1.— are chosen, there exists a choice of Mg, As+1, Ny4+1
and €541 (compatible with the inductive procedure) such that

8[Mt+1

L < 3(1.6) N1,
dy

(v, w)

Proof. — (i) First we claim that for all w € £, such that [wl® = w(j(x, y)).

aKNt+1=y (iNt+1)
dy

This is true because of the following argument. For each j(x,y) < n < N;41, either

X,_1 = X, and then

(5.7) = +4(1.6)73&),

Kn,y (En) = Kn—l,y (ﬁn—l)
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orx, =x, 1 +¢ ' (¥p-1 —x,_,) and then

Ay
14+ A1

This equality remains true in a neighborhood of y. Therefore for all j(x, y) <n < N¢t1,

Kn,y (x,) = Kn—1,y (x,) = Kn—1,y (x,_1) + (¥, w).

'aK 5Y (xn(w)) ‘ aKn 1,y (xn l(w)) ‘ max ( )
oy 3 ™ Gt ay
Lem 22 aKn ly (xn l(w)) 2(1 6)—}1
- dy 3
and so
N
8KNt+lry (£N1+1 (w)) 8Kj(x’y)’y (lj(x,y)) 2 il —n
3 < ; +3 > (e
Y Y n=j(x,y)+1
4.6,
Now for a general 0 < x < 1/¢p,
KN () o K28 () = K ()
ady A0 A
_ KN, 1 y+a (X(A)) = KN, y,p(x)
= lim
A—0 A
+ lim KN p1+a (x(A)) — KN:+1,y+A(x)'
A—0 A
As
OKN, 41, y+4(X) <A2(Nt+l_j(X,.V))
T | e ’
it follows that
K x(A)— K X A) —
(58) ilino‘ Nt+l,y+A( ( )A) Nx+1,y+A( ) A?iji+] 1 ¥

Lem 23 (1.62)N’+]
= - .
A1

) KN[+1,y+A (ENIJrl (w)) - KN[_H,y <£Nt+1 (w))
< lim
A—0 A

By Lemma 23.(1) if x € C[w]zv,Jr1 then,
1

KN, 1 p+6 (X(A) = Kn, o,y (x)
A

lim
A—0

[N,+1(y + A, w) - [N[+1(yv w)
A

+ Ba(x) Aliglo ‘

KN, .y (&N,H) N ‘8 Nit1

dy O w)‘

< 4(1.6)3%) 4 (1.6 N+

and the conclusion follows.
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The second part of (i) in the corollary is true since if (x, y) € dU€ U dM, then %—‘f’(x, y) =0.
Therefore a[j(xa‘%(y, w) =0and x(A) = x + o(A).

(ii) Let w € Sy (M 41). As for all y, {KNH]J (231101 ) KN (Bary) 0 € S (Mt+1)}
are fixed points for Ay, 5 it follows that for all A,

[Mt+1 (y + Aw U)) = KM;+1—l,y+A (-)EM1+1) - KM,+1—1,y+A (£M1+1)

= KNpers (Fat) = Knpproea (Xar,,, ) -

The last line follows from h, ,4a = idr for N;y1 < n < M;4q. Writing X(A) (respectively
X (A)) for the x-delta point of x,, " (w) (respectively Xpy, , ; (w)), by Lemma 23, for |A| small,

KN, 11 y+8 (X(A)) = KN,y y9+a (le) + BN,y (£M,+1) N (v + A w),
and
Knipiora RA) = Knoiyea (X, ) + By (Baiy) v O + A, w).
It then follows that for |A| small,
O+ A w) = B,y (Bats) = B (g, )} s O+ A w) + T+ L4,
where by (5.8),
Tal:= KNy y+a &) = Knppyy+a (Bn,4)] < (11) A(1L59) Vet
and
Lali= KN obs G (A) = Knpyea (2ar,,, )| = (11D A5 N

It then follows that

A, 4, ) N, . |Tal+ 114l
‘ 8;7 (y, w) =< {ﬁN{+l (-xMt_H) - ﬁNH—l (EM[_H)} 8; (y’ U)) + AanO A
<1
< 3(1.6) N+t as M, — 0. O

oK .
So far we have managed to show how to control N’g—y'y(x) by a constant times the

derivative at level j(x, y) where t = ¢(y) = min{t € N: N;4+1 > j(x, y)}. The next step is
aK.H—l.y(x) d aKNS,y
5 and —5+.

for s > #(y), to obtain a relation between

DEerINITION 25. — For My <n < Ng41,x € C[w]NSJrl and |A| small we define x; (A) to
1
be the unique point such that
KMS,y+A (x5 (A)) — KMS,y+A (EMS-H) _ KMs,y (x) — KMs,y (EMS-H)
M1 (y + A, w) I +1 (y, w)
Setting similarly to before for 0 < x < 1/¢ and y such that j(x, y) < Mj,

K,y (x) — K,y (EMSH)
+1 (v, w)

Bumy+1(X) := ¥s1 (
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and for My + 1 <n < Ng41,
. Pn—-1(x) = Bn—1 (x,,)
ﬂn(X) o WS-H (IBn—l (J_Cn) - ,Bn—l (ﬁn)) '

LEMMA 26. — Forall (x,y) € Ry U R3 with j(x,y) < N; the following holds:
1. for every |A| small,

i (8 (A) = Kngyyvia (3a,,, ) + Bren I, (0 + A, w).
2. (1) For every My < n < Ng41,

ol _, |0t
‘a—@,w) < (1.6 %(w)‘.
y y
(i) | %2 (v, )| = (167,

dy
(ii1) Assume that { Ny, My_1, €, )Lk}2=1 are chosen, there exists a choice of Mg, Asy1, Ns4+1
and €541 (compatible with the inductive procedure) such that

xs (A) — x| < ¢ M+ A +0(A)
as A — 0.

Proof. — This is done by induction on s. The base of induction is the first s € N such
that Ny > j(x, y).

1. This is similar to the proof of Lemma 21 and Lemma 23.(i).

2. (i) Let w € X4. The starting point is that by the definition of hy, , (as a distribution
correcting function), Equation 4.2 holds for Ky, . Therefore forallw € X5 and h > 0

small,
mr (C[w]ivs+l )

e (Cupre)
The rest is similar to the proof of the first part of Lemma 22 with j(x, y) replaced by M;.

2. (ii) Since for all y, {Kn,,y (x4, (0)) . Kny,y (Far,(w)) : w € Ty (My)} are fixed points
for g,y it follows that (here x,, = x5, (w))

mr (KMX,y+h (C[w]{““ )) = b (v + 7, w)

(v + A w) = Ky yra (Sm) — Kngy+a (Xp,) -
The base of induction is Corollary 24.(ii).

The proof of the inductive step is the same as the proof of the base of induction where we
use the induction hypothesis that

P ()| = (LMoo | Bt )| < (1,6) N,
dy dy
and
% (A) — x| <9 M A +0(A).
Therefore,
[Ta@)] = |KNpsr+a B (A) = Koy (Bagy)| < A(L.6) Vst
and

1Lpl = |KNpsy e X (A) = Koy ysa (X,)] < ALLE) TN+
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It then follows that

Y, ¥ A, _|Ta@)| +1LaC
‘ aﬂyl‘ (v.w)| = {Bn, (Fm,) — B, (EMY)}’ aly\" (y,w)’ + Jim [1a(s |A LA ()]
<1
S (1.6) 7M1 (1.6) ™" +2(1.6)~NsH!

< (1.6)7"s.

(iii) We first recall the definition of Kay,,. Define o : N x 35 x [—¢/ (¢ +2), 9%/ (¢ +2)]
by

KMs—1y (1) dx
. ey B0 (aa, (3. w)
als,w,y) = =

me (Cpyps) mo (Cpus )

It follows that for s € N such that Ny > j(x, y), the definition of Ky, , restricted to C[w]MS
1

is the function defined by K,y (x5,) = Kn,.,y (X5, ) and x-derivative

G, — X—XM o
aKMy,y — é;‘;)v“(s-ww") . 0 =x- iMS = Es+1/MT (C[w]llwv>
T()C) = €t+1mT(C[w]{VIS)

O[(S’w’ y) X_KMS = €s+1MT <C[w]{”s)a

where w™ is the predecessor of w in X4 (M;) and Gg, 4, : [0,1] — [0, 1] is the function
defined by (4.3).

Therefore the function

L KMs,y (X) - KMs’y (EM_\) _ -1 KMSay (X) - KMs’y (EM_\)
Sy (x) = b, (v, w) - (mT (C[w]fh>> |: (s, y,w)

satisfies 77,y (X7, (w)) = 0 and

044
sy
— X
o (x)

9G -

-1 S At o 0=x—xp <é€qamr (C[w]MA)

= mT (C[w],MS> ‘ e”"”T(C[w]{”S) 1

1 X =Xy Z Es1MT (C[w]i\’fs> )

where Y'(s, w, y) = "gisw—w_yy)) The function .%; ,, is important since the definition of x,(A) is

as the unique point so that
Hsy+a X(A) = Aty (x).
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Since for all 0 < a, fol G, ,(x)dx = 1, it follows that if x — x,, > €4 1mr (C[w]M_y> then
5 s 1

writing X = x,, + emr (C[w]{”»‘)

* 0
Hat) = [ P2t
XMy x
-1 e X—x
= (= (Cupte)) / R o |
! X X €5+1MT (C[w]{\’h‘)
X=X
= =M Hs,y(x) by a similar reasoning.
()
If x—xp < €41m (C[w]{‘“) then using the fact that forall0 < x <1, |G4,1(x) — Gb,l(x)i <

x|b—al,

Hsy+a(x) = Hsy(x) £ [T(s,w,y + A) = Y(s,w, )] - (x — xp, (w))
= Hsy(¥) L1 [T w,y +A) = T(s,w, y)].

A\ Crugits ) |1 Aw?) -
IT(s,w,y +A)=T(s,w,y)| = ( o]y ) ‘Ms(y+ W) vy O w7)

[ + A, w I, (. w

m (C[w—]’l‘“) M (¥ ) M, (¥, w)
dar, Blass _

¢(‘ BA;A(va)‘-’_‘ 3]‘5/? (va )‘)
min ([ (y, w), Iy, (v, w™))

Thus if €54 is sufficiently small (this choice depends on {N;, M;, A; : t <t} and Ng41) then

<A

+ o(A).

Hoyra0) = Hoy ()£ 5 AgVH7Ms 4 0(4),
and for all A sufficiently small
Hs,y (X) = Hsyra (Xs(A))
= K5y (x4(A)) £ %A(p_NH‘ +0(A).

Since
_MS

5

0K,y -1 @
o 2 (22 (Cpupper)) =
it follows that
x —xs(A)] < 20™ | A5y (x) — ey (x0(D))]
< Ap~Ns+1 £ o(A)

as required. O
The next corollary is the final ingredient for the proof of Theorem 17.

COROLLARY 27. — There exists a choice of {A;,n¢, Ny, my, My, €;},c Such that:
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(1) For all (x,y) € M. and for allt € N such that j(x,y) < Ny,

aKNt+lsy('x) < aKNt,y (lM, (w)) n 2(1.6)_,“.
dy dy
. aKN[_;’_l.y(x) . .
(1) —5, —— converges uniformly in R; U R3 ast — oo. Forevery (x, y) € d (Ry U R3)
or(x,y)eU,
lim ‘M =0.
t—00 ay

Proof. — We assume that {A;,n;, N;,m;, M;, €;} are chosen so that Lemma 26 holds.
(1) Similarly as in the proof of Corollary 24.(i) one can use the fact that

KN, 41,y (&N,ﬂ (w)) 0K, y (QM[ (w)) Net1 al,
9 < 9 Z a_(y’ U)) ’
Y Y n=M;+1
and
K,y (EM, (w)) = Kn,,y (EM, (w))
to show that
KN, 1.y (XN Lem.26.2.i | 0K X Net1 al
i - CAE < —N“g ()| YoM |y, w)‘
y Yy n=M;+1 Y
Lem.26.2.ii | 0K Ne
€ 2 Nr,g (iM;) + (1'6)—n1 Z (1.6)Ml_n
Y n=M;+1
o | G| 5 g
dy 3
Therefore by Lemma 26,
lim KNH.l,y-i-A (Xt (A)) - KN;+1,y ()C)
A—0 A
0K X 5 al
S N¢y (—M[) + _(1.6)—}1, + ,Bn(x) Nt-‘rl (y’ w)
dy 3 dy
0Kn, .y (x 5
< (| FRe2 =M () + (107" | 4 Ba(x) (1.6) !
ay 3
and by Lemma 26.2.(iii),

aKNH_l V+A (X)
ox

KN;+1,y+A (x¢ (A)) — KN;+1,y+A (x)
A

[x; (A) — x|)
<
B ((x,)szl)lepMN ) ( A

< 2NN 1 o(A) = (1.6) N 4 0(A).

A combination of the previous two inequalities and n; = o(N;), N; = 0 (n;41) shows that

'aKNtﬂ,y (x)) - IK N,y (KM, (w))

2(1.6)7".
3y B +2(1.6)
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(i) Let € N, and (x,y) € R; U R3. By applying part (i) of this corollary repeatedly
one has that with ¢(x,y) = min{r : N; > j(x,y)}. Fort > t(x,y) + 1 and w such that
X € C[w]N’“ , by the first part of the corollary

1

aKNt’y (th)
dy
For t = t(x, y) by Corollary 24

aKNt(x,,V)’y (er(x.y))
dy

aKNI—l sy (th—l)

+2(1.6)™" .
dy

< (1.6)73=),

A combination of these two observations shows that for ¢ > ¢(x, y)

< aKN[(X.Y)!y (EMt(x,y))

= oy

t
+2 ) (Lo

k=t(x,y)

aKNt,y (x)
dy

< (]'6)—j(x,y) +2(1.6) "1,

This is enough to show that {—ngyl v &)

Indeed if 5,7 > ¢(x, y), then

KN,y (x)  9KN,,y(x)
dy dy

o0
} . is a Cauchy sequence in the uniform topology.
§=

<) (1.6 <2(1.6) ™.
k=t

If Nt < j(x,y) —3 < Ns41 then Ky, »(x) = x in a neighborhood of y and hence

8KN,+],y(x) . BKNH],y(x) _ BKNHl,y(x)
dy dy dy
< (1.6)=») L 2(1.6)7
< 3(1.6)7".

We leave the bound on the easier casest = ¢(x,y)—1 < s,s,t < t(x,y)—1tothereader. O

REMARK 28. — The latter corollary shows that lim;—. aKé\;}"’V is uniformly contin-

uous in x as a uniform limit of continuous functions. As a consequence, since for all
x € [0, 1/¢], the sequence K;,tl,y (x) converges uniformly to hy_l (x) and b;l is a homeomor-
phism of [0, 1/¢] then for all x € [0, 1/¢],

s (Kity®) 5Ky (b5 )
dy t—00 tggo dy

and the convergence is uniform in ¢ € N.

Proof of Theorem 17. — Lemma 20 shows that g—j’c = lim;— 0 %(X’ y) exists and is a
continuous function of M. It remains to show that g—; = lim;— 8‘:?,%(x, y) exists and is a
continuous function of M... To this end, write

KNy (x) KNy (x) )

By(x,y) = ( a(;c 31y
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for the differential of the map (x, y) - (Kn,y(x), ). By the chain rule

0
D3y, (x.y) = By, (SKy! ,(x).—y/9)) ("’ ) By (KN, (x).y).

0—-1/¢
This yields that
93N, aKNz,—y/(p(SK;/,l,y (x))
(x.y)=¢
ady 0x
-1
KN, —y /0 (K;,ly(x)) K, 5 (K;,t{y(x))
B ox ay

1 KNy (SKIv},y(X))

@ dy
N, KN,y (Kﬁf,y(x)) 1 KN, —y/0 (SK&,IJ(X))
=———y): — = )

Since all the terms on the right hand side converge uniformly as t — oo, the theorem is
proved. O

5.2. Proof of the Anosov property for 3.

So far we have shown that 3, converges uniformly to 3 and we have estimated the
derivatives. We are going to use the following well-known lemma, the proof of which can be
found in [21]. A function ¢# : M. X Z — SL(2,R) is linear cocycle over a homeomorphism
f M. — M- if for any m.n € Z and x € T?,

HAmtn(X) = Am 0§ (xX) Hn(x).
We say that the cocycle is hyperbolic if there are ¢ > 1 and C > 0 so that for every x € M.
there exist transverse lines ES and E¥ in R? such that
1. #(x)ES = Efn and &/ (x)E¥ = EL -
2. | Ay (x)v*] < Co™ |v¥| and | A, (x)v¥| < Co” |v*] for every v° € ES, v* € E¥ and
n>1.

ProposITION ([21, Prop. 2.1]). — Let A : M. x Z — SL(2,R) be a linear cocycle over
a homeomorphism f :M.. — M... If there exists v € R?, constants ¢ > 0 and o > 1 such
that | Ay (x)v| > ca™ then A is hyperbolic. The transverse lines EY, EY in R? satisfy that for
any og < 0, there exists C > 0 so that for any v* € E3, v* € E¥ andn > 1,

| A (x)V¥| < Cofl |V¥| and | A_, (x)v¥*] < Cafy [v¥].
Proof'that 3 is Anosov. — Define ¢# : M. x Z — SL (2,R) by

1
Ax) = ml)z»(x, »).

By x
0 —l/e

Since D3 is of the form
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and )
16<2(x,y)<17
dy

one has that for all (x,y) € M-,

1.6 1.7
— =|det(D3(x,y))| = —
¢ ¢
and
1 n b 8o 3k(x, ) 1
D3n(x, = =0 ox > (1.6)" :
3n(x, ) (0) ( 0 (1.6) 0
It then follows that with v = (1,0)?"
_ 16" .
390l = @t (Do ey 1D3n el = (452 ol = .52

there exist transverse lines ES and E¥ in R? ~ TyM.. and C > 0 so that for any v¥ € E¥,
| A ()0"| = (1.5)" ]
It follows that

Dy 00" = | Ta " T | [det (D3 (3°x. )|

k=0
1.6\"

> C(15)" (—) 0"
(2

> C(1.48)" |v"].

Similarly one has for every v* € E3,

s e wi " s
[D3n(x, y)v*| < C(1.5) o [v°]
<C 07"
and so 3 :M.. — M. is Anosov. O

5.3. Proof of the type I1I; property for 3.

__e_ 1
For -2 <y < 533 let,

Ry (x) = nlgrolo Kny(x):T—T

fy(x) 1= lim Ky (x) £ [0,1/¢] = [0, 1/¢].
In both cases it is an orientation preserving homeomorphism.
We will show that the measures myep(r) © Ry and myep(jo,1/7) © &y are equivalent measures
to uT, the measure on T arising from {Ax, my. My, nx.Ni} in the previous section.
In addition, the Radon Nykodym derivative

dny .
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defined by
dny
dut
is a (MN, B (M), u) measurable function. This means that the measure n on M. defined
by

() = d”” °% ),

[ utenan= [ utryan ey
M- M~
- /M u(x, y) T (x)dpi* (x)dy

is equivalent to 4 = my 0 Ho = ut ® dy.
Since (MN, C‘BM,M,f) is a type III; transformation and u ~ 7, (M, B 1, f) is

a type III; transformation. Thus (M $M,mM,3) is a type III; transformation since

m(x,y) = (Ry(x),y) : (M, B, mpg, 3) — (M, B 1, f) is an isomorphism. Therefore
what is left to prove is the following.

LemMA 29. — (i) For all --%5 < y < (piz, (R;l)* mr is an equivalent measure to u*

(the measure on T ar lsmgfrom {)Lk my. .My, ny. Ny, €} in the previous section).

. . +
(i) For all == w+2 <y< (p+2 (R)), mrljo.1/4] is an equivalent measure to lo.1/4]

j:i (x): M — [0,00) are measurable in (MN, B » /L)

(ii1) The Radon Nykodym derivatives

Proof. — Fix—-% <y < — 7 +2 The proof'is the same as in Lemma 13 by using the theory

of local absolute contmulty of Shiryaev with o7, := {C[w]N, W e EA}. By the construction
1

(mql-oﬁy)t = mTOﬁy|§t =mrto Kn,y,

and
(™) = mp o Hon,.
Therefore,
KN, .y
_d(m'ﬂ‘o‘ﬁy)t ( dx )
Ziy(0) 1= =g ) (x).

The rest of the proof that Z;,, (x) is uniformly integrable and hence converges a.s.ast — ocois
the same as in Lemma 13. This proves (i) and (ii).

To see (iii), notice that the function
dny :
(x.y) > dM—Jr(x) = lim Z;,(x)
is almost surely a limit of continuous functions, hence measurable. O
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Appendix
Proof of Theorem 4
Assume that {Ax, ng, Ng, mg, My}, and My are chosen via the inductive construction,

{7k, Px}rey are defined by (3.10) and u = M {my, Py : k € Z} .Again T denotes the shift
on X,. The proof of non-singularity, the K-property of the shift with respect to u and that

T'(x) = duoT ) = l—[ Pr—1 (Xg, Xg41)

dp ooy P (ks xi41)
appears in [12, Thm. 6]. In order to show the other properties of the Markov Shift, we will
need a more concrete expression of the Radon Nykodym derivatives. The measure i, or more
concretely its transition matrices, differs from the stationary {nQ, Q} measure only when one
moves inside state 1 in the segments [M i N ,-+1). Denote by

Lj(x):=#{k € [Mj_1,N;) : x; =1}

and
I/j(x) {ke[ j— 1,NJ):Xk=xk+1:1}.

LEMMA 30. — For every € > 0, there exists tg € N s.t for everyt > tyg, Ny < n < m; and
x €{1,2,3},

t LyoT"(x)—L(x)
L+¢ 7 VieoT" (x)— Vi (x)
") (x) = (1 £ ) ( ) AR
(T (x) = ( H[HM 4

Proof. — Lete > 0,1 eNand N; < n < m,.Canceling outall the k’s such that Py_, = P
one can see that

(Tn)/ (x) =1 'it

where (notice in the definition of I, that n > N;)

4 N Nu+n—1

I = 1—[ l—“[ Prn (k- Xi41) | ”ﬁ Pr—n (Xk, Xk+1)
T P (Xk, Xk+1) Py (Xk, Xk+1)

u=1| \k=M,_; kAt k=M,_+n Pkt

and (here notice that M, > N, + m; > N; + n)
My +n—1 Nu+n—1

[ 1°—°[ 11—[ Pr—n (k- Xe41) | ﬁ Pr—n (XK. Xge41)
a P (Xk, Xk+1) Py (Xk, Xk+1)

u=t+1 k=M, _, et k=Ny i

We will analyze the two terms separately. Since for every M,,_; <k < My_1 +n, P = Qq
and Pk—n = Qs
Pr—n (X, X+1) < Qs _ 1+o¢k <1,
Pre (X, Xk 41) (Qu)13 l+¢
Similarly for N, <k < N, +n, P%® = Qand P_, = Q, . Therefore
Pr_p (Xk, Xk41) - (Qu)y,;
Pr (xk, xk+1) — Qua

< Au,
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and
My_1+n—1 Ny+n—1
32 < ! 11—[ Pre—n (X, Y1) | ul—[ Pr—n 0k Xk1) | 52
u = — | = Ay
kmpty, Tk Ok Xiet1) ien, Dk Ok Xet1)

here the lower bound is achieved by a similar analysis. This gives

o0 o0
I, = l_[ [AF2m] = H [AF2me=1]  (since Yu > t,n <m; < my)
u=t+1 u=t+1

QD =i .
t—00

Consequently there exists 7o € N so that for all x € X5, ¢ > tg and Ny <n < my,
(T") (x) = A £ )1,
By noticing that for k € | J;_; ((Mj—1.N;) U[M;_y +n.N; +n)).
Pre—n (X, Xie41) 7 Pre (X, Xie41)
if and only if x; = 1, one can check that

I ﬁ 1+g \leeT" @O Vo T ()= Vi () .
! il 1+ (/))tk k ’

COROLLARY 31. — The shift ({1,2,3}*, u, T) is conservative and ergodic.

Proof. — Since the shift is a K-automorphism it is enough to prove conservativity.

Forevery j € N,0 < Li(x), Di(x) < ng. Whence

LjoT"(x)—L LjoT"
( 1+¢ ) k (x) k(X)AVkOTn(x)_Vk(x) - l+o¢ ) k (X)A_Vk(x)
1+ (p)tk k —\1+4+ (p)\k k
> A 2nk > A 2n)

’

and for every r € N,

t LyoT"(x)—L
1—[ ( l+¢ ) kel k(X)AVkOT"(x)—Vk(X) - /\—222=1"k > ) T2N
k =" =M :

14 @Ay

By Lemma 30 there exists zp € N such that forallt > ty, Ny < n < myand x € X4,
—2N;

(") (x) = Alz . Therefore for all x € 3y,

o0 my o0

™) (x) = ™) (x) > ~(my— N)ATN D
Z()() XY @)= (z DA

t=1n=N; t= tO
By Hopfs criteria the shift is conservative. O

4¢ SERIE - TOME 54 — 2021 —N° 1



CONSERVATIVE ANOSOV DIFFEOMORPHISMS OF T2

125

A.0.1. Proof of the type 111 property. — In order to prove that the ratio set is [0, co) we are
going to use the following principle: since R(7) is a multiplicative subset it is enough to show
that there exists y, € R(T)\{1} with y, — 1 asn — oo.

THEOREM 32. — Let pu be the Markov measure constructed in Subsection 3.2.2. For

1+¢
1+pA,

everyn € N, Ay -

Fix n € N. The first stage in proving that A, -

€ R(T) and therefore the shift is type 111;.

14¢

Troir € R(T) is to show that the ratio set

condition is satisfied for all cylinders with a positive proportion of the measure of the cylinder
set. Then for a general A € 3., we use the density of cylinder sets in 3.

Given ¢ € N, denote by C(¢) the collection of all [c]f)v * cylinder sets such that

Ni—1 Ni—1
ng ng ny
(Al) Lt(C) = E 1[Ck=l] S (Z, 7) and E 1[0k=2,ck+1=3] > E
k=M;_, k=M;_,
Since

# <[C]Ztt—1) = Vam, o Q ([C]gt) ’
it follows from (3.5) and (3.6) that for all ¢ large enough,

I

U ¢

Cel(t)

In order to shorten the notation, given M, j €
RGE (M, B, j.e):=BNTMBn

and for M € N,
YA (M) = {1,

1
>1——.
Y

N,B e Bande >0, let

i 149
/ 1+(p/\j

/

(")

(lie)]

2,33 Nz,

LEMMA 33. — For every [b]",, cylinder set, € > 0 and j € N, there exists aty € N so that

for all t > ty the following holds:

For every C = [c]f)v’_l € C(t) there exists d = d(b,C) € Za (N; + n) such that for

everyN > [ <m;/k;,

lki+Ni—1

(A2) koo

C N[d]

c T pr, N [(T”")/ =2

1+9¢
l—i—(p/\j

-(1:|:e):|.

Recall that k; > N is defined as a (1 + 373N1) mixing time for Q.

Proof. — Let [b]",,e > 0and j € N be given. By Lemma 30 there exists t such that for
everyt > tand 1 <[ <m,/k; (here lk; € [N;, m;)),

1+
14+ pAg

e\ oy — t
(T )(x) (I:I:e)kl:[l[(

)Lkolet(x)—Lk(x)

_)L’IC/k"le’ (x)—vk(x)} _

Choose 9 to be any integer which satisfies 7o > max (z, j) and M, > n.
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Let ¢ > to and choose a cylinder set [c]{)v * € C(t) which intersects [b]",,. Thatis ¢; = b;

fori € [0,n]. We need now to choose d € X, (N; + n) which satisfies (A.2). Notice that

for x € [d]j} TV 0[]y

t LyoT!'kt (x)—Ly
l_[ ( 1+ ) ) k 1 (x)—Lg(x) ‘ AVkOlez ()= Vi (x)
14+ @Ay k

k=1
- (d)—
_ li[ ( 1+¢ )Lk( )7 Ve =Vi©)
e L1+ 0k k ’

in this representation we look at [d]ﬁ’l. Forall k € [0, M;_1], let

dr = ¢k
and for all k € [—n, 0),
dy = bg.
Notice that this means that for k € [-n, n], dr = by and thus
[d]ﬁk'JrN’ c Tk
Let p(j.t) < 55 be the integer (condition (3.4)) such that
L+¢ \?0? 1+¢
( o 1+¢A,) =4 1+
Setdy = 1forallk € [M;—1, M;—1 + Vi(c) + p(j,t)] and then continue repeatedly with the

sequence “321,” L,(c) — V;(c) times. Since ¢ satisfies (A.1), this construction is well defined
(e.g., we have not reached yet k = N, — 1). Continue with sequences of 32 till k = N; — 1.

Thus we have defined d in such a way that

Li(d) — Li(c) = p(j,1)
and
Vi(d) = Vi(e) = p(j.1).
In addition for all 0 <k <t, Lig(d)= Lr(c) and Vi(c) = Vi(d). Thus for all

x e dlp N el

(lel)/(x) P li[ |:( 1+¢
faliet 1+ pAx

1 p(j.t)
=(1i6)(/\t- +“’)
1+ (p/’\t

14+¢
— 1+ : .
(1£e) (Ajl+<ﬂ/\_/)

This proves the lemma. O

Li(d)—-L
) <@ "(C)‘Avk(d)—vk(c)}
k

In the course of the proof one sees that the event
- ! I1+¢ ¢
n N, Ik; (30 e\ _ g )
(17, N el ) 0 (T (b1, 1 {(T ) = T ie)})
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is & (lk; —n,lk; + Ny) measurable and does not depend on of (Ik; + Ny, lk; + 2Ny).

REMARK 34. — Given [c]f,v’ € C; we have defined d = d(c) € X4 (N; + n). The defini-
tion of d is not necessarily one to one. This is because if [5]34’*‘ = [c]g/”*l, Vi(c) = Vi (€)
and L;(c) = L, (¢) then d(c) = d (¢). In order to make it one to one we will use

[d(c). el T

instead of [d (c)]ﬁ',:JrN "where by [a,b]ﬁ“ength(a)ﬂength(b) we mean the concatenation of a
and b. This can be thought of as putting a marker on d(c). In order that the concatenation
will be in X4 we need that

Q(d(c)n,~1,¢0) > 0.

This can be done by possibly changing the last two coordinates of d(c). This will change the
value of (T )/ by at most a factor of AF* , which is close enough to one. We will denote
by d(c) := (d(c), ¢). We still have

lki+2N; ks ) _, . 1te
A2 cr r[b]_nﬂ[(T r) Y Y (u:e)]

but now the map ¢ +— d(c) is one to one.

In the proof of the next lemma we will make use of the fact that for every cylinder set
([a]ﬁn)c is ¢ (m, 1) measurable.

LEMMA 35. — For every [b]"*, cylinder set, € > 0 and j € N there exists ty € N such that
forallt > t,

m;/4k;

| | mee @ik b1, j.€) | = 0.8u (b1",).
=1

Proof. — Let [b]",, be a cylinder set and ¢y be as in Lemma 33. For all ¢ > ¢, [c]f,v’ e C@)
which intersects [b]”, and | <[ < m,/4k,,

([c]{,vf N [b]’in) N (RSE 41k, [b]",. . €))° C []AT N [p]7, N ([d(c)]jf’,g;j,ﬁvf)c.

AsQi3=min{Q;;: 1 <i,j <3},

1
lk N, —
vre0 (AN ) = 1o B QY™ 2 557
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Therefore, one has by repeated applications of (3.7) (mixing time condition),

my[dk; ¢
u(([b]'inﬂ[c]év’) ( U RSC (ke (b1, J. e)) )

(([b] ") {mtﬂkt iﬁi’t’“)c})

my/4k

=u (([b]’in N [c]f}’f)) 1—[ [ (1+373N) (1 Ve ([d( )]:%;JFN,))]
1=

<u (([b]'in n [c]f)v’)) [( 3Nr) ( 3—3N,)]mt/4kr

< (o).
Notice that in the application of the mixing time condition we used that
AU+ Dk —n)— 4k + Ny) > (41 + 3k — (41 + 1) ky = 2k;.
If  is large enough then

M(EA\ U C) <0.1/L([b]'i,,),

Cel(t)
and for all [c]) = C € C(1),

my[4k;
M([b]’i,,m[c]gvfm( U mse(m,,[b]’:n,]‘,e))) (1—-) ([b] m[c]g’r)

=1

> 0.9 (17, N [ely") -

The lemma follows from

m[/4k[
uw| | Ree (k. [b)",.j.¢€)

=1
my [ 4k,
>l W B0l n | Rnee (k. b, j.€)
[clo " €C(r) I=1

>09 3 (B, Nl
[elo " €C@)
> 0.8u ([b]%,,) - O
Proof of Theorem 32. — This is a standard approximation technique. Let j € N, 4 € A3,

1(A) > 0and € > 0. Since the ratio set condition on the derivative is monotone with respect
to € and

1+ @A
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we can assume that

1+o
PAj

(1+e)<2.

(A.3) IRV

Since ¢ (—n,n) 1 B asn — oo, there exists a cylinder set b = [b]",, such that
n(ANo)>0.99u(b).

By Lemma 35 there exists ¢ € N for which

/At Ik 1k l+¢
_4 4 — e ——
pleny U T fhm[(T t) = Ty (lj:e)] > 0.81(b).

=1

Denote by

my[4k; ,
_ I+
B = bN T—4kig | (T4%) =1, — 7 . (1 & .
b{u s (1) =4y a0

=1

We can assume that for x € B, there exists C(x) = [C]é\” € C; so that x € C(x). Then by the
proof of Lemma 33 there exists d(C(x)) € Xa (2N, + n) such thatif x € [d(C(x))]jéziffN’,
then

/ I4+¢ _
(A.4) (T‘”kt) (x) = A; - TTol (1+¢) and x € T~4kip,

Define¢ : B > N

§(x) = inf {1 < mq/ak, : lgE 2N = [@dCoiE N

and S = T? : B — S(B) C b. We claim that S is one to one. Indeed, since the map
[c]f)v’ > d(c) is one to one, for every x, y € B such that C(x) # C(y),

[SyPPNe = [d(C NP # [dC )P =[x

—n

consequently Sx # Sy. In addition, by the definition of ¢, if x # y and C(x) = C(y) then
Sx # Sy.

It follows from (A.4) and (A.3), that for all x € B,

dpuoS I14+¢
S'(x) = =A;- -1+ 1,2].
(W= om0 =4 o (19 €12
Therefore %(y) > % for all y € S(B). A calculation shows that

pr(S(B) N A) > n(S(B)) — n(b\A)
> (B) — pu(b\A4)
= 0.79 (b),

and
- n(S(B)N A)

©(S7H(S(B) N 4)) >

> 0.39u(b).
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So
my/4lk;

—4lk, w _ . Lte .
3 M(AH%T“ Aﬂ[(T“ )_A, i (1:|:6)j|}ﬂ[¢)—4lk;])

=1
>pu((BNA)NS'(S(B)yN 4)) {Notice that B, S(B) C b}

> (BN A)—u(6\S~' (S(B) N 4))
> 0.181 (b),

and thus there exists / € N such that

- ! %
ANT kg | (T4%) =), . 1+ 0.
M( [( ) ey x9))=

This proves the theorem.
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ANALYTIC NORMAL FORMS
AND INVERSE PROBLEMS FOR UNFOLDINGS
OF 2-DIMENSIONAL SADDLE-NODES
WITH ANALYTIC CENTER MANIFOLD

BY C. ROUSSEAU anp L. TEYSSIER

ABSTRACT. — We give normal forms for generic k-dimensional parametric families (Z;), of germs
of holomorphic vector fields near 0 € C? unfolding a saddle-node singularity Zg, under the condition
that there exists a family of invariant analytic curves unfolding the weak separatrix of Z¢. These normal
forms provide a moduli space for these parametric families. In our former 2008 paper, a modulus
of a family was given as the unfolding of the Martinet-Ramis modulus, but the realization part was
missing. We solve the realization problem in that partial case and show the equivalence between the
two presentations of the moduli space. Finally, we completely characterize the families which have a
modulus depending analytically on the parameter. We provide an application of the result in the field
of non-linear, parameterized differential Galois theory.

