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LARGE SCALE CONFORMAL MAPS

 P PANSU

A. – Roughly speaking, let us say that a map between metric spaces is large-scale confor-
mal if it maps packings by large balls to large quasi-balls with limited overlaps. This quasi-isometry
invariant notion makes sense for finitely generated groups. Inspired by work by Benjamini and
Schramm, we show that under such maps, some kind of dimension increases: exponent of polynomial
volume growth for nilpotent groups, conformal dimension of the ideal boundary for hyperbolic groups.
A purely metric space notion of `p-cohomology plays a key role.

R. – Grosso modo, une application entre espaces métriques est conforme à grande échelle si
elle envoie tout empilement de grandes boules sur une collection de grandes quasi-boules qui ne se che-
vauchent pas trop. Cette notion est un invariant de quasi-isométrie, elle s’étend aux groupes de type fini.
En s’inspirant de travaux de Benjamini et Schramm, on montre qu’en présence d’une telle application,
une sorte de dimension doit augmenter : il s’agit de l’exposant de croissance polynômiale du volume
pour les groupes nilpotents, de la dimension conforme du bord pour les groupes hyperboliques. Une
nouvelle définition, purement métrique, de la cohomologie `p joue un rôle important.

1. Introduction

1.1. Microscopic conformality

Examples of conformal mappings arose pretty early in history: the stereographic projec-
tion, which is used in astrolabes, was known to ancient Greece. The metric distorsion of a
conformal mapping can be pretty large. For instance, the Mercator planisphere (1569) is a
conformal mapping of the surface of a sphere with opposite poles removed onto an infinite
cylinder. Its metric distorsion (Lipschitz constant) blows up near the poles, as everybody
knows. Nevertheless, in many circumstances, it is possible to estimate metric distorsion, and
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ANR-10-BLAN 116-01 GGAA and ANR-15-CE40-0018 SRGI. P.P. gratefully acknowledges the hospitality of
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832 P. PANSU

this lead in the last century to metric space analogues of conformal mappings, known as
quasi-symmetric or quasi-Möbius maps. Grosso modo, these are homeomorphisms which
map balls to quasi-balls. Quasi means that the image f .B/ is jammed between two concen-
tric balls, B � f .B/ � `B, with a uniform `, independent of location or radius of B.

1.2. Mesoscopic conformality

Some evidence that conformality may manifest itself in a discontinuous space shows up
with Koebe’s 1931 circle packing theorem. A circle packing of the 2-sphere is a collection of
interior-disjoint disks. The incidence graph of the packing has one vertex for each circle and
an edge between vertices whenever corresponding circles touch. Koebe’s theorem states that
every triangulation of the 2-sphere is the incidence graph of a disk packing, unique up to
Möbius transformations. Thurston conjectured that triangulating a planar domain�with a
portion of the incidence graph of the standard equilateral disk packing, and applying Koebe’s
theorem to it, one would get a numerical approximation to Riemann’s conformal mapping
of� to the round disk. This was proven by Rodin and Sullivan, [33], in 1987. This leads us to
interpret Koebe’s circle packing theorem as a mesoscopic analogue of Riemann’s conformal
mapping theorem.

1.3. A new class of maps

In this paper, we propose to go one step further and define a class of large-scale conformal
maps. Roughly speaking, large scale means that our definitions are unaffected by local
changes in metric or topology. Technically, it means that pre- or post-composition of large-
scale conformal maps with quasi-isometries are again large-scale conformal. This allows to
transfer some techniques and results of conformal geometry to discrete spaces like finitely
generated groups, for instance.

1.4. Examples

In first approximation, a map between metric spaces is large-scale conformal if it maps
every packing by sufficiently large balls to a collection of large quasi-balls which can be split
into the union of boundedly many packings. We postpone till next section the rather technical
formal definition. Here are a few sources of examples.

— Quasi-isometric embeddings are large-scale conformal.

— Snowflaking (i.e., replacing a metric by a power of it) is large-scale conformal.

— Power maps z 7! zjzjK�1 are large-scale conformal for K � 1. They are not quasi-
isometric, nor even coarse embeddings.

— Compositions of large-scale conformal maps are large-scale conformal.

For instance, every nilpotent Lie or finitely generated group can be large-scale conformally
embedded in a Euclidean space of sufficiently high dimension, [1]. Every hyperbolic group
can be large-scale conformally embedded in a hyperbolic space of sufficiently high dimen-
sion, [4].
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LARGE SCALE CONFORMAL MAPS 833

1.5. Results

Our first main result is that a kind of dimension increases under large-scale conformal
maps. The relevant notion depends on classes of groups.

T 1. – If G is a finitely generated or Lie nilpotent group, set d1.G/ D d2.G/ D

the exponent of volume growth of G. If G is a finitely generated or Lie hyperbolic group, let
d1.G/ WD CohDim.G/ be the infimal p such that the `p-cohomology ofG does not vanish. Let
d2.G/ WD ConfDim.@G/ be the Ahlfors-regular conformal dimension of the ideal boundary
of G.

Let G and G0 be nilpotent or hyperbolic groups. If there exists a large-scale conformal
map G ! G0, then d1.G/ � d2.G0/.

Theorem 1 is a large scale version of a result of Benjamini and Schramm, [3], concerning
packings in Rd . The proof follows the same general lines but differs in details. The result is
not quite sharp in the hyperbolic group case, since it may happen that d1.G/ < d2.G/, [8].
However equality d1.G/ D d2.G/ holds for Lie groups, their lattices and also for a few other
finitely generated examples.

Our second result is akin to the fact that maps between geodesic metric spaces which are
uniform/coarse embeddings in both directions must be quasi-isometries.

T 2. – LetX andX 0 be bounded geometry manifolds or polyhedra. Assume thatX
andX 0 have isoperimetric dimension> 1. Every homeomorphism f W X ! X 0 such that f and
f �1 are large-scale conformal is a quasi-isometry.

Isoperimetric dimension is defined in Subsection 8.3. Examples of manifolds or polyhedra
with isoperimetric dimension> 1 include universal coverings of compact manifolds or finite
polyhedra whose fundamental group is not virtually cyclic.

This is a large scale version of the fact that every quasiconformal diffeomorphism of
hyperbolic space is a quasi-isometry. This classical result, [20], generalizes to Riemannian
n-manifolds whose isoperimetric dimension is > n, [29]. The new feature of the large scale
version is that isoperimetric dimension > 1 suffices.

1.6. Proof of Theorem 1

Our main tool is a metric space avatar of energy of functions, and, more generally,
norms on cocycles giving rise to Lp-cohomology. Whereas, on Riemannian n-manifolds,
only n-energy

R
jrujn is conformally invariant, all p-energies turn out to be large-scale

conformal invariants. Again, we postpone the rather technical definitions to Section 5 and
merely give a rough sketch of the arguments.

Say a locally compact metric space is p-parabolic if for all (or some) point o, there
exist compactly supported functions taking value 1 at o, of arbitrarily small p-energy, [38].
For instance, a nilpotent Lie or finitely generated group G is p-parabolic iff p � d1.G/.
Non-elementary hyperbolic groups are never p-parabolic. If X has a large-scale conformal
embedding into X 0 and X 0 is p-parabolic, so is X . This proves Theorem 1 for nilpotent
targets.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



834 P. PANSU

If a metric space has vanishing Lp-cohomology, maps with finite p-energy have a limit at
infinity. We show that a hyperbolic group G0 admits plenty of functions with finite p-energy
when p > ConfDim.G0/. First, such functions separate points of the ideal boundary @G0

(this result also appears in [7]). Second, for each ideal boundary point �, there exists a
finite p-energy function with a pole at �. The first fact implies that, if CohDim.G/ >

ConfDim.G0/, any large-scale conformal map G ! G0 converges to some ideal boundary
point �, the second leads to a contradiction. This proves Theorem 1 for hyperbolic domains
and targets.

In [3], Benjamini and Schramm observed that vanishing of reduced cohomology suffices
for the previous argument to work, provided the domain is not p-parabolic. This proves
Theorem 1 for nilpotent domains and hyperbolic targets.

In the hyperbolic to hyperbolic case, one expects CohDim to be replaced by ConfDim. For
this, one could try to reconstruct the ideal boundary of a hyperbolic group merely in terms
of finite p-energy functions, in the spirit of [34] and [6].

1.7. Proof of Theorem 2

Following H. Grötzsch, [20], we define 1-capacities of compact setsK in a locally compact
metric space X by minimizing 1-energies of compactly supported functions taking value 1
onK. Then we minimize capacities of compact connected sets joining a given pair of points
to get a pseudo-distance ı on X . This is invariant under homeomorphisms which are large-
scale conformal in both directions. If X has bounded geometry, ı is finite. If X has isoperi-
metric dimension d > 1, then ı tends to infinity with distance. This shows that homeomor-
phisms which are large-scale conformal maps in both directions are coarse embeddings in
both directions, hence quasi-isometries. It turns out that all finitely generated groups have
isoperimetric dimension > 1, but virtually cyclic ones.

1.8. Larger classes

Some of our results extend to wider classes of maps. If we merely require that balls of
a given range of sizes are mapped to quasi-balls which are not too small, we get the class
of uniformly conformal maps. It is stable under precomposition with arbitrary uniform (also
known as coarse) embeddings. We can show that no such map can exist between nilpotent
or hyperbolic groups unless the inequalities of Theorem 1 hold.

C 1. – We keep the notation of Theorem 1. Let G and G0 be hyperbolic groups.
If there exists a uniform embedding G ! G0, then d1.G/ � d2.G0/.

We note that special instances of this corollary have been obtained by D. Hume, J. Mackay
and R. Tessera by a different method, [23]. Their results apply in particular to M. Bourdon’s
rich class of (isometry groups of) Fuchsian buildings, see Section 7.

If we give up the restriction on the size of the images of balls, we get the even wider
class of coarse conformal maps. It is stable under post-composition with quasi-symmetric
homeomorphisms. New examples arise, such as stereographic projections, or the Poincaré
model of hyperbolic space and its generalizations to arbitrary hyperbolic groups. However,
when targets are smooth, coarse conformal maps are automatically uniformly conformal,
hence similar results hold.
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LARGE SCALE CONFORMAL MAPS 835

C 2. – No coarse conformal map can exist between a finitely generated groupG
and a nilpotent Lie group G0 equipped with a Riemannian metric unless G is itself virtually
nilpotent, and d1.G/ � d1.G

0/. Also, no coarse conformal map can exist from a hyperbolic
group G to a bounded geometry manifold quasiisometric to a hyperbolic group G0 unless
d1.G/ � d2.G

0/.

1.9. Organization of the paper

Section 2 contains definitions, basic properties and examples of coarse, uniform, rough
and large-scale conformal maps. In Section 3, the notion of a quasi-symmetry struc-
ture is introduced, as a tool to handle hyperbolic metric spaces: every such space has a
rough conformal map onto a product of quasi-metric quasi-symmetry spaces, as shown in
Section 4. The existence of this map has the effect of translating large scale problems into
microscopic analytic issues. The definition of energy in Section 5 comes with moduli of
curve families and parabolicity. It culminates with the proof that several families of quasi-
symmetry spaces are parabolic. Lp-cohomology of metric spaces is defined in Section 6,
where the main results relating parabolicity, Lp-cohomology and coarse conformal maps
are proven. Section 7 draws consequences for nilpotent or hyperbolic groups, concluding
the proof of Theorem 1. The material for the proof of Theorem 2 is collected in Section 8.
As a byproduct, we find conditions on a pair of spaces X;X 0 in order that coarse conformal
maps X ! X 0 be automatically uniformly conformal, this provides the generalizations
selected in Corollary 2.

1.10. Acknowledgements

The present work originates from a discussion with James Lee and Itai Benjamini on
conformal changes of metrics on graphs, cf. [24], [36], during the Institut Henri Poincaré
trimester on “Metric geometry, algorithms and groups” (1). It owes a lot to Benjamini and
Schramm’s paper [3], although Theorem 1 does not apply to sphere packings. The focus on
the category of metric spaces and large-scale conformal maps was triggered by a remark by
Jonas Kahn. This paper has benefitted from amazing scrutiny by an anonymous referee, I
warmly thank her or him.

2. Coarse notions of conformality

A sphere packing in a metric space Y is a collection of interior-disjoint balls. The incidence
graph X of the packing has one vertex for each ball and an edge between vertices whenever
corresponding balls touch. A packing may be considered as a map from the vertex setX to Y ,
that maps the tautological packing ofX (by balls of radius 1=2) to the studied packing of Y .

We modify the notion of a sphere packing in order to make it more flexible. In the
domain, we allow radii of balls to vary in some finite interval ŒR; S�. In the range, we replace
collections of disjoint balls with collections of balls with bounded multiplicity (unions of
boundedly many packings). We furthermore insist that `-times larger concentric balls still
form a bounded multiplicity packing.

(1) See https://metric2011.wordpress.com/2011/01/24/notes-of-james-lees-lecture-nr-1/.
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836 P. PANSU

The resulting notion is invariant under coarse embeddings between domains and quasi-
symmetric maps between ranges. Therefore, it is a one-sided large scale concept (in terms
of domain, not of range). It is reminiscent of conformality since it requires that spheres
be (roughly) mapped to spheres. Whence the term “coarsely conformal”. In order to get a
class which is invariant under post-composition with quasi-isometries, we shall introduce a
subclass of “large-scale conformal” maps.

2.1. Coarse, uniform, rough and large-scale conformality

Let X be a metric space. A ball B in X is the data of a point x 2 X and a radius r � 0.
For brevity, we also denote the closed ball B.x; r/ by B. If � � 0, �B denotes B.x; �r/.
For S � R � 0, let B

X
R;S denote the set of balls whose radius r satisfies R � r � S .

D 3. – Let X be a metric space. An .`; R; S/-packing is a collection of
balls fBj g, each with radius between R and S , such that the concentric balls `Bj are pair-
wise disjoint. An .N; `;R; S/-packing is the union of at most N .`;R; S/-packings.

The balls of an .N; `;R; S/-packing,N � 2, are not disjoint (I apologize for this distorted
use of the word packing), but no more than N can contain a given point.

D 4. – Let X and X 0 be metric spaces. Let f W X ! X 0 be a map. Say f is
.R; S;R0; S 0/-coarsely conformal if there exists a map

B 7! B 0; B
X
R;S ! B

X 0

R0;S 0 ;

and, for all `0 � 1, an ` � 1 and an N 0 such that

1. For all B 2 B
X
R;S , f .B/ � B 0.

2. If fBj g is a .`; R; S/-packing of X , then fB 0j g is an .N 0; `0; R0; S 0/-packing of X 0.

D 5. – Let f W X ! X 0 be a map between metric spaces.

1. We say that f is coarsely conformal if there exists R > 0 such that for all finite S � R,
f is .R; S; 0;1/-coarsely conformal.

2. We say that f is uniformly conformal if for every R0 > 0, there exists R > 0 such that
for all finite S � R, f is .R; S;R0;1/-coarsely conformal.

3. We say thatf is roughly conformal if there existsR > 0 such thatf is .R;1; 0;1/-coar-
sely conformal.

4. We say that f is large-scale conformal if for every R0 > 0, there exists R > 0 such
that f is .R;1; R0;1/-coarsely conformal.

Here is the motivation for these many notions. The main technical step in our theorems
applies to the larger class of coarse conformal maps. To turn this into a large scale notion,
one needs to forbid the occurrence of small balls, whence the slightly more restrictive uniform
variant, to which all our results apply. Uniformly conformal maps do not form a category,
it is the smaller class of large-scale conformal maps which does. The Poincaré models of
hyperbolic metric spaces are crucial tools, but these maps are not large-scale conformal, since
small balls do occur in the range, merely roughly conformal.

P 6. – The four classes enjoy the following properties

4 e SÉRIE – TOME 54 – 2021 – No 4



LARGE SCALE CONFORMAL MAPS 837

Large scale conformal H) roughly conformal H) coarsely conformal.

Large scale conformal H) uniformly conformal H) coarsely conformal.

Let X , X 0 and X 00 be metric spaces. Let f W X ! X 0 be .R; S;R0; S 0/-coarsely
conformal. Let f 0 W X 0 ! X 00 be .R0; S 0; R00; S 00/-coarsely conformal. Then f 0 ı f W
X ! X 00 is .R; S;R00; S 00/-coarsely conformal.