REsuME. — Nous donnons des formes normales pour les familles génériques (Z¢), a k parameétres
de germes de champs de vecteurs holomorphes au voisinage de 0 € C2, et déployant une singula-
rité Zo de type col-nceud, sous la condition qu’il existe une famille de courbes analytiques invariantes
déployant la séparatrice faible de Zg. Ces formes normales donnent un espace de modules pour ces fa-
milles génériques. Dans notre article de 2008, nous avions donné un module de classification pour ces
familles génériques, lequel consistait en un déploiement du module de Martinet-Ramis, mais la par-
tie réalisation était manquante. Dans cet article, nous donnons la réalisation dans ce cas spécial, et
nous montrons 1’équivalence entre les deux présentations de I’espace des modules. Finalement, nous
caractérisons complétement les familles dont le module dépend analytiquement des paramétres. Nous
donnons une application du résultat en théorie de Galois paramétrique non linéaire.
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1. Introduction

Heuristically, moduli spaces of holomorphic dynamical systems not only encode but also
describe qualitatively the dynamics itself, and to some extent allow a better understanding of
remarkable dynamical phenomena. This paper is part of a large program aimed at studying
the conjugacy classes of dynamical systems in the neighborhood of stationary points (up
to local changes of analytic coordinates). Stationary points and their invariant manifolds
organize the global dynamics while degenerate stationary points organize the bifurcation
diagrams in families of dynamical systems. Stationary points of discrete dynamical systems
correspond to fixed-points of the iterated map(s), while for continuous dynamical systems
they correspond to singularities in the underlying differential equation(s).

A natural tool for studying conjugacy classes is the use of normal forms. For hyperbolic
stationary points (generic situation), the system is locally conjugate to its linear part so that
the quotient space of (local) hyperbolic systems is given by the space of linear dynamical
systems. However, for most non-hyperbolic stationary points the normalizing change of
coordinates (sending formally the system to a normal form) is given by a divergent power
series. Divergence is very instructive: it tells us that the dynamics of the original system and
that of the normal form are qualitatively different. In that respect, a subclass of singularities
that has been thoroughly studied in the beginning of the 80’s is that of 1-resonant singu-
larities: these include parabolic fixed-points of germs of 1-dimensional diffeomorphisms,
resonant-saddle singularities and saddle-node singularities of 2-dimensional vector fields, as
well as non-resonant irregular singular points of linear differential systems. These various
resonant dynamical systems share a lot of common properties, among which is the finite-
determinacy of their formal normal forms (e.g., polynomial expressions in the case of vector
fields). Another property they share is that they can be understood as the coalescence of
special “geometric objects,” either of stationary points or of a singular point with a limit
cycle in the case of the Hopf bifurcation at a weak focus.

1.1. Scope of the paper

The present work is the follow-up of [41] in which we described a set of functional moduli
for unfoldings of codimension k saddle-node vector fields Z = (Z,), depending on a finite-
dimensional parameter ¢ € (Ck, 0). Here we focus mainly on the inverse problem and on the
question of finding (almost unique) normal forms, as we explain below.

The most basic example of such an unfolding is given by the codimension 1 unfolding
(expressed in the canonical basis of C?)

2
(1.1) Ze(x,y) = [x +8}, ¢ eC.
y

Real slices of the phase-portraits are shown in Figure 1.1. The merging (bifurcation) occurs
at ¢ = 0: for ¢ # 0 the system has two stationary points located at (:i:«/—e, 0) which collide
as ¢ reaches 0.

4¢ SERIE - TOME 54 — 2021 —N° 1



NORMAL FORMS FOR CONVERGENT SADDLE-NODE UNFOLDINGS 135
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F1GURrE 1.1. Typical members of the simplest saddle-node bifurcation.

1.2. Modulus of classification

Each merging stationary point organizes the dynamics in its own neighborhood in a
rigid way. The local models of these rigid dynamics seldom agree on overlapping areas
and in general cannot be glued together. If this incompatibility persists as the confluence
happens, then we have divergence of the normalizing series at the limit. In the case of 1- or
2-dimensional resonant systems the normalizing series is k-summable. The divergence is then
quantified by the Stokes phenomenon: there exists a formal normalizing transformation, and
a covering of a punctured neighborhood of the singularity by 2k sectors over which there
exist unique sectorial normalizing transformations that are Gevrey-asymptotic to the formal
normalization. Comparing the normalizing transformations on intersections of consecutive
sectors provides a modulus of analytic classification. This modulus takes the form of Stokes
matrices for irregular singularities of linear differential systems and functional moduli for
singularities of nonlinear dynamical systems (see for instance [20]).

The classification of resonant systems may seem rather mysterious. But if we remember
that we are studying the merging of “simple” singularities, then it becomes natural to unfold
the situation and study the “multiple” singularity as a limiting case. Indeed, analyzing
unfoldings sheds a new light on the “complicated” dynamics of the limiting systems.
The idea was suggested by several mathematicians, including V. Arnold, A. Bolibruch
and J. Martinet [30]. It was put in practice for unfoldings of saddle-node singularities by
A. Glutsyuk [15] on regions in parameter space over which the confluent singularities are
all hyperbolic. The system can be linearized in the neighborhood of each singularity, and
the mismatch in the normalizing changes of coordinates tends to the components of the
saddle-node’s Martinet-Ramis modulus [31] when the singularities merge. But the tools were
still missing for a full classification of unfoldings of multiple singularities, in particular on a
full neighborhood in parameter space of the bifurcation value.

The thesis of P. Lavaurs [24] on parabolic points of diffeomorphisms opened the way
for such classifications, for he studied the complementary regions in parameter space. The
first classification of generic unfoldings of codimension 1 fixed-point of diffeomorphisms
regarded the parabolic point [29], and then the resonant-saddle and saddle-node singu-
larities of differential equations [37, 38]. The first classification of generic unfoldings of
codimension k saddle-nodes was done by the authors [41] using the visionary ideas of
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A. Douady, J.F. Estrada and P. Sentenac [11, 2] that R. Oudkerk had used on some regions
in parameter space in his thesis [34]. Then followed classifications of generic unfoldings
of codimension k parabolic points [40] and of non-resonant irregular singular points of
Poincaré rank & differential systems [18].

In the spirit of this general context we obtained in [41] a (family of) functional data

(ms)s = (fssv W:’ w;)s :

For ¢ = 0 this data coincides with the saddle-node’s modulus [31, 49, 44]. Although the
original work of J. Martinet and J.-P. Ramis already covered parametric cases, it was then
assumed that the (formal) type of the singularity remained constant. On the contrary we were
interested in bifurcations, which are deformations where the additional parameters change
the type (or number) of singularities. Our main contribution was to reconcile Glutsyuk’s and
Lavaurs’s viewpoint and devise a uniform framework valid for a complete neighborhood of
the bifurcation value of the parameter. That being said, the very nature of our geometric
construction prevented the modulus to be continuous on the whole parameter space. This
space needs to be split into a finite number of cells whose closures cover a neighborhood of
the bifurcation value, on which the modulus is analytic on ¢ with continuous extension to the
closure.

1.3. The inverse (or realization) problem

At the time of the first works on the question, identifying the moduli space was still
out of reach. Performing this identification is called the inverse problem. It was first solved
for codimension 1 parabolic fixed-points and resonant-saddle singularities [9, 39], as well
as for the irregular singularities of linear differential systems with Poincaré rank 1 [23].
For codimension k the realization problem was first solved for unfoldings of non-resonant
irregular singular points of Poincaré rank k [19]. But the realization question is still open for
unfoldings of codimension k parabolic points.

Let us formulate the inverse problem in the case at hands.

INVERSE PROBLEM. — Among all elements of the vector space oM to which m = (m,),
belongs, to identify those coming as moduli of a saddle-node bifurcation.

The present paper answers completely this challenge in the case of bifurcations with a
persistent analytic center manifold. The common feature to that case and the one studied
in [19] is that solving the inverse problem ultimately provides unique normal forms (privi-
leged representative in each analytic class).

Having persistent analytic center manifold can be read in the modulus as the condition
Y™ = Id. Although any element of the specialization of o/ at ¢ = 0 can be realized as the
modulus of a saddle-node vector field [31, 44], this property does not hold anymore for
bifurcations: the typical element of ¢# N {y¥™ = Id} can never be realized as a modulus
of saddle-node bifurcation. Let us explain how this is so. It is rather easy to get convinced
that there is no obstruction to realize any given deformation (m¢),cq(¢) Of a saddle-node’s
modulus mg over any given cell £ in parameter space. By this we mean that for each fixed
g € cl (&) it is possible to find a holomorphic vector field Z, on a neighborhood <%/ of (0, 0)
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such that comparisons between its sectorial normalizing maps coincide with m,. Further-
more the dependence ¢ +— Z, has the expected regularity on the cell’s closure, and the
neighborhood </ is independent on e. The sole obstacle lies therefore in gluing these cellular
realizations together over cellular intersections in order to obtain a genuine analytic para-
metric family Z whose modulus agrees with m. Favorable situations can be characterized by
a strong criterion imposed on m, called compatibility condition. A necessary and sufficient
condition is that two realizations over different cells in parameter space be conjugate over
the intersection of the two cells, thus allowing correction to a uniform family. One difficulty
is to express this condition on the abstractly encoded dynamics m (that is, before performing
the cellular realization). The compatibility condition takes the simple form that the abstract
holonomy pseudogroups generated by m be conjugate, a condition which can easily be
expressed in terms of the modulus. The general case of a bifurcation without analytic center
manifold remains open, and we hope to address it in the near future.

1.4. Summary of the paper’s content

Here we review the content of the present work. For precise statements of our main results,
as for more detailed proof techniques, we refer to Section 2. Recall that one can associate two
dynamical data to a vector field X = A% + B %:

— the trajectories of X parametrized by the complex time in the associated flow-system
X =Ax.y),
y =B(x.y):

— the underlying foliation ¥y whose leaves coincide with orbits of X, obtained by

forgetting about a particular parametrization of the trajectories. The foliation really
is attached to the underlying non-autonomous differential equation

A(x,y)y' =B (x.y)
rather than to the vector field itself.

The action of (analytic or formal) changes of variables ¥ on vector fields X by conjugacy is
obtained as the pullback

VX =DV (X o).

The vector fields X and W* X are then (analytically or formally) conjugate. When two folia-
tions ¢f y and ¢f § are conjugate (when X is conjugate to a scaling of X by a non-vanishing
function) it is common to say that X and X are orbitally equivalent. While for unfoldings we
also allow parameter changes, we restrict our study to parameter / coordinates changes of
the form

W (e,x,y)— (¢ (e), Ve (x.y)).

In this paper we focus on families Z = (Z,) ec(CX.0) unfolding a codimension k saddle-
node singularity for ¢ = 0 and the study of their conjugacy class (resp. orbital equivalence
class) under local analytic changes of variables and parameter (resp. and scaling by non-
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vanishing functions). Such families can always be brought by a formal change of variables
and parameter into the formal normal form

0 0
Ug (X) (Pg(x)a +y (1 + ;Lsxk) —) ,

dy
where
P.(x) = X e x4t ex ey, keN
Ue (X) = o +Urex + -+ up o X, uge #0
and ¢ +— (;Lg,uo,e,...,uk,s) is holomorphic near 0. A proof of this widely accepted

result seems to be missing in the literature, hence we provide one.

The first step in our previous work [41] consisted in preparing the unfolding (Z,), by
bringing it in a form where the polynomial P, determines the %-component. Formal and
analytic equivalences between such forms must consequently preserve the coefficients of P,
which then become privileged canonical parameters. This process eliminates the difficulty
of dealing with changes of parameters and allows to work for fixed values of ¢. Then we
established a complete classification. The modulus was composed of two parts: the formal
part given by the formal normal form above, and the analytic part given by an unfolding of the
saddle-node’s functional modulus. The formal / analytic part of the modulus itself consists
in the Martinet-Ramis orbital part (characterizing the vector field up to orbital equivalence)
and an additional part classifying the time. For example p, is the formal orbital class while
u, 1s the formal temporal class.

We completely solve the realization problem for orbital equivalence (i.e., for foliations)
when each Z, admits a single analytic invariant manifold passing through every singularity.
But we do more: we provide almost unique “normal forms” (the only degree of freedom being
linear transformations in y), which are polynomial in x when o ¢ R<o. In that generic
situation, an unfolding is orbitally equivalent to an unfolding over IP; (C) x(C, 0) of the form

k
Pty [ 14 et + L i) -
where the R; are analytic in both the geometric variable y and the parameter ¢. In this generic
case the construction is a direct generalization of that of F. Loray’s [26, Theorems 2 and 4]
fore = 0and k = 1, and only involves tools borrowed from complex geometry. In the
non-generic case (when o < 0) we also provide almost unique “normal forms,” which are
in some sense global in x: in this case the foliation is defined on a fiber bundle of negative
degree —t(k + 1) < uo for some positive r over P; (C) and is induced by vector fields of the

form

k

9 . . 9
(1.2) Xe (x,3) 1= Pe(x) o+ y [ 1+ pex® + > X/ Rje (PE(x)y) o

j=1

M As is customary we write vector fields in the form of derivations, by identifying the canonical basis of C2 with

o0 9
x> dy )
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This result offers a new presentation of the moduli space which has the advantage over that
of [41] to be made up of functions analytic in the parameter (it does not require the splitting
of the parameter space into cells).

As far as normal forms are concerned, we provide some also for the family of vector
fields. This requires normalizing the “temporal part”. The method used is an unfolding of
the construction of R. Schafke and L. Teyssier [43] performed for e = 0. As a by-product we
provide an explicit section of the cokernel of the derivation X, (i.e., a linear complement of
the image of X, acting as a Lie derivative on the space of analytic germs).

An important observation is that the normalization we just described does not involve
classification moduli in any way (nor does it rely on the analytical classification for that
matter), at least in the generic case 19 ¢ R<o. Therefore it does not answer the inverse (or
realization) problem which is posed in terms of classification moduli. This leads us to discuss
the compatibility condition.

As we mentioned earlier we can realize any unfolding m = (m;),c(¢) Of a saddle-node’s
modulus mg over a cell £ in parameter space, but we have such control of the construction
that we can guarantee this realization is an unfolding in normal form (1.2), save for the
fact that the functions ¢ — R, are merely analytic on € with continuous extension to
the closure. It is possible to express the holonomy group of X, with respect to the analytic
center manifold (the geometrical dynamics) as a representation of an abstract group of words
formed with elements of the modulus m (acting in orbits space). The compatibility condition
simply states that the holonomy pseudogroups over the intersection of two neighboring cells
are conjugate by a tangent-to-identity mapping. If the condition is satisfied then two cellular
realizations are conjugate for values of the parameter in the cells’ intersection. Usually when
such a situation occurs, we need to apply a conjugacy to the vector fields so that they match
in the new coordinates. Here no need for it. Indeed, since the realizations over the different
cells are in normal form, they necessarily are conjugate by a linear map. The additional
hypothesis in the compatibility condition that the conjugating map is tangent-to-identity
allows to conclude that the cellular unfoldings actually agree and therefore define a genuine
unfolding analytic in € (C¥,0).

Our analysis presents in an effective way the relationship between Rousseau-Teyssier
classification moduli and the coefficients of the normal forms, so that numerical, and in some
cases symbolic, computations can be performed. Also, we have refined our understanding of
the modulus compared to the presentation in [41]. The number of cells is now the optimal
number Cy = ﬁ (2,f ) (the k-th Catalan’s number) given by the Douady-Estreda-Sentenac
classification [11, 10]. Moreover we have reduced the degrees of freedom: instead of having
the modulus given up to conjugacy by linear functions depending both on ¢ and the cell, now
the modulus is given up to conjugacy by linear functions depending only on ¢ in an analytic
way. This new equivalence relation in the presentation of the modulus was essential in getting

the realizations over the different cells to match when the compatibility condition is satisfied.

Last but not least we were able to completely characterize the moduli that depend analyt-
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ically on the parameter. These only occur when k£ = 1 and their normal forms are given by
particular Bernoulli unfoldings (Definition 2.11)

0 d
(1.3) Pe) gty (14 ek e (0 (P00 0) ) 5

with d € Nand du € Z (in particular 4 must be a rational constant, which is seldom the
case). This proves that the compatibility condition is not trivially satisfied by every element
of M N {y™ =1d}. On the contrary, the typical situation is that of moduli which are
analytic and bounded only on single cells. This reminds us of the setting of Borel-summable
divergent power series, in particular in the case k = 1 where the cells are actual sectors and
it can be proved that the moduli are sectorial sums of %—summable power series (as in [9]).
When k > 1 the lack of a theory of summation in more than one variable prevents us from
reaching similar conclusions, although the moduli are natural candidates for such sums and
a general summation theory should probably contain the case we studied here. We reserve
such considerations for future works, perhaps using the theory of polynomial summability
recently introduced by J. Mozo and R. Schéafke [33, 5].

1.5. Applications

Our main results can be used to solve problems outside the scope of finding normal forms
or addressing the local inverse problem. Let us mention two applications, the second of which
we develop in Section 2.3.

The first (and most straightforward) one concerns the global inverse problem, also known
as non-linear Riemann-Hilbert problem, posed by Y. Ilyashenko and S. Yakovenko in [20,
Chapter IV]. Being given a (germ of a) complex surface ¢ seen as the total space of a
fiber bundle over a divisor P; (C) C M, the problem is to characterize the holonomy
representations of complex foliations on ¢/ tangent to (and regular outside) the divisor and
transverse to the fibers, except over k + 2 singularities (which are all assumed non-degenerate)
where the fibers are invariant by the foliation. Using a sibling of Loray’s technique, they solve
it for fiber bundles of degree 0 and —1, although they only provide details for the former case.
Our results open the way to generalizations in several directions:

— allowing saddle-node(s) with central manifold along the divisor and adding to the
holonomy representation the components of the modulus of the saddle-nodes, simi-
larly to the generalized linear Riemann-Hilbert problem when irregular singularities
are allowed;

— allowing foliations depending analytically on the parameter;

— considering realizations on fiber bundles of negative degree: we obtain here realizations
on bundles with degree given by an arbitrary non-positive multiple of k 4 1 (see Conjec-
ture 8.5 for a brief discussion of possible improvement to any non-positive degree);

— allowing resonant nodes: in our paper all nodes were linearizable because their
Camacho-Sad index was greater than 1. But nodes with smaller Camacho-Sad index
pose no additional problem.

We propose to address this matter in the near future.
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The other application regards differential Galois theory: heuristically, classification
invariants carry Galoisian information (pertaining to the integrability in Liouvillian closed-
form). For instance, in the limiting case of a saddle-node singularity it is well-known that
Martinet-Ramis moduli play the same role for non-linear equations as Stokes matrices
do for linear systems near an irregular singularity. A Galoisian formulation of this fact in
terms of Malgrange groupoid [28, 27] can be found in the work of G. Casale [6]. When the
differential equation depends on a parameter ¢, the recent thesis of D. Davy describes a
form of “semi-continuity” for specializations of its parametrized Malgrange groupoid 9t.
Davy proves that the size of the groupoid 90, is constant if ¢ is generic, more precisely if the
parameter does not belong to a (maybe empty) countable union Q of hypersurfaces, while
for ¢ € Q the groupoid M, can only get smaller. The present study illustrates and refines
this phenomenon.

Consider the extreme case P, (x) % +y ( 1+ pexk + &R, (x, y)) % for R arbitrary: the
vector field X is surely “not less integrable” (it is the formal normal form) than for ¢ # 0.
This is actually the only possible kind of degeneracy near the saddle-node bifurcation, for
we will establish that Q N ((Ck ,0) is either empty or a germ of an analytic variety. We obtain
the latter property by unfolding a result by M. Berthier and F. Touzet [1], characterizing
vector fields admitting a local non-trivial Liouvillian first integral near an elementary singu-
larity. We deduce that normal forms of integrable unfoldings are necessarily a Bernoulli
unfolding (1.3). Both proofs are very different in nature, and we obtain a particularly short
one by framing the problem for normal forms, revealing the usefulness of their simple
expression and of the explicit section of their cokernel.

2. Statement of the main results

In all that follows ¢ is the parameter, belonging to some ((Ck,O) for k € N, and we
study (holomorphic germs of) a parametric family of (germs at 0 € C? of) vector fields
zZ =(Z) ec(CF.0) for which a saddle-node bifurcation occurs at ¢ = 0. That is to say, when

e = 0 the vector field Zy is of saddle-node type near the origin of C?:

— 0is an isolated singularity of Z,

— the differential at 0 of the vector field has exactly one non-zero eigenvalue (the singu-
larity is elementary degenerate).

The family Z = (Z,), is called a holomorphic germ of an unfolding of Z,. We study in
details only “generic” unfoldings, those which possess the “right number” of parameters to
encode the bifurcation structure. Roughly speaking we require that for an open and dense
set of parameters the vector field Z, have k + 1 distinct non-degenerate singular points. The
latter merge into a saddle-node singularity of multiplicity k¥ 4+ 1 (codimension k) as ¢ — 0.
Let us make these statements precise.

DEFINITION 2.1. — An unfolding Z of a codimension k € N saddle-node Z is generic
if there exists a biholomorphic change of coordinates and parameter such that, in the
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new coordinates (x,y) and new parameter ¢, the singular points of each Z, are given
by Ps(x) = y = 0, where

k—1

Po(x) = x* pep x4 epx + g0

REMARK 2.2. — Generic families are essentially universal. In particular, the bifurcation
diagram of singular points is the elementary catastrophe of codimension k (in the complex
domain).

The analytic unstable manifold of Zjy, tangent at 0 to the eigenspace associated to the
non-zero eigenvalue of its differential, is called the strong separatrix. The other eigenspace
corresponds to a “formal separatrix” {y = o (x)} called the weak separatrix (generically
divergent [36], always summable in the sense of Borel [17]). We say that a saddle-node is
convergent or divergent according to the nature of its weak separatrix.

DEFINITION 2.3. — We say that the generic unfolding Z is purely convergent when there
exists a holomorphic function

S (Ck,O) x(C,0) —C
(g, x) —> 5¢ (%)
such that:
— each graph &, of s, is tangent to Z, and contains Sing (Z,) (the singular set of Z,,
consisting in all zeros of Z,),

— & is the weak separatrix of Zy (in particular the latter is convergent).

We call Convergent; the set of all such unfoldings.

REMARK 2.4. — 1. By applying beforehand the change of variables

(e, x,y) > (&, X,y + 5¢ (X))

to the unfolding we can always assume that {y = 0} is invariant by Z, for all
g€ (Ck, 0).

2. There exist unfoldings Z of a convergent saddle-node Z, such that, for all ¢ close
enough to 0, no analytic invariant curve & , exist. We use the term “purely convergent”
to insist that in the present case every vector field Z, for ¢ € ((Ck, O) must admit an
analytic invariant curve.

2.1. Normalization of purely convergent unfoldings

For z a finite-dimensional complex multivariable we write C {z} the algebra of convergent
power series in z, naturally identified with the space of germs of a holomorphic function at 0.
We extend this notation in the obvious manner so that C {e, x} is the space of convergent
power series in the k + 1 complex variables g, ..., gr—; and x.
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2.1.1. Formal classification. — We first give an unfolded version of the well-known Bruno-
Dulac-Poincaré normal forms [3, 13, 12]. Here we do not assume that Z is purely convergent.

ForMAL NORMALIZATION THEOREM. — Letk € Nbegiven. Fore = (gq, ..., cx—1) € Ck

define the polynomial

k—1

P (x) := x**1 4 Zijf.

j=0
Take a generic unfolding Z of a saddle-node of codimension k. There exists (u,u) € C{e} x C{e, x}
with (e, x) — ug (x) polynomial in x of degree at most k and satisfying ug (0) # 0, such that Z is
formally conjugate to the formal normal form

Q2.1 Z:=uX,

where

2.2) )/Z(xy)'zP(x)i+y<1+/ka)i
’ ex Al e Oy ¢ dy

defines the formal orbital normal form. Notice that these vector fields are polynomial in (x, y)
and holomorphic in ¢ € (CF,0).

In general the parameter of the normal form Z differs from the original parameter of Z.
However the formal change of parameter ¢ — ¢ (¢) happens to be actually analytic (as
proved in [37, Theorem 3.5] and recalled in Theorem 4.1). Moreover such normal forms are
essentially unique, in the sense that among all formal conjugacies only some linear changes
of variables and parameter preserve the whole family. For example, transforming x into ax
for some nonzero o € C in Psa% yields the vector field

1
L b () L = ok prr) -
o 0x ox

where € := (gja'™/ )j<k' Therefore by taking o¥ = 1 the linear change (&, x) +— (e, ax)
transforms ()/Zs) into ()/Zg)~ It turns out this is the only degree of freedom for formal

& &
changes of parameters (see Section 4), which makes the parameter of the normal form

special.

DEFINITION 2.5. — The parameter of the normal form Z (modulo the action of Z/kz
on (g, x)) is called the canonical parameter of the original unfolding Z. In all the following a
representative € of the canonical parameter is always implicitly fixed and forbidden to change.

As a consequence, two formal normal forms with formal invariants (u, u) and (&, %) as
above are (for fixed canonical parameter ¢):

1. orbitally formally equivalent if, and only if, they have the same formal orbital invariant
w=u;

2. formally conjugate if, and only if, they have the same formal invariant (., u) = (&, %).
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2.1.2. Analytical normalization

DEFINITION 2.6. — For k € N a positive integer let us introduce the functional space in
the complex multivariable (g, x, v) € Ck+2:

k
Sectiong {v} := { fr (x.v) =v Y _ fo; W)X/ : fi; (v) € Cle.v}
j=1
We let v figure explicitly in the notation Sectiony {v} since this variable (and this variable
only) will be subject to further specification.

NORMALIZATION THEOREM. — For a given k € N we fix a formal orbital invariant
n € Cle} and choose v € Zxq such that o + (k + 1)t ¢ R<o. For every Z € Convergent
with formal invariant (i, u), there exist Q, R € Sectiong {PTy} such that Z is analytically
conjugate to

u

(2.3) %:=1+MQ56

where

(2.4) 36:=)A(+Ryi.
dy

REMARK 2.7. — In case T = 0 (which can be enforced whenever the generic condition
o ¢ R<o holds) normal forms induce foliations with holomorphic extension to P; (C) x(C, 0).
This is no longer true if 7 > 0 and if R is not polynomial in the y-variable.

Specializing the theorem to ¢ = 0, we recover the earlier results [43, 26]. Let us briefly
present the unfolded geometric construction of F. Loray (performed at an orbital level
in [26] when k = 1) to get the gist of the argument. We define a holomorphic family of
abstract foliated complex surfaces (M, of ) = (Me, Ff ) (ck.0) given by two charts. The

first oneis a domain U° := {0 < |x| < p°} x (C, 0) together with some arbitrary convergent
unfolding Z, provided the following non-restrictive properties (see [41]) are fulfilled for
alle € (CF,0):

— Z¢isholomorphic on the domain and has at most k 4 1 singular points in 9/° (counted
with multiplicity in case of saddle-nodes) each one located within 9/° N {0 < |x| < 1/p°}
for some p*° > 1/py,

— Z, is transverse to the lines {x = ¢} whenever P (¢) # 0,

— Z, leaves {y = 0} invariant.

The other chart is a domain U™ := {1/p> < |x| < oo} x (C,0) equipped with a folia-
tion ¢f o°

— having a single, reduced singularity at (oo, 0),

— otherwise transverse to the lines {x = cst},

— leaving {y = 0} invariant.
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Biholomorphic fibered transition maps fixing {y = 0} exist on the annulus AU N Ur
precisely when Z, and &75° have (up to local conjugacy) mutually inverse holonomy maps
above, say, the invariant circle %’;HSI x{0}. The resulting complex surface ¢}, is naturally
a holomorphic fibration by disks over the divisor Z ~ P; (C). In other words ¢, is a germ
of a Hirzebruch surface, classified at an analytic level [22, 48, 14] by the self-intersection
—T € Z<o of Z in oM,. From the compactness of Z stems the polynomial-in-x nature of
the foliation &7, . Other considerations then allow to recognize that 7 is (globally conjugate
to a family of foliations) in normal form (2.3).

Let us explain where 7o  comes from, and at the same time how the Hirzebruch class
T = (k + 1) risinvolved. When the construction of (¢, &f) is possible, the global holomor-
phic foliation &7, leaves the compact divisor & invariant and Camacho-Sad index formula [4]
applies. The sum of indices of Z, at its k + 1 singularities, with respect to Z, is jte S0 f o
must have index — (1, + 7). By assumption the singularity at (oo, 0) can therefore never be a
(saddle-)node. Invoking the realization result of [43, Section 4.4] (more precisely in the chart
near (0o, 0)) it is always possible to find a foliation ;- with the desired properties. On the
contrary when p, + 7 < 0 then no such ;- may exist at all except in very special cases
(detailed in [26, Theorem 2]) since, for instance, the holonomy along Z of a node is always
linearizable while the weak holonomy of Z, has no reason to be linearizable. We discuss this
problem in more details while dealing with the non-linear Riemann-Hilbert problem below.

Therefore one can always take t := 0 except when po < 0, which accounts for the “twist”
P, (X)" ¥ ~x—00 X'y in normal forms (2.3).

2.1.3. Normal forms uniqueness. — To fully describe the quotient space (moduli space)
of Convergent; by analytical conjugacy / orbital equivalence, the Normalization Theorem
must be complemented with a description of equivalence classes within the family of normal
forms (2.3), leading us to discuss its uniqueness clause.

DerINITION 2.8. — 1. For Z € Convergent;, we denote
2.5 n(Z) = (w.u, R, Q)
(2.6) 0(Z) = (1. R)

respectively the normal invariant of Z and its normal orbital invariant, where the func-
tional tuples on the right-hand side are given by the Normalization Theorem.

2.Forc e C{e}*and f € C{e, x, y} define
c*fi=(e,x,y) — fe(x,cey).
We extend component-wise this action of C {e}™ to tuples of functions such as n and o

above.

UNIQUENESS THEOREM. — 1. Two normal forms (2.3) associated to the same fixed t© and
moduli (2.5) n and W are analytically conjugate (by a change of coordinates fixing the
parameter) if, and only if; there exists ¢ € C{e}* such that c*n = 0. For any conjugacy
W (e,x,y) > (&, ¥, (x,y)) there exists a unique t € C{e} such that

_ !
U= c*@z,
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where CIJ% is the local flow of 7 at time t € C. Moreover it is fibered in the x-variable if,
and only if, t = 0. In that case V is linear:

U =c*Id: (,x,y) —> (&, x,¢c)).

2. Let 0 and'd be the corresponding orbital invariants. The normal forms are analytically
orbitally equivalent (by a change of coordinates fixing the parameter) if, and only if, there
exists ¢ € C{e¥* such that c*o ="0. For any orbital equivalence V there exists a unique
F € C{e, x, y} such that
_ *xF
V= c"0y.

Moreover V is fibered in the x-variable if, and only if, F = 0. In that case WV is linear.

REMARK 2.9. — In particular normal forms (2.3) are unique when only tangent-to-
identity in the y-variable, fibered in the x-variable conjugacies are allowed.

Again the proof is largely based on the strategy of F. Loray introduced in [26], although
the actual implementation in the parametric case calls for subtle adaptations. The idea is to
extend any local and fibered conjugacy between normal forms to a global conjugacy on a
“big” neighborhood of Z, from which it easily follows that only linear maps can do that.

2.2. Inverse problem

For given k € N we can split the parameter space (C*. 0) into Cx = 47 (zkk ) open cells &

such that 1
U & = (c*.0)\Ax,
¢

where Ay is the set of parameters ¢ for which P, has at least a multiple root (A is the
discriminant curve). We recall that we can associate [41] an orbital modulus to a purely
convergent unfolding Z

m(Z):= (me)15€ka
my ‘= (¢ZS)

where for each j € Z/kz and each £ the map

JE€L/kT

(e.h) € E¢ x (C.0) —> ¢/ (h)
is holomorphic, vanishes along {4 = 0} and admits a continuous extension to cl (£;)x(C, 0).

[T L}

REMARK 2.10. — 1. The upper index “s” is purely notational and refers to the fact that the
function ¢Z : comes from the j-th “s”addle intersection, where the dynamics behaves
very much like a saddle point.

2. The diffecomorphisms WZ ’z, which unfold the components w({’s of the (classical)

Martinet-Ramis modulus, are given by WZ >(h) = hexp (%ﬁ + ¢‘Zi ;" (h)).
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Let us write ¢/, {h} the vector space of all such functions, so that

m(Z) € [ | e th*.
L

The data m (Z) is a complete orbital invariant for the local analytic classification of purely
convergent unfoldings.

2.2.1. Orbital realization. — The definition of the compatibility condition involves notions
going beyond the scope of the present summarized statements. We refer to Section 7.3 for a
precise definition. Instead let us use the following terminology.

DEFINITION. — We say that (u,m) € C{e} x [[, ¢/ {hy* is realizable if there exists a
generic convergent unfolding Z with formal orbital class i and orbital modulus m = m (Z).

For the sake of completeness, let us state the following fundamental result even though all
material was not properly introduced.

ORBITAL REALIZATION THEOREM. — Let € C{e} be given. A functional data
me [[, H {h}k yields a realizable (i, m) if, and only if, (u, m) satisfies the compatibility
condition (presented in Definition 7.16 ).

Although it is not directly used in the present paper, considerations akin to those from [43]
show that the map sending a normal form to its orbital modulus

0= (i, R) — (u,m)
is upper-triangular, in the sense that the n-th-jet of m, with respect to % is completely deter-
mined by u and the n-th-jet of R with respect to y. In that sense passing from modulus to

normal form is a (non-effective) computable process. In the case k = 1 we show how to
compute the diagonal entries. More details on this topic can be found in Section 10.1.

2.2.2. Moduli which are analytic with respect to the parameter. — Our final main result proves
that the compatibility condition defines a proper subset of the vector space C {e} <[], ¢4 {h}k.
Let us start with a definition.

DEerINITION 2.11. — 1. A Bernoulli vector field of index d € Z>_; takes the form

i 0
X () =a () g+ (b +e )y

for holomorphic a, b, c € C{x}.
2. A Bernoulli unfolding is a saddle-node unfolding (X.), with members of the special
form

BN ad
X, = Xs + g¢ (x)yd+1a—
y

for some analytic germ (g, x) > g¢ (x) € C{e, x}. In particular each X, is a Bernoulli
vector field.