Large scale conformal maps can be composed.

Roughly conformal maps can be precomposed with large-scale conformal maps. Precom-
posing a roughly conformal map with a uniformly conformal map yields a coarsely
conformal map.

Uniformly conformal maps between locally compact metric spaces are automatically
proper.

Proof. – The first two points of the proposition follow from the definition. Composing
maps

B
X
R;S ! B

X 0

R0;S 0 ! B
X 00

R00;S 00 ;

we get, for every ballB inX , ballsB 0 inX 0 andB 00 inX 00 such that f .B/ � B 0, f 0.B 0/ � B 00,
hence f 0 ıf .B/ � B 00. Furthermore, we get, for every `00 � 1, a scaling factor `0 and a multi-
plicityN 00, and then a scaling factor ` and a multiplicityN 0. Given an .`; R; S/-packing ofX ,
the corresponding balls can be split into at most N 0 .`0; R0; S 0/-packings of X 0. For each
sub-packing, the corresponding balls in X 00 can be split into at most N 00 .`00; R00; S 00/-pack-
ings of X 00. This yields a total of at most N 0N 00 .`00; R00; S 00/-packings of X 00, i.e., a
.N 0N 00; `00; R00; S 00/-packing, as desired. The fourth and fifth points of the proposition
then follow.

Properness of uniformly conformal maps is proven by contradiction. If f W X ! X 0 is
uniformly conformal but not proper, there exists a sequence xj 2 X such that f .xj / has
a limit x0 2 X 0. Fix R0 > 0 and `0 � 1, get R > 0, ` � 1 and N 0. One may assume
that d.xj ; xj 0/ > 2`R for all j 0 6D j . Then fB.xj ; R/g is a .`; R;R/-packing. There exist balls
B 0j � f .B.xj ; R// which form a .N 0; `0; R0;1/-packing. For j large, x0 2 B 0j , contradicting
multiplicity � N 0. One concludes that f is proper.

R 7. – Large scale conformal maps up to translations, i.e., self-maps that move
points a bounded distance away, constitute the morphisms of the large-scale conformal
category.

Indeed, translations are large-scale conformal.

In the next subsections, we shall relate our large-scale conformal definitions with classical
notions and collect examples.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



838 P. PANSU

2.2. Quasi-symmetric maps

Notions of quasi-conformal maps on metric spaces have a long history, see [22], [21], [39].

E 8. – By definition, a homeomorphism f W X ! X 0 is quasi-symmetric if there
exists a homeomorphism � W RC ! RC such that for every triple x; y; z of distinct points
of X ,

d.f .x/; f .y//

d.f .x/; f .z//
� �

�
d.x; y/

d.x; z/

�
:

P 9. – Quasi-symmetric homeomorphisms are roughly (and thus coarsely)
conformal.

Proof. – When B D B.x; r/, we define B 0 to be the smallest ball centered at f .x/ which
contains f .B/. Let �0 be its radius.

Assume first that �0 > 0. Let y 2 B be such that d.f .x/; f .y// D �0. If z 2 f �1.`0B 0/,
d.f .x/; f .z// � `0�0, so

d.f .x/; f .y//

d.f .x/; f .z//
�

�0

`0�0
D
1

`0
:

By quasi-symmetry, this implies that �.d.x;y/
d.x;z/

/ � 1
`0

, and thus d.x; z/ � 1

��1. 1
`0
/
d.x; y/. In

other words, z 2 `B with ` D 1

��1. 1
`0
/
. Hence f �1.`0B 0/ � `B.

If �0 D 0, `0B 0 D ff .x/g, f �1.`0B 0/ D fxg � `B for every `.

We conclude that, for every `0 � 1, there exist ` � 1 and a correspondance B 7! B 0 such
that f .B/ � B 0 and f �1.`0B 0/ � `B.

If B1 and B2 are balls in X such that `B1 and `B2 are disjoint, then f �1.`0B 01/ � `B1
and f �1.`0B 02/ � `B2 are disjoint as well, hence `0B 01 and `0B 02 are disjoint, thus f is
.0;1; 0;1/-coarsely conformal. A fortiori, f is .R;1; 0;1/-coarsely conformal forR > 0,
so f is roughly conformal.

Note that R and S play no role when checking that quasi-symmetric maps are coarsely
conformal, and no guarantee on radii of balls in the range is given (i.e., such maps are
.0;1; 0;1/-coarsely conformal). In a sense, for the wider class of maps we are interested
in, three of the quasi-symmetry assumptions are relaxed:

— Maps need not be homeomorphisms.

— The quasi-symmetry estimate applies only to balls in a certain range ŒR; S� of radii.

— Centers need not be mapped to centers.

P 10. – Globally defined quasiconformal mappings of Euclidean space Rn,
n � 2, are quasi-symmetric, hence roughly and coarsely conformal.
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LARGE SCALE CONFORMAL MAPS 839

Proof. – Although not explicitly stated, this follows from the proof of Theorem 22.3,
page 78, in [40]. In Rn, there is a uniform lower bound h. b

a
/ > 0 for the conformal capacity

of condensers .C0; C1/ such that C0 connects 0 to the a-sphere and C1 connects the b-sphere
to infinity. Let f W Rn ! Rn be K-quasiconformal and map 0 to 0.

Let l D minfjf .x/j I jxj D ag andL D maxfjf .x/j I jxj D bg, let C0 D f �1.B.0; l// and
C1 D f

�1.Rn n B.0;L//. Then capn.C0; C1/ � h.
b
a
/. On the other hand,

capn.C0; C1/ � K capn.f .C0; C1// D K!n�1 log.
L

l
/1�n;

this yields an upper bound on L
l

in terms of b
a

, proving that f is quasi-symmetric.

E 11. – For all K > 0, the map z 7! zjzjK�1 on Rn is roughly conformal. If
K � 1, it sends large balls to large balls, hence it is large-scale conformal.

If n � 2, Proposition 10 applies. Its 1-dimensional analogue f W x 7! xjxjK�1 is
quasisymmetric, and hence roughly conformal as well, and large-scale conformal if K � 1.
This can also be checked directly.

2.3. Coarse quasi-symmetry

The proof of Proposition 9 suggests the following definition.

D 12. – Let X and X 0 be metric spaces. Let f W X ! X 0 be a map. Say f is
.R; S;R0; S 0/-coarsely quasi-symmetric if for every `0 � 1, there exists ` � 1 such that for
every ball B 2 B

X
R;S , there exists a ball B 0 2 B

X 0

R0;S 0 such that

f .B/ � B 0 and f �1.`0B 0/ � `B:

Say that f is coarsely quasi-symmetric if there exists R > 0 such that for all S � R, f is
.R; S; 0;1/-coarsely quasi-symmetric.

Note that a homeomorphism f W X ! X 0 is quasisymmetric if and only if f and f �1

are .0;1; 0;1/ coarsely quasi-symmetric.

L 13. – LetX andX 0 be metric spaces. Letf W X ! X 0 be a map. Then the following
are equivalent:

1. f is .R; S;R0; S 0/-coarsely quasi-symmetric.

2. There exists a map

B 7! B 0; B
X
R;S ! B

X 0

R0;S 0 ;

such that for all `0 � 1, there exists ` � 1 such that

for all B 2 B
X
R;S , f .B/ � B 0.

If `B1cap`B2 D ;, then `0B 01cap`0B 02 D ;.

In particular, coarsely quasi-symmetric maps are coarsely conformal.
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Proof. – The argument for (1) H) (2) appears in the proof of Proposition 9. Since (2)
is coarse conformality with the extra requirement that multiplicity N D 1, it implies coarse
conformality.

Let us prove that (2) H) (1). Fix `0 � 1. Let ` be the ratio provided by assumption (2). Let
B D B.x; r/ be a ball in X , with R � r � S . Let B 0 the corresponding ball in X 0. If z 2 X
does not belong to 2`B, then ˇ D B.z; r/ is an R; S-ball in X , and `Bcap`ˇ D ;. Let ˇ0 be
the ball in X 0 containing f .ˇ/ provided by (2). By (2) again, it follows that `0B 0cap`0ˇ0 D ;.
In particular, f .z/ … `0B. This shows that f �1.`0B 0/ � 2`B. Hence (1) is satisfied, up to
doubling the ratio `.

2.4. Quasi-Möbius maps

Let X be a metric space. If a; b; c; d 2 X are distinct, their cross-ratio is

Œa; b; c; d � D
d.a; c/

d.a; d/

d.b; d/

d.b; c/
;

with extension to a point1 when X is unbounded, see [41].
An embedding f W X ! Y is quasi-Möbius if there exists a homeomorphism � W RC ! RC

such that for all quadruples of distinct points a; b; c; d 2 X ,

Œf .a/; f .b/; f .c/; f .d/� � �.Œa; b; c; d �/:

Note that if f is a homeomorphism, f �1 is quasi-Möbius as well.
The main examples are

— inversions x 7! x
jxj2

in Banach spaces,

— the stereographic projection Rn ! Sn,

— its complex, quaternionic and octonionic versions, sometimes known as Cayley
transforms, where Rn is replaced with a Heisenberg group equipped with a Carnot-
Carathéodory metric.

— the action of a hyperbolic group on its ideal boundary is (uniformly) quasi-Möbius.

According to J. Väisälä, [41], if X and Y are bounded, quasi-Möbius maps X ! Y are
quasi-symmetric. If X and Y are unbounded, a quasi-Möbius map X ! Y that tends to
infinity at infinity is quasi-symmetric. We note an other situation where a quasi-Möbius map
is coarsely conformal.

L 14. – Assume X is unbounded and Y is bounded. Let f W X ! Y be a quasi-
Möbius embedding. Assume that f has a limit at infinity. Then f is coarsely conformal.

Proof. – Fix S > 0. Let y D limx!1 f .x/. Fix some origin o 2 X and let o0 D f .o/. We
merely need to show that the ratio d.f .a/;f .c//

d.f .b/;f .c//
is bounded above and below in terms of d.a;c/

d.b;c/

only when a; b; c belong to an S -ball which is far from o. Then the argument in the proof of
Proposition 9 shows that f is .0; S; 0;1/-coarsely conformal.

Consider a triple a; b; c 2 X such that d.c; o/ � 4S , d.c; a/ � S and d.c; b/ � S . Then
d.a; o/ � 3S , d.b; o/ � 3S and d.a; b/ � 2S , thus

1

3
� 1 �

2S

d.b; o/
�
d.a; o/

d.b; o/
� 1C

2S

d.b; o/
� 2:
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Let x 2 X satisfy d.c; x/ � 4S . Then d.x; a/ � 3S and d.x; b/ � 3S as well, so

1

6
� Œa; b; x; o� � 6:

It follows that 1
�.6/
� Œf .a/; f .b/; f .x/; f .o/� � �.6/. As x tends to1, this cross-ratio tends

to

Œf .a/; f .b/; y; o0� D
d.f .a/; y/

d.f .a/; o0/

d.f .b/; o0/

d.f .b/; y/
:

Since f is an embedding, when a; b; c are far from o, f .a/; f .b/; f .c/ are not close to o0,
hence d.f .b/;o0/

d.f .a/;o0/
is bounded above and away from 0, the same holds for d.f .a/;y/

d.f .b/;y/
.

Since

Œa; b; c;1� D
d.a; c/

d.b; c/
; Œf .a/; f .b/; f .c/; y� D

d.f .a/; f .c//

d.f .b/; f .c//

d.f .b/; y/

d.f .a/; y/
;

the ratio d.f .a/;f .c//
d.f .b/;f .c//

is bounded above and below in terms of d.a;c/
d.b;c/

only.

2.5. The Cayley transform

The stereographic projection (or Cayley transform) extends to all metric spaces. It is
specially well suited to the class of Ahlfors regular metric spaces.

Recall that a metric space X is Q-Ahlfors regular at scale S if it admits a measure � and
a constant C.S/ such that

1

C
rQ � �.B.x; r// � C rQ

for all x 2 X and r � S . We abbreviate it in Q-Ahlfors regular if S D diameter.X/. Locally
Q-Ahlfors regular meansQ-Ahlfors regular at all scales (with constants depending on scale).

E 15. – The set R, intervals of R and R=Z are 1-Ahlfors regular. Carnot groups
are Ahlfors regular. Snowflaking, i.e., replacing the distance d by d˛ for some 0 < ˛ < 1,
turns a Q-Ahlfors regular space into a Q

˛
-Ahlfors regular space. The product of Q-and

Q0-Ahlfors regular spaces is a Q C Q0-Ahlfors regular space. The ideal boundary of a
hyperbolic group equipped with a visual quasi-metric is Ahlfors regular, [37], [10].

L 16 (compare Väisälä, [41], Theorem 1.10). – Every metric space X has a quasi-
Möbius embedding into a bounded metric space PX . If X is Q-Ahlfors regular, so is PX .

Proof. – Here is a rough sketch of J. Väisälä’s proof. Use the Kuratowski embedding
X ! L, where L D L1.X/. Then embed L into L � R and apply an inversion. This is a
quasi-Möbius map onto its image, which is bounded and homeomorphic to the one-point
completion PX of X .

If X is Q-Ahlfors regular with Hausdorff measure �, let � be the measure with density j Pxj2Q

with respect to the pushed forward measure on PX . Since for r � j Pxj the inverse image
of B. Px; r/ is roughly equal to B.x; r j Pxj�2/, where j Pxj D jxj�1,

�.B. Px; r// � j Pxj2Q�.B.x; r j Pxj�2// � �.B.x; r// � rQ:

Balls with r � j Pxj can be dealt with by a suitable annular decomposition. This shows
that PX is Q-Ahlfors regular as well.
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2.6. Uniform/coarse embeddings

D 17. – A mapf W X ! X 0 is a uniform or coarse embedding if for everyT > 0
there exists QT such that for every x1, x2 2 X ,

d.x1; x2/ � T H) d.f .x1/; f .x2// � QT ;

d.f .x1/; f .x2// � T H) d.x1; x2/ � QT :

L 18. – Let f be a uniform (or coarse) embedding between metric spaces. For
every R0 > 0, there exists R > 0 such that for every S � R and every large enough
S 0 � R0, f is .R; S;R0; S 0/-coarsely quasi-symmetric for some positive and finite R and S ,
hence .R; S;R0; S 0/-coarsely conformal. In particular, uniform (or coarse) embeddings are
uniformly conformal.

Proof. – Assume that f W X ! X 0 is a coarse embedding controlled by function T 7! QT .
Pick an arbitrary R0 > 0. Find R such that QR � R0. Fix S � R and S 0 � QS . Given `0 � 1,
set U D `0 QS and ` D QU

R
.

When B D B.x; r/, r 2 ŒR; S�, we define B 0 D B.f .x/; QS/. Then B 0 is an R0; S 0-ball and
f .B/ � B 0.

On the other hand, if x0 2 f �1.`0B 0/, then d.f .x0/; f .x// � `0 QS D U , thus d.x0; x/ � QU .
This shows that f �1.`0B 0/ � `B with ` D QU

R
. In other words, f is .R; S; QS; QS/-coarsely

quasi-symmetric. A fortiori, it is .R; S;R0; S 0/-coarsely conformal.

Since, for every `0, the chosen ` does not depend on S 0, f is .R; S; QS;1/-coarsely
conformal. Thus f is uniformly conformal.

R 19. – Conversely, if the metric spaces are geodesic, every .R; S; R0; S 0/-coarsely
quasi-symmetric map with 0 < R � S < C1 and 0 < R0 � S 0 < C1 is a coarse
embedding.

We see that .R; S;R0; S 0/-coarse quasi-symmetry does not bring anything new while
R;R0 > 0 and S; S 0 < 1, at least in the geodesic world. Similarly, classical conformal
mappings with Jacobian bounded above and below are bi-Lipschitz. Conformal geometry
begins when S 0 D1 or R0 D 0.

Also, the apparently minor difference (N 0 D 1) between coarse conformality and coarse
quasi-symmetry seems to be significant.

Proof. – Let f W X ! X 0 be a .R; S;R0; S 0/-coarsely quasi-symmetric map. ThenR-balls
are mapped into S 0-balls. If X is geodesic, this implies that

d.f .x1/; f .x2// �
S 0

R
d.x1; x2/C S

0:

Conversely, assume T > 0 is given. Set `0 D .T C 2S 0/=2R0 and let ` be the corresponding
scaling factor in the domain. LetB1 D B.x1; S/ andB2 D B.x2; S/. If d.x1; x2/ > 2`S , then
`B1 and `B2 are disjoint. Let B 01 D B.x

0
1; r1/ � f .B1/ and B 02 D B.x

0
2; r2/ � f .B1/ be the

corresponding balls inX 0. Since fB1; B2g is a .1; `; R; S/-packing, fB 01; B
0
2g is a .1; `0; R0; S 0g

packing, so both R0 � ri � S 0 and `B 01cap`B 02 D ;, hence d.x01; x
0
2/ > `

0r1 C `
0r2 � 2`

0R0.
Since both d.f .xi /; x0i / � S

0, d.f .x1/; f .x2// > 2`0R0 � 2S 0 � T .
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L 20. – Quasi-isometric embeddings from a geodesic metric space are large-scale
conformal.

Proof. – The assumption means that
1

L
d.x1; x2/ � C � d.f .x1/; f .x2// � Ld.x1; x2/C C:

To a ball B D B.x; r/ in X , we attach B 0 D B.f .x/; Lr C C/. Given balls B1 D B.x1; r1/

and B2 D B.x2; r2/, assume that concentric balls `B1 and `B2 are disjoint. Then, looking at
a minimizing path joining x1 to x2, one sees that d.x1; x2/ � `.r1 C r2/. This implies that

d.f .x1/; f .x2// �
1

L
`.r1 C r2/ � C � `

0.L.r1 C r2/C 2C /;

provided r1Cr2 � 2R and ` � `0L2C LC.1C2`0/
2R

. If so, the concentric balls `0B 01 and `0B 02 are
disjoint. Therefore, for every `0 � 1, there exists ` � 1 such that f maps .1; `; R;1/-pack-
ings to .1; `0; R

L
� C;1/-packings.

C 21. – Quasi-isometries between geodesic metric spaces are large-scale
conformal.

Indeed, quasi-isometries between geodesic metric spaces are controlled by affine functions
in both directions.

E 22. – Orbital maps of injective homomorphisms between isometry groups of
locally compact metric spaces are coarse embeddings. They are rarely quasi-isometric.

For instance, the control function T 7! QT of the horospherical embedding of Rn

into HnC1 is logarithmic. Given a Euclidean ball B of radius R, the hyperbolic ball B 0

whose intersection with the horosphere is B and whose projection back to the horosphere is
smallest is a horoball, of infinite radius. The radius of its projection is 1

2
.R2 C 1/. In order

to be mapped to disjoint horoballs, two Euclidean R-balls B1 and B2 must have centers at
distance at least R2C 1. This makes the scaling factor ` depend on R. Thus this embedding
is not large-scale conformal.

Question. Are orbital maps of subgroups in nilpotent groups always large-scale conformal?

2.7. Assouad’s embedding

Assouad’s Embedding Theorem, [1] (see also [27]), states that every snowflake X˛ D .X; d˛X /,
0 < ˛ < 1, of a doubling metric space admits a bi-Lipschitz embedding into some Euclidean
space.

P 23. – Bi-Lipschitz embeddings of snowflakes are large-scale conformal. In
particular, the Assouad embedding of a doubling metric space into Euclidean space is large-
scale conformal.

Proof. – The identity X ! X˛ is large-scale conformal. Indeed, the correspondence
B ! B 0 is the identity, and any concentric ball `B is mapped to `˛B 0. So given a scaling
factor `0 > 1 in the range, ` D `01=˛ fits as a scaling factor in the domain.

Bi-Lipschitz maps are large-scale conformal, so the composition is large-scale conformal
as well (Proposition 6).
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2.8. Sphere packings

Following Benjamini and Schramm [3], we view a sphere packing in Rd as a map from
the vertex set of a graph, the incidence graph G of the packing, to Rd . G carries a canonical
packing by balls of radius 1

2
(whose incidence graph is G itself). It is a .1; 1

2
; 1
2
/-packing,

which is mapped to the given .1; 0;1/-packing.

Coarse conformality is a very strong restriction on a sphere packing. It has something to
do with uniformity in the sense of [2]. Recall that a sphere packing is M -uniform if

1. the degree of the incidence graph is bounded by M ,

2. the ratio of radii of adjacent spheres is �M .

But uniformity is not sufficient. For instance, let �.z/ D az be a planar similarity. If a D rei�

is suitably chosen (for instance, � D �=10 and r < e�2�=100), there exists a circle C such
that �.C / touches C but no iterate �k.C /, k 6D 1,�1, does. The collection of iterates �k.C /,
k 2 Z, constitutes a uniform planar circle packing whose incidence graph is Z but which
does not give rise to a roughly conformal map of Z to R2. Indeed, ifR is large enough so that
iterates �k.C /, k 2 f�R; : : : ; Rg make a full turn around the origin, any Euclidean ball B 0

which contains 2R C 1 consecutive circles of the packing contains the origin. So the image
of any .N; 1;R;R/-packing of Z has infinite multiplicity at the origin.

However, the same construction with a > 0 gives rise to a coarse conformal map,
composition of an inversion with the standard isometric embedding of N in R2.

The restriction of a coarse conformal map to a subset is coarsely conformal for the
induced distance. However, it need not be for the intrinsic geodesic metric. For instance,
when restricting to a subgraph, coarse conformality is lost in general, unless the subgraph
is metrically undistorted. This contrasts with the fact that every subgraph of the incidence
graph of a sphere packing is again the incidence graph of a sphere packing.

3. Quasi-symmetry structures

This notion is needed in order to host an important example of rough conformal map, the
Poincaré model of a hyperbolic metric space.

3.1. Definition

D 24 (compare [30]). – A quasi-symmetry structure on a set X is the data of a
set B with a family .ˆ`/`2R�

C
of maps B! Subsets.X/ satisfying

` � `0 H) 8B 2 B; ˆ`.B/ � ˆ`0.B/:

(in the sequel, one will rarely distinguish an element of B from the corresponding subsetˆ1.B/
of X ; then ˆ`.B/ will be denoted by `B). A set equipped with such a structure is called a q.s.
space. Elements of B (as well as the corresponding subsets of X) are called balls.

E 25. – Quasi-metric spaces come with a natural q.s. structure, where B D

X � .0;1/, and for each ` 2 R�C, a pair .x; r/ is mapped to the ball B.x; `r/.
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D 26. – Let X be a q.s. space. An .N; `/-packing is a collection of balls fBj g
such that the collection of concentric balls `Bj has multiplicity � N , i.e., the collection f`Bj g
can be split into at most N sub-families, each consisting of pairwise disjoint balls.

3.2. Coarsely and roughly conformal maps to q.s. spaces

D 27. – LetX be a metric space andX 0 a q.s. space. Let f W X ! X 0 be a map.
Say f is .R; S/-coarsely conformal if there exist a map

B 7! B 0; B
X
R;S ! B

X 0
;

and for all `0 � 1, an ` � 1 and an N 0 such that

1. for all B 2 B
X
R;S , f .B/ � B 0.

2. If fBj g is a .`; R; S/-packing of X , then fB 0j g is an .N 0; `0/-packing of X 0.

We say that f is coarsely conformal if there exists R > 0 such that for all finite S � R, f is
.R; S/-coarsely conformal.

We say that f is roughly conformal if there exists R > 0 such that f is .R;1/-coarsely
conformal.

It is harder to be roughly conformal than coarsely conformal.

3.3. Quasi-symmetric maps between q.s. spaces

D 28. – Let X and X 0 be q.s. spaces. A map f W X ! X 0 is quasi-symmetric if
there exists a correspondence between balls

B 7! B 0; B
X
! B

X 0

with the following property: for all `0 � 1, there exist ` � 1 such that for all B 2 B
X ,

1. f .B/ � B 0,

2. f �1.`0B 0/ � `B.

Quasi-symmetric maps are morphisms in a category whose objects are q.s. spaces. For q.s.
structures associated to metrics, isomorphisms in this category coincide with classical quasi-
symmetric homeomorphisms. Indeed, bijections which are quasi-symmetric (in the sense of
Definition 28) in both directions are homeomorphisms; annuli are mapped to annuli with a
bound on aspect ratio, this is quasi-symmetry.

P 29. – Let X be a metric space, and X 0, X 00 q.s. spaces. If f W X ! X 0 is
.R; S/-coarsely conformal and f 0 W X 0 ! X 00 is quasi-symmetric, then the composition f 0ıf is
.R; S/-coarsely conformal.

Proof. – Fix `00 � 1. Since f 0 is quasi-symmetric, there exists `0 � 1 such that every
ball B 0 in X 0 is mapped into a ball B 00 of X 00 such that f 0�1.`00B 00/ � `0B 0. If B 01 and B 02 are
balls in X 0 such that `0B 01cap`0B 02 D ;, then f 0�1.`00B 001 /capf 0�1.`00B 002 / D ;, hence `00B 001
and `00B 002 are disjoint. Thus f 0 ı f is .R; S/-coarsely conformal.
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4. The Poincaré model

4.1. The 1-dimensional Poincaré model

The following example of q.s. space may be called the half hyperbolic line.

D 30. – LetD denote the interval Œ0; 1� equipped with the following q.s. structure.
B is the set of closed intervals in Œ0; 1�. For an interval I � .0; 1� there exists a unique pair .R; t/
such that B D Œe�R�t ; eR�t �. Then `B WD Œe�`R�t ;minf1; e`R�tg�. For an interval of the
form I D Œ0; b�, `I D I .

In other words, the structure is the usual metric space structure of a half real line trans-
ported by the exponential function, and extended a bit arbitrarily to a closed interval.

R 31. – Here is a formula for `I when I D Œa; b�, a > 0:

`I D Œa
1C`
2 b

1�`
2 ;minf1; a

1�`
2 b

1C`
2 g�:

Indeed, if Œa; b� D Œe�R�t ; eR�t �, then R D 1
2

log.b=a/ and t D �1
2

log.ab/.

4.2. Warped products

There is no way to take products of q.s. spaces, so we use auxiliary quasi-metrics.

D 32. – A q.m.q.s. space is the data of a q.s. space and a quasi-metric which
defines the same balls (but possibly a different B 7! `B correspondence).

E 33. – We keep denoting by D the q.m.q.s. space Œ0; 1� equipped with its usual
metric but the q.s. structure of D.

D 34. – The product of two q.m.q.s. spacesZ1 andZ2 isZ1�Z2 equipped with
the product quasi-metric

d..z1; z2/; .z
0
1; z
0
2// D maxfd.z1; z01/; d.z2; z

0
2/g

and, if B D I � ˇ is a ball in the product, `B D `I � `ˇ.

E 35. – Our main example is D � Z, where Z is a metric space with its metric
q.s. structure.
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4.3. The Poincaré model of a hyperbolic metric space

P 36. – Let X be a geodesic hyperbolic metric space with ideal boundary @X .
Fix an origin o 2 X and equip @X with the corresponding visual quasi-distance do. Assume
that there exists a constant D such that for any x 2 X there exists a geodesic ray 
 from the
base point 
.0/ D o and passing near x: d.x; 
/ < D. Then there is a rough conformal map � ,
called the Poincaré model, of X to the q.s. space D� @X . Its image is contained in .0; 1�� @X .
If x 2 X tends to z 2 @X in the natural topology of X [ @X , then �.x/ tends to .0; z/. Finally,
after a rescaling of @X , if an R-ball is mapped to B..y; z/; r/, then r D tanh.R/y.

Proof. – For x 2 X , pick a geodesic ray 
 starting from o that passes at distance < D
from x. Set �.x/ D e�d.o;x/, �.x/ D 
.C1/ and �.x/ D .�.x/; �.x//. � may be
discontinuous, but we do not care.

Let B D B.x;R/ be a ball in X , and t D d.o; x/. Then �.B/ is contained in a
ball of radius eR�t , up to a multiplicative constant. Indeed, thanks to V. Shchur’s Lemma,
[35], Lemma 12, there exists a constant C such that, if y 2 B and t 0 D d.o; y/, then
jt � t 0j � RC C C 2D and t C t 0 C 2 log do.�.x/; �.y// � RC C C 2D. Thus

2t C 2 log do.�.x/; �.y// � 2RC 2C C 4D;

whence do.�.x/; �.y// � eRCCC2D�t . It turns out that �.B/ is also a ball of radius eR�t ,
up to a multiplicative constant. Indeed, if y0 2 B and t 0 D d.o; y0/, then jt � t 0j � R,
thus �.y0/ belongs to the interval Œe�R�t ; eR�t �, centered at s D 2e�t cosh.R/, with radius
r D 2e�t sinh.R/ D tanh.R/s. From now on, we decide to multiply the quasi-metric on @X
by the constant factor e�C�2D�1, i.e., we use the quasi-metric d 0 D e�C�2D�1do. In this
way, �.B/ is contained in the ball B 0 of Œ0; 1� � @X centered at .e�t cosh.R/; �.x//, with
radius e�t sinh.R/.

Conversely, if .�; �/ 2 B 0, then � 2 @X belongs to

B.�.x/; e�t sinh.R//

(which means that d 0.�.x/; �/ D e�C�2D�1do.�.x/; �/ � e�t sinh.R/), and � 2 Œe�R�t ; eR�t �.
Let t 0 be such that e�t

0

D � . Then t � R � t 0 � t C R. Let x0 (resp. x00) be the
point of the geodesic from o to � such that d.o; x/ D t 0 (resp. d.o; x00/ D t ). Then
d.x; x00/ � 2tC2 log do.�.x/; �/CCC2D � 2RC3CC4DC2, and d.z; x0/ D jt� t 0j � R.
Thus d.x; x0/ � 4R provided R � 3C C 4D C 2. We conclude that

�.B/ � B 0; and B 0 � �.4B/:

Let us show that

�.4`B/ � `B 0:

To avoid confusion, let us denote by m` the R� action on intervals. If B D B.x;R/ and
�.x/ D t , then �.B/ D Œe�R�t ; eR�t � and �.`B/ D m`.�.B// by definition of m`. On the
other hand, B 0 D �.B/ � ˇ where �.B/ � ˇ D B.�.x/; e�t sinh.R//,

�.`B/ D B.�.x/; e�t sinh.`R// � B.�.x/; e�te.`�1/R sinh.R// � `ˇ;

provided R � 1. Therefore

m`.B
0/ D m`.�.`B// � `ˇ � m`.�.`B// � �.`B/:
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Since this is the ball .`B/0 corresponding to `B, it is contained in �.4`B/.

Since X is hyperbolic, there is a constant ı such that two geodesics with the same
endpoints are contained in the ı-tubular neighborhood of each other. We can assume
that ı C 2D � C . It follows that if �.x1/ D �.x2/, then d.x1; x2/ � ı. Let B1
and B2 be balls of radii � C . Let B 01, B 02 be the corresponding balls in D � @X . If
`0B 01cap`0B 02 6D ;, then �.4`0B1/cap�.4`0B2/ 6D ;. Thus d.4`0B1; 4`0B2/ � ıC 2D � C . If
B1 D B.x1; r1/, 4`0B1 D B.x1; 4`0r1/, itsC -neigborhood is contained inB.x1; 4`0r1CC/ �
B.x1; 5`

0r1/ D 5`
0B1. Hence 5`0B1cap5`0B2 6D ;. We may set ` D 5`0 and conclude that � is

.3C C 4D C 2;1; 0;1/-coarsely quasi-symmetric, hence roughly conformal.

5. Energy

Classical analysis has made considerable use of the fact that, on n-space, the Ln norm
of the gradient of functions is a conformal invariant. Benjamini and Schramm observe that
only the dimension of the range matters. In fact, some coarse analogue of the Lp norm of
the gradient of functions turns out to be natural under coarsely conformal mappings. This
works for all p (this fact showed up in [30]).

5.1. Energy and packings

LetX be a metric space. Recall that an .`; R; S/-packing is a collection of balls fBj g, each
with radius betweenR and S , such that the concentric balls `Bj are pairwise disjoint. IfX is
merely a q.s. space, `-packings make sense.

Here is one more avatar of the definition of Sobolev spaces on metric spaces. For earlier
attempts, see the surveys [21], [17].

D 37. – LetX , Y be metric spaces. Let ` � 1. Let u W X ! Y be a map. Define
its p-energy at parameters `, R and S � R as follows.