REMARK 2.12. — Such a vector field is named that way because the underlying non-
autonomous differential equation is Bernoulli:

a(x)y =b(x)y+c(x)y?th
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PARAMETRICALLY ANALYTIC ORBITAL MODULI THEOREM. — Let there be given € C {e}

andm = (my), € [, e {h}k. Assume m is holomorphic, in the sense that my = M|8lx(<c 0

for some M € hC {e, h}k. The following conditions are equivalent:

1. (u, m) satisfies the compatibility condition,
2. eitherm = 0, or k = 1 and there exists d € N, a € C{&}\ {0} such that

e du € 7Z (in particular w is a rational constant ),
o M (h)=—2log(1—ah?).

If one of the conditions is satisfied and m # 0, then (my), can be realized by a Bernoulli
unfolding:
“~ 0
X, =X, + rexP, (x)™ yd+1a—
y

Jor some r € C{e}\ {0}.

REMARK 2.13. — By letting C {¢}™ act linearly through (s, x,y) — (g, x,c,y) we may
normalize further r to some & for k € Zsg. See also Section 10.1. Observe that r, in the
normal form does not depend on x because k = 1.

2.3. Application: non-linear differential Galois theory

M. Berthier and F. Touzet [1] proved that the Martinet-Ramis modulus of a convergent
saddle-node vector field admitting non-trivial Liouvillian first integrals [35] must be a rami-
fied homography h +— ah (1+ Bhe )_l/d, from which they deduce that the vector field is
conjugate to a Bernoulli vector field. It is indeed straightforward to compute the modulus
of a Bernoulli vector field (by solving explicitly the underlying differential equation) and
observe that it is a ramified homography, and that all such ramified homographies are
reached this way. (We refer to Lemma 9.3 for the computation.)

Roughly speaking Liouvillian integrability corresponds to differential equations admit-
ting “closed-form” solutions obtained by iteratively taking quadrature (or exponential
thereof) of elements of (algebraic extensions of) the base-field (here, meromorphic functions
on a polydisk containing P! (0) N {y = 0}).

INTEGRABILITY THEOREM. — Let (Z.), be a generic, purely convergent saddle-node
unfolding and denote by T the germ of set consisting in those & € ((Ck , 0) for which Z, admits
a Liowvillian first integral. The following statements are equivalent.

1. The locus of integrability < is full: T = (C¥,0).

2. Its (analytic) Zariski closure is full: 7 = (C*,0).

3. Its orbital normal form &\ is a Bernoulli unfolding.

REMARK 2.14. — 1. The case gzar # ((Ck, O) corresponds to Z being a germ at 0 of
a proper analytic subvariety. Then Z is the locus of parameters for which the
normal form is Bernoulli. For instance in case of the normal form given by

Re (1) =14 + L ()t we have © = L~'(0), as we discuss after the proof of
the theorem.
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2. In the case k = 1 the second condition is equivalent to any of the following three
conditions: the germ Z accumulates on 0, Z is infinite, Z # {0}.

Proof. — The property of having a non-trivial Liouvillian first integral is both orbital
and invariant by change of analytic coordinates, so we do not lose generality by taking
Z = & in normal form (2.4). Integrability is equivalent to the existence of a Godbillon-
Vey sequence [16] of length at most 2, that is to the existence of two non-zero meromorphic
1-forms w and 5 for which

dn=0
do =dwAn, §€{0,1}
w(SC):O.

(The multivalued map H := [ exp (8 / n)a) is indeed a Liouvillian first integral of &X,
obtained by quadrature of closed 1-forms.) This in turn is (almost) equivalent to solving for
meromorphic, transverse Y # 0 in the Lie-bracket equation

2.7 [, Y]=68Y, §e{0,1},

since the dual basis (1, ) of (56 Y ) is a Godbillon-Vey sequence and vice versa. There is a
subtlety here, because ¢¥ may fail to meet this condition while there could exist an integrating
factor V for which V &U does. We deliberately ignore this eventuality, because the case V' # 1
can be deduced from the particular case V' = 1 by a direct (albeit cumbersome) adaptation.
For the same reason we only deal with the case (o ¢ R<o.

The implication (1) = (2) is trivial. The implication (3) = (1) comes from Remark 9.4,
where a Liouvillian first-integral is computed explicitly for all ¢ € (C¥,0). Alternately one
can compute the Godbillon-Vey sequence as the dual basis of

1 — puxk X 2z dz d+1 O
Va,Y) = d —_— 1.
(V&b ¥) ( d ‘%’e"p( /0 1~k “P) oy

Observe that V &0 is in normal form and its temporal modulus is trivial.

Let us prove (2) = (3). The strategy is the following: we first show that the vector field
is Bernoulli for each ¢ € Z, then we invoke the analyticity of the normal form and the

fact that Ezar is full to cover a whole neighborhood of 0 in parameter space. Hence, let us
fix ¢ € Z and drop the index ¢ altogether. According to the above discussion one can find
8 € {0, 1} and a vector field

Y=A(x,y)%+3(x,y)56

solving (2.7) for two functions A # 0 and B meromorphic on a polydisk containing
P~1(0) N {y = 0}. From (2.7) we deduce the relations

X -B =6B,

2.8
28) G-A = (8+1+pxk+ BE) A

dy

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



150 C. ROUSSEAU AND L. TEYSSIER

The second equation tells us that {4 = 0} U {4 = oo} is a union of separatrices of ¥,
therefore of the form

A, y)=y""U () [ =2,
P(z)=0

for some choice of d, £ (z) € Z and for some holomorphic and never vanishing function U.
Let us prove that R = r (x) y?, from which follows either d € N or R = 0.

The last equation of (2.8) becomes

SC-logU=8—d<1—|—,u,xk)— RIS

P(z)=0

P
9 (o2 ).
xX—z ay

because & - logy = 1 + ux* + R. Evaluating this identity at any one of the k + 1 points
(x,y) = (x,0) such that P (x) = Oyields0 = § —d (1 + ;ka) — £ (x) P’ (x), since on the
one hand R and yg—f vanish when y = 0 while on the other hand £ (z) % evaluates to 0 if
z # x and to £ (x) P’ (x) otherwise. As a consequence we have equality of the polynomials
Y p(y=0l(2) E2 = § —d (1 + ux¥) of degree k. Therefore

X—Z

OR
& -logU = y— —dR.
dy

In the course of Section 6 we show that im (&) N Sectiony {y} = {0} (see Remark 6.3).
Hence, the fact that yg—ly2 —dR € xyC[x] {y} = Sectiong {y} lies in the image of - can

only mean yg—lj — dR = 0. From this we deduce at once that
R(x,y)=xr(x)y?, reClxl.

The condition that, for a specific ¢, the vector field X, be Bernoulli corresponds to the
vanishing of all coefficients in R, of y” but for n = d. Since (e, y) = R, () is analytic with
respect to ¢ and Z*° = (C,0), if d is independent on ¢ then the identity principle implies
that R, (x, y) = xre (x) y? forall (e, x, y) € (C¥*2,0). The fact that d is indeed independent
on ¢ stems from Baire’s category theorem. O

REMARK 2.15. — The proof relies in an essential way on the analyticity of the orbital
normal form &¥ with respect to ¢ near 0. Compare with the method of proof of [1]: fore = 0
the argument is based on the fact that the existence of a Godbillon-Vey sequence forces
the Martinet-Ramis modulus to be a ramified homography. This argument works as well
for ¢ # 0, but we could not have argued on from there since the modulus is in general
not analytic at ¢ = 0: although being a ramified homography is an analytic condition, an
accumulation of zeros of this relation as ¢ — 0 could arise without holding for all ¢ (for
k = 1, say). This situation cannot occur, and our shorter argument does not involve the
unfolded modulus of classification.

The Galoisian characterization of the existence of Godbillon-Vey sequences of length at
most 2 is performed in [6], and for fixed ¢ its length equals the (transverse) rank rk (9t;)

of the Galois-Malgrange groupoid .. This rank takes values in {0, 1,2, co}, integrability

4¢ SERIE - TOME 54 — 2021 —N° 1



NORMAL FORMS FOR CONVERGENT SADDLE-NODE UNFOLDINGS 151

corresponding to finite values. For the normal forms (2.4) with Ry (x,2) = ) .o ¥en (X) 27,
we have

L+#{n: re, #0} ifitis <2,

rk (OM,) =
(M) otherwise.

Therefore ¢ +— rk (M) is lower semi-continuous: accidental values of the rank can only
correspond to more integrable systems.

ExamPpLE. — Taking into account Remark 2.13, in the case k = 1 and R # 0 the vector
field X, is “more integrable” (transverse rank 1) than the generic ¢, (transverse rank 2) if
and only if the exponent « is positive.

This is a special instance of a general result on parametrized Galois-Malgrange groupoids
obtained recently by G. Casale and D. Davy [7]. They show that for rather general deforma-
tions of foliations ( ¢7),, the rank rk (9,) of the specialization 9%, of the Galois-Malgrange
groupoid of the family is lower semi-continuous in £. Moreover, the locus of discontinuity is
contained in a countable union of proper analytic subvarieties. We showed that in the case
of purely convergent saddle-node bifurcations, the locus of discontinuity is at most a proper
analytic subvariety.

2.4. Structure of the paper

— We begin with fixing notations and providing precise definitions in Section 3. Readers
familiar with complex foliations may skip this section.

— The Formal Normalization Theorem is proved in Section 4.

We first present the generic case (for which one can take t = 0), since it is easier to highlight
the ideas than in the case t > 0.

— The orbital part of the Normalization and Uniqueness Theorems are established in
Section 5 when t = 0.

— The temporal part of the Normalization and Uniqueness Theorems are established in
Section 6 when t = 0.

— In Section 7 one finds the definition of compatibility condition, and the proof of the
Orbital Realization Theorem in the generic case T = 0.

— In Section 8 we prove the Orbital Realization Theorem in the case t > 0. This provides
a posteriori a proof of the orbital part of the Normalization and Uniqueness Theorems
when t > 0.

— In Section 9 we discuss the Bernoulli unfoldings and prove the Parametrically Analytic
Orbital Moduli Theorem.

— Finally, in Section 10, we conclude with a few words on computations.
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3. Preliminaries

3.1. Notations

3.1.1.

3.1)

General notations

We let the set N := {1,2,...} stand for all positive integers, whereas the set of non-
negative integers will be written Zso = {0, 1,...}.

For n € N we let (C", 0) stand for any small enough domain in C” containing 0.
The domain D := {z € C: |z| < 1} is the standard open unit disk.

The unit circle of R? ~ Cis denoted by S' := {z € C: |z| = 1}.

The closure of a subset A of a topological space is written cl (A4).

k € Nis fixed, e = (0, ...,6k—1) € ((Ck, 0) is the parameter and

k—1
P, (x) = k4 Zejxj.
j=0
The parameter space (C¥,0) is covered by the closure of Cy = ﬁ(zlf) open and

contractible cells &;.

The period operator T = (T7) is built near Definition 6.10.

J€Z/kz
The very nature of constructions involves using more sub- and super-scripts than one is
generally comfortable with. To alleviate this downside we stick to a single convention:
subscripts are always parameter-related, while superscripts are in general related to the
geometric variables (x, y) or to indices in power series expansions. Example: we write
Vé’; ’; for the “s”addle part of the j-th sector in x-variable, relatively to the parameter &
being taken in the £-th parametric cell. In the course of the text we try to drop indices
whenever possible.

The dependency on the parameter ¢ is implicit in most instances. For example, u € C {¢}
stands for the formal orbital modulus while u, stands for the value of u at the partic-
ular value of the parameter ¢. Yet in many places where ¢ is fixed we do use u instead
of i in order to help reducing the notational footprint. This also applies for other
parametric objects.

3.1.2. Functional spaces. — In the following R is a commutative ring with a multiplicative
action by complex numbers.

SR is the multiplicative group of its invertible elements.

S [z] is the commutative ring of polynomials in the complex finite-dimensional
(multi)variable z = (z1, ..., z,) with coefficients in R

After choosing a binary relation < among {=, <, <, ...} we let R [z], be the subset
of <R [z] consisting of polynomials P such that deg P < d.

The projective limit & [[z]] := limy_ o0 R [z] .4 1s the ring of formal power series in z
with coefficients in A&

C{z} is the algebra of convergent formal power series in the complex multivariable
z € C", naturally identified to the set of germs of a holomorphic function near 0 € C".
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REMARK 3.1. — We will mostly use the spaces:
- C [[8]]a (C [[87 X]] and (C [[8’ X, y]]’

— C{e}, C {s}x, C{e,x},and C{e, x, y}

— Cle}[x], C{e} [x]% and

Sectiong {v} := xvC{e, v} [x] .

Let &) CC" be a domain containing 0 equipped with the affine coordinates z=(z1, ..., z,).

— Holo (@) is the algebra of complex-valued functions holomorphic on ).

— Holoc (&0) is the Banach subalgebra of Holo (&) of all holomorphic functions
f: &) — C, with bounded continuous extension to ¢l (), equipped with the norm

I/l g :=sup|f (@)].
z€ )

— Holo. ()’ is the Banach space of all holomorphic functions f : &) — C vanishing
on {z, = 0} with the norm

f(l)‘
Zn |

11y = sup‘
D €9

af

. ’
Notice that || f|'g < .

variable z,.

— We let

‘c@ whenever % € Holo. () and ) is convex in the

Hetzy= ) Holoc(Exx D).
D=(C",0)

where & is a parametric cell.

3.1.3. Vector fields and Lie derivative. — Let Z = Z;’Zl A; % be a germ of a holomorphic
vector field at the origin of C" (or formal vector field at this point).

— If f is a formal power series or a holomorphic function inz = (zy, ..., z,) € (C"*,0),
we denote by Z - f the directional Lie derivative of f along Z

9
z.f;=ZAjgf;=Df(Z).

The operator is extended component-wise on vectors of power series or functions.

— We define recursively for n € Zx¢ the n-th iterate of the Lie derivative, the operator
written Z-", by

z%:=1d
zmtl=z .z,
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— The flow of Z at time ¢ starting from z is the formal n-tuple of power series @, (z)
solving the flow-system
09, (z)
ot
which is a convergent power series in (¢, z) if, and only if, Z is holomorphic. At some
point we invoke the classical formal identity of Lie

(3.2) fodl :Z;—!Z'”f.

n>0

=Zod (),

— Two vector fields Z and Z are formally / locally conjugate when there exists a n-tuple
of formal / convergent power series W with invertible derivative at 0 such that

Z-U=ZoW.
In that case we write Z = U*Z.

— Two vector fields Z and Z are formally / locally orbitally equivalent when there exists
a formal power series / holomorphic function U with U (0) # 0 such that UZ and Z
are conjugate (in the same convergence class).

3.2. Conjugacy and orbital equivalence

DEFINITION 3.2. — Two unfoldings Z = (Z,), and Z = (Z,;)g are locally conjugate
(resp. orbitally equivalent) if there exists a holomorphic mapping

\IJ : (8,X,y) — (¢ (8) 7\118 (x’y))
such that:
l. e € ((Ck, O) € = ¢ (¢) has invertible derivative at 0,

2. foreache € ((Ck, 0) the component W, is a local conjugacy (resp. orbital equivalence)
between Z; and Zg().

If the above conditions are fulfilled we write
vz =72
We extend in the obvious way the definition for formal conjugacy / orbital equivalence.
REMARK 3.3. — The very first step of any construction performed here consists in
recalling the preparation of the generic unfolding Z (Theorem 4.1). For unfoldings in
prepared form (4.1) the parameter ¢ becomes a formal invariant. Hence we only use
conjugacies fixing ¢, that is W : (g, x,y) — (e, V¢ (x, y)). In that setting one can always

deduce ¥ knowing ¥,, therefore when we use the notation ¥ we generally refer to the map
(8,x,y) = W, (x, y), except when the context is ambiguous.

DEerFINITION 3.4, — Consider a formal transform W : (g, x, y) — (&, W, (x, y)). We say
that W is fibered when W, (x, y) = (x, Ve (x, y)).

DEFINITION 3.5. — W is a symmetry (resp. orbital symmetry) of Z when W is a self-
conjugacy (resp. orbital self-equivalence) of Z.
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REMARK 3.6. — Hence, to determine the orbital symmetries of Z it suffices to determine
the changes W such that ¥*Z = UZ for some U with Uy (0, 0) # 0.

4. Formal normalization

The formal normalization is based on three ingredients, each one corresponding to a step
of the construction:

— a preparation ¢ la Dulac of unfoldings: for ¢ = 0 one recovers the Dulac prepared
form [12, 13];

— the existence of a formal “family of weak separatrices” which we can straighten
to{y =0}

— a variation on Lie’s identity (3.2) already used in [41, 44] to perform the analytic clas-
sification of saddle-nodes vector fields and their unfoldings. The formula reduces the

problem of finding changes of variables to solving an uncoupled system of cohomo-
logical equations.

4.1. Preparation
Take 0 € Z/kz and set o := exp 2i78/k. For ¢ := (Sj)j<k € (C*,0) we define

— i—1
0%e := (gj0’ )j<k'
THEOREM 4.1 ([41, Proposition 3.1 and Theorem 3.5]). — Any generic unfolding is
analytically conjugate to an unfolding of the form

A.1) Z =UX
4.2) X=R+A>
dy

Ax,y)=P((x)a(x)+ yR(x,y)

where X and P are defined in (2.2) and (3.1), while a € C{e,x}, R € yC{e, x,y} and
U e C{e,x,y} with Uy (0,0) # 0. In the particular case of an analytic weak separatrix one
can take a := 0.

Besides if two such prepared forms (Z,), and (Zg)g are formally orbitally equivalent then
there exists 0 € Z/kz such that’e = 0*s: the parameter is unique modulo this action and is
called canonical.

REMARK 4.2. — Although the original result is stated in [41] at an analytic level, the proof
that e becomes an invariant modulo the action of Z/kz stems from a formal computation and is
therefore valid for formal orbital equivalence too. The idea of the proof is that the parameter
completely determines the data of local eigenratios and vice versa, which are well-known
orbital invariants.

From now on we only deal with unfoldings in prepared form (4.1) and only consider
transforms fixing the canonical parameter ¢.
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4.2. Straightening weak separatrices

ProrosiTION 4.3 ([21, Proposition 2]). — For any unfolding X in prepared form (4.2) there
exists a formal power series

SeClle,x]] P

solving the parametric family of differential equations

4.3) P. (x) j—% (x) =5 (1 + usxk) T A (0,5 (1))

Performing the transform (g, x, y) — (&, x,y + 5. (x)) sends Z to a prepared unfolding
(4.4) VA :(7()?+ /Ty%)
Jfor some formal power series Uand AinC [[e, x, y]] with

U (s,x,0) =: Uy (x,0) = ug (x) + O (Ps (x))

A(e.x,0) =2 4 (x,0) = O (P: (x)).
with u € C|[e]] [x] a polynomial (in x) of degree at most k such that ug(0) # 0. In the

particular case when Z is purely convergent the latter power series (and the coefficients of u )
are convergent.

The proof of [21] is done for £k = 1 but the general case is similar. It is based first on the
following classical lemma, the proof of which is included for the sake of completeness.

LEMMA 4.4. — Let'g € Clx,y]] and'g € xPC|[[x]] be given with p € Zso, such that
either p > 0or g(x,y) = O(x). Let h € C[[x]] be such that h (0) # 0 and define
g(x,y) :==g(x) + y*g(x. »).

The differential equation
(4.5) L)+ h () f () + g (6 f (x0)) =0

has a unique formal solution f, which moreover belongs to x?C [[x]].
REMARK 4.5. — Note that Equation (4.5) is nothing else than the differential equation
determining the center manifold of the saddle-node vector field

k1 0
ox

when g and & are holomorphic germs.

9
x h(x) + g (x,y)) e

Proof. — Letting C := h (0) # 0 and g(x,0) = g(x) =: Y o » b™x™; then substituting
f(x) =:3"2__a™x™ into (4.5) and grouping terms of same degree m > p, we get
m=p

Ca™ +b™ + F™@aP,....a" ) =0

for some polynomial F™ depending on the m-jet of g and h. Hence, we can solve uniquely
for each a™. O

We then derive Proposition 4.3 from the following technical lemma which we will also use
later on.
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LEmMMA 4.6. — (See [21] for the case k = 1.) Let g, € C|le, x, y]] and g, € C[[e, x]] P be
given, i.e., 8o (X) = Pe (X)X jm=0 8" (X)e™ where each g™ (x) is itself a formal power series
in x, and let he € C[[e, x]] be such that hq (0) # 0. Define gs(x,y) := g.(x) + y?Ze(x, y).

The family of differential equations

(4.6) Pe(x) £ (x) + he(x) fe(x) + ge(x, fo(x)) =0
has a unique formal solution f, which moreover belongs to C[[e, x]] P.
Proof. — Let gs(x.y) = Po(x) Xjmino D™ (D)™ + Do (Xnza 6™ (1)y") 6™

Substituting f; (x) = Pe (x) Zlmlzo a™(x)e™ into (4.6) and setting ¢ := 0 we first get
d 0
xk+1 @ (x) + (ho (x) + kxk) a® (x) + x~k+D g0 (x, k10 (x)) =0,
dx

which admits a formal solution in x¥+1C [[x]] by direct application of Lemma 4.4 in the case
p = 0. Likewise, by grouping terms with same ¢™ for |[m| > 1 we obtain

4.7) xk+1 %(x) + (ho (x) + kx* + Km(x)) a™(x) + (bm’o(x) + F™(x)) =0,

where
™ (x) = Znx(n—l)(k+1)a0(x)n—lb0,n(x) -0 (xk+1) ,
n>2
and F™ € C][[x]] is some formal power series depending polynomially on (a" (X)) <|m|
and on the |m|-jet of g and /. By induction on |m|, we recursively find formal solutions
a™ € C][[x]], for Equation (4.7) has the same type as (4.5) with g := 0, and hence, has a
formal solution given by Lemma 4.4. Uniqueness is straightforward. O

4.3. Normalization and cohomological equations

The tool for proving the Formal Normalization Theorem is the following.

ProPoOSITION 4.7 ([46, 45]). — Let W and Y be commuting, formal (resp. holomorphic)
planar vector fields. Let F € C|[x, y]] (resp. a germ of a holomorphic function) be given with
F(0,0) =0. Then ¥ := CD{; is a formal (resp. analytic) change of variables near (0, 0) and

§ W-F
vw'w=Ww-——-7Y
1+Y-F

This tool is used in the following manner.

— First if we could find a formal solution T of the (parametric families of) cohomological
equations

1 1
4.8 X T=———
.8) U u

for a convenient choice of u € C {e, x}*, then uX would be formally conjugate to Z by
the tangential change of variables & given by

4.9) T =L,
This is the content of the propositionfor Y := W :=uX and F :=T.
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— From Proposition 4.3 we built the formal, fibered transform & given by
I (x.y) > (x,y =5 (x))
* (O =0 _
such that & (X + Ay@) =X.

— Finally, since y% commutes with the normal form X, if we could solve formally the
cohomological equation
~ ~ 0 ~
(4.10) (X+Ay—)-0=—A
dy
then X would be formally conjugate to X+ A4 y % by the fibered, transverse change of
variables O given by
(4.11) 0:=@7, : (x.y) > (x.yexp O (x.y)).
2%
We explain below how those formal power series are built and to which extent they are
unique. We consequently obtain a formal conjugacy Qo & o & between Z and Z (notice
that u is left invariant by the fibered 0o &, so that it also conjugates Z to uX).

LEMMA 4.8. — Let X be in the form (4.2) for A € Cl|le, x, y]|, and take G € C][[e, x, y]].
There exists a formal solution F € C[[e, x, y]] of the cohomological equation

(4.12) X.-F=¢G

if, and only if, G (x,0) belongs to the ideal generated by P. In that case F is unique up to the
free choice of F (0,0) € C[le]].

Proof. — Let
F(x.y)=:> F"(x)y" and G(x.y)=:Y G"(x)y"
n>0 n>0
We proceed by induction on n > 0 by identifying coefficients of powers of y in (4.12). For

each n € Z>o we must therefore solve

n

(4.13) P oF
ox

where o (n) stands for terms containing F™ for m < n only, and are thus already known.

+n(1+,uxk)F”=G"+o(n),

— The case n = 0 outlines the formal obstruction (notice that the choice of F° (0) is free).
— For n > 0 no additional obstruction appears and F” is uniquely determined. Then
Lemma 4.6 provides the unique formal solution of the family of differential Equa-
tions (4.13). O
We finally derive the Formal Normalization Theorem by writing
U (x,0)=u(x)+O(P(x)), ueC{e}x]%,

and finding a (unique with 7 (0,0) = 0) formal solution 7' of (4.8) by Lemma 4.8. As
for the power series O, a (unique with O (0,0) = 0) formal solution of (4.10) exists by
Proposition 4.3, and Lemma 4.8, for X given in (4.2).
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DEFINITION 4.9. — Let Z be an unfolding in prepared form (4.1). We write oV := 0o §o &
the canonical formal normalization of Z satisfying oV*Z = Z where 0, § and & are built
above.

4.4. Uniqueness

Addressing the uniqueness clause in the Formal Normalization Theorem boils down to
studying the case of the normal forms, because of the canonical choice of normalization
maps ¢/ done in Definition 4.9.

LEmMA 4.10. — Let V be a formal orbital symmetry of the formal normal form Z (fixing
the canonical parameter).

1. There exist unique F € C[[e, x, y]] and ¢ € C [[¢]] such that
U = (c*Id) o qu

where ¢*1d is the linear mapping (x,y) — (x,cy). (The converse statement clearly

holds. )
2. U is a symmetry on if, and only if, F € C[[¢]].
3. W is fibered if, and only if, F = 0.

Proof. — 1. By Remark 3.6 we want to determine V € C|[[e, x,y]]* such that
U*Z = VZ. Because ¢ is a formal invariant governing the eigenvalues of (the differen-
tial of) the vector fields at the singularities, ¥ cannot change the eigenvalues, so that
Vx,y) =1+ 0(P (x)) + O(y). According to Lemma 4.8 there exists a (unique) formal
solution F' with F (0,0) = 0 to the cohomological equation

S 1 1
X-F =

uV.  u
~ o—1 ~
Therefore ¥ := W o (Qg) induces a symmetry of Z.

Write U (e, x,y) — (&, ¢: (x,y), Ve (x,y)). By considering the %-component of Z one
obtains the relation

WP)op=27-¢.
Setting y := 0 yields

I¢pe
dx

(e Pe) 0 P (x,0) = ue (x) Pe (x) (x,0)

so that
P (x.0) = @ L\ (x) = @ (x.0)

for some ¢ € C|[[¢]]. Hence we may assume without loss of generality that F, (0,0) = ¢, and
Pe (x,0) = x. Writing ¢¢ (x,y) = x + > _,-, ¢ (x) y" with v > 0 we obtain for the term
of y-degree v

Vv

Ly p 0@
Pig" =P

+v (1 + Mxk) oY,
x
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whose unique formal solution is ¢” = 0, since it is the equation of the weak separatrix
of P-L Ty (v(l + uxky+ P ) 2 Asamatter of consequence ¢, (x, y) = x and U is fibered.

Lastly, by considering the 5—component of Z one obtains the relation

(1 +Mxk>wZ5\('w.
Setting y := 0 yields
Ve (x,0) =0

so that ¥ (x,y) = yexp Ne (x, y) for some N € C[[e, x, y]]. The corresponding cohomo-
logical equation reads

0=X-N
and only admits N € C [[¢]] as formal solution (uniqueness clause of Lemma 4.8). We then

set ¢ := exp N. (2) and (3) are clear from the previous arguments. O

We derive the following precise statement. Item (2) plays an essential role in proving the
(analytic) Uniqueness Theorem.
COROLLARY 4.11. — Consider two unfoldings Z and Z in prepared form (4.1).

1. Let WV bea formal conjugacy between Z and Z( fixing the canonical parameter ), namely
WVZ =Z Let N =00 oS and N = 0o 9 S be the respective canonical
tangent-to-identity formal normalizations as in Definition 4.9.

(a) There exists unique ¢ € C[[]]* andt € C [[¢]] such that
v = J\/o_l o (C*Id) o ’07{\/0 CD%.
( The converse statement clearly holds. )

(b) If V is analytic then so are t and c. (The converse statement does not generally
hold.)

2. If Z and Z are analytically orbitally equivalent (by an orbital equivalence fixing the
canonical parameter ) then there exists a fibered analytic orbital equivalence between them

STlo 0o (¢*1d) 0lo &
for some ¢ € C{e}.

REMARK 4.12. — The partial conclusion “there exists a fibered orbital equivalence” in
Claim (2) was proved in [41, Lemma 3.4] by unfolding the homotopy technique of [31,
Lemma 2.2.2]. We give here an alternate proof. In the other part of the conclusion, pay
attention that 0 o & and 0o ;Y are only formal power series, but the composition is a
convergent power series.

Proof. — 1.(a) follows from Lemma 4.10: the formal map 0]\/ oWo oj\/ 1s a symmetry
of the normal form Z, and @7\/ is a formal conjugacy between Z and Z, hence conjugating
their flow (as formal power series):

@fzo'Jx/:’J\/o@fz.
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1. (b) Here we assume that W is analytic. Following (a) we have
v = 90—1 o (CSvO—l o 1o (c*Id) 0 0o go Cbtu}?) oﬂgi.
Using both facts that U := §° ' 0 0°! o (¢*1d) o 0o & is fibered, and that
Pl (r.3) = (@, 5 (1).7 @P1+ 30 (x.3.1).
we first derive
W= 90_10(®LP8’w>0g'
Because T (0,0) = 7~"(0, 0) = 0, we have
W, (0,0) = (te&0,.-.)

from which we deduce the convergence of 7. We also have the identity
oy
dy

from which the convergence of ¢ follows also.

(0,0) = cexpt,

2. It is sufficient to assume that Z := X is analytically conjugate by some ¥ (fixing the
canonical parameter) to Z := UX for some U € C {g, x, y}*. In that setting we have u = 1
and & = Id, so that according to (1)

v=g8""o0"o (C*Id) o 0o g”o ngo oL,
where t € C{e}. As a matter of consequence the mapping d>’»Z~ is analytic, and so is
~ o—1 ~ —~—o—1 ~
U:=WVo (CID’Y) .Because Wo & isfibered, the x-component of W (which is analytic)

is equal to the x-component of :9: The former is of the form (x,y) — A4 (x, v, T(x, y))
for some holomorphic function A € C{e, x, y,t} with %—‘;’ # 0, and where T is the solution

O

~o—1

of (4.8) for U := U.Thus T isa convergent power series, and so is Vol

5. Geometric orbital normalization

Here we prove the orbital part of the Normalization and Uniqueness Theorems for t = 0.
Sections 5.2-5.5 are devoted to the construction of the normal form conjugacy, while its
uniqueness is thoroughly studied in Section 5.6. Before going into the details we start with a
brief description of the general strategy. Let us call D the unit disk.

For fixed

we introduce two analytic charts:

— the original coordinates

(x,y) € U := p°D x (C,0),
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— the coordinates at infinity
(u,v) € U™ := p™D x (C,0)

with (involutive) standard transition map on C* x (C, 0)
1
(u,v) — (—, v) =(x,y).
u

For convenience we write O and O the respective expressions of a holomorphic object O
in the charts 9/° and 2/ respectively.

Start from an arbitrary X° € Convergent,, in prepared form (4.2), with 4 € y2C {e, x, y}
holomorphic and bounded on 9/°, and such that o ¢ Rep. It is always possible to make
this assumption thanks to Theorem 4.1, since ¢ = 0 in that case. Notice in particular
that A is bounded since we can always take a smaller p® and decrease similarly the size of
the neighborhood of {y = 0}: hence 9/° can be taken inside a compact set on which A is
defined.

In the following we assume that ¢ is so small that the k + 1 singularities of X2 lie
in {0 < |x| < 1/p>} x {0}. The following steps constitute what we refer to as the unfolded
Loray construction.

Gluing. — We find a vector field family X on 2/ whose holonomy over p®S! x {0} is
the inverse of b, the corresponding “weak” holonomy of X° (Section 5.2). Therefore
foliations induced by each vector field can be glued one to the other over the annulus
9° N U™ by an identification of the form

1
(.v) = (;,yexpmx,y))

(Section 5.3). This operation results in a family of foliated abstract complex surfaces
(M, F).

Normalizing. — We construct a fibered biholomorphic equivalence between ¢/ and a stan-
dard neighborhood of {y = 0} ~ P; (C), that is a complex surface with charts 2/°,
9/°° and transition map exactly (u,v) = (1, y) (Section 5.4). Because Py (C) x {0} is
compact the expression of the new X is polynomial in x with controlled degree, thus
in orbital normal form (2.4) as expected by the Normalization Theorem (Section 5.5).

Uniqueness. — From the special form of the normalized vector field, it can be seen that
the closure of the saturation of any small neighborhood of (0,0) contains a whole
P; (C) x rD. Therefore any local conjugacy between normal forms (which we choose
fibered thanks to Corollary 4.11 (2)) can be analytically continued by a construction a la
Mattei-Moussu on P; (C) x rD. But this manifold has very few fibered automorphisms,
allowing to conclude (Section 5.6).

In the unfolded Loray construction, only what happens in the first chart (x, y) is of a
different nature than when ¢ = 0. As seen from the other chart (u, v), the only important
ingredient for the construction is the “weak” holonomy b, of the unfolding (see Section 5.1
below). Hence the original arguments do not need to be unfolded near (oo, 0), although we
must take care that everything remains holomorphic in the parameter. The first two steps
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of the unfolded Loray construction require external results that need to be parametrically
controlled:

1. the realization of the weak holonomy h by a foliation near (oo, 0), obtained by the
construction of [43];

2. the normalization of the transition map between the charts (x, y) and (u, v) on the
annulus

o= {1/° < |u| < p=} x (C.0),

as done in [42].

Both proofs are similar in spirit and only rely on complex (holomorphic) analysis and (what
amounts to) a fixed-point method. Parametric holomorphy follows from the explicit integral
formulas. Because normalizing transition maps is relatively easy, we prove a parametric
version of Savelev’s Theorem in Section 5.4. It contains the main steps and ideas upon which
are based the respective proofs of the Normalization Theorem for vector fields (Section 6)
and of the Realization Theorem (Section 7). The latter is nothing but an unfolded version of
the main result of [43], retrospectively making the present article more self-contained.

5.1. Weak holonomy
We name
Im: (x,y)—x
the projection on the invariant line {y = 0} and let
Y I (xy)

be a germ of a transverse disk endowed with the coordinate y € (C,0). Starting from y € X
there exists a unique path

vy : [0,1] — U°
¥y (0) = (xx, )
tangent to X2 such that
y:=Iloy, = s+ x«exp2izms.

We define b, () as the y-component of the final value yy, (1). The weak holonomy mapping b,
as described is a germ of a biholomorphism near the fixed-point 0 whose linear part is
governed by the formal orbital invariant u in the following way:

he (v) = yexp2inu: + o(y) € Diff (£,0).

The analytic dependence of trajectories of X2 on the parameter ¢ ensures that h € C {e, y}.
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5.2. Parametric holonomy realization at (oo, 0)

THEOREM 5.1 ([43, Main theorem and Section 4.4]). — Let (Aﬂ)ne«cn o) e an analytic
Samily of elements of Diff (C,0), that is (n,v) — Ay (@) € C{n,v} and Ay (0) # O.
Let A € C{n} be given such that A; (0) = exp (—Zin)k,,) and Ay ¢ Reg. There exists an

analytic family of vector fields (X ,‘,’o)ne (cn oy O the form

d d
(5.1) X,‘IX’ (u,v) = —u% +v (A,, +u (1 + fy (v)) + gy (v)) pe frg € vC{n, v},

holomorphic on the domain U and satisfying for all n € (C*,0):

1. (0,0) is the only singularity of X3° in U™,

2. the holonomy of X° above the circle wyS! x {0}, computed on a germ of transverse disk
{u = u.} with respect to the projection (u,v) — u, is exactly A,,.