E
p

`;R;S
.u/ D supf

X
j

diameter.u.Bj //p I .`; R; S/-packings fBj gg:

R 38. – The definition of Ep
`;0;1

extends to X being a q.s. space, we denote it
simply by

E
p

`
.u/ D supf

X
j

diameter.u.Bj //p I `-packings fBj gg:

Our main source of functions with finite energy are Ahlfors regular metric spaces.

P 39. – Let X be a d -Ahlfors regular metric space and u W X ! Y a
C ˛-Hölder continuous map which is constant outside a compact set. Then Ep

`;0;1
.u/ is finite

for all p � d=˛ and ` > 1. In particular, Ed=˛
`;R;S

.u/ is finite for all R; S .
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Proof. – Let � denote Hausdorff d -dimensional measure. Assume first that �.X/ <1.
For every ball B,

diameter.u.B//p � const: diam.B/p˛

� const: �.B/p˛=d

� const: �.X/�1Cp˛=d�.B/;

thus X
j

diameter.u.Bj //p � const: �.X/�1Cp˛=d
X
j

�.Bj /

� const: �.X/p˛=d <1:

If X is unbounded, we assume that u has support in a ball B0 of radius R0. Given ` > 1,
if a ball B intersects B0, and has radius R > 2R0=.` � 1/, then `B contains B0. If such
a ball arises in an `-packing, it is the only element of the packing, hence an upper bound
on

P
diameter.u.B//p � .maxu � minu/p. Otherwise, all balls of the `-packing are

contained in .1C .2R0=.`� 1//B0, whence the above upper bound is valid with X replaced
with that ball.

E 40. – Let 0 < ˛ � 1. Let Z be a compact Q-Ahlfors regular metric space.
Let Z˛ D .Z; d˛Z/ be a snowflake of Z. Consider the q.m.q.s. space X D D � Z˛, with its
projections

u W X ! Z; u.y; z/ D z; and v W X ! Œ0; 1�; v.y; z/ D y:

Then, for all ` and for all p � ˛ CQ,

E
p

`
.u/ < C1; E

p=˛

`
.v/ < C1:

Proof. – Since the previous argument (in the compact case) never uses concentric
balls `B, but only the balls B themselves, the difference between D � Z˛ and the metric
space product Œ0; 1��Z˛ disappears. It is compact and 1CQ

˛
-Ahlfors regular with Hausdorff

measure � D dt ˝ �. For every ball B � Œ0; 1� �Z˛,

diameter.u.B// D diameter.B/1=˛ � �.B/
1
˛

1

1C
Q
˛ D �.B/

1
˛CQ ;

thus u has finite p-energy for p � ˛ CQ. The case of v follows in a similar way.

5.2. Dependence on radii and scaling factor

The .`; 0;1/-packings in the definition ofEp
`;0;1

-energy are hard to handle. However, for
spaces with bounded geometry, taking the supremum over .`; R; S/-packings does not play
such a big role, provided R > 0 and S <1. The precise assumption, a bit weaker than the
doubling property, is called the tripling property.

D 41. – A metric space X has the tripling property if

1. Balls are connected.

2. There is a function N 0 D N 0.N; `;R; S/ (called the tripling function of X) with the
following property. For everyN; ` � 1;R > 0; S � R, every .N; `;R; S/-packing ofX is
an .N 0; RCS

R
; R; S/-packing as well.
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A .N; `;R; S/-packing of X is covering if the interiors form an open covering of X .

The tripling property is meaningful only for ` < RCS
R

. If a metric space X carries a
measure � such that for all R > 0, the measure of R-balls is bounded above and below in
terms of R only (this will be called a metric space with controlled balls below), then it has the
tripling property.

L 42. – Let X be a metric space which has the tripling property. Let fBj g be a
covering .N; `;R; S/-packing of X . Then for all maps u W X ! Y to metric spaces,

E
p

`;R;S
.u/ � N 0.N; `;R; S/p

X
j

diameter.u.Bj //p;

where N 0 is the tripling function of X .

Proof. – Let fBj g be a covering .N; `;R; S/-packing of X and fB 0
k
g a .`; R; S/-packing

of X . Let B 0 be a ball from the second packing. Let J.B 0/ index the balls from fBj g whose
interiors intersect B 0. By assumption, jJ.B 0/j � N 0.N; `;R; S/. Indeed, if B intersects B 0,
then the center of B 0 belongs to RCS

R
B. Since B 0 is connected, given any two points x,

x0 2 B 0, there exists a chain Bj1 ; : : : ; Bjk , ji 2 J.B 0/ with x 2 Bj1 , x0 2 Bjk , and each Bji
intersects BjiC1 . This implies that d.u.x/; u.x0// �

Pk
iD1 diameter.u.Bji //, and

diameter.u.B 0// �
X

j2J.B0/

diameter.u.Bj //:

Hölder’s inequality yields

diameter.u.B 0//p � N 0p�1
X

j2J.B0/

diameter.u.Bj //p:

A given ball of fBj g appears in as many J.B 0/ as its interior intersects balls of fB 0
k
g. This

happens at most N 0.N; `;R; S/ times. ThereforeX
k

diameter.u.B 0k//
p
� N 0p

X
j

diameter.u.Bj //p:

C 43. – LetX be a metric space which has the tripling property. Up to multiplica-
tive constants depending only on R, S and `, energies Ep

`;R;S
.u/ do not depend on the choices

of R > 0, S <1 and ` � 1.

Proof. – Let us show that covering .N; `;R;R/-packings exist for all R > 0 and ` � 1,
provided N is large enough, N D N.`;R/. Let fBj D B.xj ;

R
2
/g be a maximal collection

of disjoint R
2

-balls in X . In particular, fBj g is a .1; R
2
; .2` � 1/R

2
/-packing. By the tripling

property, there existsN D N 0.1; 2`; R
2
; .2`�1/R

2
/ such that fBj g is a .N; 2`; R

2
; R
2
/-packing.

Then f2Bj g is a covering .N; `;R;R/-packing.
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Fix 0 < R � 1 � S < C1. Let fBj g be a covering .N.`; 1/; `; 1; 1/-packing. According
to Lemma 42, for all maps u to metric spaces,

E
p

`;1;1
.u/ � E

p

`;R;S
.u/

� N 0.1; `; R; S/p
X
j

diameter.u.Bj //p

� N 0.1; `; R; S/pN.`; 1/E
p

`;1;1
.u/;

so changing radii is harmless. By definition of tripling, given `0 � `, every .`; 1; `0/-packing
is simultaneously a .N 00; `0 C 1; 1; `0/-packing, N 00 D N 0.1; `; 1; `0/, hence

E
p

`0;1;1
.u/ � E

p

`;1;1
.u/

� E
p

`;1;`0
.u/

� N 00E
p

`0C1;1;`0
.u/

� N 00E
p

`0;1;`0
.u/

� N 00N 0.1; `0; 1; `0/pN.`0; 1/E
p

`0;1;1
.u/;

so changing scaling factor is also harmless.

If p D 1, even the upper bound on radii of balls does not play such a big role.

L 44. – Let X be a geodesic metric space. For every real valued function u on X ,

E1`;R;R.u/ � E
1
`;R;1.u/ � .2`C 2/E

1
`;R;R.u/:

Proof. – Let B D B.z; r/ be a large ball. Assume u achieves its maximum on B at x and
its minimum at y. Along the geodesics from x to z and from z to y, consider an array of
touching R-balls Bj . Then

diameter.u.B// �
X
j

diameter.u.Bj //:

Pick one ball every 2` along the array, in order to get an .`; R;R/-packing. The array is the
union of 2.2`C 1/ such packings, whenceX

j

diameter.u.Bj // � 2.2`C 1/E1`;R;R.u/:

Summing up over balls of an arbitrary .`; R;1/-packing yields the announced inequality.

5.3. Functoriality of energy

L 45. – LetX ,X 0 andY be metric spaces. Letf W X ! X 0 be .R; S;R0; S 0/-coarsely
conformal. Then for all `0 � 1, there exists ` � 1 and N 0 such that for all maps u W X 0 ! Y ,

E
p

`;R;S
.u ı f / � N 0E

p

`0;R0;S 0
.u/:
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Proof. – Let fBj g be an .`; R; S/-packing of X . Let fB 0j g be the corresponding
.N 0; `0; R0; S 0/-packing of X 0. Split it into N 0 sub-collections which are .1; `0; R0; S 0/-pack-
ings. By assumption, f .Bj / � B 0j , so diameter.u ı f .Bj // � diameter.u.B 0j //. This yields,
for each sub-collection,X

j

diameter.u ı f .Bj //p �
X
j

diameter.u.B 0j //
p
� E

p

`0;R0;S 0
.u/:

Summing up and taking supremum, this shows that Ep
`;R;S

.u ı f / � N 0E
p

`0;R0;S 0
.u/.

E 46. – If Y is d -Ahlfors regular and compact, then the identity Y ! Y has
finite Ep

`0;R0;S 0
-energy for all p � d , `0 � 1, R0 � 0, S 0 � 1, so coarsely conformal

maps X ! Y have finite Ed
`;R;S

-energy themselves for suitable `.

Lemma 45 generalizes to q.s. spaces, with the same proof.

L 47. – Let X and Y be metric spaces, let X 0 be a q.s. space. Let f W X ! X 0 be
coarsely conformal. Then for all R; S and for all `0 � 1, there exist ` � 1 and N 0 such that for
all maps u W X 0 ! Y ,

E
p

`;R;S
.u ı f / � N 0E

p

`0
.u/:

5.4. .1; 1/-curves

D 48. – A .1; 1/-curve in a metric space X is a map 
 W N ! X which is
.1; 1; R; S/-coarsely conformal for allR > 0 and all large enough S . WhenX is locally compact
and equipped with a base point o, a based .1; 1/-curve is a proper .1; 1/-curve such that 
.0/ D o.

An .`; 1; 1/-packing of N corresponds to a subsetA � N such that every `-ball centered at
a point of A contains at most one point of A. The packing consists of unit balls centered at
points of A. Let us call such a set an `-subset of N. A .1; 1/-curve in X is a sequence .xi /i2N
such that for all R and all sufficiently large S � R, there exists a collection of balls Bi in X
with radii between R and S such that

— Bi contains fxi�1; xi ; xiC1g.

— For all `0 � 1, there exist ` and N 0 such that for every `-subset of N, the collection of
concentric balls f`0Bi I i 2 Ag has multiplicity � N 0.

Thus a .1; 1/-curve is a chain of slightly overlapping balls which do not overlap too much: if
radii are enlarged `0 times, decimating (i.e., keeping only one ball every `) keeps the collection
disjoint or at least bounded multiplicity.

E 49. – An isometric map N ! X is a .1; 1/-curve. In particular, geodesic rays
in Riemannian manifolds give rise to .1; 1/-curves.

This is a special case of Lemma 18.

R 50. – In locally compact metric spaces, .1; 1/-curves are proper.
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Proof. – Let 
 W N ! X be a based .1; 1/-curve. Let `0 D 2, let ` be the corre-
sponding scaling factor in the domain, and N 0 the multiplicity in the range. The covering
of N by 1-balls B.j; 1/ is mapped to balls B 0j of radii � R > 0, � S , with 
.j / 2 B 0j .
Since the covering fB.j; 1/g is the union of exactly 2` `-packings, fB 0j g is the union of
2` .N 0; 2; R; S/-packings, it is a .2`N 0; 2; R; S/-packing, with N 0 from Definition 48. In
particular, no point of X is contained in more than 2`N 0 balls 2B 0j .

If 
 is not proper, there exists a sequence ij tending to infinity such that 
.ij / has a
limit x 2 X . Since B 0ij has radius � R, for j large enough 2B 0ij contains x, contradicting
multiplicity � `N 0.

D 51. – Let X be a q.s. space, and K � X . A coarse curve in X is a coarse
conformal map N! X . A coarse curve 
 is based at K if 
.0/ 2 K.

E 52. – Given an isometric map 
 W Œ0; 1� ! X , set 
 0.j / D 
. 1
jC1

/. This
is a coarse curve in X n f
.0/g. In particular, geodesic segments in punctured Riemannian
manifolds give rise to coarse curves.

Since 
 0 is the composition of inversion R ! R and an isometric embedding, this is a
special case of Lemma 14.

P 53. – Let X be a metric space and X 0 a q.s. space. If 
 W N ! X is a
.1; 1/-curve and f W X ! X 0 is a coarse conformal map, then f ı 
 is a coarse curve.

This follows from Proposition 6.

5.5. Modulus

We need to show that certain maps with finite energy have a limit along at least one based
curve. To do this, we shall use the idea, that arouse in complex analysis, of a property satisfied
by almost every curve.

D 54. – Let Y be a metric space. The length of a map u W N! Y is

length.u/ D
1X
iD0

d.u.i/; u.i C 1//:

D 55. – Let X be a metric space. Let � be a family of .1; 1/-curves in X . The
.p; `; R; S/-modulus modp;`;R;S .�/ is the infimum of Ep

`;R;S
-energies of maps u W X ! Y to

metric spaces such that for every curve 
 2 �, length.u ı 
/ � 1.

R 56. – The definition of .p; `; 0;1/-modulus extends to families of coarse
curves � in q.s. spaces X ,

modp;`.�/ D inffEp
`
.u/ I u W X ! Y; length.u ı 
/ � 18
 2 �g:

L 57. – Let X be a metric space. The union of a countable collection of .1; 1/-curve
families which have vanishing .p; `; R; S/-modulus also has vanishing .p; `; R; S/-modulus.
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Proof. – Fix � > 0. Let uj W X ! Yj be a function with Ep
`;R;S

.uj / � 2�j � such that
for all curves 
 in the j -th family �j , length.uj ı 
/ � 1. Consider the `p direct product
Y D

Q
j Yj , i.e.,

dY ..yj /; .y
0
j // D

0@X
j

d.yj ; y
0
j /
p

1A1=p ;
and the product map u D .uj / W X ! Y . Then

E
p

`;R;S
.u/ �

X
j

E
p

`;R;S
.uj / � const:�;

whereas for all curves 
 in the union curve family,

length.u ı 
/ � sup
j

length.uj ı 
/ � 1:

This shows that the union curve family has vanishing .p; `; R; S/-modulus.

L 58. – Let X be a metric space. Let � be a family of .1; 1/-curves in X . Then
� has vanishing .p; `; R; S/-modulus if and only if there exists a function u W X ! Y such
that Ep

`;R;S
.u/ < C1 but length.u ı 
/ D C1 for every 
 2 �.

Proof. – One direction is obvious. In the opposite direction, first observe that by rescaling
target metric spaces, one can assume that there exist maps uj W X ! Yj such that for all

 2 �, length.uj ı 
/ � j and Ep

`;R;S
.uj / < 2

�j . Apply the `p-product construction again.
Get u D .uj / W X ! Y such that Ep

`;R;S
.u/ � 1 and length.u ı 
/ � maxj length.uj ı 
/ D

C1.

L 59. – Let X be a metric space. Let Y be a complete metric space. Fix R � S and
` � 1. Let u W X ! Y be a map of finiteEp

`;R;S
energy. The family of .1; 1/-curves along which

u does not have a limit has vanishing .p; `; R; S/-modulus.

Proof. – If length.uı
/ <1, then uı
 has a limit in Y , since Y is complete. Let �nl be
the family of curves along which the length of u is infinite. It contains all curves along which
u does not have a limit. By assumption, Ep

`;R;S
.u/ < 1, but length.u ı 
/ D C1 � 1 for

all curves 
 2 �nl . So modp;`;R;S .�nl / D 0.

R 60. – The cases R D 0; S D1 of Lemmata 57 to 59 extend to q.s. spaces X .

D 61. – Let X have a base-point. Say a property of based (.1; 1/-or coarse)
curves holds for p-almost all curves if it fails for a set of based curves of vanishing p-modulus.

For instance, Lemma 59 states that a function of finite p-energy has a limit (depending on
the curve) along p-almost every based .1; 1/-curve.
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5.6. Parabolicity

D 62. – LetX be a locally compact metric space. SayX is .p; `; R; S/-parabolic
if the family of all .1; 1/-curves based at some point has vanishing .p; `; R; S/-modulus.

IfX is merely a locally compact q.s. space, .p; `/-parabolicity means that the .p; `/-modulus
of the family of proper coarse curves based at some compact set with nonempty interior vanishes.

R 63. – If metric spaceX has the tripling property, .p; `; R; S/-parabolicity does
not depend on the choices of R > 0, S <1 and ` � 1, thanks to Corollary 43.

On the other hand, .p; `/-parabolicity may depend on whether ` D 1 or ` > 1, as we shall
see in the next subsections.

P 64. – Let X be a metric space and X 0 a q.s. space. Let f W X ! X 0 be a
coarse conformal map. Let R be large enough, and S � R. Let � be a family of .1; 1/-based
curves in X . Then for all `0, there exist ` such that

modp;`;R;S .�/ � modp;`.f .�//:

Proof. – By the composition rule (Proposition 6), f .�/ is a family of coarse curves.
Given u W X 0 ! Y such that length.u ı 
 0/ � 1 for all 
 0 2 f .�/, length.u ı f ı 
/ � 1 for
all 
 2 �. According to Lemma 47, for all `0 � 1, there exist ` � 1 and N 0 such that

E
p

`;R;S
.u ı f / � N 0E

p

`0
.u/:

Taking the infimum over such maps u yields the announced inequality.

C 65. – LetX be a metric space andX 0 a q.s. space. Letf W X ! X 0 be a proper,
coarse conformal map. Then there existsR > 0 such that for all S � R, ifX 0 is .p; `0/-parabolic
for some `0, then X is .p; `; R; S/-parabolic for a suitable `.

There is a similar statement for .R0; S 0; R; S/-coarsely conformal maps. This shows that
parabolicity does not depend on the choice of base point, provided one accepts to change
parameters `,R and S . Indeed, the map which is identity but for one point owhich is mapped
to o0 is proper and .R0; S 0; R; S/-coarsely conformal.

C 66. – Let X and X 0 be locally compact metric spaces. Let f W X ! X 0 be
a uniformly conformal map. For every R0 > 0, there exists R such that for all S � R, if X 0 is
.p; `0; R0;1/-parabolic for some `0, then X is .p; `; R; S/-parabolic for a suitable `.

Proof. – Uniformly conformal maps are proper.
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5.7. Parabolicity of Ahlfors-regular spaces

P 67. – Let X be a non-compactQ-Ahlfors regular metric space withQ > 1.
LetK be a ball. For all ` > 1, there exists a finite .Q; `/-energy functionw W X ! R which has
no limit along every coarse curve based onK. It follows thatX is .p; `/-parabolic for every ` > 1
and every p � Q.

Proof. – Let� be a measure such that balls of radius � have measure �Q up to multiplica-
tive constants.

Let m D maxf `C1
`�1

; eg. Fix an origin o 2 X , set r.x/ D d.x; o/, v.r/ D log log r and

w.x/ D

(
sin.v.r.x/// if r � m2;

log log.m2/ otherwise:

Let fBj g be a `-packing of X . At most one ball B is such that o 2 `B, it contributes
to
P
j diameter.w.Bj //p by at most 2p. We shall ignore it henceforth. Other balls B D B.x; �/

are such that o … `B, hence r.x/ D d.o; x/ > `�. For all x0 2 B, r.x0/ D d.o; x0/ satisfies
r.x/ � � � r.x0/ � r.x/C �, hence

supB r
infB r

�
r.x/C �

r.x/ � �
D

r.x/
�
C 1

r.x/
�
� 1
�
`C 1

` � 1
� m:

For i 2 Z, let ri D mi and define Yi D fx 2 X I ri�2 � r.x/ � rig and Li D Lip.vjYi
/.

Note that �.Yi / � C r
p
i . By construction, each ball B of the packing is contained in at least

one of the Yi . If i � 2, w is constant on Yi , such balls do not contribute. Let i � 3. For a
ball B � Yi ,

diameter.w.B//Q � diameter.v.B//Q

� L
Q
i diameter.r.B//Q

� C L
Q
i �.B/:

Summing up over all balls of the packing contained in Yi ,X
Bj�Yi

diameter.w.Bj //Q � C L
Q
i �.Yi / � C .Liri /

Q:

Since v0.t/ D 1
t log t , Li �

1
ri�2 log.ri�2/

, Liri �
ri

ri�2 log.ri�2/
D

m2

.i�2/ logm . Summing up
over i � 3 leads to X

j

diameter.Bj /Q � C
1X
iD3

.
1

i � 2
/Q <1:

This shows that Ep
`
.w/ <1.

Let 
 W N! X be a proper coarse curve based atK D B.o; �/. Let us show thatw ı
 has
no limit. By definition, there exists Q̀ � 1 such that every Q̀-packing of N is mapped to a
`-packing fB 0j g of X . For each i D 0; : : : ; 3 Q̀ � 1, this applies to the `-packing of unit balls

centered at 3 Q̀NC i � N. We know thatX
j2N

diameter.v.B 0
3 Q̀jCi

//p < C1;
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hence, summing over i , X
j2N

diameter.v.B 0j //
p < C1;

so these diameters tend to zero. Since B 0j contains 
.j / and 
.j C 1/, this implies that
jv ı 
.j C 1/ � v ı 
.j /j tends to 0. Therefore every number in the interval Œ�1; 1� is a limit
of a subsequence of the sequence w ı 
 , w ı 
 has no limit.

We conclude that the family of all proper coarse curves based at some ball has vanishing
.p; `/-modulus, i.e., X is .p; `/-parabolic. A fortiori, the family of all proper coarse curves
based at o has vanishing .p; `; R; S/-modulus, i.e.,X is .p; `; R; S/-parabolic, forR > 0.

R 68. – If we are merely interested in .p; `; R; S/-parabolicity for some R > 0,
or .p; `; R;1/-parabolicity, a weaker form of Ahlfors-regularity is required. It suffices that
balls of radius � � R satisfy c �Q � �.B/ � C �Q. Let us call this Q-Ahlfors regularity in
the large.

Indeed, the argument uses only balls of radius � R.

C 69. – Let X be a non-compact metric space. Let Q > 1. Assume that X is
Q-Ahlfors regular in the large. Then X is .p; `; R;1/-parabolic for every ` > 1 and every
p � Q. A fortiori, it is .p; `; R; S/-parabolic for every ` > 1, every 0 < R � S and
every p � Q.

P 70. – Let X be a compact p-Ahlfors regular metric space, with p > 1.
Let x0 2 X . For every ` > 1, there exists a function w W X n fx0g ! R such that
E
p

`
.w/ < C1 andw has a limit along no coarse curve converging to x. It follows thatXnfx0g is

.p; `/-parabolic.

Proof. – The same as for the non-compact case, replacing function r D d.o; x/ with
r D 1=d.�; x0/.

5.8. Parabolicity of D

The half real line is 1-Ahlfors regular, a case which is not covered by Proposition 67. It is
not 1-parabolic. Indeed, any function of finite 1-energy onRC has a limit at infinity. However,
it is p-parabolic for every p > 1.

L 71. – The half real line RC equipped with its metric q.s. structure is p-parabolic
for every p > 1.

Proof. – Let ` > 1. Denote by m D `C1
`�1

. We can assume that m � e. Define

u.t/ D log log jt j if t � m; u.t/ D log logm otherwise:

Let us show that u has finite .p; `/-energy for all p > 1 and ` > 1. Let fBj g be an `-packing
of RC. By assumption, the collection of concentric balls f`Bj g consists of disjoint intervals.
For simplicity, assume that 0 belongs to one of the `Bj ’s, say `B0 (otherwise, translate
everything). Write Bj D Œaj ; bj � and assume that aj � 0. Since `B0 and `Bj are disjoint,

aj C bj

2
� `

bj � aj

2
� 0;
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thus

bj �
`C 1

` � 1
aj D maj :

We split the sum
P
j ju.bj / � u.aj /j

p into sub-sums where aj 2 Œmi ; miC1/. Since
intervals Bj are disjoint and u is nondecreasing,X

aj2Œm
i ;miC1/

ju.bj / � u.aj /j � u.m
iC2/ � u.mi /

D log..i C 2/ logm/ � log.i logm/

D log
i C 2

i
�
2

i
:

Next, we use the general inequality, for nonnegative numbers xj ,X
x
p
j � .

X
xj /

p;

and get X
aj2Œm

i ;miC1/

ju.bj / � u.aj /j
p
� .

X
aj2Œm

i ;miC1/

ju.bj / � u.aj /j/
p
� .

2

i
/p:

This gives X
aj�m

ju.bj / � u.aj /j
p
�

1X
iD1

.
2

i
/p < C1:

On the remaining intervals, u is constant, except possibly on one inerval containing m. On
this interval, ju.bj / � u.aj /j � u.m2/, so its contribution is bounded independently of the
packing. We conclude that the supremum over `-packings of

P
j ju.bj /�u.aj /j

p is bounded,
i.e., u has finite p-energy.

Since, as a q.s. space, D n f0g is isomorphic to the half real line, D is p-parabolic for
all p > 1 as well. As a preparation for the next result, note that the isomorphism is the
exponential map t 7! exp.�t / W RC ! D. Therefore the function of finite energy on D is
w.y/ D sin log j log j logyjj for y < e�e.

5.9. Parabolicity of warped products

We study the parabolicity of hyperbolic metric spaces. Thanks to the Poincaré model,
they can be viewed as products D � Z, where the ideal boundary Z can be equipped with
Q-Ahlfors-regular metrics, for everyQ > ConfDim.Z/. Note that D�Z has the same balls
as the direct product Œ0; 1��Z, which is 1CQ-Ahlfors-regular. Nevertheless, Proposition 70
does not apply directly. Indeed, the R�C action B 7! `B plays a key role in the proof of
Propositions 67 and 70. So a direct argument, akin to Lemma 71, is needed.

P 72. – LetZ be a compactQ-Ahlfors regular metric space. Let z0 2 Z. Then
D �Z n f.0; z0/g is .1CQ; `/-parabolic.
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Proof. – For .y; z/ 2 Œ0; 1� � Z, let r.y; z/ D maxfy; d.z; z0/g denote the distance
to .0; z0/. We use the bounded function w D sin v.r/, where

v.t/ D log j log j log t jj if t � r1; v.t/ D log j log j log r1jj otherwise:

The constant r1 D r1.`/ is produced by the following lemma.

L 73. – Let v.t/ D log j log j log t jj. Given ` > 1, setC.`/ D 17 log.`/= log.`=`�1/.
If

b � r1 WD minf
` � 1

`
; `�2;

e�e
2

`
g and

b

a
�

`

` � 1
;

then

v.a/ � v.`b/ � C.`/ .v.a/ � v.b//:

Proof. – We use the inequalities

0 � u � 1 H) log.1C u/ �
1

2
u; 0 � u �

1

2
H) � log.1 � u/ � 2u:

Set t D log 1
b

and s0 D log 1
a
� log 1

b
D log b

a
� s WD log `

`�1
. Then

v.a/ � v.b/ D log log log
1

a
� log log log

1

b

D log log.t C s0/ � log log.t/

D log
�

log.t C s0/
log.t/

�
� log

�
log.t C s/

log.t/

�
D log

�
1C

log.t C s/ � log.t/
log.t/

�
D log

�
1C

log.1C .s=t//
log.t/

�
:

If t D log 1
b
� maxfs; e2g, s=t � 1, log.t/ � 2, so log.1C.s=t//

log.t/ � 1. Also s=t � 1, thus

log.1C .s=t// �
1

2

s

t
; log

�
1C

log.1C .s=t//
log.t/

�
�
1

2

log.1C .s=t//
log.t/

�
1

4

s

t log.t/

and

v.a/ � v.b/ �
s

4t log.t/
:
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Conversely, setting � D log 1
b
� log 1

`b
D log `,

v.b/ � v.`b/ D log log log
1

b
� log log log

1

`b

D log log.t/ � log log.t � �/

D � log
�

log.t � �/
log.t/

�
D � log

�
1C

log.t � �/ � log.t/
log.t/

�
D � log

�
1C

log.1 � .�=t//
log.t/

�
� �2

log.1 � .�=t//
log.t/

� 4
�

t log.t/
;

provided �=t � 1
2

and � log.1�.�=t//
log.t/ �

1
2

, which holds if t D log 1
b
� maxf2�; e2g.

Combining both inequalities yields

v.a/ � v.`b/ D v.a/ � v.b/C v.b/ � v.`b/

� v.a/ � v.b/C 4
�

t log.t/

� v.a/ � v.b/C 4
�

s

s

t log.t/

� v.a/ � v.b/C 16
�

s
.v.a/ � v.b//

� 17
�

s
.v.a/ � v.b//:

Continuation of the proof of Proposition 72. – Let fBj g be a `-packing of D�Z. The packing
splits into three sub-collections,

1. Balls B such that `B contains .0; z0/.

2. Balls B such that `B intersects RC � fz0g, but does not contain .0; z0/.

3. Balls B such that `B does not intersect RC � fz0g.

Fix some p > 1

1. The first sub-collection has at most one element. Since jwj � 1, it contributes at most 2p

to energy.

2. The second sub-collection is nearly taken care of by Lemma 71. Recall the definition
of D � Z in Definition 34. If two balls B D I � ˇ and B 0 D I 0 � ˇ0 in Œ0; 1� � Z are such
that `B and `B 0 are disjoint and both intersect Œ0; 1� � fz0g, then the intervals m`.I / and
m`.I

0/ are disjoint. Furthermore, if B D I � ˇ and I D Œa; b�, the radius of B is b�a
2

, thus
for z 2 ˇ, d.z; z0/ � 2`b�a2 , so

inf
B
r � a; sup

B

r D sup
B

d.�; z0/ � `.b � a/ � `b:
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The Z factor plays little role. We expect from Lemma 71 that the sum of p-th powers
of diameters of images w.Bj / should be bounded independently of the packing, as soon
as p > 1.

Here comes the proof. First, the last estimate needs be sharpened. Either `.b � a/ � b, in
which case r.B/ D Œa; b� and v.r.B// D Œv.b/; v.a/�, or b

a
�

`
`�1

. Lemma 73 shows that, in
both cases,

diameter.v.r.B/// � C.`/ .v.a/ � v.b//;

provided b is small enough.
If an interval I D Œa; b� of .0; 1� is such that m`.I / does not contain 1, then a � bm,

for m D `C1
`�1

. Indeed, the upper bound of m`.I / is a
1�`
2 b

1C`
2 . Hence if B D I � ˇ is a ball

of Œ0; 1� �Z for such an I ,

inf
B
r D a � bm; sup

B

r � `b � `.inf
B
r/1=m:

With r1 as in Lemma 73, define inductively a sequence ri by riC1 D . ri
`
/m (this gives

ri D `
�mm

i�1
m�1 ). Also, define r0 so that r1 D . r0

`
/m. Let fBj D Ij � ǰ g be a `-packing

of D�Z. Assume that all `Bj intersect Œ0; 1�� fz0g. At most one `Bj contains .1; z0/, let us
put it aside (it contributes at most 2p to energy). All other intervals Ij are disjoint and each
one is contained in at least one of the intervals ŒriC2; ri �. Therefore the index set is contained
in the union of subsets

Ji D fj I Ij � ŒriC2; ri �g;

and for all p, X
j

diameter.w.Bj //p �
1X
iD0

X
j2Ji

diameter.v.r.Bj ///p:

We split the sub-packing into two sub-families,

1. Balls B D I � ˇ such that v.r.B// 6D v.I / and max I � r1.

2. Balls B D I � ˇ such that v.r.B// D v.I / or max I � r1.

Members of the first sub-family satisfy max I � `
`�1

min I and max I � r1. Balls that have
max I � r0, have min I � r1, and v is constant on them. The other balls are contained
in Œr2; r0�. The number of such disjoint intervals is bounded in terms of ` only. Diameters
diameter.v.r.B/// � v.r2/ are bounded in terms of `. Therefore the sum of p-th powers
diameter.v.r.B///p over the members of this sub-family is apriori bounded in terms of `
and p only.

Members of the second sub-family satisfy

diameter.v.r.B/// � C diameter.v.I //:

Since the intervals Ij are disjoint,X
j2Ji

diameter.w.Bj //p �

0@X
j2Ji

diameter.v.r.Bj ///

1Ap
� C jv.riC2/ � v.ri /j

p;
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X
j

diameter.w.Bj //p � C
1X
iD0

jv.riC2/ � v.ri /j
p:

With our choice of v.t/ D log j log j log t jj,

v.riC2/ � v.ri / � j log.i C 2/ � log.i/j �
2

i
;

so the sum of p-th powers converges to a bound that depends only on ` and p.
3. The third sub-collection consists of balls B D Œa; b� � ˇ such that z0 … `ˇ.
Let us study how r varies along B. Note that the radius of balls B and ˇ equals b�a

2
.