REMARK 5.2. — The result of [43] asserts the existence of a vector field of the form (5.1)
with f := 0 whose holonomy on X is conjugate to A by some analytic family ¥. The
conjugacy (u, v) — (u, ¥ (v)) transforms the vector field into the form (5.1) for different f, g
but its holonomy is exactly A on X.

In the generic case A¢ ¢ R the theorem is (almost) trivial. All holonomy maps
Ay vi—vexp (=2ind, + 8, (v)). 8 (0) =0,

are hyperbolic and locally analytically linearizable for that matter (Koenig’s theorem), the
unique tangent-to-identity linearization being given by ¥, : v — vexp ¥, (v), where

oo
Yy =Y 8y o AT

n=0

Local uniform convergence ensures that ¥ is analytic in both ¢ and 5. The fibered mapping
(u,v) > (u, ¥y (v)) transforms the linear vector field —u% + Ava% into a vector field X °
fulfilling the conclusions (1)-(2) of the theorem (but not of the form (5.1)). Howeverif g € R
this construction fails: the linearization domain may shrink to a point (if A is not analyti-
cally linearizable). The form (5.1) has the advantage of being valid for all cases, analytically
in the parameter. Notice that the presence of the term —uv % in (5.1) discards any linear real-
ization even when 4o ¢ R.

We define n:= ¢ € ((Ck,O),

A’E = I’LS ¢ RSO?

Ag: vi— bg_l (),

and apply Theorem 5.1, to obtain an analytic family X°° in the chart (1, v). In order to
stitch the induced foliation with that of X2 we need to prepare it by changing slightly the
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coordinates on ™. Let X? be the vector field corresponding to X2 in the coordinates
(u,v) = (L,y), thatis

~ 1\ 0 0
X2 (u,v) = —uP; (;) o T (ugu_k +1+ O(v)) .

=ubP, (l) X (—ui +v(Ag + he (u) + O (v)) i) ,
du dv

u
where

uk+/Lg

—ue € Holo ((Ck, 0) X p°°ID))

vanishes at 0. Notice indeed that the polynomial u*T1P; (1) € C[u];,, has its roots
outside the closed disk cl (p>*°D), whereas it takes the value 1 at 0. Remark also that the
quantity u P, (%) needs to be factored out in order to recognize a vector field alike to X2°
near (oo, 0). This function is non-vanishing on the annulus ¢#. Let XJ° be the vector field
corresponding to X° through the inverse transform

“ d
(5.3) (u,v) — (u, v exp/ (he (z) — 2) —Z) .
U z
By construction we have

_ 9 0
XX wv)=—-u—+v@As+ he () + O (v)) —,
ou v

which glues with )73 through (u,v) = (% y) as presented in the next paragraph.

5.3. Gluing

Both transformed vector fields X° and X built in the previous section have same
holonomy A, on X. We glue the (foliations defined by the) vector fields )?1? and )78"0 over the
fibered annulus ¢# through a fibered map @, fixing ¥ and (classically) obtained by foliated
path-lifting, as we explain now. For (u,v) € ¢# we join u, to u in ¢#Z N {v = 0} by some
path y and define

@, (u,v) = (.53, 0 (62,)" ).

where bg’y (resp. b25,) is the holonomy map obtained by lifting the path y through IT in
the foliation induced by )7;) (resp. }78‘"’). The map @, is well-defined because when y is
a loop both mappings b2, and hg,y coincide with the same corresponding iterate of A,.
Clearly ®, depends analytically on ¢ € ((Ck , 0) and is a germ of a fibered biholomorphism
near o7 N {v = 0} satisfying
~ 1\ ~
P*X° =upP (—) X,
u
D (u,v) = (u,vexp¢ (u,v)),
¢ (U,O) = ¢ (u*’ 'U) = 0
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5.4. Normalizing

So far the construction yields an analytic family of complex foliated surfaces, written
(M, ), defined by the charts (%0, &F 0) and (2™, ) with transition map

5.4 (u,v) — (%, vexp ¢ (u, v)) = (x,y).

REMARK 5.3. — The foliation &, is transverse to the fibers of the global fibration by
disks IT : oM, — Z given in the first chart by (x, y) — x, except along the k + 2 invariant
disks { P; (x) = 0} and {x = oo}.

Each manifold ¢/, is a neighborhood of the invariant divisor £ ~ P; (C), corresponding
to {y = 0} and {v = 0} in the respective chart, while the natural embedding P, (C) < M
has self-intersection 0 according to Camacho-Sad index formula [4] (the singularities
near (0, 0) contribute for a sum of Camacho-Sad indices equal to u, while the singularity
at (00, 0) does for —A, = —pue).

DEeFINITION 5.4, — For r > 0 we define the standard neighborhood of radius r of the
Riemann sphere
Sphere (r) := Py (C) x rD,
the complex surface equipped with the (global) affine coordinates
(u,v) e CxrD

and transition map on C* x rID given by (u, v) = (% y), i.e., by (5.4) with ¢ := 0. The other
chart of Sphere (r) is the domain (x, y) € CxrID. When speaking of a standard neighborhood
of the sphere we actually refer to Sphere () for some r > 0 small enough.

THEOREM 5.5. — Let oM be an analytic family of complex surfaces with transition
maps (5.4). There exists a standard neighborhood %) = Sphere (r) of Z, for some r > 0, and
an analytic family of fibered holomorphic injective mappings

U: Y—s M

agreeing with the identity on Z.

The rest of the subsection is devoted to the proof of this theorem. We refer to Section (3.1.2)
for the definitions of the functional spaces in use. We are looking for W, or rather its expres-
sion in the charts %° and %, in the form

W0 (x,y) = (x,yexpy® (x,))
U (u,v) = (u,vexp ™ (u,v)).

The normalization equation becomes a non-linear additive Cousin problem on ¢#:

1
1//0(;,1))—1//°°(u,v)=¢o\11°°(u,v).

4¢ SERIE - TOME 54 — 2021 —N° 1



NORMAL FORMS FOR CONVERGENT SADDLE-NODE UNFOLDINGS 167

(a) For F%in (x, y) coor- (B) For F*® in (u, v) coor-
dinates. dinates.

FIGURE 5.1. Integration contours in the respective charts.

Starting from ¥ := 0 and y{° := 0 we build iteratively two bounded sequences of
holomorphic functions

¥ € Holo, ((C*,0) x oD x D). 1 € {0, 00}

solution of the linearized additive Cousin problem (or discrete cohomological equation)
1
(5.5) 081 (o0) =¥ 1) = 0 (v exp R ).

The Cousin problem has explicit solutions given by a Cauchy-Heine transform. From these

solutions we obtain a priori bounds on the norm of 1//,‘3 , allowing to fix the radius r > 0

beforehand. We let
Uy = (e, y): |xl < p% Iyl <r},
U = {(u,v) : |u| < p™, |v| <r},

be an atlas for Sphere (7). We postpone the proof of the next main lemma to the end of the
section.

LEMMA 5.6. — Assume that ¢ € Holo. (7, for some domain 7, := {’% <|ul <p°°} x 7.
Let € Holo, (%fo) be such that the image of o#, by (u,v) — (u,vexp ¥ (u,v)) is included
in /. Define

F*® (u,v) := ﬁ¢poogl ¢ (z,vexpy (z,v)) zd_zu,

5.6
(>:6) FO(5.0) = 55 By 6 Gy exp (20) 25

Then the following properties hold.
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1. F° € Holo, (%2) and F* € Holo. (7). Moreover for i € {0, oo}

(5.7) H F

!
OUB S rK ||¢||Q%’I eXp ||1ﬂ||%$o )

K= (142
o p®p®—1)"

2. Forall (u,v) € A, we have

(5.8) F° (é,v)—F°°(u,v)=¢>(u,vexp1ﬂ(u,v)).

where

3. These are the only holomorphic solutions of the previous equation which are bounded, up
to the addition of a function v — f°° (v) with f*° € Holo. (rD).

REMARK 5.7. — The integral Formula (5.6) shows right away that F# depends holomor-
phically on any extraneous parameter on which ¢ were to depend holomorphically.

It is straightforward to check that fixing some
0-<r = nexp (1K 6 l{cx g)ns)

inductively produces well-defined sequences (w,‘f ) N of Holo, (%3), for we have the impli-
ne
cation

o0
lven

OU’?O < 77K ||¢8||;7]D)
= [vexpyy, ()| <7 lexp Yy (. v)| <rexp (1K lIgellyp) <1
for all (u,v) € ¢#,. Using (5.7) with ¢ := 25, finally yields

[venss

e < 1K 19ellys

We establish now that both sequences converge in Holo, (%&) The hypothesis ¢ (#,0) =0

guarantees that Wﬁ-}—l (u,v) = ¥ u,v)+ 0 (v"*1), hence the bounded sequence (Wﬁ) .
ne
converges for the projective topology on C [[e, u]] [[v]] (for the Krull distance actually).

Therefore the sequences converge towards holomorphic and bounded functions
¥ = lim 1//5 € Holo, (((Ck, 0) x p*D x r]D))
n—00

according to the next lemma.

LEMMA 5.8. — [43, Lemma 2.10] Let ) be a domain in C™ and consider a bounded
sequence ( fp)l7 o 0f Holoc (1) satisfying the additional property that there exists some point
zo € &) such that the corresponding sequence of Taylor series (Tp)p en @1 2o Is convergent
in C[[z — zo]] (for the projective topology). Then ( fp)p converges uniformly on compact sets
of &) towards some fo € Holo, ((@)
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REMARK 5.9. — The limiting functions ¥/# are not obtained through the use of a fixed-
point theorem, although they are a fixed-point of (5.5). The method used here, based on
Lemma 5.8, does not use the fact that Holo, (f/)) is a Banach space, only that it is a Montel
space (any bounded subset is sequentially compact). Also the estimate (5.7) obtained
in Lemma 5.6 (1) is easier to derive than a sharper estimate aimed at establishing that
1//,5 — fl 41 1s a contraction mapping.

5.4.1. Proof of Lemma 5.6 (2). — This is nothing but Cauchy formula.

5.4.2. Proofof Lemma5.6 (1). — Clearly the function F* is holomorphic on the domain %g
Notice also that modifying slightly the integration path does not change the value of the
function, so that F* is bounded on %ﬁ Let us evaluate its norm.

Set W : (u,v) — (u,vexpy (u,v)) and define p > 0 by 2p := p*= + p%- We prove the
estimate on || F || g0 and | F°

o in two steps: first we bound [F* (u, v)| when [u| < p

(resp. | FO| 40 when |x| < %), then when p < |u| < p™ (resp. % < x| < p%.

— For |u|] < pand |v| < r one has

1 dz
F*® (u, < Ull, x — .
L L Py M
On the one hand
1 d 1 2p°
_¢ z < = = o I?) < K,
21 Jpoost |Z —u p*—p  p>pY—1

while on the other hand, for all (1, v) € ¢%,,

|6 (. vexpy (u, v))| < V] []'s, exp ¥l -
Taking both bounds together completes the first step of the proof.

— This gives a corresponding bound for F° when |x| < % since

dz
xz—1

1 2p°

|x—| < =
p>p® —1°

— 1
1Y 20

2 1 g1
00

Taking (5.8) into account, one therefore deduces for /% < |u| < p the estimate

1
()
u

’ —2'00
= Pollielg, explivlape {1+ 25—

|[F* (. v)] < |¢ . vexpy (u,v))] +

as expected.

— The bound for F° when % < x < p? is obtained similarly.
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5.4.3. Proof of Lemma 5.6 (3). — Assume that (F°, F*) is another pair of solution. Then
forall (1.y) = (u,v) € %, we have

SO y) = FO(x,y) = FO(x. ) = F® (u,v) = F® (u.v) =: f* (u.v),
defining a bounded and holomorphic function f on Sphere (r). The next lemma ends the
proof.

LEmMA 5.10. — If f € Holo. (Sphere (r)) then % = 0. In other words there is a natural
isometry of Banach spaces
Holo, (Sphere (r)) ~ Holo, (rD).

Proof. — In the chart 9/° expand f into a power series f* (u,v) = Y_, .o fo (W) V"
convergent on C x rD. By assumption f is bounded so that from Cauchy’s estimate we get

[ fn O] < 1/ Ispherecy ™™

for all u € C. Liouville Theorem tells us that each f, is constant. O

5.5. Normal form recognition (proof of orbital Normalization Theorem)

The aim of this subsection is to shortly prove that the vector field W* X2 resulting from
Theorem 5.5 is in normal form (2.4). Because Savelev’s normalizing fibered mapping W
agrees with the identity on Z, each 7, is induced in the chart %(r) by a holomorphic vector
field of the form

. 0 )
e (63) = WX = Po0) o4y (1 e+ 40 0) 5

where 4 € Holo ((Ck,0) x p°D x rD) and 4 (x,0) = 0.
We must prove the following result.

LeMMA 5.11. — There exists a sequence of polynomials a, € C{e}[x] 4 such that
o0
A(x.y) =Y ay(x)y"
n=1

on U.

Proof. — The expansion for A is valid for (x,y) € GM? and a, holomorphic in x. In
the other chart (u,v) = (% y) the vector field 362 is orbitally equivalent (conjugate after
division by uP (1)) to

0 1 1 0
00 — A kA -,
g (u,v) o +v( g-l-hg(u)—l——ukHPs (%)u a(u v)) 7

where A is given by (5.2). This particular vector field must coincide with the holomorphic
vector field defining 7, in the chart 9/;° after application of (5.3), because every transform
used from the start is fibered so that the factor u P, (%) over oA, remains the same and no
other function can be factored out. Therefore u* A, (%, v) is holomorphic near (0, 0), and the
conclusion follows. O
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5.6. Proof of orbital Uniqueness Theorem (2)

Assume that there exists an orbital equivalence between two normal forms & and .
Those vector fields are in prepared form (4.2) thus they satisfy the hypothesis of the results
presented in Section 4, and in particular there exists a fibered analytical conjugacy W near
(0,0) between &X and ¢X, according to Corollary 4.11 (2).

Let (Sphere (r) , ¢) and (Sphere (r), ?) be the families of foliated standard neighbor-
hoods of the sphere induced respectively by ¥ and . The fibered mappings ¥ are holo-
morphic and injective on a domain &) C U < Sphere (r) containing (0, 0). By a foliated
path-lifting technique (as before) ¥ can be analytically continued on the domain

Us = Satg, () C Sphere (r).

Using the special form of the normal form X, we derive the following lemma in Section 5.6.2.
LEMMA 5.12. — There exists r’ > 0 such that Sphere (r') \ {x = oo} C U, for all ¢ € ((Ck, 0).

This lemma implies that W, extends to a fibered, injective and holomorphic mapping
Sphere (r’) \ {x = oo} — Sphere (r). The fact that ¥, extends analytically to {x = oo} uses
a variation on the Mattei-Moussu construction. The proof is standard, but we include it for
the sake of completeness.

LemMma 5.13 ([32, Theorem 2]). — We consider two germs of a holomorphic vector field X
and X, both with a singularity at the origin of same eigenratio A ¢ R>q and in the form

0 d
(5.9) X—+Ay(1+0(x))—.

ax dy
Fix a germ of a transverse disk ¥ := {x = x4,y € (C,0)}, for x« small enough, and assume
that there exists an injective and holomorphic mapping ¥ : ¥ — {x = x.} conjugating

the respective holonomies induced by X and X, computed through the fibration (x,y) + x
by turning around {x = 0}. Then there exists a holomorphic and injective, fibered mapping V
conjugating X and X on a connected neighborhood of (0, 0) containing X. We can even require
that V coincides with r on X.

Proof. — Assume first that A < 0. We can consider that the holonomies I' and T are
defined on ¥ := {x = x.}xr'Dandset ¥(xy, y) := (x4, ¥ (¥)) on . We then extend ¥ over
the circle {|x| = |x«|} as a map of the form W(x, y) = (x, ¥ (x,y)), with ¥ (x4, y) = ¥ (y):
the extension is done by the path-lifting technique detailed in Section 5.3. W is of course well-
defined because ¥ conjugates the holonomies. To extend W to pDxr’D, we use the path-lifting
along rays {arg |x| = cst}. Starting at (xo, y) we lift the ray through xo up to |x| = p in the
leaf of X. We apply W to the resulting point and then lift the ray back in the leaf of X. The
corresponding point is called W(xg, y). We must show that

{xo} x C1r'D C W({xo} x r'D) C {x0} x Cor'D
for some positive constants Cq, C, independent of x¢. For this purpose we can suppose that
the O (x) part in (5.9) is bounded by 1/2 (this is the case if p is sufficiently small). Then

1 d 1
byl (1= 5 lolexpe) < S0 < 4l ol (14 5 bolexor).
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yielding by Gronwall inequality that

1
1(0)] exp (m —/0 Txoexpi dr) < ly(®)] < |y(O)] exp (M +/0

t

1
§|x0| expt dt) .

The conclusion follows since exp ( f(f %|x0| expt dt) € ]exp %, 1[ is bounded and
bounded away from O for ¢ < 0.

The previous argument remains valid when A is not real. It suffices to replace |A| by | (1)].
O

REMARK 5.14. — The proof clearly shows that ¥ depends analytically on & were X and
X to depend analytically on e.

The following lemma proved in Section 5.6.1 allows to complete the proof of the Unique-
ness Theorem (2) by observing that injective holomorphic mappings on some standard
neighborhood of the sphere are of a rather special kind.

LEMMA 5.15. — Take some analytic family of maps ¥ : Sphere (r') — Sphere (r) satis-
fying the following properties:

o W s fibered,
o U, is injective and holomorphic on Sphere (r') for every ¢ € ((Ck, O).

Then
o
(5.10) WY (x,y) = (x,yzwny”),
n=0
where, for alln € Zxy,
Y € Cle}
with a common radius of convergence, and Yy does not vanish for ¢ = 0. Conversely, any

convergent power series WV as above defines an analytic family satisfying the above properties
for some v’ > 0 small enough.

As a matter of consequence for every ¢ € ((Ck, 0) and for any (x, y) € %(r)

Ve (x,y) = (x. y¥e (1), Ve (0) #0.

To preserve globally orbital normal forms (2.4) is so demanding that ¥, ends up being
constant. Indeed, from

Ag (x,y) d

IO F vy e ).

W e (x,y) = X (x,9) + ¥

where
Ao (x.9) = X (0) Re (8,996 () = 39 ) (1 + ).
we deduce by setting x := 0 that
0=4:0.y) =—yy, (»)
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so that ¥, is constant, for otherwise 566 would not be in normal form. In each case we obtain
finally

Ve (v) =c. € C*

as expected. The remaining claim is a straightforward consequence of the study performed
in Section 4.

5.6.1. Proof of Lemma 5.15. — The expansion (5.10) is valid on %(r)/ provided v, depend
holomorphically on x. Let us show that , is constant. Applying the transition mapping
(x,y) (%, y) we obtain the expression of W in the other chart:

U (4, v) = (u, vy Yn (5) vn) :
n=0

holomorphicin (v, v) € 9. This implies in particular that each function u + ¥, (%) must
be holomorphic at 0; the conclusion follows. The converse statement is straightforward.

5.6.2. Proof of Lemma 5.12. — We can find p, r’ > 0 such that cl (oD x r’'D) C ), where
&) is the domain of W. We show that, for some convenient choice of r” < r’ every point
(xx, yx) € {|¥] < r"} can be linked to a point of pDx r'ID by a path contained in a leaf of @72.
Only the case |x«| > p is not trivial. Since the singularity at (oo, 0) is neither a node nor a
saddle-node, every small germ of a disk {u = u.} sufficiently close to {u = 0}, which is trans-
verse to the separatrix 2, saturates a full pointed neighborhood (C,0)*\ {u = 0} C wUxX
under ¢f, . Therefore there exists 7 > 0 such that {0 < |u| < |ux|,|v]| <r”} C Ue.
Because Z is invariant by ¢f, and Z\ ({|x| < p} U {|u| < |u«|}) is compact we may reduce
r’” to some r” in such a way that pS' x "D C 9, (flow-box argument), which settles the
proof.

6. Temporal normal forms

This section is devoted to proving the temporal part of the Normalization Theorem and
of the Uniqueness Theorem in the case 7 = 0 (which particularly implies 1o ¢ R<o). Recall
how in Section 4 we obtained formal normal forms. The time-component U of any unfolding
in orbital normal form (2.4)

Z=U
can be written as
1
—=C+1,
U +
where
I €im (X
1
C k ), C(0,0) = 0,
€ coker (X~ (0,0) U(0,0)#

for a given (arbitrary for now) choice of coker (36), an algebraic supplementary in C [[e, x, y]]
to the image im (&) of the (formal) Lie derivative &-: C[fe, x,y]] = C[le x, y]].
According to the discussion following Proposition 4.7, Z is (formally) conjugate to é X
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We have shown in Lemma 4.8 that
Clle,x, ]l = im () & Clle]] [x]
or more precisely that the following sequence of C [[¢]]-linear operators is exact:
& g
(6.1) 0 —> C[[e]] — C[le. x, y]l — Clle, x, y]] — Cl[el] [x]<x —> O,

where T maps G to the remainder of the Euclidean division of its partial function x — G (x, 0)
by P. As a consequence we may take

coker (X-) := C[e]] [x] -

so that Z is formally conjugate to =i~ &.

(@)

W)
S+

REMARK 6.1. — The additional fact that

~ /(1 1
(U) s(U)Jr )

finally implies that Z is formally conjugate to u ¢ where u := T (U), as in the Formal
Normalization Theorem. This is because one can write (for ug (0) # 0)

1 1 1 1
Uxy) u(@+O0(P@)+00) u@  1+0(Px)+0(
1

=——+0(Px)+0(©).
u (x)

The previous argument still works for convergent power series, by replacing C [[¢, x, y]]
with C {e, x, y}: if we provide an explicit cokernel in C {e, x, y} of & - lcto.x.y) then we can
describe an explicit family of temporal normal forms.

THEOREM 6.2. — Assume © = 0 (which particularly implies 1o ¢ R<o). Let an orbital
normal form &0 be given. It acts by directional derivative on the linear space C{e, x, y} in such
a way that

Cle,x,y} = im(SC-) @ Cle}[x]o, @ Sectiong {y}.
( We refer to Section 3.1.2 for the definition of the functional spaces. )
REMARK 6.3. — The construction of the cokernel of ¢X- is eventually performed
for ¢ fixed. Therefore the theorem can also be specialized in the following way: for

every ¢ € (C*,0) such that p1, ¢ R<o and every disk D D P;!(0) not containing any
root of 1 + pex¥, we have the C-linear decomposition

Holo. (D) {y} = im (X,") & Clx]ox & xyC[x]4 {y}.

If ue € R<g a section of the cokernel is given by x P yC [x]_; {PsT ¥}
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The aim of this section is to prove this theorem but, before doing so, let us explain how it
helps completing the proofs of the Normalization and Uniqueness Theorems. Every function
U € C{e, x,y}” can be written uniquely as

U
- 1+uG

where T (G) = 0, by simply taking u := T (U) as in Remark 6.1. Then Theorem (6.2) allows
decomposing G uniquely as

G=0+1

with Q@ € Sectiong {y} and I € & - C{e, x,y}, so that Z is analytically conjugate to
some ﬁ U, unique up to the action of linear transforms (x, y) — (x,cy) as expected
(as follows from Uniqueness Theorem (2) which has been proved in the previous section).
This yields Uniqueness Theorem (1).

6.1. Reduction of the proof
We must study the obstructions to solve analytically cohomological equations of the form
H-F=G, GeClex, yinkerX.

First observe that this equation, restricted to the invariant line {y = 0}, is always satisfied by
a holomorphic function f : x — F (x,0) solving
G (x,0)
’ _ ’
S0 =50
By subtracting f from F and x +— G (x,0) from G, we may always assume without loss of
generality that

e C{e, x}.

G (x,0) = F (x,0) =0,
i.e., G € Cle, x, yY as defined in Section 3.1.2.
Let
Ap = {s c (Ck,o) L #P71(0) < k}
be a germ at 0 of the discriminant hypersurface of P,, so that each open set ((Ck, 0) \Ag

consists in generic values of the parameter for which P, has only simple roots. Proving
Theorem 6.2 will require to work in the functional spaces

izt = | ) Holoc(Eex D). z:=(z1.....20)
H=(C",0)
for some decomposition (&¢), of (C*,0) \ A into finitely many (germs of) open cells as

explained in Section 6.3. (We recall that the definition of the space Holo, (c@)/ is given in
Section 3.1.2.) We choose these spaces because of the next property.

LeEMMA 6.4. — We have
Clez) =\ He iz}
¢

( By the intersection on the right hand side we of course mean the functions that have an extension
on the unions of the different domains. )
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Proof. — We certainly have
Cle.z) C () Felz}.
14

Conversely if f € (), c#¢{z} then f defines a bounded, holomorphic function on
((C*,0) \Ax) x(C",0), which extends holomorphically to (C¥+", 0) according to Riemann’s
Theorem on removable singularities. O

Working over a fixed cell germ &£ is easy as compared to working on a full neighborhood
of the parameter space (C¥, 0).

PROPOSITION 6.5 ([41]). — Let &y be a parameter cell. There exists T, called the period
operator over Ey, such that the sequence of Holo. (Ey)-linear operators is exact:

6.2) 0 —> Holog (€0) —> & tx. v} —> Tl by} — [ e thy

Zfkz.

where h is a one-dimensional variable (meant to take the values of a first integral).

The surjectivity of the period operator T, has not been established in the cited refer-
ence, but it would have followed from an immediate adaptation of the argument of [44,
Lemma 3.4]. Here, though, we prove a stronger result by producing an explicit section to the
period operator (Proposition 6.6 to come). The construction of the period operator over £,
is explained in Section 6.2 below. It involves cutting up (C2,0) \ (P; " (0) x {0}) into k open
(bounded) spiraling sectors and building sectorial solutions of the cohomological equation.
The period operator measures how much solutions on neighboring sectors disagree on
intersections. Contrary to what would have make things easier

T (ClexyY) (] Hothy =[] Cle.hy,

P Z/kz Z/kz.

so that T, is neither onto nor into the natural candidate ]_[Z/kZ C {e, hY'. This situation differs
drastically from the case ¢ = 0, and can be explained. It turns out that the variable /4 in the j -
th factor of [ [; 24, ¢#p {h} stands for values of the canonical first integral of &l on the j-th
sector (see the discussion preceding Definition 6.10). Different sectorial decompositions for
fixed ¢, corresponding to different cells £ containing ¢, lead to incommensurable sectorial
dynamics: there is no correspondence between /i-variables coming from different overlapping
cells (see also Section 9). Therefore we need to relocate the obstructions in geometrical
space (x, y), by introducing a well-chosen section &, of T,.

PROPOSITION 6.6. — Let £, be a parameter cell and assume t = 0 (which particularly
implies po ¢ R<o ). There exists a linear isomorphism

Se: [ Hethy — x iy} Xk

Z/k17

such that ¥, o &, = 1d. This particularly means that we recover a cellular cokernel of - as
follows:

S dx.yy = (- Fulx.y}) & xS iy} Ixl .
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This proposition is showed later in Section 6.4 using a refinement of the Cauchy-Heine
transform, this time on unbounded sectors in the x-variable. Theorem 6.2 is proved once we
establish the next gluing property, as done in Section 6.5.

PROPOSITION 6.7. — For every parameter cells E¢ and E with non-empty intersection we
have

on flgi{x.y} N Hgix. ).
From Lemma 6.4 we deduce the identity

Sectiong {y} = ﬂxc%( Wi x]<k
¢

hence the proposition actually provides us with a well-defined, surjective operator
(6.3) A: Cle x,y} —> Sectiong {y}
G — 6, (%,(G)).

whose kernel coincides with & - C {e, x, yY’, i.e., the sequence of C {¢}-linear operators

(“x.
(6.4) 0 — C{e,x,y} — Cle,x,y} &, Sectiony {y} —0

is exact, as required to establish Theorem 6.2.

6.2. Cohomological equation and period operator

THEOREM 6.8 ([41]). — For every p > 0 there exists:

— a covering of ((Ck, O) \ Ay by finitely many open, contractible cells (Ey),,

— for every ¢ € &y, a covering of

Ve : = pD\ P! (0)
into k open, contractible squid sectors
V/@,j € Z/kz,

for which the following properties are satisfied. Recall that the closure of a subset A of a
topological space is written cl (A).

1. Each map ¢ — cl (V/ 8) is continuous for the Hausdorff distance on compact sets and
lim el (V/,) = el (V{')

e—>0
Ey

coincides with (the closure of) a usual sector of the limiting saddle-node, namely

V)= x:0<|x| <p,argx € 37{4— +,271 3n +'27T
U p.aig ok T T g

for some n €0, Z[.
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2. Welet

v/ = et x V..

g€y

For every G € Holo. (€, x p) x (C,0))’ there exists a unique family (Fej) - such
JE€L/kL

that F, Zj is the unique solution of

X-F=G
. !
in the space Holo, (V/ x (C, O)) . Moreover

lim F/, = Fj
EE)I'(I) L, FO

Ce
uniformly on compact sets of Voj x (C,0), where Foj is the canonical sectorial solution of
the limiting cohomological equation [45].

. There exists a solution F € Holo. (Ey x pD x (C,0)) of & - F = G if, and only if, for

everye € Egand j € Llkz
JH+1 _ pj
FE,B - Fl,e

on corresponding pairwise intersections of sectors V/ . X (C,0).

We provide details regarding how squid sectors and parameter cells are obtained in

Section 6.3 below. The way sectorial solutions (FZ/ ) » are built is explained in [41,
j€Z/kz

Section 7]. The third property encodes all we need to know in order to characterize alge-
braically the obstructions to solve analytically cohomological equations. It is, as usual,
eventually a consequence of Riemann’s Theorem on removable singularities.

REMARK 6.9. — 1. A usual saddle-node sector is divided by rays separated by an angle

slightly larger than 7: allowing an extra 5 on each side yields sectors of opening
between - and 2?” However we are in the particular case of a saddle-node with analytic
center manifold, meaning that we need twice less sectors to describe the singularity
structure. Hence the angle between the dividing rays can be taken as big as 2?”: allowing

T : : : 2 3
an extra 5 on each side yields an opening between <+ and .

2. A corollary to this theorem is the fact that any generic convergent unfolding is
conjugate to its formal normal form over every region V/ x (C,0). In particular

each & is conjugate over V/ . x(C,0)to X by a fibered mapping
(x,y) — (x, Y exp Nej,e (x, y))
built upon a sectorial solution of
X - NZj,a =R

as in Proposition 4.7.
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3. A really important property of the construction: it is performed [41, Section 7] for
each fixed ¢ € £y, the holomorphic / continuous dependence on ¢ of resulting objects
being a by-product. This greatly simplifies understanding what happens on overlapping
cells. This is also the reason why we omit to include the subscripts £ and ¢ in the sequel,
whenever doing so does not introduce ambiguity.

The period operator ¥, is obtained as follows. Fix ¢ € £; and p > 0 as in the previous
theorem. Starting from any G € Holo (pD x (C,0))" we can find a unique collection
(F/ )]. oy € [1; Holo (V7 x (C,0))" of bounded functions solying the equation SC F=G
over a squid sector. On each intersection we have  -F/*! =G = & - F/ so that
FJ+1 _ FJ is a first integral of & . Therefore it factors as

(6.5) FIT'_FI =T/ oHI, T/ eC{hY

where H/ = H Z . 18 the canonical sectorial first integral with connected fibers

(6.6) H’ := H expN/,
obtained from that of the formal normal form
. x 1 k
6.7) A7 (x.y) = yexp/ LRy,
P (2)

by composition with the sectorial normalization (Remark 6.9). We can fix once and for all a
determination of each first integral H/ = H e] on V/ in such a way that

(6.8) H/H' = H exp2inu/k

in ¥/, The linear factor appearing on the right-hand side is here to accommodate the

. k ~ . ~ .
multivaluedness of exp [~ — IJIZ’(’“ZZ) dz = x™* x holo (x) near oo, so that H/ ™% = HJ.

DEFINITION 6.10. — Consider a parameter cell £ and p >0 as in Theorem 6.8.
For G € Holo. (¢ x pD x (C, 0)) define the period of G with respect to & as the k-tuple

1 .
T (G) = (T7) ;o € [ | Sty
Z/kz.
where 7/ := T is build as above in (6.5) for G := Gyand ¢ € &;. We define ‘Sé (G):= 5T/
to be the j-th component of T, (G).

REMARK 6.11. — Following up on Remark 6.9 (1), it seems that the period of R must play
a special role regarding classification, since it measures the discrepancy between sectorial
orbital conjugacies to the formal normal form X. It is actually the case that the unfolded
Martinet-Ramis modulus is linked to this period through the relationship

. 2i . 2i .
vt = hexp (25 + 81 ) = hexo (222~ (R )

A similar formula holds for the temporal modulus, namely f/ S = Té' (& —1). We refer
to [41] for a more detailed discussion regarding these integral representations of the modulus
of classification.

We sum up the relevant results needed in the sequel as a corollary to Theorem 6.8.
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COROLLARY 6.12. — Pick ¢ € ((Ck, 0) \Ag and p > 0 such that P;' (0) C pD, as well as
some holomorphic function G € Holo (pID x (C,0)). The following assertions are equivalent.

1. There exists F € Holo (oD x (C,0))’ such that &, - F = G.

2. There exists £ with ¢ € &y such that
%, (G), =0.
3. Forall £ withe € £y we have
T,(G), = 0.
If moreover G € $Hy{x,y} then

limT, (G), = T (Go)
e~

Ee

uniformly on (C,0), where T : C{x,y} — ]—[Z/kz C {h} is the period operator of the limiting
saddle-node [45].

Proof. — For fixed ¢ and £ Theorem 6.8 asserts the equivalence between existence of
an analytic solution F of the cohomological equation X, - FF = G and vanishing of the
period T, (G),. But the analyticity of F has nothing to do with the way the underlying squid
sectors are cut, therefore T[(G)s =0assoonas¢ € . O

6.3. Description of (unbounded) squid sectors and parameter cells

To characterize the dynamics, describe the modulus of analytic classification and more
generally build the period operator, we need to work over k open squid sectors in x-space
covering either pD\ P! (0) (bounded case) or C\ P, !(0) (unbounded case). Since {y = 0} is
an analytic center manifold, each sector in this paper is the union of two consecutive sectors
described originally in [41]. The cited reference also guarantees that it is sufficient to limit
ourselves to the complement of the discriminant hypersurface A; > 0 in parameter space.
Although we only reach parameters for which all roots of P, are simple, the construction
passes without difficulty to the limit ¢ — Ag. For ¢ ¢ Ay the squid sectors are attached to
two or three roots. When ¢ — 0 they converge to the sectors used in the description of the
Martinet-Ramis modulus for convergent saddle-nodes.

The singular points depend analytically on ¢ € ((Ck ,0) \Ag. To obtain a family of squid
sectors suiting our needs, we must ensure that the sectors vary continuously as ¢ does. This is
however not achievable on a full pointed neighborhood of Ay in parameter space, for reasons
we are about to explain (we particularly refer to Remark 6.16). Even so, we manage to deal
with all values of ¢ by covering the space ((Ck, 0) with the closure of finitely many contractible
domains (£y), in e-space, which we call cells, on which admissible families of squid sectors
exist.
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T A&

WAY

(A) Nelghborhood (B) The neighborhood
of cofork =3 of pD

FIGURE 6.1. The separatrices of the pole at co and the petals along the boundary
of the disk pD.

6.3.1. The dynamics of x = Pg¢(x). — Let us recall the main features of the vector field P, %.
When P, has distinct roots x,, each singular point x, has an associated nonzero eigenvalue
Ag = Pg/(-xs)~
— The point x; is a radial node if A, € R. It is attracting (resp. repelling) if A, < 0 (resp.
Ae > 0).

— The point x; is a center if A, € iR.

— The point x; is a focus if A\, ¢ RUIR. It is attracting (resp. repelling) if R (1,) < O (resp.
N (Ae) > 0).

The point x = oo serves as an organizing center; indeed, the vector field Ps% has a pole of
order k—1 with 2k separatrices at x = oo, alternately attracting and repelling (see Figure 6.1),
thus limiting 2k saddle sectors at co. The system is structurally stable in the neighborhood
of oo for ¢ small. These saddle sectors give a phase portrait resembling 2k petals along the
boundary of any (sufficiently large) disk centered at the origin. The relationship between the
magnitude of the parameter and the size of the disk will be detailed in Section 6.3.4.

The dynamics is completely determined by the separatrices of co. Because all roots of P,
are simple, only two types of behavior occur.

— For generic values of ¢, following the separatrices from oo (either in backward or
forward direction) one lands at repelling ( — —oo) or attracting (1 — oo) singular
points x, of focus or radial node type. In that case, each singular point is attached to
at least one separatrix and the system is structurally stable among polynomial systems
of degree k + 1. See Figure 6.2 for a phase portrait with generic «.

— The sets of generic ¢ are separated by bifurcation hypersurfaces of (real) codimension 1.
For these non-generic values of e a homoclinic connection occurs between an attracting
separatrix and a repelling separatrix of infinity: there is then a real integral curve
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FIGURE 6.2. An example of a structurally stable real foliation induced by a
complex polynomial vector field of degree 4 for ¢ in some K.

flowing out from infinity in the x-plane and flowing back to infinity in finite time. For
these bifurcation sets, the singular points P; ! (0) can be split into two (nonempty)
subsets /7 and I, satisfying

1 .
(6.9) > P09 ciR, m=12.

xely,

This can be seen by integrating the 1-form dt = % along a homoclinic orbit,
and evaluating residues. When 1,,, is a singleton, the corresponding singular point is
a center.

The union of the 2k separatrices of oo is called the separating graph in [11] (see
Figure 6.3(A)). It splits C into k simply connected regions. In each of these regions we
can draw a curve y; connecting the interior of a saddle sector at oo to the interior of another
saddle sector (see Figure 6.3(B)). There are exactly C = ﬁ (2kk) ways of pairing two by two
the saddle sectors of co by non-intersecting curves, thus providing a topological invariant

for the vector field (we also refer to [10]).

6.3.2. Rough description of the cells £y in parameter space. — The non-generic values of ¢
form a set of (real) codimension 1 which partitions a convenient neighborhood of 0 in
parameter space (to be described slightly later) into C open regions Ky, corresponding to
structurally stable vector fields with the same topological invariant. In each region Ky, the
topology of the phase portrait is completely determined by the topological way of attaching
the 2k separatrices to the k + 1 singular points. If x, is a root of P, (depending continuously
on ¢) then N (Ps’ (xs)) has a constant sign for all ¢ € K. Each cell £ in parameter space will
be a small enlargement of Ky, so that the cells cover the complement of Ag.

A. Douady, J.F. Estrada and P. Sentenac have also provided a very clever parametrization
of the domains Ky, thus showing that they are simply connected.

4¢ SERIE - TOME 54 — 2021 — N° 1



NORMAL FORMS FOR CONVERGENT SADDLE-NODE UNFOLDINGS 183

%

(o) The separating (B) The curves y;
graph

FIGURE 6.3. On the left, the separating graph formed by the separatrices landing
at the singular points and flow lines (in bold) between the singular points. On the
right, the curves y; (in dotted lines) used to calculate the ;.

THEOREM 6.13 ([11]). — Let K be a maximal domain corresponding to structurally stable
vector fields. Then, there exists a biholomorphism ®; : K; — H¥, where H is the upper half-
plane. In particular, Ky is contractible. The set CIDZ1 <(iIR{Zo)k ) which we call the spine of Ky,
corresponds to polynomial vector fields with real eigenvalues at each singular point.

The map ®; is defined as follows: let (yej ) — be k disjoint loops attached to oo
jed,...,
and pairing the saddle sectors of oo, without intersecting the separating graph. Then

Dy(e) = (rslr;‘) where
; d
rg::/Adt:/A x,
vé vl Pe(x)

the orientation ofysj being chosen so that 3 (‘L’gj) > 0.

Since ‘L'aj =20 ) s %, where I is the set of singular points in a domain bounded by ygj ,

the sum raj admits an analytic continuation outside K. In particular, when ¢ is a boundary point
of Ky for which there is a homoclinic loop through oo, some of the t] become real.

The cells have a very useful conic structure, induced by a multiplicative action of R.g 3 A
through linear rescaling

(6.10) (Ek—ts v 80, X, 1) —> ()L‘("_Z)sk_l, . ,el,kso,kx,k_kt) :

as indeed the differential equation x = P.(x) is invariant under this action. The cones we
use are of the form

{(Azsk_l,...,Akel,lk“s(,) S aelo 1], e e K},
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where K is a relative domain within a sphere-like real hypersurface. This compact hypersur-
face takes the form {||¢|| = cst} with

1 1 1
(6.11) el = max (lex—1]3. ... e[+, leol 7).

REMARK 6.14. — The expression 6.11 does not define a norm because the homogeneity
axiom is not satisfied. However, if we take into account that the &; are the symmetric func-
tions in the roots (xo, ..., xx) € CK*1 of P, it lifts to a norm on C*¥*!. Thus ||¢|| measures
the magnitude of the parameter ¢ and the | e||-balls form a fundamental basis of neighbor-
hood of 0. In the following we consider only these parametric neighborhoods.

The regions Ky of structural stability defined above are cones of this form, and so will be
their enlargements to cells £y covering the complement of Ay. Also, when considering limits
for ¢ — 0 it will be natural to consider limits for A — 0 along orbits of the R..¢-action

(6.12) {(A%k_l,...,Aksl,/\k“go) S elo, 1[}.

6.3.3. Saddle- and node-like singular points, admissible angles. — We want to stress that a
singular point x, of x = P.(x) with non-real eigenvalue A = a + ib can be both attracting
and repelling depending on how we approach it along logarithmic spirals. Making sense of
this statement entails complexifying the time. Let us explain how.

— Consider the linear equation x = Ax. Its solutions are x(z) = xgexp (A7). Now, let
us allow complex values of ¢ along some slanted real line t = (¢ + id)T = T exp (i6)
in C-space for some fixed ¢ + id € S!, with ¢ > 0 (corresponding to 6 € |-%, Z[)

202
and T € R. Then
x (@ (T)) = xoexp(((ac —bd) +1i(ad + bc))T),

and limr_ oo x(#(T)) = O (resp. im7—_oo x(t(T)) = 0) when ac — bd < 0 (resp.
ac —bd > 0).

— Since b # 0, it is always possible to find ¢; > 0,d; (resp. ¢; > 0, d>) such that
acy —bdy > 0 (resp. ac; — bdy < 0).

— Note that approaching the singular point along a line t = (¢ +id)T in ¢-space is
the same as approaching it along a real trajectory of the rotated equation
dx

37 = Aexp (i) x x. Such a trajectory is a logarithmic spiral.

— All these properties hold for the original system too, since the vector field PS% is
analytically linearizable near the singular point (Poincaré’s theorem).

Locally around each root x, the squid sectors will coincide with domains bounded by
asymptotic logarithmic spirals, given by trajectories of rotated vector fields exp (i6;) Ps%.
The angular function (e, x) € ¢ x C — 6, (x) € |—%, Z[ will be piecewise constant and
zero outside a neighborhood of 9K, and for x far from the singular points.

DEFINITION 6.15. — Let £ be a domain in the complement of Ay.
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1. An admissible angle on & is a piecewise constant function 6 : € x C — |-%, Z[ such
that for any analytic family of roots (xg),ee 0f (Ps).ce, the function
ee &N (Pg’ (xe) exp (16, (xg))) keeps a constant sign. In the following we use

the notation
(6.13) ¥ :=exp(i9).

2. We say that an analytic family (x;),c¢ of singular points of X = P¢(x) is of node type
on & if there exists an admissible angle such that

N (P (xe) De (x5)) >0 (Ve &)
and of saddle type on € if
N (P, (xe) Vs (x5)) <O (Ve &).

We use the notation (x7'), (resp. (x£),) for a family of roots of node (resp. saddle) type
on the domain &.

REMARK 6.16. — 1. The cells £, in parameter space will be small contractible enlarge-
ments of the cones Ky, on which there exist admissible angles. Additional constraints
will be demanded to these angular functions in order to guarantee that the cells and
sectors meet all technical requirements.

2. The choice of 7 for an upper bound in the size of an admissible angle ¢ is arbitrary
as any bound o € ]O, E[ would do. However the larger «, the smaller the bound p
on ||¢||. Indeed we approach each singular point along a trajectory of some vector
field ¥, (x) Pg (x). When 6 is large and the singular points are not far enough from rS!,
the trajectory follows wide spirals and may escape rD before landing at the singular
point. An “absolute” (i.e., independent of the bound «) necessary condition for the
existence of an admissible angle such that (x,), has node- (resp. saddle-) type on a
neighborhood of K is that P/ (x;) ¢ R<g (resp. P/ (x¢) ¢ Rso) for ¢ € K. Therefore
no admissible angle exists on a full pointed neighborhood of Ay.

3. We can illustrate on the formal normal form why admissible angles are of paramount
importance. In the flow system of X for real time

{fc = ¥ (x) P (x)
y =0y (1 + I'Lsxk)

the variation of the modulus ¢ := |y|*> = y7 of a solution follows the law

¢ = 2060 (198 (x) (1 + /Lgxk>) .

Close enough to the singularity (x, 0) all non-zero solutions therefore accumulate
backwards exponentially fast on (x,, 0) if x, = xJ is of node type or, on the contrary,
diverge forwards exponentially fast for a saddle type root x3. This behavior mimics that
of a node / saddle planar foliation near a point with real residue ¥, (x;) P/ (x,). This
dynamical dichotomy is the cornerstone of the construction of the period operator (the
modulus of classification) in [41].
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6.3.4. Size of sectors and of the parameter. — The diameter p of the bounded part of the
sectors is such that |1 + ux¥| > % when |x| < p. Note that the roots of P, all lie within
Vk ||| ¢l (D). Indeed it suffices to show that if |x| > +/k |||, then Ps(x) # 0. On the one
hand |x%+!| > k*2" [l¢[**". On the other hand

k—1 k=1 -
: J

D et | < el kT < et kT

j=0 j=0

In fact outside the disk vk |le|l cl (D) the trajectories of Pgaix are petals as depicted in
Figure 6.1 (B). Set

(6.14) pe =2k ||e]| .
Then we choose ¢ sufficiently small so that p. < £. Later in Lemma 6.23 we will further
reduce p and ¢ so that

(6.15) [ict] +20] P ()] < 2

for |x| < p.

6.3.5. The ideal construction of sectors. — Let us now choose a cone Ky and describe the

corresponding open squid sectors (V/ 8) covering pD \ P;1(0). On a “large” neigh-
’ Z

J €Yk
borhood of the spine of K; (to be made precise below), i.e., not too close to the boundary

of Ky, they are limited by real trajectories of Ps% chosen as follows (see also Figure 6.4).

FIGURE 6.4. Curves involved in the ideal decomposition. Stable separatrices at co
in black, unstable ones in green, orange and purple.
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1. The unstable separatrices of Pg% through oo split pS! into k arcs. We enlarge slightly
these arcs to an open covering of the circle. Each arc is one piece of the boundary of a
sector V.

2. Two other pieces of the boundary of Vej are given by the forward trajectories of Pgaix
through the endpoints of the arc, which land in singular points x/~1* and x/** (not
necessarily distinct) such that % (P{ (x/*)) < 0 (i.e., the roots are of saddle type). These
trajectories spiral as soon as I (P, (x/+*)) # 0 (which is the generic situation).

3. Suppose x/% # x/71s_ For a given boundary arc of pS! there exists one stable
separatrix through oo which cuts it at one point and lands at root x/>* of node type. This
singular point belongs to the boundary of V. . The last two pieces of the boundary are
two complete trajectories of Pe -, one joining x/" to x/~1:* and the other joining x/"

to x/*. These trajectories are chosen in such a way that (ng ) s cover pD\ P;1(0).
j€Z/kz
4. When x/* = x/~1% we introduce two trajectories between x/** and x/", thus intro-

ducing a self-intersection of Vej . This is motivated by the need of dealing with ramified
functions near x/". See Figure 6.13 (A).

F1GURE 6.5. Decomposition into bounded, overlapping squid sectors induced by
the flow depicted in Figures 6.2 and 6.4.

6.3.6. The problem with the ideal construction of sectors. — Of course the ideal construction
will not always work. It can fail for the following reasons. For a set I C P! (0) and & ¢ Ay
define

1
6.16 e (1) = .
(6.16) ve (1) ZI e
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— The first one is when ¢ is not generic: the separatrices may form a homoclinic loop
preventing them to land at singular points. A homoclinic loop y through oo partitions
the set of singular points P;! (0) into I and I’ such that

(6.17) R (ve (1)) = R (ve (I')) = 0.

— When ¢ is close to a hypersurface corresponding to a homoclinic loop, it can also
occur that the trajectories through the endpoints of the arc first exit the disk pD before
landing at a singular point.

— When ¢ crosses a hypersurface corresponding to a homoclinic loop, then R (Ps’ (xa))
can change sign, thus preventing the above construction to be continuous in ¢ € &j.

— As ¢ approaches 0 (or, more generally, Ax) we would like the sectors to converge to
usual sectors associated to saddle-node singularities.

6.3.7. The remedy in the construction of sectors. — The remedy to all these problems is the
same. We want to keep the above picture all over the cell £, and we want the cells to cover
the complement of Ag. The boundary of K is composed of real hypersurfaces corresponding
to homoclinic loop bifurcations. On each such hypersurface we have (6.17) for some 7, while
on K, the real part of the corresponding v, (/) has a fixed sign and so does J (rj). But we
have seen in Section 6.3.3 that this is not an obstruction for having the points remaining of
node- or saddle-type: we just need to be sufficiently careful on how we approach them, by
adjusting the spiraling of the sectors. In practice, this boils down to replacing the piece of a
trajectory of P, % inside the disk p;[D by the piece of a trajectory of exp (i0) x P, % for some
admissible angle 6 as in Definition 6.15 (with some additional specifications).

PROPOSITION 6.17. — Being given § € ]O, %[ and p > 0, there exists n > 0 such that the
following properties hold.
1. Let &y be the open set in {|||| < n} \Ag defined by the next conditions:

— for each homoclinic-loop bifurcation hypersurface on the boundary of Ky, sepa-
rating the singular points in two nonempty groups I U 1’ as in (6.17), we have

argve (1) € |-2 -8, Z+8[ if R(ve(1)) >0 on Ky,
argvg (1) € |2 —68.2F + 4 if R (1)) <0 on Ky,
— for the ! defined in Theorem 6.13 we have
argt! €1-8,w + 8] forall j e{l,... k}.
Then &y is a conic contractible neighborhood of K¢ and | J, €¢ = {||e|| < n} \Ak.

2. There exists an admissible angle 6 ( corresponding to a direction = exp (i0)) on £y such
that for each homoclinic-loop bifurcation hypersurface on the boundary of Ky, separating
the singular points in two nonempty groups I U I’, we have

argd . o; m €]-Z+4+8Z-8 if R(w(U)) >0 on Ky,

(6.18) ’
argzxelm €]Z+68.2Z -4 if M (I)) <0 on Ky.

3. Any trajectory of U, Ps%, starting from a point of pS' and entering the disk, does not
exit the disk pD before landing at a singular point.
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Proof. — 1. This is clear.

2. We build the angle 6 (piece-wise constant in x) in such a way that %, = 1 when ¢ is on
the spine of K;. When we approach a component of dK; corresponding to a homoclinic loop
separating the roots of P as I U I’, we can rotate the vector field by an angle |0] <25 < %
sothatarg) . ; m belongs to the given interval.

3. A more precise quantitative description of the sectors is needed to show that the
magnitude of p (in x-space) together with the choice of § give constraints on the size 5 of the
||e]|-ball in e-space, and that taking |6 large enough is sufficient to secure the conclusion. All
this is done in the time coordinate t = [ 3% P,y - We come back to this below in Section 6.3.9.

O

DEFINITION 6.18. — 1. The contractile, conic domain £, given by the previous proposi-
tion is called a cell in parameter space.

2. The k domains in x- space built like ideal sectors but bounded by trajectories
of 9, P L 55 instead of Pg are called squid sectors.

6.3.8. Pairing sectors

FIGURE 6.6. Construction of the non-crossing permutation o; here o = (8 %

—N

)-

DEFINITION 6.19. — Recall that a non-crossing permutation o € &y is a permutation
such that if po,..., pr—1 are circularly ordered points on a circle, there exist pairwise non-
intersecting curves within the inscribed disk joining p; and ps ;) for all j.

1. There exists a (non-crossing) permutation o = o, on {0, . — 1} yielding a pairing
of the sector V;/ with VO(’ ) (see Figure 6.6) in the followmg way. If the sector Vs
shares its vertices x/~ 1S and x/"® with a distinct sector Vgl , then we define o(j) := j'.
Otherwise welet o (j) = .
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2. The squid sector V. is introvert if o (j) = Jj, and extrovert otherwise (see Figure 6.7).

The permutation ¢ is a complete topological invariant [11, 2] for structurally stable vector
field P % (i.e., for generic €) and any non-crossing permutation can be realized in this way.
In particular ¢ — o, is constant on the conic domains Kj.

(a) Extrovert squid sector: (B) Introvert squid sector

o()#J

FI1GURE 6.7. The two kinds of bounded squid sector for k > 1.

6.3.9. Practical description and quantitative estimates. — Here we end the proof of Proposi-
tion 6.17. As discussed earlier, finding an admissible angular function is equivalent to finding
suitable piecewise affine real curves in the complex time coordinates. Studying x = P.(x) for
complex values of the time 7 is the natural point of view taken by [11, 2]. In that setting we
could view the whole x-line as a single complex trajectory of the flow of P, % Although one
might consequently try to parametrize points in the x-variable by values of the time ¢ (x) € C
this is too simplistic: the time function is multivalued at co. Nonetheless, the idea is very
powerful and fruitful if we limit ourselves to simply connected domains in time space. Let
us define the time function by

x4
(6.19) £ (x) ;:/ > fz).

When ¢ is generic we obtain

)=y ! log(x — xz).

P!(x
xe€P1(0) (%)

We are interested both in the map ¢ and in its inverse °~!. As such the map (6.19) is not
well defined, since it depends on the homotopy type of the path from co to x in the integral.
Hence its natural domain & is the Riemann surface given by the universal cover of CP!
punctured at the roots of P,. Since the integral starts at x = oo then #(co) = 0. We have
to remember that oo is a pole of order k — 1 of the vector field: there the time function has
locally the form ¢t = —# (and hence oo can be reached in finite time.) At all points of &
different from oo the map ¢ is locally biholomorphic, giving a structure of Riemann surface
to the image 7 (& {oo}). Also, if we turn around oo once in x-space, then ¢ will make k
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turns around 0. Hence, the natural domain of #°~! is a ramified Riemann surface over the
t-space with branch points of degree k at each of the images of oo by ¢ over &. We can
consider it as a k-sheeted Riemann surface, and we change sheet when we turn around a
branch point. There is a unique branch point when ¢ = 0. However, when ¢ # 0, there are
periods, which correspond to the different times to go from oo to co along paths circling some
singular points. The distance between two images of oo (two branch points) on one sheet is
a period of a loop around singular points. These periods are all greater than some C ||8||_k
(see Lemma 6.20 below).

The image of the complement in C of pID under the map ¢ is therefore, for small ¢, a union
of holes (topological disks) of approximate radius ﬁ in the k-sheeted Riemann surface
(Figure 6.8) over C;, with one central hole around 0. The ramifications (branch points) occur
at the images of co. Each hole contains an image of oo by ¢. A half-sheet around the central
hole in ¢-space, i.e., a sector of opening 7 centered at the center of the hole and bounded by
two horizontal half-lines, corresponds to an approximate angle of 7 on doD (or to a saddle
sector of 0o). Hence one t; of Theorem 6.13 is associated to each half-sheet, thus pairing the
half-sheets two by two. Since t; is a period in ¢-space, it is a distance between centers of holes
and, on each half-sheet, the next hole is obtained by translating the current hole by ;.

LeEmMMA 6.20. — There exists C > 0, depending only on k, such that
—k
lzj| > C [lel| ™ .

Proof. — It suffices to show that there exists C > 0 such that |t;| > C when |¢|| = 1, and
then to use the rescaling (6.10). This is done as follows. Changing the time ¢ +> ¢/ ;= e 12787 ¢,
then rj/. = ¢ 13187 ; is the time along a homoclinic loop between two separatrices of 0o
for the transformed vector field. In Section 6.3.4, all roots have been shown to belong
to kel (D). The time r; is then larger than twice the minimum time to go from oo
to {|x| = 2k}, and this minimum is positive on the compact set ||¢]| = 1. O

Let us first describe what happens on the spine of the cell. There, holes are aligned
vertically (the t; are pure imaginary) and each sector (which is an ideal sector) corresponds
to a horizontal strip as in Figure 6.8. If we want to cover pD\ { P;"1(0)} then we should cover
a little more than a full turn around one hole. The width of the strip should be a little over %’
on the top side and over 2 F1 on the bottom side. When moving to 7-space the singular points
have been sent to oo, to the left (resp. right) for the singular points of node (resp. saddle) type.
In such a picture we see the connected parts of the intersections of two consecutive sectors
that go to the boundary.

The internal intersection parts (that we later call gate parts) can only be seen by using the
periodicity of ¢. There are similar half strips on the o (j)-th sheet, with a hole at a distance t;
and on the o(j + 1)-th sheet, with a hole at a distance t;;. Their translations by the
corresponding period t; and —tj4; brings them on the j-th sheet where they intersect the
initial strip (Figure 6.8).

If we now move away from the spine of Ky, then two things happen.

— On the one hand, the z; bend. When they approach the real line (horizontal direction),
then it is no more possible to pass a horizontal strip because the holes block the way:
the remedy is to slant the strip so that it avoids the hole altogether.
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A horizontal strip and the
local sheet numbering around Strips intersections.
the central black disk.

1]

JJO’S
—_—
zhn E
+— @
xl,s
—

In x-space

FIGURE 6.8. The images of these horizontal strips in f-space are sectors V| in x-space.

— On the other hand, in the 7-space, each singular point x, turns, since it is located at
infinity in the direction of —ﬁ. An infinite half-strip in the direction ¢ = exp (i9)
can only be sent to a sector with vertex at x, if

v

(corresponding to the scalar product of —ﬁ and ¥ being positive). This forces
giving an angle to the strip in the infinite end of the half-strip approaching a singular
point.
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The choice of § in (6.18) guarantees that z; cannot turn of an angle larger than 7 + §. The
size of the holes is of the order of -, which is very small compared to the 7; and 5 if
¢ 1s sufficiently small.

Now the strip has three infinite ends, a wide one on the left side attached to a point of node
type x/™, and two thinner ones attached to x7 ~'** and x7*. The slope ¥, for each infinite end
should be chosen so that (6.20) be satisfied for the singular point corresponding to that end
of the strip.

This is how it is done. In the ideal situation the curves y;, used to pair the saddle sectors
(permutation o) and to define the t;, split the disk into & + 1 regions, each containing a
singular point. When we are no more in the ideal situation, then several of the curves y; have
disappeared, corresponding to the fact that some strips are either too thin to pass a trajectory
or have disappeared. Then there remains only a few y; dividing the disk inm < k + 1
regions. Each of these regions contains some singular points. In a given region, we have two
possibilities:

1. either there are several singular points: then they have kept their saddle or node type

and are linked by trajectories that form a tree;

2. or there is a unique singular point, which is a center or a very widely spiraling focus.

For each y; that has disappeared because J (Tj) is too small, we bend the strip between the

holes while keeping its width a little more that %’ (resp. 2 ;’ L) (see Figure 6.9). This process

restores that part of the strip and forces the bent separatrices to stay inside the disk.

Just before the disappearance of y;, each separatrix was attached to a singular point. If
the singular point is close to a center as in (2) above, then the bent separatrix will spiral to the
singular point: we may add a little more bending so that it does not escape the disk before
doing so. In (1) the bent separatrix has no choice but to cross one of the trajectories of the
tree between two singular points, one of which is the singularity to which it was attached
before. When it does so, we turn to follow a parallel trajectory going to the singular point
then bringing back the strip to the horizontal direction. We make the same thing for the
three infinite ends of each strip. When doing so, we pay attention to take the same slope at
all infinite ends attached to a given singular point.

REMARK 6.21. — When ¢ — 0 along a curve (6.12) then P/(x;) — 0 and the half-strips
are replaced by half-planes. More generally when ¢ tends to a point of Ay, some half-strips
are replaced by half-planes.

6.3.10. Large (unbounded) squid sectors. — When o ¢ R<o, we will also need a covering
of the whole of C by k sectors. For that purpose, we append to the sectors ng an infinite
part obtained in the following way: if x; and x, are the endpoints of the boundary arc of 14
along pD), then we follow geometric spirals x,, exp ((1 4 iv)Rx¢) for m € {1,2} and some v
such that

N (o) > v3 (ko) -
If we come back to the representation of the sector in ¢-space, this amounts to appending

some spiraling sector inside the holes (a neighborhood of co in x-space is covered by a sector
of opening 2k i in ¢-space).
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FIGURE 6.9. A slanted strip in z-space whose image is a sector ng in x-space.

F1GURrE 6.10. Unbounded squid sector for k = 1 and i () > 0. When it (n) <0
and u ¢ R the shaded area bends to form a geometric spiral near co. See also
Figure 6.14 for the case k > 1.

We still denote by ng the resulting unbounded sectors, since the context will never be
ambiguous.

6.3.11. Intersections of squid sectors

DEFINITION 6.22. — We let T'/>* (resp. I'/~1:7) be the part of the boundary of the
unbounded sector V,/ joining x/* (resp. x/~1%) to oo with this orientation. The intersec-
tion of two squid sectors Vej and Vsj "is made of up to three parts in general, and up to four
parts when k = 2 (see Figure 6.13).
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— If j' = j + 1 (resp. j' = j — 1) a (connected) saddle part V** (resp. Vi %), bounded

by the two curves I'/* (resp. '/ ~1¥#) to the common point x/- (resp. x/~1-%) of saddle
type. When k = 1, the saddle-part corresponds to a self-intersection.

— If j/ = o (j) a gate part V"¢ included in p:D and adherent to the two singular points
x/% and x/". When j = o (), the gate part of an introvert sector corresponds to a
self-intersection.

— If j/ =0 (j)and j = o (j') for j # j’, a second gate part Vsj/’g adherent to the
singular points x/~1* = x/"5 and x/ (Figure 6.13 (B)).

(B) & = &l>7/8

(c)e =¢l'7"/8

F1GURE 6.11. Squid sectors for different values of ¢ when k = 1.
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6.3.12. Non-equivalent decompositions. — For the same value of the parameter ¢ in the
intersection of two cells (or a cell’s self-intersection), the disk pID is split in non-equivalent
ways into bounded squid sectors (see Figures 6.12 and 6.13). By “non-equivalent” we mean
that at least one boundary of a squid sector is attached to another root of P, when passing

from one cell to the other.
& .

FIGURE 6.12. The single (self-overlapping) cell £ with diverse configurations when
k = 1. Non-equivalent decompositions are shown on the right. In each picture the
location of the node-like singularity x™ is given by the analytic continuation of the
principal determination of /—¢.

6.3.13. Some useful estimates. — We shape the squid sectors in this way because in doing
so we gain control on the convergence and on the magnitude of integrals involved in the
Cauchy-Heine transform appearing in the next section, in the wake of Remark 6.16. In the
following lemma we use the boundary I'/** of saddle-parts of unbounded sectors as depicted
in Figure 6.10.

LEMMA 6.23. — Assume v = 0 (which particularly implies jio ¢ R<o). One can take p
and &y sufficiently small so that the following properties hold.

4¢ SERITE — TOME 54 — 2021 —N° |



NORMAL FORMS FOR CONVERGENT SADDLE-NODE UNFOLDINGS 197

(A) With two introvert (B) With two extrovert

. 01 . 01
squid sectors: 0 = squid sectors: 0 =
01 10

FIGURE 6.13. Non-equivalent decompositions for same ¢ when k = 2.

1. For all r > 0 the model first integral (6.7) is bounded on V.S x rD, more precisely there
exists C > 0 such that

(Ve e &) sup ‘1-71‘ <rC.
ng'sxr]])

2. Also H is Zdex-absolutely integrable over any component T' = T'/>% of the boundary of

saddle part intersections (given the outgoing orientation): for all x € VS \I" and y € C
we have

~ d .
/ A (z,y)——— = yI' (x) e C.
r zZ—X
3. There exists a constant C > 0 such that for all e € Ey and all x € Vaj\F

117 (x)| = ——.
|Z5 — x|

where z, = T' N pS' and x. is likewise the intersection of pS' and the curve passing
through x built in the same way as T
Proof. — Because HY is linear in y we may only consider the case y := 1. Let
h:xe— HI (x, 1)

be the corresponding partial function. The proof is done in two steps, corresponding to the
two different components “inner” (inside pD) and “outer” (|x| > p). We parametrize I" by
a piecewise analytic curve z : R — C detailed below, such that (with the obvious abuse of
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notations)
z(—00) =00
z(0) =z e pS'.
z(c0) =xIS

In what follows, C > 0 indicates a real constant (independent on &) whose value varies
according to the place where it appears.

1. We invoke again the variational argument presented in Remark (6.16). Over ]0, co[ we
follow the flow of ¥P % and we can indeed estimate the modulus

b (1) =i 1)

’

as h is solution of

dn 2\ dz
L (1 uk)
) ( H ) P
so that
¢ k
5(z)_—an(f}(lﬂu ))
Since 5 > pk, and taking the hypothesis |arg #| < Z into account we obtain
? <-C<0
¢
and
(6.21) o)) = |he e

Over |—oo, 0] we follow the flow of

z=—(1+4+1v)z,

above which the modulus of 7 is governed by

é_ (T4 pZF) (1 +iv) 2
¢_l P, (2)

((1 +uzk) (1 +1iv) k1 )
=N
-k

X
P (2)
>CR(U+ipuv) =:a>0
for |z| sufficiently large since v is chosen in such a way that % (u 4+ ivi) > 0 for all
& € &y. To conclude the proof we only have to remark that sup,|—,, ﬁ(z) > ﬁ(z (0))‘
converges uniformly towards sup),|—, ‘ﬁ({ (z, 1)’ <oocase— 0.

2. and (3) We use the following trick. We work with the integral
; 0~ Z'(t)dt

V= [ heo 520

— z(1) — x(t)
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where t — x (¢) is defined similarly as ¢t +— z (¢) except for the fact that it passes

through x, uniquely defining x. = x (0). To conclude we will need to bound away
-

zft)fx)(ct)

because if dist (x, ') is realized for z = z () then x >~ x (¢).

from 0 (uniformly in ¢) the quantity

. But this is clear from the pictures

Now, to study J/ (x) we repeat the above argument but with the function

_ o) 44 0)
¢ﬂ(t) C Z(t)—x(l) ’ ﬁe{o’oo}’
where Ao (z) := 0P, (z) and A (2) := —(1 4 iv)z. The variations of ¢y are governed
by
by 1+ pz* ) Ay (2 (1) — Ay (x (1))
—O) =R |54z () + 43z (1) -
% Pz ()" i 2O —x®
for ¢ in the corresponding interval so that Z = Ay (z) and X = Ay (x). In the case
ff = oo, the sum of the last two terms vanishes and then
¢;°° >C>0
$oo

for large z (hence ¢ close to —oo) from the choice of v. Let us now deal with the case

f = 0. We have chosen p > p, so that
3

sup ‘,uz ‘+2p}P”(z)‘ =,

|z|<p< ) 4

Because for all x, z € pD

|P(x) =P (z)—(x—2) P’ (z)| < |x —z|*sup | P
pD

we obtain
¢—0 <-C<0
do ~
and
o (1)] < |¢o (0)| exp (—=Ct)
fort > 0.

Therefore the integral

z(t) __ ¢
[ RS = (R Dy
2(0) z (1) -
is absolutely convergent as t — oo and
z(00)
[ Tie E scmon.
z(0)
But C |¢o (0)] < Ix(O)CTO)I as expected. O
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6.4. Cellular section of the period: proof of Proposition 6.6

The cellular section &, of the period operator is obtained from a variation on the method
introduced in Section 5.4 to normalize the glued abstract manifold by solving a linear Cousin
problem. It is an unfolding of the technique used in [43] for ¢ = 0. The initial data is a k-tuple

T =(17); €[] Suth}

Z/k17,

and we seek Q € x /¢ {y} [x] <k, that is

Q(x.y)=x) 0n(x))y"

n>0

for some polynomial Q, € Holo. (£¢) [x] . in x of degree less than k, such that

%, (0)=T.

We then define the section as

&, (T) := 0.

The construction goes along the following steps. They are performed for fixed ¢ in a
fixed &, with explicit control on the parametric regularity. Hence we omit mentioning
explicitly the dependence on ¢ and £. For r > 0 define

V= {(x,y) eVIxC: |y <r}.
We define in a similar fashion the fibered intersections GZ)ﬁ"*i for g € {s, g}.

— Build sectorial, bounded functions F/ on % such that
(6.22) F/*'— F/ =2inT/ o H/

on 62){’5, where H/ is the j-th canonical sectorial first integral of ¢, as in (6.6). This
is done again by a Cauchy-Heine transform (Section 6.4.1).

— Because of the functional Equation (6.22) the identity - F/*! = - F/ holds and
allows to patch together a holomorphic function Q := & - F/ on a whole C x (C, 0)
which, by construction, satisfies

g7 (0) oH/ = FITl _ FJ
=T/ oH’
(Section 6.4.2).

— Growth control near x = oo and a final normalization allows concluding that
0 € xC{y} [x] 4 (Section 6.4.3).
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Vl VO’S

V2 V2,S

FIGURE 6.14. Unbounded squid sectors and paths of integration (k > 1).

6.4.1. Cauchy-Heine transform
. N/
DEFINITION 6.24. — In the following we fix a collection N = (N”), €[]z, Holoc (‘7){) ,
which is a k-tuple of functions with an expansion
N7 (x,y) =Y N (x) y"
n>0
uniformly absolutely convergent on every GI){, for all 0 < r’ < r, whose norm is given by
[N := maxsup |N/|.
1. We define the j-th sectorial first integral associated to N as the holomorphic function
H 1’\, : Y —C
(x.y) — H' (x.y)exp N/ (x.y),
where A/ is the sectorial canonical model first integral (6.7) continued over unbounded
squid sectors.