Let � D maxˇ d.�; z0/ and ı D minˇ d.�; z0/. Then

sup
B

r D maxfb;�g; inf
B
r D maxfa; ıg:

Since z0 … `ˇ, ı � .` � 1/b�a
2

. Then � � ı C b � a � ı C 2
`�1

ı D mı. On the other hand,

— either a < b
2

, ı � .` � 1/b�a
2
� .` � 1/b

4
,

— or a � b
2

.

In the first case,

maxfb;�g � maxf
4

` � 1
ı;mıg � maxf

4

` � 1
;mgmaxfa; ıg:

In the second case,

maxfb;�g � maxf2a;mıg � maxf2;mgmaxfa; ıg:

In either case,

sup
B

r �M inf
B
r;

where M D maxfm; 2; 4
`�1
g.

Let � D dt ˝ � denote 1CQ-dimensional Hausdorff measure. Set ri DM�i . Let

Yi D f.y; z/ 2 Œ0; 1� �Z I riC2 < r.y; z/ � rig; Li D Lip.vjŒriC2;ri �
/:

Since r is 1-Lipschitz, Lip.wjYi / � Li . Each ball Bj of the sub-packing is entirely contained
in one of the sets Yi . Therefore the index set is contained in the union of subsets

J 0i D fj I Bj � Yig;

and for all p, X
j

diameter.w.Bj //p �
1X
iD0

X
j2J 0

i

diameter.w.Bj //p:

From now on, p D 1CQ. If j 2 J 0i ,

diameter.w.Bj //1CQ � L
1CQ
i diameter.Bj /1CQ � C L

1CQ
i �.Bj /:

Thus X
j2J 0

i

diameter.w.Bj //1CQ � C L
1CQ
i �.Yi / � C

0 .Liri /
1CQ;

since Yi � B..0; z0/; ri /.
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In order to estimate the Lipschitz constant Li , observe that

v0.t/ D
1

t j log t j log j log t j

achieves its maximum on ŒriC2; ri � at riC2 DM�.iC2/, hence

Li �
1

riC2.i C 2/ log.i C 2/
; Liri �

ri

riC2.i C 2/ log.i C 2/
�

M 2

i C 2
:

This bounds
P
j diameter.w.Bj //1CQ by a quantity that depends only on ` and Q.

The final argument, showing that w ı 
 has no limit for every proper coarse curve 
 is the
same as in Proposition 67.

5.10. Gauges

Here comes the last trick of this section: replacing a compact Q-Ahlfors-regular metric
space Z with its snowflake Z˛, which is Q

˛
-Ahlfors-regular. Morally, the warped product

D �Z˛ is 1C Q
˛

-dimensional. Since Z˛ admits a wealth of 1
˛

-Hölder continuous functions,
there are functions with finite ˛.1 C Q

˛
/ D ˛ C Q-energy. These are functions which

factor through Z˛, i.e., which are constant on segments D � fzg. It is likely that there be
no more. Indeed, the 1 C Q

˛
-modulus of the family of these segments is nonzero (see [31]),

so for p < 1C Q
˛

, every function with finite p-energy should factor through Z˛. In this
mechanism, the fact that the Hausdorff ˛-measure of segments for ˛ < 1 is infinite is
essential. In other words, the obstacle to the existence of finite energy ˛CQ functions with
poles is a small scale phenomenon. It turns out that it disappears if small balls are avoided.

This leads us to adapt the notion of energy, by forbidding packings whose balls are too
small according to a given gauge.

D 74. – Let X be a quasimetric space, let g W X ! RC be a nonnegative func-
tion. An .`; g; S/-packing is a collection of balls fBj .xj ; rj /g, each with radius S � rj � g.xj /,
such that the concentric balls `Bj are pairwise disjoint. An .N; `; g/-packing is the union of at
most N .`; g/-packings.

E 75. – According to Proposition 36, the Poincaré model of a hyperbolic metric
space X maps .`; R;1/-packings of X to .`; g; S/-packings of D � @X , with the gauge

g.y; z/ D tanh.R/y:

Note that tanh.R/ tends to 1 as R tends to infinity.

D 76. – Let X be a quasimetric space equipped with a gauge g W X ! RC.
Let ` � 1. Let u W X ! R be a function. Define its p-energy at parameters ` and g as follows.

E
p

`;g
.u/ D supf

X
j

diameter.u.Bj //p I .`; g/-packings fBj gg:

D 77. – LetX be a metric space equipped with a gauge g W X ! RC. Let � be a
family of coarse curves inX . The .p; `; g/-modulus modp;`;g.�/ is the infimum ofEp

`;g
-energies

of maps u W X ! Y to metric spaces such that for every curve 
 2 �, length.u ı 
/ � 1.
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D 78. – LetX be a locally compact noncompact quasimetric space equipped with
a gauge g W X ! RC. Say X is .p; `; g/-parabolic if the family of proper coarse curves based
at some compact set with nonempty interior has vanishing .p; `; g/-modulus.

D 79. – Let X be a metric space and X 0 a q.m.q.s. space equipped with a gauge
g0 W X 0 ! R. We denote by B

X 0

g0 the set of balls B 0 D B.x0; r 0/ of X 0 such that r 0 � g0.x0/.

Let f W X ! X 0 be a map. Say f is .R; S; g0/-coarsely conformal if there exist a map

B 7! B 0; B
X
R;S ! B

X 0

g0 ;

and for all `0 � 1, an ` � 1 and an N 0 such that

1. for all B 2 B
X
R;S , f .B/ � B 0.

2. If fBj g is a .`; R; S/-packing of X , then fB 0j g is an .N 0; `0; g0/-packing of X 0.

We say that f is g0-coarsely conformal if there exists R > 0 such that for all finite S � R,
f is .R; S; g0/-coarsely conformal.

We say that f is g0-roughly conformal if there exists R > 0 such that f is .R;1; g0/-coarsely
conformal.

In other words, one merely restricts the class of balls in the range to satisfy the gauge
condition r 0 � g0.x0/.

E 80. – Let X 0 be a hyperbolic metric space. Let � W X 0 ! D � @X 0 be its
Poincaré model, equipped with the gauge g0.y; z/ D y

2
. Then � is g0-roughly conformal.

It follows that if X is a metric space and f W X ! X 0 is a uniformly conformal map, then
� ı f W X ! D � @X 0 is a g0-coarsely conformal map.

Similarly, one can define Lp
`;g

norms on cochains and Lp
`;g

cohomology. A g0-roughly
conformal map X ! X 0 induces morphisms Lp

`0;g0
H �.X 0/! L

p

`
H �.X/.

5.11. Parabolicity of twisted products with snowflakes

P 81. – Let Z be a compact Q-Ahlfors regular metric space. Let 0 < ˛ � 1

and ` > 1. Let z0 2 Z. Let g W D �Z˛ ! RC be the gauge defined by g.y; z/ D y
2

. Then

1. For every ` > 1, functions of finite ˛CQ-energy, together with the projection on the first
factor, separate D �Z˛.

2. For every ` > 1, D �Z˛ n f.0; z0/g is .˛ CQ; `; g/-parabolic.

Proof. – 1. When the second factor is the snowflake space Z˛, the discussion of Propo-
sition 72 provides the exponent 1 C Q

˛
. This can be improved into ˛ CQ for the following

reason: on Z˛, the function

� W Z˛ ! RC; �.z/ D dZ˛ .z; z0/
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is not merely 1-Lipschitz, it is 1=˛-Hölder continuous (although with a constant that deteri-
orates when getting close to z0). Indeed, if z; z0 2 Z, with �.z/ � �.z0/,

j�.z/ � �.z0/j D jdZ.z; z0/
˛
� dZ.z

0; z0/
˛
j

� ˛dZ.z; z0/
˛�1
jdZ.z; z0/ � dZ.z

0; z0/j

� dZ.z; z0/
˛�1dZ.z; z

0/

D �.z/
˛�1
˛ dZ˛ .z; z

0/1=˛:

It follows that functions like vz0;� D maxf0; � � �g, z0 2 Z, � > 0 have finite ˛ CQ-energy.
Observe that, together with u.y; z/ D y (which does not have finite energy), they separate
points.

2. The proof closely follows the proof of Proposition 72. We first study the variation of
function r.y; z/ D maxfy; �.z/g along balls, and then estimate the energy of w D sin.v/ ı r ,
for v.t/ D j log j log j log t jjj.

Let B D Œa; b� � ˇ be a ball of D �Z˛ such that z0 … `ˇ. Denote again by

ı D inf
ˇ
�; � D sup

ˇ

�:

Since the triangle inequality holds in Z˛, the bounds ı � .`� 1/b�a
2

and � � mı still hold.
Therefore the estimate

sup
B

r �M inf
B
r

is unaffected. On the other hand, the 1=˛-Hölder character of � leads to

� � ı � ı
˛�1
˛ .b � a/1=˛

� m
1�˛
˛ �

˛�1
˛ .b � a/1=˛:

If B satisfies the gauge condition, i.e., b�a
2
� g.aCb

2
/ where g.y/ D y

2
, then b � 3b�a

2
,

b � a

2
D .

b � a

2
/
˛�1
˛ .

b � a

2
/1=˛ � .

b

3
/
˛�1
˛ .

b � a

2
/1=˛:

Then

sup
B

r � inf
B
r � maxfb � a;� � ıg

� C.minfb;�g/
˛�1
˛ .

b � a

2
/1=˛

� C.inf
B
r/
˛�1
˛ .

b � a

2
/1=˛

� C 0.sup
B

r/
˛�1
˛ .

b � a

2
/1=˛:

Therefore,

sup
B

r � inf
B
r � C .sup

B

r/
˛�1
˛ diameter.B/1=˛;

where C depends only on ` and ˛.
Given an .`; g/-packing ofD�Z˛, let us split it into 3 sub-collections, according to wether

concentric balls `Bj
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— contain .0; z0/;

— intersect D � fz0g but do not contain .0; z0/;

— do not intersect D � fz0g.
Nothing needs be changed for the first two sub-collections, since an upper bound on energy
sums is obtained for any exponent p > 1. For the third one, the same constants can be used:

ri DM
�i ; Yi D f.y; z/ 2 Œ0; 1� �Z I riC2 < r.y; z/ � rig;

Li D Lip.vjŒriC2;ri �
/:

Again every ball in the sub-packing is contained in at least one of the Yi . We see that a ballB
contained in Yi satisfies

diameter.w.B// � diameter.v.r.B///

� Li .sup
B

r � inf
B
r/

� C Li r
˛�1
˛

i diameter.B/1=˛:

Thus

diameter.w.B//˛CQ � C ˛CQ Li ˛CQ r
.˛�1/.˛CQ/

˛

i diameter.B/1C.Q=˛/

� C 0Li
˛CQr

.˛�1/.˛CQ/
˛

i �.B/:

Since �.Yi / � const: r1C.Q=˛/i , summing over all balls in the sub-packing contained in Yi
gives X

j2J 0
i

diameter.w.B//˛CQ � C 00Li ˛CQr
.˛�1/.˛CQ/

˛

i r
1C.Q=˛/
i

D C 00 .Liri /
˛CQ:

The choice of v.t/ D log j log j log t jj yields againLiri � C 000=.iC2/, and the sum is bounded
above in terms of `, ˛ and Q only.

The final argument, showing that w ı 
 has no limit for every proper coarse curve 
 , is
unchanged.

6. Lp-cohomology

6.1. Definition

Here is one more avatar of the definition of Lp cohomology for metric spaces. This one
has the advantage that it does not require any measure. For earlier attempts, see [11], [14].

D 82. – Let X be a metric space. A k-simplex of size S in X is a kC 1-tuple of
points belonging to some ball of radius S . A k-cochain of size S onX is a real valued function �
defined on the set of k-simplices of size S . Its Lp

`;R;S
-norm is

jj�jjLp
`;R;S

D supf
X
j

sup
.Bj /

kC1

j�jp I all .`; R; S/-packings fBj gg1=p:

Let Lp
`;R;S

C k.X/ denote the space of k-cochains with finite Lp
`;R;S

-norm.
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The coboundary operator d maps k-cochains to k C 1-cochains,

d�.x0; : : : ; xkC1/ D �.x1; : : : ; xkC1/ � �.x0; x2; : : : ; xkC1/C � � �

C .�1/kC1�.x0; : : : ; xk/:

Denote by

L
q;p

`;R;SC
k.X/ D L

q

`;R;S
C k.X/capd�1Lp

`;R;S
C kC1.X/;

in order to turn d into a bounded operator L
q;p

`;R;S .X/ ! L
p

`;R;S
.X/. The Lq;p-cohomology

of X is

L
q;p

`;R;S
H k.X/ D

�
ker.d/capLp

`;R;S
C k.X/

�
=d
�

L
q;p

`;R;SC
k�1.X/

�
:

The exact Lq;p-cohomology ofX is the kernel of the forgetful map Lq;p
`;R;S

H k.X/! H k.X/.
When p D q, L

p;p
D Lp and Lp;p-cohomology is simply called Lp-cohomology.

R 83. – The definition of Lq;p
`;0;1

H k.X/ extends to q.s. spaces X , and is simply

denoted by Lq;p
`
H k.X/.

For instance, a bounded function u W X ! R can be viewed as a 0-cochain of infinite size,
du.x1; x2/ D u.x2/ � u.x1/ is a 1-cochain of infinite size (i.e., belonging to L1

`;0;1
C 1.X/),

and, for all R and S ,

E
p

`;R;S
.u/ D jjdujj

p

L
p

`;R;S

:

E 84. – If X is a compact infinite d -Ahlfors regular metric space, then, for all
S > 0, Lp

`;0;S
H 1.X/ 6D 0 for p � d .

Indeed, in an infinite metric space, one can `-pack infinitely many small balls. Therefore a
function which is� 1 has infinite Lp

`;0;S
norm. Since non constant Lipschitz functions onX

have finite energy, and do not belong to any Lp
`;0;S

C 0.X/, their Lp
`;0;S

cohomology classes
do not vanish.

6.2. Link to usual Lp-cohomology

Lp-cohomology calculations on manifolds (resp. on simplicial complexes) require the
classical de Rham (resp. simplicial) definition of cohomology. There is a de Rham style
theorem relating Definition 82 to smooth differential forms (resp. simplicial cochains). It
shows up in [15]. We shall need the more general case of Lq;p-cohomology, which appears
in [13].

P 85 ([32]). – Let 1 � p � q < C1. LetX be a bounded geometry simplicial
complex. Assume that the cohomology ofX vanishes uniformly up to degree k, i.e., for allT > 0,
there exists QT such that for all x 2 X , the inclusion B.x; T / ! B.x; QT / induces the 0 map in
cohomology up to degree k.

Then for every R > 0 and S < C1 and for large enough ` � 1, there is a natural
isomorphism of Lq;p-cohomologies Lq;p

`;R;S
H k.X/ ' `q;pH k.X/. In degree k C 1, the

isomorphism persists provided the space `q;pH k.X/ is replaced with exact cohomology, i.e.,
the kernel E`q;pH k.X/ of the forgetful map `q;pH k.X/ ! H k.X/. This isomorphism is
compatible with multiplicative structures.
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For degree 1 cohomology, the size limit plays no role. Indeed, a 1-cocycle of size S on
a simply connected manifold or simplicial complex, say, is the differential of a function,
i.e., a 0-cochain of arbitrary size, and thus uniquely extends to become a 1-cocycle without
size limit. The considerations of Subsection 5.2 show that, a priori, all Lp

`;R;S
-norms are

equivalent on 1-cocycles. For higher degree cohomology, this holds only at the cohomology
level, under suitable assumptions, thanks to Proposition 85.

R 86. – For a bounded geometry n-manifold X with boundary, we define
`q;pH �.X/ as the `q;p cohomology of a bounded geometry simplicial complex quasiiso-
metric to X . There is an alternative notion, defined in terms of differential forms. This leads
to the same cohomology if and only if

1

p
�
1

q
�
1

n

and p > 1 if degree k D n, see [32].

6.3. Functoriality of Lp-cohomology

For every `0 � 1, .R; S;R0; S 0/-coarse conformal map f W X ! X 0 induces a bounded
linear map

f � W L
q;p

`0;R0;S 0
H k.X 0/! L

q;p

`;R;S
H k.X/

for suitable ` � 1. Exact cohomology is natural as well.

Under the assumptions of Proposition 85, `q;p-cohomology is natural under coarse
embeddings and a quasi-isometry invariant. Indeed, it is isomorphic to Lq;p

`;R;S
cohomology

which has these properties. On the other hand, it is not clear whether it is natural under
large-scale conformal maps, since Lq;p

`;R;1
cohomology may differ from ordinary `q;p-coho-

mology.

6.4. Vanishing of 1-cohomology and limits

D 87. – LetX be a metric space, Y a topological space, and y 2 Y . AssumeX is
unbounded. Say a map f W X ! Y tends to y at infinity if for every neighborhood V of y, there
exists a bounded set K � X such that f .x/ 2 V when x … K.

L 88. – Let X be an unbounded metric space. Let q < 1. Then every function
u 2 L

q

`;R;S
C 0.X/ tends to 0 at infinity.

Proof. – Fix � > 0. Let fBj g be an .`; R; S/-packing such thatX
j

.sup
Bj

juj/q > jjujj
q

L
q

`;R;S

� �:

Pick a finite subfamily which achieves the sum minus �. The union of this finite subfamily
is contained in a ball K. If d.x; `K/ > `R, add B.x;R/ to the finite subfamily to get a
larger .`; R; S/-packing. By definition of energy, supB.x;R/ juj

q < 2�. In particular, we have
ju.x/j < .2�/1=q outside a bounded set. This shows that u tends to 0 at infinity.
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C 89. – Let X be an unbounded metric space. Let q < 1. Assume that the
Lq;p-cohomology of X vanishes in degree 1, i.e.,

L
q;p

`;R;S
H 1.X/ D 0:

Let Y be a complete metric space. Then every map from X to Y with finite Ep
`;R;S

energy has
a limit at infinity.

Proof. – Let u W X ! Y have finite energy. Using a packing with only one ball, one
sees that u is bounded, i.e., its image is contained in a closed ball Z � Y . For y 2 Z,
set vy.x/ D d.u.x/; y/. Then vy has finite Ep

`;R;S
energy. By assumption, there exists a

0-cochainw 2 Lq
`;R;S

C 0.X/ such that dw D dvy . This implies that vy has a finite limit ˛.y/
at infinity. ˛ belongs to the closure of the Kuratowski embedding of Z in L1.Z/. Since
Z is complete, the embedding has a closed image, so there exists a point z 2 Z such that
˛.y/ D d.z; y/ for all y 2 Z. In particular, d.u.x/; z/ D vz.x/ tends to ˛.z/ D 0.

6.5. Vanishing of reduced 1-cohomology and limits

D 90. – Let X be a metric space. The reduced Lq;p-cohomology of X is
obtained by modding out by the Lp-closure of the image of the coboundary operator d ,

L
q;p

`;R;S
NH k.X/ D

�
ker.d/capLp

`;R;S
C k.X/

�
=d
�

L
q;p

`;R;SC
k�1.X/

�
:

The reduced exact Lq;p-cohomology of X is the kernel of the forgetful map

L
q;p

`;R;S
NH k.X/! H k.X/:

L 91. – Let X be an unbounded metric space with a base point. Then for every finite
p-energy function u such that the reducedLq;p

`;R;S
-cohomology class of du vanishes, there exists

c 2 R such that u converges to c along p-almost every based .1; 1/-curve.

Proof. – Assume that uj 2 L
q

`;R;S
C 0.X/ and

jjduj � dujjLp
`;R;S

tends to 0 as j tends to1:

For t 2 R, let �t;C (resp. �t;�) be the family of based .1; 1/-curves 
 along which u has a
finite limit and limu ı 
 � t (resp. � t ). Fix s < t . Let vj D 2

t�s
.u � uj /.

Assume that there exists a based 1; 1-curve 
 2 �t;C such that, for infinitely many j ,
length.vj ı 
/ � 1. For those j ’s, for every 
 0 2 �s;�, length.vj ı 
 0/ � 1. Indeed, along
the bi-infinite curve obtained by concatenating 
 and 
 0, the total variation of vj is � 2.
Therefore, for infinitely many j ’s,

modp;`;R;S .�s;�/ � E.vj / D .
2

t � s
jjduj � dujjLp

`;R;S
/p;

and modp;`;R;S .�s;�/ D 0.
Otherwise, for each 
 2 �t;C, for all but finitely many values of j , length.vj ı 
/ � 1.

�t;C is the union of sub-families

�t;C;J D f
 2 �t;C I 8j � J; length.vj ı 
/ � 1g;

each of which has vanishing modulus.
By stability under countable unions, modp;`;R;S .�t;C/ D 0.
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Let c be the supremum of all t 2 R such that modp;`;R;S .�t;C/ > 0. By stability
under countable unions, the family of based curves along which u has a finite limit > c has
vanishing modulus. If c D �1, for every n 2 Z, the family of based curves along which
u has a finite limit � n has vanishing modulus. Thus the family of all based curves has
vanishing modulus, and the lemma is proved. Otherwise, modp;`;R;S .�s;�/ D 0 for all s < c.
By stability under countable unions, the family of based curves along which u has a finite
limit < c has vanishing modulus. Since, according to Lemma 59, u has a finite limit along
p-almost every based .1; 1/-curve, this shows that u tends to c along almost every based
.1; 1/-curve.

C 92. – LetX be an unbounded metric space. Let Y be a complete metric space.
Let u W X ! Y have finite Ep

`;R;S
energy. Assume that the reduced Lq;p-cohomology of X

vanishes, i.e.,Lq;p
`;R;S

NH 1.X/ D 0. Then u has a common limit along p-almost every based curve.

Proof. – For y 2 Y , set vy.x/ D d.u.x/; y/. Then vy has finiteEp
`;R;S

energy. By assump-
tion, dvy belongs to the Lp

`;R;S
-closure of d L

q;p

`;R;SC
0.X/. Lemma 91 implies that vy has a

finite limit ˛.y/ along almost every based curve. ˛ belongs to the closure of the Kuratowski
embedding of Y in L1.Y /. Since Y is complete, the embedding has a closed image, so there
exists a point z 2 Y such that ˛.y/ D d.z; y/ for all y 2 Y . In particular, d.u.x/; z/ D vz.x/
tends to ˛.z/ D 0 along almost every based curve.

6.6. p-separability

D 93. – Let X be a q.s. space. Let Ep;`.X/ denote the space of continuous real-
valued functions on X with finite .p; `/-energy.

D 94. – Say a q.s. space X is p-separated if for every large enough `, Ep;`
separates points and for every point x 2 X , Ep;`.X nfxg/ contains a function which has no limit
along all coarse curves converging to x. IfX is non-compact, one requires further that Ep;`.X/

contains a function which has no limit along all coarse curves tending to infinity.

E 95. – Q-Ahlfors-regular metric spaces are p-separated for all p � Q.

Proof. – Proposition 39 shows that Lipschitz functions with bounded support have finite
energy. They separate points. Propositions 67 and 70 establish parabolicity ofX and of point
complements.

P 96. – Let 1 � p; q < C1. Let X be a locally compact unbounded metric
space. Let X 0 be a separable locally compact p-separated q.s. space. Let f W X ! X 0 be a
coarse conformal map. Then there existsR > 0 such that for all S � R and `0 > 1, for all large
enough `,

either the induced map

f � W EL
q;p

`0
NH 1.X 0/! EL

q;p

`;R;S
NH 1.X/

in reduced exact Lq;p-cohomology (see Definition 90) does not vanish,

or X is .p; `; R; S/-parabolic.
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Proof. – Let us treat first the simpler case when unreducedLp-cohomology vanishes. Let
f W X ! X 0 be a coarse conformal map. Assume that f has distinct accumulation points x01
and x02 at infinity. By assumption, there exists a continuous function v on X 0 with finite
.p; `0/-energy such that v.x01/ 6D v.x

0
2/. Then, for allR � S , vıf has finiteEp

`;R;S
energy for

suitable `. IfELq;p
`;R;S

H 1.X/ vanishes, according to Corollary 89, v ıf has a limit at infinity.
This should be at the same time v.x01/ and v.x02/, a contradiction. We conclude that f has at
most one accumulation point at infinity. Hence either it has a limit x0, or it tends to infinity.

In either case, there exists a finite Ep
`;R;S

-energy function w W X 0 ! R that has no limit
along p-almost every coarse curve converging to x0 (resp. to infinity). Then w ı f has finite
E
p

`;R;S
energy as well, it must have a finite limit in R. This contradicts the assumption that

the family of based .1; 1/-curves in X has positive .p; `; R; S/-modulus, by Lemma 59. We
conclude that f � does not vanish on ELq;p

`
H 1.X 0/.

Assume that f induces a trivial map in reduced cohomology and that X is non-
.p; `; R; S/-parabolic. Equip Ep;`.X

0/ with the topology of uniform convergence on
compact sets. Let D � Ep;`.X

0/ be a countable dense subset. Then D still separates
points. We know that for all v 2 D, v ı f ı 
 has a common limit yv for almost every
based .1; 1/-curve 
 in X . For v 2 D, let �v be the family of .R; S/-based curves 
 � X

such that v ı f ı 
 does not have a limit or has a limit which differs from yv. Then
� D

S
v2D �v has vanishing .p; `; R; S/-modulus. Let � 0 be the complementary family.

Since X is non-.p; `; R; S/-parabolic, � 0 is non-empty. Fix two based curves 
; 
 0 2 � 0.
Assume that f ı 
 and f ı 
 0 have distinct accumulation points x01 and x02 in X 0. Let
v 2 D be such that v.x01/ 6D v.x

0
2/. By construction, v ı
 and v ı
 0 converge to yv. Since v is

continuous, v ı 
 subconverges to v.x01/ and v ı 
 0 to v.x02/, a contradiction. We conclude
that f has a common limit x0 along all 
 2 � 0. The argument ends in the same manner.

6.7. Relative p-separability

Here comes a relative version of Proposition 96, motivated by the case of warped products.

D 97. – LetX be a q.m.q.s. space equipped with a gauge function g W X ! RC.
Let Ep;`;g.X/ denote the space of continuous real-valued functions on X with finite
.p; `; g/-energy.

D 98. – LetX be a q.m.q.s. Let u W X ! Y be a continuous map to a topological
space, let g W X ! RC be a gauge. Say X is p-separated relatively to u; g if for every large
enough `,

1. Ep;`;g [ fug separates points.

2. Complements of points in X where g D 0 are .p; `; g/-parabolic.

E 99. – LetZ be a compactQ-Ahlfors-regular metric space. Let 0 < ˛ � 1. Let
Z˛ D .Z; d˛Z/ be a snowflaked copy of Z. Let X D D � Z˛. Let u be the projection to the
first factor Y D Œ0; 1� and g D u

2
. Then X is p-separated relative to u; g for all p � ˛ CQ.

Indeed, the projection to the second factor equipped with dZ has finite .p; `; g/-energy
for all p � ˛ C Q and all ` > 1, see Example 40. Together with u, it separates points.
Proposition 81 states that complements of points in X where g D 0 are .p; `; g/-parabolic.
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P 100. – Let 1 � p; q < C1. Let X be a locally compact metric space
containing at least one based .1; 1/-curve. Let X 0 be a compact q.m.q.s. space which is p-sepa-
rated relatively to a map u W X 0 ! Y and a gauge g0 W X ! RC. Let f W X ! X 0 be a g0-coarse
conformal map (see Definition 79). Assume that the map u ı f tends to some point y 2 Y at
infinity. Then there exists R > 0 such that for all S � R and `0 > 1, for all large enough `,

either the induced map

f � W EL
q;p

`0;g0
NH 1.X 0/! EL

q;p

`;R;S
NH 1.X/

in reduced exact Lq;p-cohomology does not vanish,

or X is .p; `; R; S/-parabolic.

Proof. – By contradiction. Assume that f induces a trivial map in reduced cohomology
and that X is non-.p; `; R; S/-parabolic. Equip Ep;` with the topology of uniform conver-
gence. LetD � Ep;` be a countable dense subset. ThenD[fug still separates points. For all
v 2 D, vıf ı
 has a common limit tv for almost every based .1; 1/-curve 
 inX . For v 2 D,
let �v be the family of .R; S/-based curves 
 � X such that v ı f ı 
 does not have a limit
or has a limit which differs from tv. Then � D

S
v2D �v has vanishing .p; `; R; S/-modulus.

Let � 0 be the complementary family. Since X is non-.p; `; R; S/-parabolic, � 0 is non-empty.
Fix two based curves 
; 
 0 2 � 0. Assume that f ı 
 and f ı 
 0 have distinct accumulation
points x01 and x02 inX 0. Since u.x01/ D u.x

0
2/ D y, there exists v 2 D such that v.x01/ 6D v.x

0
2/.

By construction, v ı 
 and v ı 
 0 converge to tv. Since v is continuous, v ı 
 subconverges
to v.x01/ and vı
 0 to v.x02/, a contradiction. We conclude that f has a common limit x0 along
all 
 2 � 0.

Letw W X 0 ! R be a finite p; `0; g-energy function that has no limit along .p; `; g/-almost
every coarse curve converging to x0. Thenw ıf has finiteEp

`;R;S
energy as well, it must have

a finite limit in R. This contradicts the fact that the family of based .1; 1/-curves in X has
positive .p; `; R; S/-modulus. We conclude that either f � does not vanish onELq;p

`
NH 1.X 0/

or X is p-parabolic.

7. Lack of coarse conformal maps

T 3. – Let 1 < p; q < C1. Let X be a simplicial complex with bounded
geometry and uniform vanishing of 1-cohomology. Assume thatX is p-parabolic for no choices
of parameters .`; R; S/ and that ELq;p NH 1.X/ D 0.

1. Let X 0 be a p-Ahlfors-regular metric space. Then there can be no coarse conformal
maps X ! X 0.

2. Let 0 < ˛ � 1. LetZ be a compactp�˛-Ahlfors-regular metric space. LetX 0 be a warped
product D � Z˛, equipped with the gauge g.y; z/ D y

2
. For every g-coarse conformal

mapX ! X 0 (see Definition 79), the projected map to the first factorX ! Œ0; 1� cannot
tend to 0.
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Proof. – The first assertion follows from Example 95 (p-Ahlfors-regular spaces are
p-separated) and Proposition 96 (existence of a coarse conformal map to a p-separated
space implies either p-parabolicity or nonvanishing of reduced exact Lp;q cohomology).

The second assertion follows from Example 99 (warped products of the hyperbolic half-
line and snowflaked Ahlfors-regular spaces are separated relative to the projection to the first
factor), Proposition 100 (existence of a coarse conformal map to a q.m.q.s. space which is
p-separated relative to a map u and a gauge g implies either p-parabolicity or nonvanishing
of reduced exact Lp;q cohomology, unless u converges along the coarse conformal map).
Proposition 85 is used to relate metric space Lp;q cohomology to usual `p;q cohomology of
manifolds or simplicial complexes.

7.1. Examples

For nilpotent groups, reduced Lp-cohomology vanishes. Indeed, such groups admit
unbounded central subgroups. A central element in G acts by a translation of G, i.e.,
moves points a bounded distance away. The corollary on page 221 of [19] applies: reduced
Lp-cohomology vanishes in all degrees, in particular in degree 1.

A nilpotent group of homogeneous dimension Q is p-parabolic if and only if p � Q.
.p; `; R;1/-parabolicity for p � Q, R > 0 and ` > 1 follows from the asymptotics of
volume of balls, [28], and Remark 68. Non-.p; `; R; S/-parabolicity forp < Qwill be proved
below, in Proposition 120 and Corollary 119. Carnot groups in their Carnot-Carathéodory
metrics are even .p; `/-parabolic for p � Q and ` > 1, according to Proposition 67, since
they are Q-Ahlfors regular.

Non-elementary hyperbolic groups, [16], have infinite isoperimetric dimension, hence they
are never p-parabolic (again, this follows from Proposition 120 and Corollary 119). Their
Lp-cohomology vanishes for p in an interval starting from 1, whose upper bound is denoted
by CohDim ([8]).