2. For a given n > 0 we say that N is n-adapted if HJ{, (62){5) C nD.

Of course we prove in due time (Corollary 7.7) that N := N,, defined as the collection of
sectorial solutions of the normalizing equation ¢X, - N, J = _R,, satisfies the hypothesis of
the definition and that sup ‘H e (@is)
it is already the case for the model first integral (Lemma 6.23 (1)). Therefore, for given n > 0,
it will always be possible to find r (independently on ¢) such that N is n-adapted, allowing us
to use the next result, genuinely the key point in building the cellular section of the period.

— Oasr — 0 (uniformlyine € £), mainly because
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PROPOSITION 6.25. — Assume t = 0 (which particularly implies o ¢ R<o). Let E¢ be a
fixed cell as in Section 6.3. For every T € ]_[Z/kZ Holo, (nD) holomorphic on a disk of radius
n > 0, for every n-adapted collection N, the k-tuple of functions

F=F(T,N):= (Fj)j c 1_[ Holo, (GM)/
JE€L/kn

defined by

(623)  Fl(x.y)i= ) /ppf i _x(z y))dz+/rj,+ Mdz

zZ—X
p#j+1

fulfills the next conclusions. The paths of integration T/ bound the unbounded squid sectors
in the following way: the boundary of the saddle part V7 of (unbounded) squid sectors is
I/>+ U /Y= as in Figures 6.10 and 6.14, and we set

[ = maxsup dr’
dn
1. For every (x.y) € VI*
(6.24) FItl(x,y) — FI (x,y) = 2in T’ (HJ{, (x, y))

while for every (x, y) € Q°U)
F7(x,y) = F7U (x.y).
(When k = 1 we refer to (3) of the following remark for a fuller explanation. )
2. F7 e Holo, (@j)/.

3. There exists K > 0 independent on T, N, r and ¢ such that the following estimates hold.

(a) I3l < rK | T’|| exp|IN]| .
0% oN

(b) y—| <rK|T'| |1 + y=| exp|IN]|.
dy dy
0 oN

(c) x—& 1+ x—|exp|[N].
ax ax

REMARK 6.26. — 1. The absolute convergence of the integrals involved in (6.23) is estab-

lished in the course of the proof, mainly thanks to the estimates given by Lemma 6.23.
Notice also that for fixed & and y the mapping x — F/ (x, y) is holomorphic on V/
since the squid sector does not contain any of the curves I'”>~ except for p = j + 1.
2. The integral expression (6.23) and Item (3) above clearly show that §, as a function
of ¢ € £y, has the same regularity as T .
3. In the case k = 1 the expression (6.23) yields F (x,y) = [+ (---)dz, which
can be analytically continued in the x-variable on the self-overlapping squid sector
(Figure 6.10). As x reaches I'™ “from below” the analytic continuation coincides with
Jr— (-++)dz, because the difference of determination is given by

- T (Hy (z.y)
D (x,y):= L*—F* p— dz,
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and Cauchy’s formula asserts that D (x,y) = 0 whenever x is outside the saddle-part V*
enclosed by '™ U I'". On the contrary if x € VSthen D (x,y) = 2inT (Hy (x,y)),
which is the way to understand (6.24).

Proof. — This proposition follows the general lines of [43, Theorem 2.5] for ¢ = 0.
A simpler instance of the strategy can be found in Lemma 5.6. Except when necessary we
drop every sub- and super-scripts.

1. This is nothing but Cauchy residue formula. We indeed compute (omitting to include
the integrand for the sake of readability)

FIM (eoy) = F (x’y)ZLj+1,+_Aj.++ 2 /pf_ 2 /1:1%*

pF#j+2 p#j+1

) U

The candidate singularity in th integrand (AN G2 4 sz —
e candidate singularity in the common integrand ——2==2in [, 11— — [pp.4 i52 = X.

This happens only when x € V7. By hypothesis x € V75 hence (6.24) holds.

Actually one needs to use a growing family of compact loops within V/** converging
toward 0V /%, then to apply Cauchy formula to each one of them and take the limit. The
only possible choice for the connected component of C\ (I'/*+~ U I'/:*) for which this
construction works is ¥/, since in that sector we can establish tame estimates for the
growth of the integrand (see (3) below), and we can also establish untamed estimates outside
a neighborhood of cl (V7).

2. Taking for granted that the integrand defining F (x, y) for (x, y) € ¢l (%, ) is bounded
from above by a real-analytic, integrable function on dV'*, the analyticity of F on %), is clear
from the Definition (6.23). Integration paths used to evaluate F can be slightly deformed
outwards without changing the value of the integral, which shows that F' can be analytically
continued to any point (x, y) with x € 3V'\ P; "1 (0) and |y| < r. Concluding that F extends
as a continuous function on cl (Gi)r) \ P, 1 (0) is again a consequence of (6.23) for y is an
extraneous parameter. Dominated convergence of F (x, y), continuity on ¢l (%,) N P, (0)
and boundedness of F are established in (3).

3. We begin with proving (a). Since, for p € Z/kz,

7 (W) < || T"]| .

we deduce

A
o), I exp i

zZ—X |z —x]
We then invoke the estimates derived for the model family in Lemma 6.23, showing domi-
nated convergence for F (x, y). In order to bound F it is sufficient to consider only the
problem of bounding F near a single I' := I'/>*. A uniform bound K for the rightmost sum
of integrals simply requires bounding uniformly m where zx, x« € pS!. Of course no
uniform bound in x exists when x tends to T" (i.e., x4 tends to z,). To remedy this problem
we bisect Vs with a curve T’ parallel to I' and passing through the middle of the arc pS' N Vs,
When x is taken in the component of V/ \f not accumulating on I the value of —— is

[ze—xx]

uniformly bounded. When x is taken in the other part we use the functional relation (6.24):
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in that configuration x is understood as an element of V/*! far from I'/*1~ and we are
back to the situation we just solved.

A little bit more detailed analysis allows proving that x > F (x, y) is Cauchy @ near x/-*,
so that F extends continuously to {x/*} x rD. Items (b) and (c) are obtained much in the
same way, the details are straightforward adaptations of (a). O

6.4.2. Holomorphy of Q.. — Now all functions &, - §/ patch on intersecting squid sectors
to define

0 € Holo ((C\P, ! (0)) x rD).

If we show that Q is bounded near each disk {x/*} x rD then Riemann’s theorem on
removable singularities guarantees the holomorphic extension of Q to C x D. But

(6.25) 1Q (x, )| < [ Pe (x)]

o) (e Rl |5
so that taking Proposition 6.25 (3) into account brings the conclusion.

6.4.3. Growth control of Q, near x = oo. — In Section 7.2 we prove that the k-tuple of
sectorial solutions N of the cohomological equation of normalization (- N/ = —R satisfies

the conditions Hx H 3 and H Yoy H 3 1f r is chosen small enough (Corollary 7.7).

LEMMA 6.27. — For every fixed y € rD the entire function x + Q (x,y) is actually a
polynomial of degree at most k, and
(6.26) Q(x.y) =) au(x)y". qneClxly
n>0

on C x rD.

Proof. — Since x — R (x, y) is a polynomial of degree at most &, there exists a constant
C > Osuch that 1 + |u| |x|k +|R(x,y) =C |x|k for every |x| > p. The bound (6.25)
on x — Q (x, y) also holds near co so that

P (x)
X
H we infer ”x e

10 (x, )] = +C |xf*

8F Y
8x

)

‘Xa;l,;/ H =0(x ) and finally Q (x,y) = O (x¥) aswell. O

From Prop. 6.25(3)(b,c) and the control on Hx o
P (x)

%” < 400,

from which we deduce

To complete the proof of Proposition 6.6 we need to modify Q so that Q (0,y) =
In order not to change the period of Q we can only subtract from Q a function of the
form ¢, - F with F holomorphic. This is done by setting

7 Q(O,v)dv
0 v '

so that Q — &X, - F vanishes on {x = 0} while still admitting an expansion of the form (6.26).

@ A function f from a metric space E to another one F is Cauchy at a if for all & > 0 there exists § > 0 such
that x, y € B(a,8) impliesd (f (x), f (»)) <e.
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6.5. Stitching cellular sections together: proof of Proposition 6.7

Fix (C*,0)\A and p > 0 not larger than what is allowed in Lemma 6.23, and take
G € Holo, (0pDx(C, 0))’. We prove now that for any fixed e € £, at most one Q € xC [x] . {y}
exists such that G — Q € im (&), that is T (G) = T (Q). This amounts to showing
that im (,+) N xC [x] {»} = {0} for all fixed & € (C¥,0) \A.

Let G € im (X,-) N xC [x] 4 {y} and write

G(x.y) =) Fa@)y" =) Gu(x)y" €Holo(rDx (C.0), d eN;
n>d n>d

we claim that G; = 0, which is sufficient to establish the result. It turns out that for its part
of least degree in y the cohomological equation only depends on its formal normal form:

X, - (ded (X)) =G4 (x).
Such a rekltion holds if and only if the period of y¢G, along the formal normal form
vanishes: ¥ (yd Gd) = 0. Therefore we need to prove that
T xC [x] <k y4 — Ckpd
¥1Ga— % (y!6a)
is injective if ¢ is small enough. As recalled in Corollary 6.12 we know that for every a € N
i (:94) =5, ().

where T o is the period of the model saddle-node )’ZO. The auxiliary result [46, Proposition 2]
states precisely that T is invertible, and therefore so is T for small € as expected.

7. Orbital Realization Theorem

In this section we address the inverse problem for the classification of unfoldings
performed in [41], in the special case of convergent unfoldings of formal invariant p with

o ¢ R<g

and t = 0. The residual cases ;o < 0 or t > 0 are dealt with in Section 8. Also notice that
we only carry this study for the orbital part, the case of the temporal realization is explained
in [47] when k = 1. Generalizing this approach for k > 1 by using the tools introduced in
Section 6 should not be difficult.

We summarize in Section 7.1 how the invariants of classification are built. They unfold
Martinet-Ramis’s invariants [31] for the limiting saddle-node, obtained as transition maps
between sectorial spaces of leaves. Yet the construction can only be carried out analytically
on a given parametric cell &y, yielding a cellular invariantmy € [, ¢#y {h} (see Section 6.1
for the definition of the functional spaces ¢/, and Section 7.1 for the definition of my). The
orbital modulus m (X)) of an unfolding X consists in the whole collection (my),.

DEFINITION 7.1. — We say that (i, m) € C{e} <[], 4 {h}k is realizable if there exists a
generic convergent unfolding X with formal orbital class i and orbital modulus m = m (X).
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In Section 7.2 we prove the next result.

THEOREM 7.2. — Assume t = 0 (which particularly implies o ¢ R<o). Fix a germ
at0 e (Ck'H,O) of acell &y. Givenwy € [y, SHy (h) and p with po ¢ R<o, there exists a
unique Ry € x &Hy {y} [x] < such that

o d
Ky ei=X+ yRe,sg

has wy for transition maps in sectorial space of leaves (i.e., for modulus).

The fact that this “analytical synthesis” gives unique forms of the same kind as those given

by Loray’s “geometric” construction bolsters the naturalness of the normal forms presented
here. Indeed the next corollary provides an indirect solution of the inverse problem.

COROLLARY 7.3. — A couple (i, m) with po ¢ R<g is realizable if and only if Ry, = Ry,
foralle € £, N Eyand all (E,Z).

Proof. — The equality Ry = Ryon & N £ defines a bounded, holomorphic function R
in the parameter ¢ € (C¥*!,0)\Ay, which extends holomorphically to a whole neigh-
borhood (C¥+1,0) by Riemann’s theorem on removable singularities. The corresponding
unfolding & has modulus m (&() = (mg), by construction.

Conversely, the Normalization Theorem tells us that we can as well assume that the vector
field is in normal form & (2.4), without changing the orbital modulus m = m (). More-
over, the normalization can be performed by tangent-to-identity mappings in the y-variable.
According to Theorem 7.2, R; is uniquely determined by the component m; of m, hence
R = Ryon &,. O

Somehow this characterization is not satisfactory since it involves the auxiliary unfol-
ding ¢¥,. In Section 7.3 we present an intrinsic characterization of realizable (1, m) as a
compatibility condition imposed on the different dynamics induced by each pair (u,my)
on the sectorial space of leaves (Definition 7.16). Roughly speaking the condition requires
that the abstract holonomy groups be conjugate over cells overlaps. In case of an actual
unfolding X (i.e., realizable (1, m)) these groups represent in the space of leaves the actual
weak holonomy group induced by X in (x, y)-space.

7.1. Classification moduli

Starting from a generic convergent unfolding X of codimension k in prepared form (4.2)
with given orbital formal invariant p (with no restriction on (), we can build the following
k-tuple of periods (Definition 6.10) on a germ of a cellular decomposition () < 1<, » called
the orbital modulus of X :

m (X) 1= (Mg (X))1<¢<c, >
myg (X) ;= (454{’5)]_6%/](2,
(7.1) ¢} = 2inT] (—~R) € Hy h}.

We state the main result of [41] in the specific context of convergent unfoldings.
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DEFINITION 7.4. — 1. Fix a germ of a cell &;. For c € C{e}*, 0 €Z/kz and

[ =(f7);epr € Tl " define
(€0 f: (eh) — (740 (ceh)

and extend component-wise this action to tuples.
2. We say that two collections m,m € [, ¢4 {h}k are equivalent if there exists
¢ € C{e}* and 0 € Z/kz such that
(7.2) (c,)*m =m.
REMARK 7.5. — The presentation of Definition 7.4 is equivalent to that of [31] for ¢ = 0.

The transition functions there are simply given by ¥/ (h) = hexp (2’% + ¢S ) This fact
will be explained in more details in Section 7.3.

THEOREM 7.6 ([41]). — Two generic, prepared convergent unfoldings X and X, in the same
formal orbital class u with respective orbital moduli m (X) and m (Y ) are equivalent by some
local analytic diffeomorphism if and only if their respective orbital moduli m (X) and m ()7 )
are equivalent. Moreover X is locally equivalent to its formal normal form X if and only if
m(X)=0.

The pair (c, ) involved in the equivalence between moduli has a geometrical interpreta-
tion. First set A := exp 2inf/k and apply the diagonal mapping

(€0s .y Ek—1,X) > (80)&_1, .. ,ejlj_l, .. ,sk_lkk_z,xk)

to X so that the moduli of the new unfolding, still written X, differs from the original by a
shift in the indices j of offset 6, as explained in Section 4.1. According to Corollary 4.11 we
may as well restrict our study now to fibered conjugacies W between X and X fixing {y = 0}.
Under these assumptions we have

U (6,x,y) b~ (g, x,y (c +0(1))).

This very fact explains why ¢ is independent on the cell £ in the equivalence relation (7.2).

7.2. Parametric normalization: proof of Theorem 7.2

In this section we solve the inverse problem on a given parametric cell £, when g is not

in R<o. Given any collection
m = (¢7), € [T e thy
Z/kZ

we can fix 7 > 0 such that every ¢/ belongs to Holo. (£¢ x nD)’. The strategy is to
synthesize a k-tuple of sectorial functions (H J )j whose transition maps over saddle parts
are determined by my as in (7.3) below, then to recognize that they actually are sectorial first-
integrals of a holomorphic vector field X, in normal form.

We repeat the recipe of Theorem 5.5 in order to solve the nonlinear equation

(7.3) H'™' = H/ exp (2i7w/k+¢j’son),

by successively solving the linear Cousin problem of Proposition 6.25 in the way we explain
now. For ¢ := 0 this is precisely the technique of [43].
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. i
We want to find a solution of N = 5L (m,, N) with N € Holo, (Vej X rD) , where § is

2mi
given in (6.23), and we build one through an iterative process. We start from

and build
1
Npt1 = 2_3: (me, Ny)
17T

given by Proposition 6.25. The fact that each sequence (N,{ ) converges uniformly to
n

. . /
some N’/ € Holo, V/ x rD) for some r > 0 follows in every other respect the argument
presented in the proof of Theorem 5.5, thus we shall not repeat it here.

So far we have built a k-tuple of bounded, holomorphic functions N = (N J )j satisfying
the next properties.

COROLLARY 7.7. — Assume © = 0 (which particularly implies 1o ¢ R<o). Let

H’ := H  exp N’/

be the canonical first-integral associated with N7 .

I. (Hj)j is a solution of (7.3).

2. Up to decrease r > 0 we can assume that:

(a) N is n-adapted (as in Definition 6.24), more precisely:
|77 =rC
for some constant C > 0,

(b) |x 2%

1 NY| 1 i
§3and‘y o <zonV/xrD.

Proof. — 1. Because H/ = H7 exp N7/ and H/ ™! = H/ exp 2inu/k (see (6.8)) we have
HIit1

HJ
Because (N7 )j. is obtained as the fixed-point of the Cauchy-Heine operator

(Nj)j = Es (((*b],s)j , (Nj)j) ’
according to Proposition 6.25 (1) the identity N/ +*! — N/ = ¢/ o H/ holds, which validates

the claim.
2. We have:

(a) This is clear thanks to Proposition 6.25.

= exp (2inw/k + N/t — N7).

(b) Up to decrease slightly  we can assume that the derivative of each component of my is
bounded on nD. From the construction of N/ and Proposition 6.25 (3) we have

ONp41
dy

< 2w exp Nl < 5
= 2im o

mE

if 7 is taken small enough. The conclusion follows by taking the limit n — oo. The
argument for x%—l)\f is identical. O
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Now define
N 9
X/ =X+ yR/ —
dy
with
N k\ ON
(7.4) PP b el
. = N .
1+ yW

LEMMA 7.8. — We have

1. X/-NJ =—RJ or, equivalently, X/.H/ =0.
2. R/T1 = RJ on 9.

Proof. — This is formally the same proof as for ¢ = 0: we refer to [43] for details.

1. It follows from elementary calculations.

2. Itisequivalent to showing X/ - H/*! = 0. But this condition is met because of (1) and
the fact that H/ %1 is a function of H/, as per (7.3). O

The lemma indicates that all pieces of (Rj )1. glue together into a holomorphic function R.
From (7.4) and the estimates on the derivatives of N/ obtained in Corollary 7.7 we conclude
that R is bounded near the roots of P, (hence Riemann’s theorem on removable singularities
applies). The argument of Section 6.4.3 can now be invoked identically with Q := R to
obtain

R(x.y) =Y ra(x))y"

n>0

for some polynomials r, in x of degree at most k. We can simplify R further by applying
toX 4+ Ry % the change of coordinates

(x,y) —> (x,yexpN (y)), N € yC{yj},

where

f___ ROy
y (14 R(0,y)

The new vector field X + ﬁy % satisfies R € x My iy} [x] <k, as sought.

REMARK 7.9. — Notice that Lemma 7.8 asserts (x,y) > (x, Néj (x,y)) is a fibered
normalization of &{ over squid sectors.

7.3. Compatibility condition

Here we impose no restriction on .
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7.3.1. Node-leaf coordinates. — To each squid sector V/ we attach a unique natural coor-
dinate & which parametrizes the space of leaves Qé over that sector: this coordinate corre-

sponds to values taken by the canonical first-integral H ej (with connected fibers) as defined
in Corollary 7.7. Moreover,

H (v/ x€.0) =c.

This comes from the fact that the sector’s shape adheres to the point in a node-like configura-
tion, forcing the model first integral H Z to be surjective: a complete proof of the above state-
ment can be found in [41]. This space of leaves is customarily compactified as the Riemann
sphere Qz by adding the point co corresponding to the “vertical separatrices” {x = x/ ’“} of
the node-type singularity.

Because we deal with convergent unfoldings, this coordinate is completely determined by
the space of leaves of the singular point x/® of node type attached to V/, with two distin-
guished leaves corresponding to 0 (along {y = 0}) and oo (along {x = x/ ’n}). In particular,
it remains the same when we change the point(s) of saddle type x/>* and x°/)-s attached to
a sector V/ but leave the point of node type x/** unchanged, while passing from one cell to
another.

Let us prove briefly the result on which the compatibility condition is built. We recall
that p, is the radius of a disk containing all roots of P, as defined by (6.14).

LEMMA 7.10. — For every x« € V/ \peD the partial mapping
hé Dy — Hej (X%, ¥)

is a Flgcal diffeomorphism near 0 whose multiplier at 0 does not depend on L. In particular for
any £ such that E¢ N E7 # @, the diffeomorphism

si=nlo ()"
is tangent-to-identity. Moreover there exists N1, 12, > 0 such that for all ¢ € cl (8 ¢ N 82)
mD C 8 (rD) C 72D
and 8 is injective on rD.
In the sequel we write this map §;_,.
Proof. — According to Corollary 7.7 we have
H{ (xx.y) = yH] (xe. D) +0().

Since x4 lies outside the disk containing the roots of P the value of H e] (x«, 1), as fixed by
the determination chosen in (6.7), does not depend on £ (but it does on j). The existence
of n1, na, r > 0 satisfying the expected properties is a consequence of [41, Corollary 8.8] and
Lemma 6.23 (1). O

DEFINITION 7.11. — For a choice of x! € V/ \p:D we call hé the node-leaf coordinate of
the unfolding X, above x, in the sector VZJ and relative to the cell &.
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FiGURre 7.1. Passing from geometric to orbits space via the sectorial first inte-
gral H/. Colored arrows show how the change of determination in H/ takes place
as a mapping between two sectorial spaces of leaves: the necklace dynamics.

7.3.2. Necklace dynamics. — Here we work in a fixed germ of a cell & for fixed € € £y; we
drop the £ and ¢ indices whenever not confusing. According to the constructions performed
in [41], and hinted at by Theorem 7.2, the orbital modulus (u«,m (X)) of a convergent
unfolding encodes the way the different node-leaf coordinates glue above the intersection of
squid sectors:

{HJ'+1 = H/ exp (2ini/k + ¢/ 0 H7)  above V7%,

H°D =L ;oH/ above V78,
where
Le: hv—>ch, ¢ #0,
and v/ = vlf € C* relates to the dynamical invariants p and the residues (W) at
m

the roots (x™)g<,,<k: indeed, the ramification at the linear level of the first integral at a
e (™"
. . . PE/(xm) . .
when crossing sectors while turning around the point, i.e., to the product of one factor
exp 2inu/k for each crossed sector V7> and one factor v; for each crossed sector V/:&. It is

therefore rather natural to consider the germs of diffeomorphisms in node-leaf coordinate
(7.5) 1//2’8 : h+—> hexp (Zim/«/k + ¢Z’S (h)) ,

J:g . J
V" h— v, h,

singular point, given by exp ( —2ix , 1s equal to the product of all ramifications
g p g y exXp q

where (my), = m(X) and m; = (qbl{ ’S) . Obviously one can do the same construction
J

starting from any tuple m € [[, ¢/, (k.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



212 C. ROUSSEAU AND L. TEYSSIER

FIGURE 7.2. Schematics of the necklace dynamics and of the corre-
sponding sectorial decomposition for k =5 and o =(94%3%). The loop
y € m1 (pD\P; ! (0), x«) corresponds to the word w (y) = sf gf gfsfgygr in
necklace dynamics.

REMARK 7.12. — For some value of the parameter ¢ in a given cell &y, the saddle
mappings 5 are entirely determined by u and m, while the gate mappings ¥# are entirely
determined by pu.

The dynamics induced by these germs is of interest to us only if it encodes the underlying
dynamics of the unfolding (weak holonomy group). A necessary condition is that the latter
group does not depend on ¢, i.e., on the peculiar way of slicing the space into sectors
which is imposed by our construction. Therefore we only want to consider the “abstract”
holonomy representation of 7y (pD\ P; ! (0), x«) in the space of leaves. Let us describe this
representation (see Figure 7.2 for an example).

DEFINITION 7.13. — We fix a base-sector V/* and a base-point x, € V/*\ p,ID, as well as

some my = <¢€-’S)j e F (hy*.

1. To any loop y € my (p]D\PE_1 0), x*) we associate the multiplicative word oy (y) in
the 4k letters {sji g]:.|E D j € Z/kz} obtained by keeping track of bounded squid sectors

boundaries crossed successively when traveling along y. The superscript + (resp. —) is
given to s; according to whether one crosses the saddle boundary from V/ to V/*!

(resp. from V/F1 to V/), “in the same direction” as ¥/** (resp. (wj’s)o_l) applies.
For g; we take the same convention for gate transitions y/% and postulate the algebraic

-1 —1
; + _F (ot _ oF
relations (sj ) =s/, (gj ) =g .

2. To any word o =[], a)jﬂ; we associate the germ

velm): s O (i)™
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For instance
V[sted e sieaer] = v o (V05T oyt o () o (v
3. We write
Wy = oy (m (pD\Ps_l (0) x*))

the image group of admissible words, that is all the words corresponding to all the
encodings (1) of a loop with given base-point x, in a disk of given radius p punctured
with the roots of P,.

4. Letm = (my), € [, &y {h}. The collection of image groups § (m) = (§), of germs
of a biholomorphism fixing 0 given by

Go = Ve (Wi,
is called the necklace dynamics associated to (1, m) based at the sector V/*.
REMARK 7.14. — 1. To keep notations light we write ¥, [y] instead of ¥y [ro, ()] for
y € 1 (pD\ P! (0), x). The context will never be ambiguous.

2. Obviously the morphisms w, and o are distinct. The change of cell in £¢ N 7 can
be translated algebraically as a group isomorphism %, — %J;. For instance when
k = 1 the isomorphism acts on generators as

gt — g7st
s+g_ > g+

with notations of Figure 7.3.

REMARK 7.15. — 1. The groups %/, and {, do not depend on the particular choice of
the base-point x, € V/*, but do depend on the base-sector V/+.

2. Changing the base-sector from V/* to another sector 7/ induces an inner conjugacy
between respective necklace dynamics.
7.3.3. Compatibility condition

DEFINITION 7.16. — Let m € [, ¢#y {h* and e C{e}. We say that (i, m) satisfies
the compatibility condition if the different necklace dynamics (i.e., abstract holonomy pseu-
dogroups) combined to form { (m) are conjugate, in the sense that there exists x, € pD\ p.D
in a fixed base sector V/* such that for every ¢,7 and any connected component C of
E¢ N E7 # 0 there exists a (perhaps small) subdomain A C C such that for all ¢ € A there
exists 87, . € Diff (C, 0) satisfying:

¢ 8%(—@,8 0) =1,
e forally € my (pD\P ™' (0), x«),
(7.6) 8y Ve Yl = vz, vl

where §*¢ = 87! o ¥ o § is the usual conjugacy for diffeomorphisms.
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F1GURE 7.3. The generators of the two holonomies on the self intersection of the
unique cell €.

FIGURE 7.4. A cell £, having self-intersection around a regular part of Aj.

REMARK 7.17. — Notice that the compatibility condition also applies when = {,ie.,
€y is a self-intersecting cell with self-intersection 8? around a regular part of Ag as in
Figure 7.4, with the obvious adaptations. To avoid confusion we denote by ¢ and ¢ the
“distinct points” corresponding to the same parameter ¢ € 8? seen from two different
overlapping parts of the cell. More generally we decorate objects with corresponding signs,
like ¥ or J in order to really stand for ¥, z and v 7 respectively.

LeEmMA 7.18. — If (i, m) is realizable then the compatibility condition holds.

o—

Proof. — Fix some point x, € V°\p,D and take §;_, := h%o (h?) Yon &N Easin
Lemma 7.10. O
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REMARK 7.19. — 1. Although we do not impose that the mappings 8;,_, exist on the
connected component C of £; N €7, nor depend analytically on e € A C C, it will
be true retrospectively and the dynamical conjugacies d7,_, are always of the form
described in Lemma 7.10. In particular the collection (8%_() o7 is a cocycle:

8ty <ty 080ty = Strety
whenever all three mappings are simultaneously defined.

2. The compatibility condition could be weakened further. The existence of §;_, as
above is only needed for ¢ belonging to a set A of full analytic Zariski closure, i.e., such
that if a holomorphic function f on C satisfies f A = 0 then f = 0. The cornerstone
of the proof of the Realization Theorem consists indeed in applying Corollary 7.3:
it suffices to check whether the identity R, — Ry = 0 holds on every connected
component C of & N &7

7.4. Normal forms stitching: proof of Orbital Realization Theorem when ;o ¢ R<o and
T =0.

Thanks to Lemma 7.18, only the converse direction of the Realization Theorem still
requires a full proof at this stage. Assume then that the compatibility condition holds. Let us
fix a base point x, in a base sector V/* and picke € A C C C &N Eas in Definition 7.16.
Recalling Lemma 7.10, the tangent-to-identity mapping

o—1
(7.7) W (xe,y) (x*, (h%) 087, 0 h‘g)
conjugates the weak holonomy pseudogroups given by the representation
be o 1 (pD\P ' (0), xs) —> Diff ({x = x4},0).

Let us formulate a direct consequence of the main results of [11] (see [2]) in a manner
adapted to our setting.

LEMMA 7.20. — The map ¢ € £y (vj) is holomorphic and locally injective. In

JE€L/kz
particular there exists a subdomain N’ C A such that for all e € N, every singular point of X,

and X7 is hyperbolic.

Using an extension of the Mattei-Moussu construction for hyperbolic singularities (see
below) we can analytically continue W (defined in (7.7)) on a whole neighborhood of {y = 0}
as a fibered equivalence between Xy, and l7. The argument developed in Section 5.6 (to
prove uniqueness of the normal form) is performed for fixed ¢, therefore there exists

ceC*
such that
Ry (x,cy) = Ry, (x.y).

But the conjugacy W is tangent to the identity in the y-variable thus ¢ = 1. Therefore
Ry = Ry, on A, thus on C by analytic continuation. Since this argument can be carried
out for any connected component C of any cellular intersection, Corollary 7.3 yields the
conclusion.
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REMARK 7.21. — In fact W itself must be the identity, therefore
o—1
as in Lemma 7.10.

There only remains a single gap in the above argument, namely that of extending W
near each hyperbolic singularity. Let ¢/, be the foliation induced by ¢X, and take a germ
¥ C {x = x4} of atransverse disk at (x, 0) in such a way that ¥ is holomorphic and injective
on X. The union of the saturation Sat y, (X) and the vertical separatrices P ~1(0) is a full
neighborhood of {y = 0} since no singular point of &7, is a node. Therefore ¥ can be
extended as a fibered, injective mapping by the usual path-lifting technique except along
the separatrices P~1 (0). Up to divide &, and A7 by a local holomorphic unit near each
singularity, we can assume that the hypotheses of Lemma 5.13 are met. This completes the
proof of the Realization Theorem when 1o ¢ R<o.

8. Generalcase T > 0

In this section we fix T € N such that

po + 7 (k +1) € Reo.

8.1. End of proof of (orbital) Normalization, Uniqueness and Realization Theorems

We explain now how to reduce the case t > 0 to the case r = 0 already dealt with. We
exploit the observation that formally Sectiong { P¥y} is the pullback of Sectiony {y} by the

mapping
(8.1) T: (e,x,y)— (e,x, Pf (x)y).

Albeit not invertible along the lines { P, (x) = 0} (its image is not a neighborhood of {y = 0}),
the mapping T transforms the model unfolding

- 0 0
8.2) X (r.y) = Po () 5 +y (14 pex®) o=
ax ay
into
% *7 0 / k 9
Y =T"X=P—+ A+ 1P, + pex”)y—.
0x ay
Observe that
TP’ (x) + pxF ~oo (z (k + 1) + p) x*,

so that involving P® in this way shifts the formal invariant by t (k + 1). Apart from the
fact that Y is not in prepared form (4.2), all the theory developed before for the Realiza-
tion Theorem applies in this case too. Let us be more specific. The key property we used
intensively was to be able to perform most arguments for fixed ¢. This was proved sufficient
because automorphisms of prepared forms fixing the x-variable must also fix the canonical
parameter &.
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LemMA 8.1. — 1. The group of (fibered) symmetries

(e.x,y) = (n(e) . X (e.x). Y (&, x,y))

of (the unfolding of) vector fields defined by (8.2), is isomorphic to Z/kz x C* through the
linear representation

(8.3) &o: Z/kz x C* —> GLy 45 (C)
(8.4) 0,c) — ((50, ey Ek—1, X, ) > (aso,sl, ... ,sk_lof(kfz),oex,cy» ,
where o = exp 2in0/k.

2. This statement continues to hold in the more general case of an unfolding
d ad
(8.5) Pe(x) —— + (1 + Qe(x))y ——.
ax dy
where Q¢ € C[x]y is a polynomial in x of degree at most k and Q(0) = 0, save for the

fact that the representation ¢, : Z/kz. x C* — Diff ((Ck+2, O) has no reason to be linear.

3. In particular, any symmetry tangent to the identity is the identity.

Proof. — (1) is shown in [41]. For (2), there exists a diffeomorphism W of the form
(e,x,y) — (n,X,Y) transforming a general formal normal form (8.5) to the standard
formal normal form (8.2). Then any symmetry of a general formal normal form is given
by W~ 0 &y (6, c) o W for some (6, c) € Z/kz x C*. (3) follows. O

REMARK 8.2. — 1. Inview of Lemma 8.1, we could have replaced (8.2) by some other (8.5)
in all our constructions regarding realization. In such a form, the parameters are again
canonical, as long as we consider changes of coordinates tangent to the identity.

2. The structure of sectors, and also the decomposition in cells £, are determined
from P, alone in (8.2): only the size of the neighborhoods of the origin in x-space
and in parameter space might need to be slightly adjusted when passing from the
coordinates (x, y) to the coordinates (x, P* (x) y). Hence, instead of considering (8.2),
we could have taken a normal form (8.5) with the same sectors Vej and same cells .

The rest of our argument relies on the next transport result.

LeEmMA 8.3. — 1. (i, m) satisfies the compatibility condition if and only if (u+7 (k+1) ,m)
does.

2. Take &0 in orbital normal form (2.4) with t := 0. Consider the corresponding unfolding

R, o1 _ d / k T d
Y:=T &—Psa—{—y(l—l—TPg—i—p,x T R(x, P y)>$,

for T asin (8.1). Then & and ¥ have same orbital invariant m () = m (Y).

We postpone the proof till Section 8.1.4. In the meantime we finish establishing the main
theorems.
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8.1.1. End of proof of Orbital Realization Theorem. — Let (u, m) satisfy the compati-
bility condition and let us prove it is realizable as the orbital modulus of some convergent
unfolding. Normalization and Realization theorems so far hold when t = 0 (in particular
1o ¢ R<p): in that case m is the modulus of an unfolding in normal form

k

3 i . 3
(8.6) Pe(x) 5 4y [ 14 pe)x +yj;fo,-(y) ETR

To consider the case T > 0, we need to use the following remark: the whole proof for t = 0
would have worked verbatim with the formal part and parameters given in some alternate
form (8.5). This would have produced a realization of the form

d £
8.7) Pe(x)g— 4y | 14+ Qo) +3 3/ Ry (y)

i=j

0

ay’
with new canonical parameters. Let t be a positive integer such that o + 7(k + 1) > 0 and
consider the new formal normal form

S d d
Y (xy) = Pl g+ (14 7P + o))y o

corresponding to Q, := tP. + u(e)x¥ in (8.5), with formal invariant
Li=p+tk+1).
But according to Lemma 8.3:
1. (i, m) is compatible,
2. it is realized in the form (8.7),
3. the change (x, y) — (x, P77 (x) y) transforms (8.7) back into an unfolding

k
0 : ad
Pe(x)—+y | 1+ u(ex" + /;xf Ri(PE)Y) | 55
4. the latter unfolding is holomorphic on a whole neighborhood of (C¥+2,0), and is
therefore a realization of (i, m).

8.1.2. End of proof of Normalization Theorem. — The proof we just finished shows that any
realizable (1, m) can be realized in normal form.

8.1.3. End of proof of Uniqueness Theorem. — Each vector field ¢l, of the unfolding in
normal form (2.4) is holomorphic on a domain

D= |J {exy:lxl<plPF )yl <r}.
£€(Ck,0)
Let E be a neighborhood of 0in Ck*2 and ¥ : E — (C¥*2,0) be a local conjugacy between
normal forms ¢ and &, which can be assumed fibered thanks to Corollary 4.11 (2). We
can use the Uniqueness Theorem in the coordinates (x, P (x) y) (given by the Uniqueness

Theorem for iy ¢ R<p, already proved) at the cost of showing that T*W¥ = T o W o T°7!
is holomorphic and injective on some small neighborhood of (0, 0) uniformly in ¢. This is
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not trivial since the image of £ N {¢ = cst} by T can never be such a uniform neighborhood
of (0, 0) if E is bounded in the y-variable. But T (D (r) N {¢ = cst}) is, so we wish to extend ¥
to some D (') C D (r). The usual path-lifting technique in the foliation o7, induced by &,
allows to extend ¥, on

U := {e} x Sat g, (E) C D (r).

Using the special form of the normal form ¥, we conclude the proof of the Uniqueness
Theorem.

LEMMA 8.4. — Assume that p > 0 is small enough so that |uex* + P} (x)| < L for all
x € pD and all ||| small enough. There exists r > r’ > 0 such that for U = U, (r) defined
as above one has D (r') C Use((ckjo) Ue C D (r).

Proof. — For a solution of the flow system

§x = —P: (%)
¥oo==y (14 pex* + Re (x,))
with ¢ € R and initial value (x«, y«), the modulus of ¢ (¢) := | P (x (t)) y ()| satisfies

p— (1 + pex® 4 R, +rP;).

Since Ry (x,0) = 0 we can choose r so small that |usx¥ + Ry + TP/ (x)| < 3 for all
(e,x,y) € D(r), and ¢ < —¢/2. Hence starting at (x., y«) with |P] (xx) y«| < r and
|x«| < p, the trajectory for positive ¢ never escapes D (r). Butz — |y (¢)] is also exponentially
decreasing, therefore we eventually reach a point within E.

Again, this is the ideal situation, because it may happen that x (¢) exits cl (pD). If
|x (to)| = p then we modify the trajectory x by solving x = +iP, (x) from zy, on, the
sign being chosen so that +iP; (x (fp)) points inside pS!, until we reach a point x (¢1)
through which the solution of X = — P, (x) stays in pD in positive time (i.e., accumu-
late on an attractive singularity). While for ¢ € [ty,#;] we cannot control the sign of
¢ = £¢3 (uex* + R, + tP/), resulting in a probable increase in ¢, the total amount
by which "75 increases is bounded uniformly in (x«, y«) and ¢. Therefore there exists a radius
r > r’ > 0 for which, if (x«, y«) € D ('), the modified trajectory t > 0 — (x (¢), y (z)) does
not escape from D (r) and thus eventually enters E. O

8.1.4. Proof of Lemma 8.3. — First, as noted in Remark 8.2, we can choose the same sectors
in x and same cells in the parameter ¢, possibly after adjusting their diameter. Also, we have
chosen to take the linear parts of the 1//{ ** of the form exp 2izu/k. This choice is arbitrary.
What is needed is that the product of these linear parts be equal to exp 2imu. Because
(k + 1)t € Z, so that exp 2iru = exp 27wi(u + (k + 1) 7)), we are perfectly entitled to take
the same linear parts for m (&) and m (¥%).

The Camacho-Sad index A/ (resp. A7) of the singular point (z,0) € P71 (0) x {0} in ¥,
(resp. Xe), relatively to the invariant line {y = 0}, is given by
Pl(z) _ Pl
T T pezk

~ _
1+ tPl(2) + pezk’
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Hence, '}1’17 = ALJ + 7, yielding exp 2in/i/ = exp2iz/x/. This means that the gate transition
maps are the same for both dynamical necklaces induced by (i, m) and by (i, m). Thus,

the holonomies involved in the compatibility condition are the same provided (2) holds. In
particular, this means that (&, m) satisfies the compatibility condition, proving (1).

Show now that m is the analytic part of the modulus of ¥. It suffices to consider a fixed
¢ € &y and a corresponding saddle part V' /5. Recall how a normalizing map between % and
its formal model, as in Remark 6.9, defines the canonical sectorial first integral

H(x.y) = yE@) exp N/ (x.).
where E(x) = ]_[fzo(x — x7)7% s the multiplier in the model first integral of ¥,.
Let ¥/ : h +— hexp (2i71/k + m (h)) be the Martinet-Ramis invariant as in Section 7.1,
that is
Hit = s o
Let us now move to ¢k It is clear that a normalizing map over P! transforming &\, into its
normal form is given by

(x,y) — (x,yexp N7 (x,))
N; (x,y) = N;(x, PF(x)).

Moreover, the domain of this map is of the form V7 x {| PF(x)y| < r}. Since
k A U
[[x=x/)"% =Ex)P (x)
j=0

the canonical first integral of & has the form
HY(x.y) = E()yexp N;(x.y) = E(x) (P*(x)y) exp N/ (x. P (x) y).
It follows at once that
HITl = @/.iss o H/,
yielding the conclusion v/ = /7 as expected.
8.2. Section of the period operator: end of proof of the Normalization Theorem

Let & be a generic unfolding in orbital normal form (2.4), understood as a derivation.
Theorem 6.8 holds regardless of the value of o or 7. The study performed in Section 6 to
establish Theorem 6.2 can be repeated here but for the fact that the canonical section of the
period operator needs to be adapted. The mapping defined in (6.3) becomes

A: Cle x,y}Y —> Sectiong {PTy}

whose kernel coincides with & - C {, x, yY’, i.e., the sequence of C {¢}-linear operators

é'x.
0— Cle.x.yY — Cle,x,y} i)Sectionk {PTy} —0

is exact. Up to this modification the temporal part of Realization Theorem is established.
The most obvious reason why one must adapt the target space of the section operator is

computational. Proposition 10.5 below recalls the formula for the period of the formal model

X for k = 1. For xy™ € Sectiony {y}, m € N, it may happen that T (xy™) vanishes, exactly
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when mu € Z<o. This situation cannot happen if o ¢ R<g, of course. Pre-composing xy™
by P* (x) y yields

f (xP™ (x) y™) = f (xmr(k+l)+1ym> +0 (),

and by hypothesis m (o + (kK + 1) t) ¢ Z<o. As already noticed, the presence of P® acts
as a shift by (k + 1) T on powers of x. Here it guarantees that &, remains invertible. Notice
that the map & needs to undertake the same modification as in (8.1); compare (6.23). We
will not go into further details.

8.3. Alternate normal forms

The normal forms we propose in the Normalization Theorem are not strictly speaking
a generalization of [26, 43], which is what we expected to accomplish in the first place and
which we propose as a conjecture.

CONJECTURE 8.5. — Fix k € N, a germ of holomorphic function u € C{e}, andT € Zx
such that juo+7 ¢ R<o. Any generic convergent unfolding of a germ of saddle-node holomorphic
vector field with the formal invariant w is orbitally conjugate to an unfolding of the form

~ ~ 0 ~ ~
X + ng, R € xC[x] {xry} )

Such a form is unique up to conjugacy by linear maps (s, x,y) + (&, x,csy), ¢ € C{e}*.

(A similar conjecture can be stated for the temporal part.) This conjecture is very likely to
be true as we almost managed to ascertain both the geometric normalization and the cellular
realization in that form. In both questions we encountered difficulties of a technical nature,
which can surely be overcome by bringing in tedious estimates.

9. Bernoulli unfoldings

The primary aim of this section is to establish that the compatibility condition is not
trivially satisfied by proving the Parametrically Analytic Orbital Moduli Theorem. The
most difficult direction is (1) = (2). The whole proof is geared toward using rigidity results
of Abelian finitely generated pseudogroups G < Diff (C,0). Let us briefly explain how
Abelian pseudogroups come into consideration here. Elements v [y] and ¥ [y] in over-
lapping cellular necklace dynamics are conjugate by the transition mapping 8¢« ¢ coming
from the compatibility condition. The parametric holomorphy of m forces the equality
V¢ [I'] = Y7 [I'] for well-chosen loops I', from which stems the commutativity relation

V[Tl obdg y =87 g0 vell].

Such pseudogroups are completely understood and form now a classical topic of complex
dynamical systems, we refer for instance to [8, 25]. “Bernoulli diffeomorphisms” (defined
below) play a central role in this theory as archetypal examples of solvable and Abelian
pseudogroups.
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9.1. Bernoulli diffeomorphism

DEerFINITION 9.1. — We say that v € Diff (C, 0) is a Bernoulli diffeomorphism of index
d e N if there exist «, B € C with & # 0 such that

h

v (h) = “—l/d —: Ber (d, “) ).
(1+ pnd) B

We define Ber (d) the set of all such algebraic functions, regardless of the special values of «

and B (these are in particular germs of analytic diffeomorphisms at the origin). Of course

when d # d the intersection Ber (d) N Ber (2) coincides with the group GL; (C).

Let us quickly state without proof the next basic property.

LEMMA 9.2. — The set Ber (d) is a group equipped with a semi-direct law. More precisely

Ber (d, a) o Ber (d,z) = Ber (d, Na’o? ~).
p p pa +

The definition of Bernoulli diffeomorphisms is motivated by the following computation.

LEmMMA 9.3. — The necklace dynamics of an unfolding of Bernoulli vector field
X=X+ y4tlr(x) % consists in Bernoulli diffeomorphisms of index d. Moreover

m(X) = —élog (l +2ind% (ydr)) :

Proof. — As in [46, Section 3.3] one tries and finds an expression for the sectorial first
integrals H/ in the form

. H7 (x,y)
HY (x.y) = _
(x,y) (1—df7 (1)) Jd
Because
. Hi ) .
K = g ) ((1=ar7 cy?) yir @+ 8- (7 57))
Hi

B (1—df7 (x) yd)l/d+1 (ydr (x)+X- (f/' (x) yd>)’

then H/ is a first integral for & if and only if
©.1) X (v 17 @) ==y ).
This equation admits a formal solution (Lemma 4.8) because X is linear in the y-vari-
able, and the f7/ (x) y¢ are the sectorial solutions of this equation (Theorem 6.8). In fact
(x,y) [ x, W is the canonical sectorial normalization of &Y.

First notice that by definition of the period operator for the formal model (Definition 6.10)
we have for all (x, y) € V/* x C:

I =y 7 ) = =7 (v0r) (/7 (x3).
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From the special form of H/ we deduce

H/tH1 fitt— i
HJ exp 2inu/k 1 —dfiyd

—l/d

fj (ydr) (ﬁf)

~ N4
()
Because H is linear in the y-variable we know that T (yd r) (h) = ah? for some complex

. g dr -~
coefficients @ = (ozé)iez/kz. Hence ‘:(yﬁ#ﬁ) x H? = T (y9r) (H). The rest follows
from (7.3). ' O

1 .
= exp —Elog 1 + d2ix X(Hf)d

REMARK 9.4. — In the course of the proof we establish in particular that Bernoulli
unfoldings admit families of Liouvillian first-integrals of the form

H (x.y)
1
(1=dv? f ()"
for the Liouvillian solution f of (9.1) obtained by variation of the constant

dz
P (2)

H(x,y) =

foi=E@™ [ E@re
where E is solution of

P (x) E' (x) = dE (x) (1 + ;ka) .

9.2. Holomorphic modulus: proof of the Parametrically Analytic Orbital Moduli Theorem

The direction (2)=-(1) is a consequence of Lemma 9.3 above and of Proposition 10.5
below stating that the model period operator ¥ (ydr) is analytic in the parameter when k = 1
and du € Z.

Conversely let us suppose that (u, m) is realizable and that m¢ = ¢ £ox(C.0) for some
holomorphic k-tuple

¢=(¢'), € hC e, hi* .

Ifp =0thenm =m (i) (Theorem 7.6), so we can as well assume that ¢ # 0. We first
establish that k = 1 by contraposition, and then present the case k = 1. That case can be
found originally in [47, Proposition 6] for u = 0. We generalize here the result to arbitrary p.

Recall that for ¢ € C* we write

L. :hv+— ch.
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(A) In the parameter £ (B) In the parameter &

F1GURE 9.1. The construction involved in Lemma 9.5.

9.2.1. Reduction to the casek = 1. — Assume then thatk > 1 and prove ¢ = (¢’ )J. = 0. For
each j € Z/kz there exists a cell £, for which x/+ is attached to only one saddle sector V/+5.
Let x/™ be the node point attached to x/** in the boundary of V7. The cell &, self-intersects
around a regular part of Ay in such a way that the nature of the points x/% and x/" is
exchanged when seen from one part or the other of the intersection. With the conventions

discussed in Remark 7.17, by this we mean

/8 = Fin
X =57,

We refer to Figures 7.4 and 9.1.

Fix a base-point and base-sector x, € V/\p,D and take y~, y* two loops based at x, of
index 1 around respectively x7 and x2, and index 0 with respect to the other roots of P asin
Figure 9.1. Let T' := y*y~ be a loop encircling only {x", x*}. The compatibility condition
ensures the existence of a tangent-to-identity map

8 :=68py
which conjugates the respective necklace dynamics based at x,. In particular
9.2) 8V [y*]1=v[r*].
8y [I] =y [I].
LEMMA 9.5. — We follow the notation; of Figure 9.1. Let k > 1, and let m > 1 be the
number of singular points different from x’>* and x’ ’n_. FEach passage of a gate by T in the figure

yields a linear gatemap L, (resp. Ly, ) for somev’? € C* (resp.v/r € C*)and1 < p < m.
We also set /&8 =: L, ;.

1. The equality ¥ [T'] = J[F] holds, defining a germ A € Diff (C, 0).
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—2imp - e
, _ i T~
2. A" (0)exp P l_[ v/ = l_[ DL
p=1 p=1
3. 50 A= Aoé.
Proof. — Observe that
m
9.3) Vvt = Loy, =[]
p=1

The linear part is invariant by conjugacy so that @ = v/77 exp 2imu/k. Similarly, consid-
ering y~ yields ¢ = 1/ exp 2imu/k. Hence

m
¢ =[]v"r = vV exp2inu/k =
p=1
Since ¥ ['] = Lz o ¥/ and ¥ [T] = Lg o ¥/ the result follows. O

Recall that the map

ce &r— (vg')jez/kZ
is locally injective (Lemma 7.20). In particular A’ (0) is not constant and therefore must take
non-rational values on a small subdomain A C &J'. It follows that for ¢ € A the Abelian
group (8, A) < Diff(C, 0) is non-resonant and therefore formally linearizable [25]. Hence

§ =1d.
LEMMA 9.6. — If§ = 1d then ¢/ = 0.

Proof. — According to (9.2), § conjugates ys [y ] = L., oy/* to ¥z [y ], but the latter
is linear thanks to (9.3), therefore /S itself is linear. It can only mean that ¢/* = 0 = ¢/
using (7.5), the equality holding on the whole cell £, by analytic continuation. O

Since j is arbitrary we just established
k>1)= (¢p=0).
9.2.2. Thecasek = 1: endof the proof of the Parametrically Analytic Orbital Moduli Theorem

Since k = 1 we drop the index j = 0. We work in the self-intersection &” of the single
parametric cell, and use the notations and constructions involved just above. In particular
Figure 9.1 remains the same except for the fact that there are no gate passages ji, ..., j, on
the right-hand side of the pictures.

Recall that we consider a system with m # 0. Lemma 9.6 forbids § = Id, thus A = y®is
non-linear (A was introduced in Lemma 9.5). Then (§, A) is an Abelian group. Consequently
there exists [31] a formal tangent-to-identity change @ in the variable &, unique d € N, A € C
and ¢ € C\ {0} such that, writing f := ¢* f for all f € Diff (C, 0),

§= D%
A= adD'Z(d’A), aeC”
hd+1 9
Zd, )= ————.
( ) 1+ Ak oh
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Commutativity forces the relation

a? = 1.

Since o = exp 2imp this gives du € Z as expected. Observe that for all s € C
D% .0 €Ber(d),

therefore we aim at showing A = 0. This is ultimately done by applying the next lemma.

LemMma 9.7 ([8, Assertions 1.1 to 1.4]). — In the following & is a formal diffeomorphism in
the variable h at 0.

1. Let Z,Z be formal vector fields in the variable h at 0 belonging to h®T1C [[h]]* %
If§* @, = CIJ% then §*Z = Z (the converse is trivial).

2. Assume that £*Z (d,)) = aZ (d,A) witha # 1. Then A = 0and & € Ber(d) (in
particular & is analytic).

Let us show now that A = 0 and @ € Ber(d) itself, forcing A = ¥* € Ber(d) by
application of Lemma 9.2. The key is to exploit the fact (9.2), which can be rewritten as:

9.4) 5V [gtst]=vig] = Lis

Indeed, referring to Definition 7.13 for the definition of the letters g*, s* and their image
by v [e], and looking at Figure 9.1, we compare the holonomy maps around the upper
singular point. On the left, the singular point is of saddle type and the holonomy map is the
composition of ¥ [s*] (crossing the saddle sector in the direction of the arrow) with ¥ [g*]
(crossing the gate sector in the direction of the arrow). On the right, the same singular point
is of node type. Turning around, it comes to crossing the gate sector in the inverse direction
of the arrow. Hence its holonomy map is a [g7]. The last equality in (9.4) follows from the
fact that ¥ [g*] = Lv. Note that (9.4) means that § linearizes ¥ [g*s*].

Of course the multipliers at the fixed point in (9.4) must be the same. On the left, this
multiplier is simply that of ¥ [g+s+], since conjugacy by & preserves the multiplier. On the
one hand the multiplier at the fixed point of ¥ [s*] is exp 2imp, according to (7.5) for k := 1,
asindeed ¥ [g*] = Ly. On the other hand ¥ [g7] = Lz so that

vvexplirpu = 1.

We also have ¥ [sT] = A, since it is the holonomy obtained by turning counterclockwise
around the two singular points. Hence, replacing in (9.4) yields Ly o Ao § = § o L.
Composing both sides on the left with Ly and taking @* on both sides yields

Lt48 = TyoSoLys = LwoAod
For the sake of simplicity we only deal with the case u € Z, the general case can be adapted
by taking into account that L%% = Id. Under the current hypothesis Ly = 1d, so that L5 is
a formal conjugacy between § = @} , ;) and A o 8/\: CIDI;('(’M) = Olinz@n for
some ¢t = t, € C*. According to Lemma 9.7 with £ := Ly anda := 1 +¢ # 1, we have
A =0and L,/ € Ber (d).
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FiGure 10.1. The (asymptotic) path of integration used to compute the period,
which is a cycle when k = 1.

So far ¢ is a formal linearization of L, /v which is tangent-to-identity. For values ¢ of the
parameter corresponding toV ¢ R (say I (V) > 0) the fix-point 0 of L, /v 1s hyperbolic: the
map ¢ is locally holomorphic at 0, unique and therefore given by

7= Jim Lo I
uniformly on a neighborhood of 0. Lemma 9.2 implies that for every n € N we have
L_pro ’L\‘l”/’; € Ber (d),

therefore ¢ € Ber (d) as requested, since the group Ber (d) is closed for the topology of
local uniform convergence. This completes the proof of the Parametrically Analytic Orbital
Moduli Theorem.

10. A few words about computations

All the discussion regarding the actual (symbolic or numeric) computations of normal
forms and moduli of saddle-nodes, as presented in [43, Section 4] for saddle-nodes, can be
repeated verbatim in the case of convergent unfoldings: we will not reproduce it here. We
nonetheless present in Section 10.1 a consequence of one particular result, thus unfolding
the main result of [46], which leads us to try and compute the period associated to the formal
orbital normal form X in Section 10.2.

10.1. Computation of the dominant term of the orbital invariant

The next lemma holds for a fixed value of ¢ € &/.
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LemMA 10.1 (See [43, Proposition 4.1]). — Let r, € xC [x]_; be the coefficients of
(10.1) R(x.y) = ra(x)(P*(x)y)"

n>0

in the normal form . Let c{’p (n,m) € C be the coefficients of the period

T ("y™) () = Y ¢[? (n.m) h?

p>0

relative to . Then we have the following properties.
Triangularity: cZ’p (n,m)=0,if p <mand
e (m.m) b = 2in T, (x"y™) (h)
is independent of R.

Algebraicity: For p > m, the coefficient clf"p (n, m) depends polynomially on the k (p — m)
variables given by the coefficients of r1, ..., rp—m and vanishes when R = 0.

Proof. — It is exactly the proof done in [43, Proposition 4.1] since exchanging x**!

for P, (x) does not modify anything in the actual computation. We give some brief elements
of the proof.

Let us drop all indexes and let x — y (x, k) be the sectorial solution of the differential
equation induced by the vector field & with initial value H (x«, y (x«, h)) = h (here x, is
fixed once and for all in V*). Computing ¥ (x"y™) (h) requires to compute the integral
fy x"y (x, )™ % for an asymptotic path y C Cx{0} joining the two nodes in the closure of
the union of consecutive squid sectors (see Figure 10.1). This integral is absolutely convergent
because m > 0 and y spirals in the right manner (see also Lemma 6.23). Since

H(x.y)=H (x,y)expN (x,y),
with H linear in the y-variable, we necessary have
(10.2) y (x,h) =y (x,h) + hO (h)

where y (x,h) = ﬁ(ilc 0 is the solution corresponding to the formal model X. This gives
the triangularity. The algebraicity property stems from the fact that the computation can be
performed formally in the y-variable. The sought property is true for the expansion (10.2)
(by studying the inverse of the normalizing mapping) because it is true for solutions of

cohomological equations ¢¥ - N = —R. O

We extract from this statement useful consequences.

ProposiTION 10.2. — 1. The quantity
inf{n: r, #0} =inf{n: 3j) ¢ #0}
=:deN
does not depend on the cell.

2. The valuation d is infinite if and only if the unfolding is analytically conjugate to its
Jformal normal form.
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3. If d < oo the dominant term of the invariant is given by the period of the formal model

217 % (rdyd) = (h — ¢£hd)

JE€LkT '

REMARK 10.3. — The value of d does not depend on the cell but may differ from the value
obtained on the boundary Aj. Yet the analytic continuation principle ensures that

min inf{n : r,, #0}>d
g€
because R is analytic.
From this proposition we deduce a final normalization ensuring uniqueness.

COROLLARY 10.4. — Assume the generic convergent unfolding X is not analytically
conjugate to its formal normal form X defined in (2.2). There exists a unique
(k,j,d) € Zsox{1,2,...,k}xNsuch that X is conjugate to the normal form X, = i—{—Ry%
as in (10.1) where:

red (x) = &x/ + o (xj)

ren =0 ifn<d.

Notice that in the case ¥ > 0 this normal form may fail to deliver meaningful information
at the limit & — 0. Take the extreme case R, (x, y) = £“x/y? with k > 0: for every & # 0
the vector field ¢¥ is not equivalent to the model X, but ¥, is.

10.2. Formula for the period of formal models

Unfortunately only the case k = 1 seems tractable enough to obtain closed-form expres-
sions involving the Gamma function. For the case k = 2 one could derive a closed-form
formula additionally using generalized hypergeometric functions, which is already stretching
a bit far what a “closed-form” is. There is no evidence that similar calculations can be
performed for k > 2.

ProposiTION 10.5 ([47, Proposition 8]). — Here k = 1. Let us introduce the double
covering ¢ = —s? in the parameter space. Then for m € Nandn € Zxy:
. (_ )n+mu,
T Yy (h)=h"x —— xt x T
s (x y )( ) T (Il T m,u) s,n,m s,m
1 n\ ' 2 \\ = 2j
[Ss"’m:=27 Z (p)H(l—s(u—l—;))ﬂ(l—i—s(u—i—;))
p+q=n Jj=0 Jj=0
25\ MK m mu
_2s [(—m 4 me
Ts’m = ( m) X ( 2s m2 ).
Isp  T(=5-%)

This period is holomorphic and bounded in the parameter s on the sector

1 b4 Wk
S:=0<|s| < ——,— <args < —
2ol 4 1
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and extends continuously at 0 by
(_m)n-i-muo
T (n+mpuo)
For given s small enough, the period is zero if and only if n +mu, € Z<o. The period is an even

function of s (i.e., holomorphic in the parameter ¢) if and only if mu € Z. In that case | is a
rational constant.

To (x"y™) (h) = h™ x

The result is shown by using the Pochhammer contour integral formula for the Beta
function. Indeed an affine change of coordinates sends (x — )% (x + s)? to a multiple
of (1 —z)* zP. The final expression comes from diverse classical properties of the Gamma
function. The eventual lack of evenness of the period comes from the term T ,. If mu is
not an integer then Ty, is multivalued and has an accumulation of zeros and poles as s — 0
outside the sector S. Only the coincidence of these two infinite sets when mu € Z allows the
period to be holomorphic through lucky root / pole cancelations.

Since T ,, is independent on n, any nonzero period T (y™g)ofagermg € C{e, x}isholo-
morphic in ¢ if and only if mu € Z. From Lemma 9.3, Theorem 6.2 and the Parametrically
Analytic Orbital Moduli Theorem we can generalize this observation.

COROLLARY 10.6. — Let G € C{e, x, y} with G (e,0) = O (P). Let us assume that the
period ¥ (G) is nonzero. Then, T (G) is holomorphic in the parameter if and only if all three
conditions hold:

— k=1,
— there exists d € N such that du € Z,
— there exist two germs F € C{e,x,y} and Q € Section; {Pd’yd} \ {0} such that

G=0+X-F.

The fact that the period is never a holomorphic function of the parameter if & > 1 is
probably a sign that a “simple” formula for ¥ (x” y™) does not exist.
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A SHARP FREIMAN TYPE ESTIMATE
FOR SEMISUMS IN TWO AND THREE
DIMENSIONAL EUCLIDEAN SPACES

BY ALESsSIo FIGALLI anDp Davip JERISON

ABSTRACT. — Freiman’s theorem is a classical result in additive combinatorics concerning the ap-
proximate structure of sets of integers that contain a high proportion of their internal sums. As a con-
sequence, one can deduce an estimate for sets of real numbers: “If A C R and %(A + A)‘ — 4] < |A],
then A is close to its convex hull.” In this paper we prove a sharp form of the analogous result in di-
mensions 2 and 3.

RESUME. — Le théoréme de Freiman est un résultat classique de la combinatoire additive concer-
nant la structure approximative des ensembles d’entiers qui contiennent une forte proportion de leurs
sommes internes. En conséquence, on déduit ’estimée suivante: “Si 4 C Ret ‘%(A + A)| 14| < |A4],

alors A est proche de son enveloppe convexe.” Dans cet article, nous prouvons une forme optimale du
résultat correspondant en dimensions 2 et 3.

1. Introduction

Given a set A C R”, define the semisum by
Ya+ay= {42 xed yeqf.
Evidently, %(A—}-A) D A, and for convex sets K, %(K—i—K) = K. Also, %(A + A)| =|A] >0

implies that A is equal to its convex hull co(A) minus a set of measure zero (see [3,
Théoreéme 6)).

The stability of this statement is a natural question that has already been extensively
investigated in the one dimensional case. Indeed, by approximating sets in R with finite
unions of intervals, one can translate the problem to Z and in the discrete setting the question
becomes a well studied problem in additive combinatorics. More precisely, set

5(4) = |24+ 4)| - 4],

0012-9593/01/(C) 2021 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2458
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236 A. FIGALLI AND D. JERISON

where | - | denotes the outer Lebesgue measure. The following theorem can be obtained as a
corollary of a result of G. Freiman [9] about the structure of additive subsets of Z (see [5] for
more details, and also [11] and the references therein for more recent developments on this
one dimensional problem):

THEOREM 1.1. — Let A C R be a measurable set of positive Lebesgue measure, and assume
that 5(A) < |A|/2. Then
lco(4) \ A| =25(A).

Note that the assumption §(A4) < |A|/2 is necessary, as can be seen by considering the
set A =[0,1]U[R, R+ 1] with R > 1.

In [5, Theorem 1.2] we extended Theorem 1.1 to every dimension, but with a dimensional
dependence in the exponent (see also [6] for a stability result when one considers the semisum
of two different sets). Our result was as follows.

THEOREM 1.2. — Letn > 2. There exist computable dimensional constants 8,,, C, > 0 such
that if A C R" is a measurable set of positive Lebesgue measure with 6(A) < 6,|A|, then

oD\ 4] _ (S(ﬁ 1
|A| = "\ |4 8-16"2nl(n — 1)!’

Qn
) , where o, 1=

Note that the dimensional smallness assumption on §(A) is necessary. Indeed, consider
t = 1/2 and the set
A = B1(0) U {Rey}, R > 1
Then |co(4) \ A| ~ R is arbitrarily large, while §(4) = |By/» (2e1)| = 27|AJ, hence
Oy <277,

The proof in [5] is based on induction on dimension and Fubini-type arguments, and
it leads to a bad estimate for the exponent «,. In fact, we believe that o, = 1, which we
formulate more precisely in the following conjecture.

CONJECTURE 1.3. — Suppose that A is a measurable subset of R", of positive Lebesgue
measure. There exist computable constants C,, and d,, > 0, depending only on n, such that the

following holds: if §(A) < dy|A|, then
lco(4) \ A] = Cn 8(A).

In this paper we introduce a completely new strategy that allows us to prove this sharp
stability estimate in dimensions 2 and 3.

THEOREM 1.4. — Conjecture 1.3 is valid for n < 3.

The exponent o, = 1 may look surprising at first sight, as most sharp stability results
for minimizers of geometric inequalities in dimension n > 2 hold with the exponent 1/2.
In particular, the best possible stability exponent for the Brunn-Minkowski inequality on
convex sets is 1/2, see [8, 7]. In contrast, our stability inequality with exponent 1 is affine
invariant and additive under partitions of the set by convex tilings, and these properties
are crucial to the proof. Even though we have stopped at n = 3, the proof is by induction
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on n and is organized with the hope that parts of it will ultimately apply to the case of
general n. There is at least one other stability inequality in which the exponent 1 is optimal in
all dimensions, namely the one proved in [4]. (Observe that the exponent 1 becomes natural
when looking at critical points instead of minimizers, see for instance [2, Theorem 1.2], but
this is a consequence of the different definition of the “deficit” §.)

Acknowledgments. — AF was partially supported by NSF Grants DMS-1262411 and DMS-
1361122, and by ERC Grant “Regularity and Stability in Partial Differential Equations
(RSPDE)”. DJ was partially supported by NSF grant DMS 1500771 and a 2018 Simons
Fellowship. The authors thank Emanuel Milman for pointing out to them reference [3].
The authors are very grateful to an anonymous referee, who found a major error in the
first version of this paper. In that version, we asserted that the conjecture was true in all
dimensions, based on the false claim that inequality (2.4) was valid with the exponent 1
rather than n. In this revision we had to make substantial changes that allow us to prove
the conjecture in dimensions 2 and 3. In Remark 2.5 we briefly comment on the case n > 4.

2. Proof of Theorem 1.4

As the reader will see, many of the arguments for the proof of Theorem 1.4 are valid in
any dimension. For this reason we shall work with a generic n for most of the proof, and we
shall use some geometric considerations specific to n = 2 and n = 3 only towards the end.

Basic considerations

Since Theorem 1.4 is known for n = 1 (see Theorem 1.1), we can assume that n > 2 and,
by induction on dimension, we can also assume that Theorem 1.4 holds in dimension n — 1.

Denote the convex hull of A by K := co(A). Since the theorem is affine invariant, after
dilation we can assume, with no loss of generality, that |A| = 1. Assuming that §(4) < 1, it
follows by [1] and/or [5, Theorem 1.2] that (D

@.1) wo=|K\ A < 1.

In particular, 1 < |K| < 2. Therefore, using the lemma of F. John [10], up to an affine
transformation with Jacobian bounded from above and below by a dimensional constant,
we can assume that K satisfies

2.2) By CK CB
for balls of radius 1/+/n and /n centered at the origin.

By approximation, ® we can assume the set 4 is compact and that dK consists of finitely
many polygonal faces. In particular, %(A + A) is compact, hence measurable. Furthermore,

(M Although this estimate can be deduced as a consequence of [1], that result does not provide computable
constants, as the proof is based on a contradiction argument relying on compactness.

@  One way to define a suitable approximation is to consider a sequence of finite sets Vx C Vi 41 C A such that
the polyhedra Py = co(Vy) satisfy | Px| — |co(A4)| as k — oo, and a sequence of compact subsets A; C A
such that | A} | — |A| as k — oo. Then let Ag := Vi U[A} N (1 —1/k)Px]. Since |Ax| — | Al, it suffices
to prove the estimate of Theorem 1.4 for Ax and then let & — oo.
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since all vertices of the faces are extreme points, they belong to A. Finally, we may divide
each face into simplices without adding any vertices, so that K can be seen as a finite union
of simplices, all of whose vertices belong to A.

Reduction to a set A that contains (1 — Cu!'/")K

We get started with the proof by showing that points of K that are sufficiently far from
the boundary of K are in %(A + A). Indeed, since || f * gllree < || fllzeellgllL for any pair
of functions f and g,

Ixk/2 * XKk/2(x) = xa72 * xa72(0)] = (X2 * (XK/2 — Xa72)|(x)
+ | xas2 * (xk/2 — x4/2)1(x)
<2 x&\ay2lir =27 K N\ Al
<|K\A|l=pu VxeR"

2.3)

Because K satisfies (2.2), there is a dimensional constant ¢ > 0 such that

2.4 XK/2 * Xk/2(x) = ¢ dist(x, 0K)" VxeKk,
therefore

(2.5) {x € K : ¢dist(x,0K)" > u} C{xk/2 * xx/2 > I}
Since

0<tars* 1) = [ an()ant =) dy
(2.6) = dyeAst.yeA/2, x—ye A/2
= xeid+4),
it follows from (2.3), (2.5), and (2.6), that
(1—=CuY")K c {x € K : édist(x,0K)" > u} C {xk/2* xk/2 > 1} C %(A + A)
for some dimensional constant C. Consequently, by the definition of §(A4),
2.7 (1= Cu!/™KI\ 4] < 8(4).
Denote
p:=2Cut", A :=[1-pK]U A.
Then, since A C K and
max{3(1 —p) + 3.1 —p}=1-p/2,
we have
1A +A)=[3 A+ DJU[L(1-pK+A)]Uul-pK
CRA+ DU -pK+K)]U(1-pK
=[3(A+ AU -p/2)K.
Therefore, since p/2 = C w'/™ thanks to (2.7) we get
8(A) < 8(A) + |[(1 - p/2)K] \ 4] < 25(A).
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Also, again by (2.7),

K\ A] < |K\ A'| + 8(A).
Since co(A’) = K, if we prove the theorem with A’ in place of A, then the result for A will
follow immediately. Thus, after replacing A with A’, we can assume that

(2.8) AD(1—pK  with p:=2Cu'/".

Recall that, by choosing d, small enough, we can ensure that « (and hence p) is arbitrarily
small.

Splitting A into “simpler” sets

Denote by {%; }f‘il the simplices whose union is 9K, let K; be the convex hull of ¥; with
the origin, and define

A= ANK;.
Note that (2.8) implies that
(2.9) (1-pK; C 4, p=20u""<«1.
Also,
(2.10) D OIK\ A =K\ Al.

1
) . M
Moreover, since the sets {K,-}f‘i | are convex and disjoint, the sets {%(A,- + Ai)}i=1 are also
disjoint, therefore

< |3(4+ 4)|.

Z\%(Ai + 4;)| =
i
Since ) ; |A;| = |A|, this proves that
(2.11) D 8(4) < 8(A).

34 + 45

Main lemma and conclusion

Our main lemma is the following.

LEMMA 2.1. — Let A;, K;, and p be as above. Then, for n < 3, there exist dimensional
constants C,, > 1 and p, > 0 such that

(2.12) |Ki \ Ai| < Cpd(A).
provided p < pp.

Assuming Lemma 2.1 has been proved, Theorem 1.4 follows immediately. Indeed,
choosing d,, sufficiently small, it follows by [5, Theorem 1.2] and the definitions of p and u

(see (2.8) and (2.1)) that p < p, provided §(A) < d,. Then, adding the inequalities (2.12),
(2.10), and (2.11), we find

[K\A =Y1K\ 4] < Co D> 8(4;) < Gy 8(A),
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as desired. Thus, we are left with proving Lemma 2.1.

Proof of Lemma 2.1

We begin by writing the lemma in a different normalized form. Fix an index i. Since
inequality (2.12) is invariant under affine transformations, we may take ¥; to be an equilat-
eral simplex of (n — 1)-Hausdorff measure 1, centered on the x,-axis and contained in the
hyperplane {x, = 0}. Moreover, we may move the vertex of K; from the origin to the point
(0,....0, ﬁ), so that (2.8) implies that K; N {x, > 3} C A;. It suffices to prove (2.12) in
this normalized situation.

To simplify the notation further, we remove the subscript i, renaming ¥;, K;, A;, with the
letters X, K, A, respectively. With these changes, we can rewrite Lemma 2.1 as follows. (Note
that, in this new normalization, | K| is comparable to 1/p and (2.2) is not satisfied anymore.)
Here and in the sequel, §#° denotes the s-dimensional Hausdorff measure.

LEMMA 2.2. — Let X be an equilateral (n — 1)-simplex centered on the x,-axis satisfying
(D) =1, ¥ C {x, = 0}.

Let K be the n-simplex with one vertex at (O, ..., 0, 21—9) and base X. Suppose that A is a compact
set satisfying

KNn{x,>3} CACK,
and that all of the vertices of X belong to A. Then, for n < 3, there exist dimensional constants
C, > 1 and p, > 0 such that

|K\ A] < C, 8(A)
provided p < p.

Proof of Lemma 2.2

The rough idea of the proofis to start with the set
Kn{l<x,<2}CA

and use the fact that the vertices of ¥ belong to A4 in order to apply the semisum operation
repeatedly to generate more points of A up to errors estimated by §(A4). As we shall see, a
more refined argument involving several steps will be needed. The first five steps, proving
(2.15), are valid in all dimensions, but the sixth step is restricted to dimensions 2 and 3.

Step 1: Setting up an iteration. — Let € > 0 be a small dimensional constant to be fixed later,
sety = % + €, and define

(2.13) Ki:=Kn{y/ <x,<2y/} ¥j=>o0.

The natural idea would be to consider consecutive layers 27J < x, <277%1 but we need to
introduce the ratio y > 1/2 to slow down the rate of decrease of x, for reasons that we will
explain after concluding Step 1. Note that, with this definition, consecutive sets K; are not
disjoint, but rather overlap in a fraction of order € of their total volume.
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Let the vertices of X be denoted by {X }}_,. We define the following sets iteratively:

n
(2.14) Eo := Ky, Ejy1:= Kj-i—lm(U %()’ek—i-Ej)UEjU(l—e)K).
k=1
Here (1—¢) K denotes the dilation of K with respect to the origin, namely the n-simplex with
one vertex at (O, ...,0, 12—_;) and base (1 — €)X. We note that E; = K; when n = 2, while
the shape of E; is much more involved for n > 3 (see Figure 1).

FIGURE 1. On the left, we consider n = 2. The overlapping shaded regions are
(1 — ¢)K, Ko, %(fcl + Kp), and %(fcz + Kp). Note that their union covers
K1 = KN{y <x; <2y};thus E; = K. On the right, we consider the horizontal
slice K N {x3 = y} for n = 3. The overlapping shaded regions are the intersection
of this slice with (1 — €)K, 1 (%1 + Ko). % (X2 + Ko), and 3 (%3 + Ko). Note that
this set does not cover K N {x3 = y}, hence E1 C K. Forn > 3 the sets E; have
a fractal structure, described in detail in the proof of Lemma 2.4 for n = 3.

Set E := U E;. We claim that there exists a dimensional constant Cy > 1 such that
Jj=0
(2.15) |[E\ A| < Cob(A).

The proof of this claim will be carried out in Steps 2—-5 below.

Before proceeding with the second step, we explain some geometric features of the core of
the proof'in Step 4. If most of K belongs to A4, then the fact that X belongs to 4 implies that
most of % (Xx+Kj),k =1, ..., n,belongs to A. This relatively easy step is carried out in 4(e)
below. On the other hand, these n regions do not cover K;; \ K;. As the picture on the left
in Figure 1 shows, even in dimension n = 2, the two regions miss a narrow inverted trapezoid
in the next layer, K; 1. When n = 3, the right-hand picture in Figure 1 of K N {x,, = y} (the
lowest horizontal slice of K;) shows that the 3 regions cover the three equilateral triangles
at the corners of the large triangle. What is missing is a hexagon inside, with very short sides
coinciding with the sides of the large triangle. For higher slices of Ky, above the level x3 = y,
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the missing portion is an even larger hexagon, just as the missing portion for n = 2 gets larger
as x, increases.

To fill more of K;4; with elements of A, we consider horizontal slices that are at a lower
level than K by a factor 27™ =~ €2. In Steps 4(a) and 4(b), under the assumptions that (at
the appropriate inductive stage) the volume fraction of A is suitably large (see (2.22)) and the
volume fraction of [(A+ A4)/2]\ A4 is suitably small (see (2.33)), we show that thereis a “large”
horizontal slice A; = A N {x, = ¢} at a height 1 ~ €2y/. In Steps 4(c) and 4(d), we then use
the semisum between K; and the slice A4, to show that most of (K; 41\ K;)N(1—¢€)K belongs
to A. This is why we are able to include K; N (1 —€)K in the definition of E;, which is crucial
to conclude the proof in dimension 3. The fact that ¢ can be chosen small enough relative
to y/ is what makes it possible to obtain the inequality y/*! > (y/ 41)/2 used in Steps 4(c)
and 4(d) (see (2.39)). Such an inequality is essential in our proof, and this is what requires us

to slow the rate of descent towards the base ¥ from 2=/ to y/ for some y = % +€> %
As a consequence of y > 1/2, there is an overlap between K; and K ;. This overlapping
gives rise to an extra term o; (see (2.17)) in the bound (2.19), which will then be controlled

in the second part of Step 5.

Step 2: Setting the notation. — Define the numbers

(2.16) o= |Ej\ Al 8= ’([%(A + ]\ 4) N K;|.

and

(2.17) 0j = |[Kj N Kjs1 N (1—e)K]\ A].

Note that

(2.18) |Kj| = |Ej| = iy <xn <2y73n(1—K|=(1-e"K;].

We claim that there exist dimensional constants M, N > 1, with N integer, such that

N
8
(2.19) Vi1 < g+ oj+ M > 8+ Vj=0.
i=0

The proof of (2.19) will be split over Step 3 and Steps 4(a)-4(e) below.

Step 3: The case v; ~ |Ej|. — Consider first the case
2
(2.20) v = SIE|
Note that, for p < 1, the sets K; are almost vertical cylinders of height y/, and more
precisely (recalling that "~ (2) = " (K N{x, =0}) = 1)
(2.21) v/ > |K;| = (1—Cp)y’,

where C > 0 is a dimensional constant. This implies that |K; 4| = (1 + 0(p))y|KJ-|, so it
follows by (2.18) that

2(1—e)"! 2(1 —e)*!

2 2
> Z|Ej| > (1—e)" 'Kj| = ————|Kj41] > 41
w_3| 1|_3( )" |K;| 3y(1+0(p))|1+1|_3y( )v]+1

3y(1+ 0(p)
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which proves (2.19) because W (1 + O(p)) < g provided € and p are sufficiently small
(recall that y = % + €).

Step 4: The case v not too large. — We now consider the case
2
2.22) v < 51

Step 4(a): Finding some nontrivial fraction of A near the vertices. — Using (2.18), it follows
that

1 1 1
(2.23) [ANK;| > |ANEj| = |Ej|—v; > 5|Ej| > 5(1 —o" K| > Z|K,~|.
Now, forany k = 1,...,n, consider the sets (see Figure 2)
(2.24) A= -2% +27%AUnK) Ve,

and note that, because of (2.23),

2fyj

/ _—
! \

T

FIGURE 2. The larger grey area represents A N K;. Small in the corner is the
set Ajl. ¢ for some £ >> 1.

(2.25) A% | =274 N K| = 27" K.

Our goal is to show that, provided the numbers §;1; are small enough for sufficiently many
indices i, then Ak N A has almost the same measure as Ak To prove this, for convenience
we define the aux111ary numbers

= |+ ol aynat,|  vezo
Also, we iteratively define

k . k 1 B¥
Bfy:=ANK;. B, =1(x+ N B).
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Since X € A, one can easily see by induction on £ that the following inclusion holds:

JGe+UANBY)) Cl3(A+A]n4k, . VE=0.

Therefore
1
k . k k
AN Bl = |5+ 40 BE) |~ 8k, = SANBEI =8, vezo,
Since |4 N B]’.f0| =|ANK;| = 2”4|Af,e| and A N BJ’.fe C A;‘,e, we deduce that
¢ ¢

(226) [ANAS, | = |ANBF | =2 ANK| =) 8F, = Ak, =D 8, Vi1l

r=1

We now start to fix some parameters. Choose an integer m such that
(2.27) €2 <27 < 22,

and then choose N large enough so that

(2.28) 2= < )N < p=m,

With these definitions, it follows that U 1Ak C Ul o Kj+i. Therefore, since the sets {4k 7 H<r<m
are disjoint, it follows that

34ty < 3

r=1

Hence, by (2.26) applied with £ = m, we get

N
(2.29) AN Al | =145, 1= 84

We are now ready to prove (2.19). Consider first the case in which
N
k
> 8w = €l Af .
i=1

Then, since v;4+; < |Kj4+1| =< |Kj| for p small enough (see (2.21)), recalling (2.25) and
that y=V < 27" (see (2.28)), we deduce that

N
€ €
D 8wz Z)’”N|Kj| > ZVnNVj+17
i=1
50 (2.19) follows immediately with M = 4y N1,
Next, we must consider the case in which Z,N=1 8i+i < e|A§" |- In that case, (2.29) gives
(2.30) [Andk, 1>a-eldk,|  Vik=1..n

In other words, we proved that A covers almost all the sets {Af,m }i—1> Which are small
rescaled copies of A N K that live in a €2 neighborhood of the n vertices X (recall (2.27)).
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Note that whereas the sets A}‘m for different k are translates of each other, the sets
AN Aﬁ? » are not. To enforce this additional property, we first translate them to the same
point, intersect them, and then move them back. More precisely, recalling (2.24), we set

n

Aim = () (AN AE,) = =27™5), 4K, o= Apm + (1 =272

k=1
Now, thanks to (2.30),
(2.31) Ak, cAn4k,. A% | = (1 —ne)Ak, | Vk=1...n,
and ffﬁ ., and /ff/m are the same set for any k, k’ € {1,...,n}, up to a translation orthogonal

to the x, axis. Also, it follows by (2.31), (2.25), and (2.21), that

o) A5l < 1AS | = 27" AN KG| < 27" K| < 27"y
|45 1 = (1 —ne)| A%, | = (1 —ne)2 ™™ 2|K;| = 27" 3y,

provided € and p are sufficiently small.

Step 4(b): Finding an almost full slice in A at {x, = t} for some t ~ 27™y/ using Fubini and
induction.— We look at the slab

Sim:=Kn 27"yl < x, <27mFyIy
and define §; , := |([5(A + A)] \ 4) N S | . Note that AX C §; , foranyk =1,...,n.

Recall that d,,—; is the dimensional constant corresponding to Theorem 1.4 in dimen-
sion n — 1. It will suffice to prove the existence of a suitable slice inside S}, assuming

(2.33) 8jm < " 8d,_1| 4K, |
(note that M;?’ml is independent of k). Indeed, since S;x C K;4yn—1 U K; 4y it holds
(2.34) 8jm < 8j+N-1+84nN.

Hence, if (2.33) fails then (recall (2.32) and (2.28))

2n+8 Tk 2n+8 2 62"Jrgdn—l)/"N
8j+N—1+8j4N > € nt dn_1|Aj,m| > 2t dp—1(1—ne)27 """ %|K;| > Tvﬂrl,

which proves (2.19) with M = 8y "N e=2n=84 "1 |
Now we can proceed under the additional assumption (2.33). Define
Ap = AN {xy =1} D (Ui_ (A5,)) N i{x, =1} =t Ay,

and consider §(4;) = g/’“(%(At + A;) \ A;). Since /f;",m C A, it follows by (2.33) and
(2.32) that
271n+1yj

(2.35) / o 8(A)dt < 8jm < " Bd, | 4K, | < "8G, 27yl
2_”11/1
Also, recalling (2.32), it follows that
1 2—m+lyj Lo n . (1) R
. SH" (A dt > . |A% | > p2~ 0 m=3,
27myJ /z—myf ’ 2mmyt L
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Hence, since #" ' (A;) < "' (A;) < 1, there exists a set J C [27™y/, 27 +1yJ] such
that ®
FNT) = 2~ FDm=4y T with TN(Ay) = n2m DM e .
Combining this estimate with (2.35), we deduce that
. 2n+8 —nm.,,j
: / 5(4,) < im € i 27Ty
5 (J) 7 nz—(n+2)m—4y] nz—(n+2)m—4yj
2n+8  o(n+3)m+8

< S"(Ay)

n2
en+8g,  2(1+3)m+8

F N4 Yield.

02
Recalling (2.27), this proves that

1 on+6 g+l B
(9151(.1) /JS(At) = —ne""‘zyf 8jm = 2 e“dn_1 K" (Ay) Vield.

In particular, choosing ¢ sufficiently small, by the Mean Value Theorem we can find
t € [27™my/,217myJ] such that

2n+6 A A
840 = o g bim < P daa HTN A, TN > 0

Hence, since S#"! (/f () < K7/ (A;), we can apply Theorem 1.4 to A; and we deduce that
n+6

< Cp_1€3%d,_,.

(2.36) o%n_l(CO(At) \ 4;) < Cpo18(4y) < Cn—lmgj,m =

Also, because (%"_l(zéf,) >0, it follows that co(A;) contains at least one point
in A% N{x, =1} for any k =1,...,n. Recalling that A% C (1-27"")% +27"K;
and that 27 < 2¢? (see (2.27)), it follows that co(A;) contains n points {fcf}zzl such
that |£¥ — £ | < Cé?, thus

(2.37) co(4;) D (1 —e)K) N{x, =1}
In the next steps we use the slice 4; and a semisum to control a large fraction of v; 4.

Because the argument in dimension # = 2 is much easier than in higher dimensions, for
convenience of the reader we first treat this case.

() This estimate follows from a general simple fact: if f : I C R — [0, 1] satisfies W Jr f@dt=n=>o0,
then there exists J C I such that

n

F Nz 2IA)  ad SOz T Viel

Indeed, if this was false, we would have that f < /2 onaset I’ C I of measure larger than (1—7/2) G,
therefore (recall that 0 < f < 1)

/ f@)de s/ f@)di +[ f@yde < @' IHL + g a1
1 I’ NI’ 2
=(1-2)I#' W+ I D <m0,

a contradiction.
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Step 4(c): Use the slice from Step 4(b) and a semisum to control a large fraction of vjyi:
the case n = 2. — Thanks to (2.36) and (2.37), there exists a point z = (z1,7) € A C R?
with |z;| < Ce¥*and t € [27™y/,27m+1yJ]. In particular, recalling that  ~ €2y’ and
that y = % + €, we have, for ¢ sufficiently small,

(3K) N (Kjr1 \ Kj) € (3K) N {% <xp = M;—H} C3(z+K) CKjs1UKjp2

where }TK denotes the dilation of K by a factor % with respect to the origin. Finally, since
K; = E; for n = 2, the definition of v; and §; (see (2.16)) yields

238)  |[(3K) N (Kj+1 \ D]\ A] = |5(z + (Kj \ D)[ + 841 + 842
= %V.i +8j+1 + 842

Step 4(d). Use the slice from Step 4(b) and a semisum to control a large fraction of vjy1: the
casen > 3. — Givens > 0, define K ¢ := ((1 —e)K) N{x, = s}and A5 :== AN K. Then
YAse + Are) \ Ass, € [+ D\ A]0 (1= K) N {xy = 5}

Using the inclusion above for s € [y/,2y/], and noticing that for € small

(2.39) Kj_;,_l \ Kj cKnNn {% <Xxp =< w} - Kj+1 U Kj+2,
we get
[ = 9K N (Kj \ K]\ A] = (1= 9K 0 {155 < x, < 2554\ 4]
< ‘(1 —OKnN {V’jt <, < zy';”} \ 14 +A)‘

+ |([Sa+ D]\ 4) 0 {15 < x, < 25
2yj+t
2 _
sfy_,-+, TN (Ko \ 34 + ) d + 811 + 642

2

A
=3 5 K7/ (K%,e\%(A—i-A))ds—i-b’jH+8j+2
12
<= H' N (Kspr \ YA + A1) ds + 8551 + 842
=3 ) 3P e \ 2\ sse te Jj+ J+2

To estimate the last integral, we define the “vertical semisum with slope p” of two sets Fy and
F, contained respectively in two levels {x, = s} and {x,, =t} with0 < 5,7 < 1 by

T Fs4vp Fr)i={3Cc+w.s+1):(z.8) € Fs, (w.1) € Fr, (1=2ps)w = (1 —2p1)z}.

Note that if p = 0 this is just a trivial one-dimensional semisum in the vertical variable (since
in that case z = w), namely

%(FS +v,0 Ft) 1= {%(z,s +1):(z,8) € Fs, (z,1) € F,},

and it is clear that
(2.40)

G (3 (Fs o0 Fo) = min{ ' (F), 7 (F} = 5 (7 (F) + 7N (F).

N =
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In our case, since K is not quite a vertical cylinder but instead has a small angle 2p, we are
asking that the points (z,s) and (w,?) be collinear with the vertex (0, 35 5-) of K, and the
analogue of (2.40) for sets Fs, F; C K becomes

(»)
) =

(2.41) L (Fy 40, Fr)) < I E) + G ED).

Hence, since Ks4: , = %(K s.c +v,0 Ki,¢), one can easily check that
2 ]

1+ O(p)

o%n_l(K%,é \ 5(Ase +o.p Are)) < 2

Also, we observe that

(" (Koe\ As) + S (K \ 410))

%(As,e + Are) D %(As,s +u,p Are)
Combining together all these bounds, and recalling (2.36), (2.37), and (2.34), we get

2yj
[a-aKn &\ K]\ Al = 2 [0 G (K ag0) ds
y./

1+ 0(p) [*
+ 2 yi
liQ@MI>)nmhM

1+ 0 on+6
+T<m

1+0(p)}(

' N(Kre \ Are)) ds + 8541 + 8j42

; —IW(S/,m ds +8j+1 + 6842

y

(1-e)K) N K;]\ 4]
n+6

+ Ch— 1 n+2(5/+N 1+84n8) +8j+1 + 642

Recalling the definitions of E;, v;, and o; (see (2.14), (2.16), and (2.17)), this proves that
(2.42)

[ -0k N K]\ 4] < L2202, il

> Vi +0j + Cu n+2(8’+N 1+ 8j48) + 841+ 8542

Step 4(e): Use a semisum to control the remaining fraction of vjy1. — Since X € A, we see

that
n n
(U Lo+ E,-)) \ LA+ A) (U L + (B \A))).
k=1 k=1
Therefore, since Uzzlé(fck + E;j) C Kj41, recalling the definition of v; and §; (see (2.16))
we get
n
. n n
(U 3 (G + Ej)) \A’ = SnlEi N AL+ 81 = v+ b
k=1

(2.43)

Note that for n = 2 we have

Ej =K, and (U 6+ K ) VLK) N K] S K
k=1
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while n27" < 3/8 for n > 3. Hence, combining (2.43) with (2.38) and (2.42), for any n > 2
we obtain

N
1+0(p) 3
Vi1 < (T tg)vito +M;5j+i
for some dimensional constant M, concluding the proof of (2.19).

Step 5: Proof of (2.15). — Since vy = 0 (because Ky C A by assumption), by summing (2.19)
with respect to j we obtain

T, < g(zvj) Y MY Y

J=0 Jj=0 j=0 j=1i=0
Moreover, the last term can be bounded by
MN ZSJ = MNZSZj + MNZSZj-‘rl'
j=0 j=0 Jjz0
Noticing that the sets {K5;};>0 and the sets {K5;41};>0 are disjoint, it follows that
252;' < 48(A), 282j+1 < 8(A).
Jj=0 Jj=0
Hence, combining these estimates together, we proved that
1
5(2 vj) <Y 0j +2MN §(A).
Jj=0 Jj=0

Since ) ;5o v; > |E\ A[, we get

1
SlENAl < > oj +2MN §(A).
Jj=0

Note that this would prove (2.15) if we did not have the additional term } ;. 0;. The idea
to get rid of this additional term is the following: since the volume of K; N K;4; is only a
fraction € of the volume of K; and K, if A were uniformly distributed inside the sets K,
then we would have

0j < Ce(v; +vj41),

from which we would conclude easily. Although A4 need not be uniformly distributed, we can
prove analogous inequalities starting our iteration at many levels, and then add them up so
that the average overlap of A with K; N K; 11 is sufficiently uniform.

Thus, to handle the terms o}, we take v € [y, 1] and define the sets
K7 = Kn{ry/ <x, <21y},
Ef := K¢,
n
Ef,, = (U 1% + E;)) U((1—e)K N{=2ty/ <x, < —1¢7}),
. E® :=Uj»oE7,
and the numbers
vi = |E;\ A,
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5 = (34 + DN\ A) N KS
of =|[A—e)KNKFNKF ]\ 4]

Now, if we repeat the very same proof as above with these new sets, we obtain

3

1
5|Er \A| <> o] +2MN §(A)
Jj=0
(note that we still have K5 C A, therefore vi = 0). Noticing that £ = E ' c E7 forall
T € (y, 1) (in other words, the sets E are monotonically decreasing in ), this proves that
1
(2.44) SIENAl = > o +2MN §(A).
Jj=0
We now observe that, since y = % + e,
KinkKi ,=Kn {ry/ T < x, <2ty/} = KN {ty/ <x, < (14 2e)1y/},
hence the sets
j+1

{Kj_fmmK.”" 1 =0, rm=1—2me,m=0~"’LLJ}

are disjoint. This implies that

&)
2.2 o SIE\AL
m=0j>0
that combined with (2.44) gives
1]
LZJIENAI<9) > o™ + 18- MN|L]5(A) <9|E\ A + 18- MN| 2| 8(A).
m=0j>0

Choosing e sufficiently small that | ;= | > 10 proves (2.15).

Step 6. Getting control of A on all of K. — Note that (2.15) provides control on the measure
of A inside E. In particular, since £, = K; when n = 2, this already proves Lemma 2.1
(and therefore Theorem 1.4) in the case n = 2. Thus for the remainder of the proof we may
assume n = 3. In this case, the goal is to enlarge the set £ on which we control the measure
of A toall of K.

For0 <t < 1/2p, set
() =KN{x3=t}.

By hypothesis, X(t) N A = X(z) for t > 1/2. Our approach to estimating X(z) \ A for
0 <t < 1/2 will be to intersect X (¢) \ E with segments parallel to sides of the triangle X (¢)
near the boundary, and show that these missing parts are sufficiently small and atomized
that we can apply the following one-dimensional lemma.

LEmMMA 2.3. — Let J C R be an interval. Suppose that A C J and E C J, and

1
(2.45) XE/2 * XEj2(X) = Edist(x, aJ) forallx € J.
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Then
|J\ Al < |3(A+ A)\ A| +20|E \ A

Proof. — The proof of (2.3) applies with K replaced by £ and shows that
|XE/2 * XE/2(X) = Xa/2 * Xa/2(X)] = |E\ A].
Therefore, if x € J and dist(x,dJ) > 10|E \ A|, we can use (2.45) to obtain
Xas2 % Xa/2(x) = xgj2 % xE2(X) —|[ENA| > |E\ A| — |[E\ 4] =0,
thus x € %(A + A) (see (2.6)). Since
[{x € J : dist(x,0J) < 10|E \ A]}| <20|E \ 4],
it follows that |J \ %(A + A)| <20|E \ Al, and consequently
[ITNAl < [3(A+AD\NAl+ [T\ F(A+ A < [5(A+ A\ Al +20]E\ 4],

as desired. O

To describe the complement of E in X(¢), we introduce several more notations. Recall
that the vertices of ¥ = X(0) are X;, i = 1, 2, 3, so that the vertices of X(¢) are given
by x;(t) = (1 —2pt)x; + (0,0, lp). Denote the sides of X (¢) by X; (¢), with the convention
that the endpoints of X (¢) are X,(¢) and X3(¢), and likewise for permutations of the indices.
Since X has sidelength

so = 23714,

the length of the sides of X;(¢) is given by
s@) = N (Ei),  s@) = (1-2p0)s0.

Lett € [0,1/2], and let m > 1 be such that 27 < t < 27™*+1 We will define, iteratively,
the set of open subintervals I, (r) of 1(z), with j =1, ... mandk =1, ..., 277!, whose
union is the complement of £ in X;(¢). To begin, set

I1,1(0) == Z1(0) \ (3(%2 + 120) U 3(R3 + Z1(21))) .

Then 1,1 (¢) is the open interval centered at the midpoint of X, (¢) of length s(¢) — 5(2¢) =2pt 5.
The set X (¢) \ I1,1(¢) consists of two closed segments. Define /5 ;(¢) and I »(¢) to be the
open intervals with the same length as /; ; (¢) centered at the midpoints of these two closed
intervals. Continue iteratively, given 2¢ — 1 open subintervals of X1 (7)

L), j=1,....¢ k=1 ..727"

of equal length 2ptso and equal spacing. The intervals {741 (¢)}; <x<p¢ are of length 2pts¢
and centered at the midpoints of the closed intervals complementary to the intervals we have
already defined.

Set
Vi={i2 %+ —i—1)27 %5 i =0, ..., 2" —1}.
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Then, by construction,

m 2771
(2.46) Enzi)=J o+272:@")) =10\ J U Lix®.
veVm j=1 k=1

There is, of course, a similar description of £ N X5(¢) and E N 23(¢).

To describe the rest of £ N X(¢), we introduce more notations. For any 1-dimensional
segment / in R3, given h > 0 and o > 1, define a “flared neighborhood" of I by

Fnall) = {x € R? : dist(x, I*) < h, dist(x, 1) < adist(x, [*)}

where I* denotes the line containing /. Note that ¥, ,(I) is symmetric with respect to 7*,
and consists of the union of two trapezoids with I as shorter base.

For2™ <t < 27"+l get

2.1—1
U e?soz—me,a(a;k(r)))mza),

1

m

SHOES ( U
j=1 k=

and define §7 (¢) as the image of $7(¢) under any rigid motion of R*® that maps % (¢)

to X;(¢), see Figures 3 and 4.

FIGURE3. $T(1)U S5() U §5(1) C T(¢) fora = w/3andt € [1/2,1).

With these notations we can now estimate the complement of E.
LemMA 2.4. — For p and € sufficiently small and for allt,0 <t < 1/2,

3
SO\E c [ Si0).

i=1
Before proving this lemma we will use it to finish the proof of Lemma 2.1 and hence
Theorem 1.4.

Note that & f (t) N X(¢) is a union of “upward” trapezoids whose shorter bases are the
2™ — 1 intervals I; 5 (1) of length 2ptso (27 <t <27™*1 1 < j <m, 1 <k <2/71). The
complements in X (¢) of these bases are 2 intervals of equal length £(¢) given by

) := @S (2M1) = 27 (1 —2p2™1)s0 > (1 — 4p)27 s .
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Fori =1, 2, 3, let T;(¢) be the isosceles triangle in X (¢) with base X; () whose equal sides
are of slope 4¢ relative to the base (and hence of height less than 2¢sy). We claim that

SXONS(W) CTi), i=123,

see Figure 4.

F1GURE 4. Some illustrative part of the fractal set appearing in the proof of
Lemma 2.4. Note that the bases of the trapezoids have all the same length, given
by 2ptso. By widening the trapezoids from o = 2/+/3 to @ = 2, we ensure that even
when later on in the iteration we may add some additional trapezoids to the lateral
sides of a previous one, these will still be included in the wider trapezoid. The dotted
lines represent the triangles 7;(¢),i = 1,2, 3.

To see this, suppose, without loss of generality, that i = 1 and call the direction of X (¢)
horizontal. The left side of the smallest isosceles triangle with base X;(¢) that encloses
o % (r) N X(¢) starts at the left endpoint of X;(z) and passes through the upper left corner
of the short trapezoid in & %(t) N X(¢) nearest that corner. That trapezoid has height
hm = 2™ +1esq, and horizontal distance from the endpoint of =1 (z) given by £(t) — v/3/,m.
Thus the slope is

hom - 27mtleg _ 2¢ -
Ut) —hm — (1 —4p)27msg — /32 mFlesy 1 —4p—2/3€
for p and € less than 1/100.

4e,

Next, for 0 < h < esg, we consider segments parallel to the side X (¢), excluding very
short segments at the ends corresponding to the thin triangles 7>(¢) and 75(¢), and then
remove, in addition, & f (t):

JHE) = {x € T(r) 1 dist(x, 21(1)) = h} \ (To(t) U T3(1));  Ef(t) = J] (1) \ ST00).

(See Figure 5.) We define Elh (t) C Jl.h (t) analogously for i = 2, 3. Lemma 2.4 implies
that Elh (t) C E, and hence

1 €50
(2.47) /0/0 SNEF)\ Aydhdt < |E\ A, i=1,2,3.
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FIGURE 5. The bold line represents the set E{‘ (z). This is obtained by taking
an horizontal segment at height & connecting the triangles 7> (¢) and 7T3(¢), and
removing the part covered by & % (1)

To confirm that the one-dimensional Lemma 2.3 applies to E{‘(l) as a subset of the
interval J lh (1), observe that the set J lh N % (t) that we excluded to form E {’ (t) consists
of equally spaced intervals of equal length
S (Lig) +23h = 2ptsg +23/3h, 52 Tle>h, 1<k <2/7
The value of j ranges from 1 to j* with the maximum value determined by the constraints
j* <mand 2J" < 2s0€/ h. The total number of intervals is
280€

T424 42777 =27 -1 < 27 < min(zm’T)'

Since 2"t < 1 (by the definition of m), the total length of these complementary intervals
is less than

2
(2ptso + 2+/3 h) min (2"’, %) < 2" prso + 44/3eso < 10(p + €)so.

Note that th (z) has length (1 — O(e + p))so, and that th Hn cﬁ(l) isat most an O(p + €)
fraction of J lh (). It follows that, for all x € J lh (1),

XERr@)/2 * XElh(t)/z(x) > (1 = O(e + p))dist(x, a-]lh(t))7

in which we abuse notation by identifying J lh (t) with its isometric image in a real line and
likewise the subset £ {‘ (t). (Note that although the 2™ — 2 internal intervals of E {’(t) have
equal length, the two on the ends are slightly longer. This only improves the convolution
inequality at the very ends. We excluded the triangles 75 (¢) and T3(¢) from J lh (z) in order to
arrange this favorable situation at the ends: we do not want the interval on which we apply
Lemma 2.3 to intersect é”% (t) and §§ (®).)

Having confirmed the hypothesis of Lemma 2.3, and likewise for the analogous sets
Elh (1) C Jih (1), we apply the lemma to conclude that

SO\ A < FH U N LA+ )\ A) +20 F(EHNA), =123
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Since

3 €so
K(t) C E(t)U (U U J,.h(z)),

i=1h=0

these three inequalities, along with (2.47) and Fubini’s theorem, imply that

3 1 pesg
IK\AISIE\A|+Z/O/O SN IE@)\ A)dh dt

i=1

<|E\A|+3|3(A+ A)\ A| 4+ 60|E \ A| < 64Co5(A)

with the dimensional constant Cy > 1 of (2.15). This ends the proof of Lemma 2.1 and
Theorem 1.4, except for the proof of Lemma 2.4 that we now provide.

Proof of Lemma 2.4. — The complementary set X(¢) \ E is a fractal built iteratively out
of (occasionally truncated) trapezoids arising as the complements of sets of scaled equilat-
eral triangles. Figure 3 shows the fractal in its simplest, starting layer 1/2 < ¢t < 1. We will
organize the description of a superset of the fractal. Figure 4 shows the widened trapezoids
of the superset that we will use to enclose successive generations of smaller and smaller trape-
zoids in the fractal. Within T (¢), the triangle with base X (¢) defined above (see Figure 4),
we will refer to the “first generation” of the complementary set as the set involving semisums
with the endpoints X, and x3 and trapezoids that touch X (¢) only. This first generation is a
subset of §9(¢) with & = &g = 2/+/3, corresponding to the angle /3. The second genera-
tion of points in 77 (¢) \ E arise from first generation points in 75(2¢) and 73(2¢). Consider,
for example, the semisum of X3 with points of the first generation in 73(2¢). For any o < 2,

ST2H N T2 C $521) N Q1) C T3(21).
Therefore,
IE+2ennS5e))\U-oK C LG+ T320)\ (- oK

is contained in a triangle of base size O(¢) and height O(e?). More precisely, the base is a
non-parallel side of the trapezoid X(¢) N ¢f 5ye,q,(11.1(?)), and the other vertex is on the
line parallel to 71,1 (¢) at distance soe. Note the very important shrinkage that comes from
subtracting (1—€) K. The set we are translating is contained in a triangle of size O(1) by O(¢)
but the part of the translation that is outside of (1—¢) K has diameter O(¢) and width O(€?).
The second generation exceptional set is covered by opening the neighborhood of 7 ;(¢) by
changing the flare parameter from g to @1 = «p+10€. The same widening eventually occurs,
appropriately scaled, at all of the intervals /;  (¢) at least for sufficiently small #, but no other
additions occur if we only use one step with a convex combination involving a vertex and
an opposite side. In all, at the second generation, in which at most one such step is used, the
exceptional set is contained in the set

3
U SiH), o =ag+ 10e.

i=1
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Repeating this argument, we find that the exceptional set generated using at most k steps
involving a vertex and an opposite side is contained in

3
U $7 (). ax = a0+ (10€) + (10€)* + -+ + (10€)* .
i=1
Evidently, for sufficiently small €, o < 2 for all k. This covers the entire complement of E
in X (¢) and concludes the proof of Lemma 2.4. O

REMARK 2.5. — In closing, we note that in our inductive argument for n = 3, we proved that
the complement of E contains only relatively short one-dimensional segments at all appropriate
scales near the boundary of K. When n = 4 the set E has nearly full SH* measure on many
suitably scaled subsets, but its complement has too many segments of large diameter near oK.
Therefore, further arguments are required to enlarge E enough to finish the case n = 4 and
higher.
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