Conformal dimension ConfDim arises as the infimal Hausdorff dimension of Ahlfors-
regular metrics in the quasi-symmetric gauge of the ideal boundary. By definition, the quasi-
symmetric gauge is the set of metrics which are quasi-symmetric to a visual quasi-metric (all
such quasi-metrics are mutually quasi-symmetric), [8]. Quite a number of results on CohDim
and ConfDim can be found in recent works by Marc Bourdon, [7], John Mackay [25] and
their co-authors.

7.2. Maps to nilpotent groups

C 101. – Let G and G0 be nilpotent Lie group of homogeneous dimensions Q
and Q0. Assume that G0 is Carnot and equipped with a homogeneous Carnot-Carathéodory
metric. If there exists a coarse conformal map G ! G0, then Q � Q0.

Proof. – G0, a Carnot group in its Carnot-Carathéodory metric, is Q0-Ahlfors-regular.
Since reduced Lp-cohomology vanishes, Theorem 3 forbids the existence of a coarse
conformal map G ! G0 unless G is Q0-parabolic. This implies that Q � Q0.

Note that no properness assumption was made. Also, a stronger result will be obtained
by a different method in Corollary 133.
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C 102. – LetG be a finitely generated group. LetG0 be a nilpotent Lie or finitely
generated group. If there exists a uniformly conformal map G ! G0, then G is itself virtually
nilpotent, and d.G/ � d.G0/.

Proof. – It isQ0-Ahlfors regularity of G0 in the large which is used here, and Corollaries
66 and 69. Indeed, G0 is p-parabolic for p D d.G0/, therefore so is G. The combination of
Lemma 118 and Proposition 126 implies that the isoperimetric dimension ofG is at most p.
Proposition 120 tells us that G must be virtually nilpotent and d.G/ � p D d.G0/.

C 103. – LetG be a non-elementary hyperbolic group. LetG0 be a Carnot group
of homogeneous dimension Q0 equipped with its Carnot-Carathéodory metric. If there exists a
coarse conformal map G ! G0, then CohDim.G/ � Q0.

Proof. – SinceG0 isQ0-Ahlfors regular and non-elementary hyperbolic groups are never
p-parabolic, Theorem 3 provides this upper bound on CohDim.G/.

R 104. – Is Corollary 103 sharp? The Poincaré model of hyperbolic space
Hn ! D � @Sn�1 is coarsely conformal, but the range is not quite Rn. It is unlikely that
there exist coarse conformal maps from hyperbolic to Carnot groups. In any case, according
to Corollary 65, such a map cannot be proper.

C 105. – Let G be a non-elementary hyperbolic group. Let G0 be a nilpotent
group of homogeneous dimensionQ0. If there exists a uniformly conformal map G ! G0, then
CohDim.G/ � Q0.

Proof. – Corollaries 66 and 69 apply, since non-elementary hyperbolic groups are never
p-parabolic.

7.3. Maps to hyperbolic groups

C 106. – Let G, G0 be non-elementary hyperbolic groups. If there exists a
uniformly conformal map G ! G0, then

CohDim.G/ � ConfDim.G0/:

Proof. – Let d 0 be an Ahlfors-regular metric in the gauge of @G0, of Hausdorff dimen-
sion Q0. According to [9], there exist a bounded geometry hyperbolic graph X , a visual
quasi-metric do on @X and a bi-Lipschitz homeomorphism q W .@G0; d 0/ ! .@X; do/,
arising from a quasi-isometry q W G0 ! X . Set Z D .@X; .q�1/�d 0/. Pick 0 < ˛ � 1. Let
X 0 D D �Z˛. According to Proposition 36 and Example 75, the Poincaré model of X is
a roughly conformal map � W X ! X 0 which has the property that for R large enough,
R-balls are sent to balls B 0..y; z/; r/ such that r � g0.y/ WD y

2
. If f W G ! G0 is uniformly

conformal, then f 0 D � ı q ı f W G ! X 0 is g0-coarsely conformal (Proposition 6 and
Example 80). Furthermore, q ı f is proper, so the projection of f 0 to the first factor tends
to 0.

Since G is never p-parabolic, Theorem 3 asserts that CohDim.G/ � ˛ CQ0. Taking the
infimum over ˛ 2 .0; 1/ and Q0 � ConfDim.G/, we get CohDim.G/ � ConfDim.G0/.

E 107. – Fuchsian buildings.
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Right-angled Fuchsian buildings (also known as Bourdon buildings) Xp;q are universal
covers of orbihedra having one p-sided polygon, p even, with trivial face group, cyclic Z=qZ
edge groups and direct product Z=qZ� Z=qZ vertex groups. The conformal dimension and
the cohomological dimension of Xp;q are both equal to 1C log.q�1/

arg cosh.p�22 /
, [5], [8]. As p and q

vary, these numbers fill a dense subset of Œ1;C1/.
There are obvious isometric embeddings Xp;q ! Xp;q0>q and a jungle of bi-Lipschitz

embeddings X2p�4;q ! Xp;q , X3p�8;q ! Xp;q ,. . . The only known restriction on the
existence of uniform/coarse embeddings Xp;q ! Xp0;q0 is provided by Corollary 106 or,
alternatively, by D. Hume, J. Mackay and R. Tessera’s p-separation estimates, [23].

C 108. – Let G be a nilpotent Lie group of homogeneous dimension Q.
Let G0 be a hyperbolic group. If there exists a uniformly conformal map G ! G0, then
Q � ConfDim.G0/.

Proof. – Only the last paragraph of the proof of Corollary 106 needs be changed. In
this case, reduced Lp-cohomology vanishes always, Theorem 3 asserts that G must be
p-parabolic for p D ˛ C Q0, hence Q � ˛ C Q0. Taking the infimum over ˛ 2 .0; 1/ and
Q0, we get Q � ConfDim.G0/.

E 109. – This is sharp. For instance, the uniform embeddings Rn�1 ! Hn
R and

Heis2m�1 ! Hm
C are uniformly conformal.

More generally, every Carnot group G is a subgroup of the hyperbolic Lie group
G0 D RnG, where R acts on G through Carnot dilations. The homogeneous dimension
of G is equal to the conformal dimension of G0, [30]. This provides a uniformly conformal
map G ! G0, according to Lemma 18.

7.4. Proof of Theorem 1 and Corollary 1

Theorem 1 is a combination of Corollaries 102, 105, 106 and 108 applied to the subclass
of large-scale conformal maps. Corollary 1 is the special case of uniform/coarse embeddings.

8. Large scale conformal isomorphisms

8.1. Capacities

D 110. – Let X be a metric space, let K � X be a bounded set. The
.p; `; R; S/-capacity of K, capp;`;R;S .K/, is the infimum of E

p

`;R;S
-energies of func-

tions u W X ! Œ0; 1� which take value 1 on K and have bounded support.

R 111. – If capp;`;R;S .fog/ D 0, then X is .p; `; R; S/-parabolic.

Proof. – The capacity of the one point set fog bounds from above the .p; `,R; S/-modulus
of the family of all .1; 1/-curves based at o.

Note that if X is connected, capp;`;R;S .fog/ D 0 implies that for every compact set K,
capp;`0;R0;S 0.K/ D 0 for suitable constants. Indeed, if u.o/ D 1 and Ep

`;R;S
.u/ � �, then,

using the packing with only one ballB1 D B.o; S/, u � 1�� onB1, u � 1�2� on the setB2
of points at distance � S of B1, and so on, u � 1 �N.K/� on K.
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P 112. – Let X and X 0 be locally compact, noncompact metric spaces. Let
f W X ! X 0 be a large-scale conformal map. Then, for every R0 > 0, there exists R > 0 and
for every `0 � 1, there exist ` � 1 and N 0 such that, for all compact sets K � X ,

capp;`;R;1.K/ � N
0 capp;`0;R0;1.f .K//:

Proof. – If u W X 0 ! Œ0; 1� has compact support and u.f .K// D 1, then u ı f has
compact support and .u ı f /.K/ � 1, thus Ep

`;R;1
.u ı f / � capp;`;R;1.K/. We know from

Lemma 45 that

E
p

`;R;1
.u ı f / � N 0E

p

`0;R0;1
.u/:

Taking the infimum over all such functions u,

capp;`;R;1.K/ � N
0 capp;`0;R0;1.f .K//:

8.2. Non-parabolicity and Lq;p cohomology

D 113. – A metric space X is uniformly perfect in the large if there exists a
constant c > 0 such that, for all x 2 X and large enough T , B.x; T / n B.x; cT / 6D ;.

Unbounded geodesic spaces (e.g., graphs, Riemannian manifolds), and spaces roughly
isometric to such (e.g., locally compact groups) are uniformly perfect in the large. The point
of this property is to ensure thatR-volumes (meaning the number of disjointR-balls that one
can pack inside) of large balls are large.

L 114. – Let X be a metric space which is uniformly perfect in the large. Fix a
radius R > 0. Let volR.B/ denote the maximal number of disjoint R-balls that can be packed
in B, and vR.T / D infx2X volR.B.x; T //. Then vR.T / tends to infinity with T .

Proof. – Given a ballB D B.x0; T /, uniform perfectness, applied inB.x0; 2T2Cc /, provides
a point x1 2 B.x0;

2T
2Cc

/ n B.x; 2cT
2Cc

/. Then B.x1;
c
2Cc

T / � B.x; T / n B.x0;
c
2Cc

T /.
Iterating the construction produces a sequence of disjoint ballsB.xj ; . c

2Cc
/jC1T / inB.x; T /.

If n D blogc=2Cc.T=R/c, we get n disjoint R-balls in B.x; T /.

L 115. – Let X be a metric space which is uniformly perfect in the large. Fix ` � 1
and S � R > 0. Assume that X is S -connected, i.e., any two points are connected by a
chain of intersecting S -balls. If ELq;p

`;R;S
H 1.X/ D EL

q;p

`;R;S
NH 1.X/ for some finite q, then the

capacity of balls tends to infinity uniformly with their radius: there exists a function �`;R such
that �`;R.T / tends to infinity as T !1, and such that for every ball B.x; T / of radius T ,

capp
`;R;S

.B.x; T // � �`;R.T /:

In particular, X is non-.p; `; R; S/-parabolic.

Proof. – By assumption, the coboundary

d W L
q;p

`;R;SC
0.X/! L

p

`;R;S
C 1.X/

has a closed image. Its kernel consists of constant functions (thanks to S -connectedness),
which can be modded out. d becomes a continuous isomorphism between Banach spaces.
According to the isomorphism theorem, d has a bounded inverse. Thus there exists a
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constant C such that, for every function u 2 Lq
`;R;S

C 0.X/, there exists a constant cu such
that

jju � cujjLp
`;R;S

C0.X/ � C jjdujjLp
`;R;S

C1.X/:

Since volR.X/ is infinite, constants do not belong to Lq
`;R;S

C 0.X/, so cu D 0. For func-
tions u W X ! Œ0; 1� with bounded support, this translates into

jjujjLq
`;R;S

C0.X/ � C E
p

`;R;S
.u/1=p:

Let B.x; T / be a large ball. Uniform perfectness ensures that a logarithmic number of
disjoint balls of radius `R can be packed into B.x; T /. If u D 1 on B.x; T /, using this
packing, we get a lower bound on jjujjq

L
q

`;R;S
C0

of the order of log.T=`R/which depends only

on R, ` and T . This shows that the p-capacity of B.x; T / tends to infinity with T .

R 116. – Euclidean spaces are examples where H 1 6D 0, NH 1 D 0 and where the
capacities of balls vanish.

8.3. Lq;p-cohomology and isoperimetric dimension

D 117. – LetX be a Riemannian manifold. Say thatX has isoperimetric dimen-
sion� d if compact subsetsD � X with smooth boundary and sufficiently large volume satisfy

volume.D/ � C volume.@D/
d
d�1 :

If � is a graph, say that � has isoperimetric dimension � d if all finite subsets D of vertices
of � satisfy

jDj � C j@Dj
d
d�1 ;

where @D denotes the subset of edges of � with one vertex in D and one vertex outside D.
Finally, define the isoperimetric dimension of a bounded geometry simplicial complex as the
isoperimetric dimension of its 1-skeleton.

Isoperimetric dimension is a quasiisometry invariant. If a bounded geometry Riemannian
manifold X is quasiisometric to a bounded geometry simplicial complex T , then X and T
have the same isoperimetric dimension.

L 118. – Let X be a Riemannian manifold or a simplicial complex with bounded
geometry. If X has isoperimetric dimension � d > 1, then E`q;pH 1.X/ D E`q;p NH 1.X/

for all 1 � p < d and q <1 such that 1
p
�
1
q
D

1
d

.

Proof. – Up to quasiisometry, we can assume that X is a bounded degree graph with
vertex set V and edge set E.

Following a classical argument, let us check that the following `1 Sobolev inequality
holds: let d 0 D d

d�1
; for every finitely supported function u on V ,

kukd 0 � C kduk1:(1)

Assume first that u takes its values in N. Let ut be the indicator function of the superlevel
set fu > tg, i.e., ut .x/ D 1 if u.x/ > t , ut .x/ D 0 otherwise. Then u D

P
t2N ut . For each t ,

@fu > tg consists of edges with one vertex where u > t and one where u � t . The set of such
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edges is the set of edges along which du 6D 0, and each of them is counted as many times as
the value of jduj on it. Therefore X

t2N

j@fu > tgj D kduk1:

On the other hand, the isoperimetric inequality jDj � c j@Djd=.d�1/ applies to each super-
level set, yielding

kukd 0 �
X
t2N

kutkd 0

D

X
t2N

jfu > tgj1=d
0

� c1=d
0
X
t2N

j@fu > tgj

� c1=d
0

kduk1:

Since jd jujj � jduj, the case of integer valued functions follows. Since inequality (1) is
homogeneous, the case of rational valued functions follows too, and the general case of real
valued finitely supported functions as well, by density.

It follows that kukq is controlled by kdukp provided p < d and 1
p
�

1
q
D

1
d

. Indeed,
let r � 1. For each edge e D xy, denote by maxe juj D maxfju.x/j; ju.y/jg. Then

jd.jujr /.e/j D jju.y/jr � ju.x/jr j

� r maxfju.x/j; ju.y/jgr�1jju.y/j � ju.x/jj

� r max
e
jujr�1jdu.e/j:

Replacing juj with jujr in inequality (1), and applying Hölder’s inequality, we get

.
X
x2V

ju.x/jrd
0

/1=d
0

� C
X
e2E

r max
e
jujr�1jduj.e/

� Cr .
X
e2E

max
e
jujrd

0

/
r�1
rd 0 .

X
e2E

jduj.e/
rd 0

rd 0�rC1 /
rd 0�rC1

rd 0 :

In the sum
P
e2E maxe jujrd

0

, each vertex appears at most once for each edge that contains
it. Hence, if the degree of X is � v,X

e2E

max
e
jujrd

0

� v
X
x2V

ju.x/jrd
0

D kukrd
0

rd 0 :

Therefore

kukrd 0 � Crv
r�1
rd 0 kduk rd 0

rd 0�rC1

:

If p < d , one can pick q such that 1
p
�
1
q
D

1
d

and r D q=d 0 � 1. Then

kukq � C kdukp:

This says that exact reduced and unreduced `q;p cohomologies coincide. According to
Proposition 85, this is equivalent to

EL
q;p

`;R;S
H 1.X/ D EL

q;p

`;R;S
NH 1.X/;
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for all p; q such that 1 � p < d , 1
p
�
1
q
D

1
d

.

C 119. – A bounded geometry Riemannian manifold or simplicial complex
which has isoperimetric dimension � d > 1 is non-.p; `; R; S/-parabolic for all 1 � p < d

and all large enough `, R, S � R.

Proof. – This follows from Lemmata 115 and 118.

It turns out that the isoperimetric dimensions of finitely generated groups are known.

P 120 (Compare M. Troyanov, [38], S. Maillot, [26]).

Let G be a finitely generated group. Then the isoperimetric dimension of G is

either equal to 1 if G is virtually cyclic,

or equal to its homogeneous dimension, an integer larger than 1 ifG is virtually nilpotent
but not virtually cyclic.

Otherwise, it is infinite.

If follows that a finitely generated group is p-parabolic if and only if it is virtually nilpotent of
homogeneous dimension � p.

Proof. – According to T. Coulhon-L. Saloff Coste, [12], for finitely generated (or Lie)
groups, volume growth provides an estimate on isoperimetric dimension. In particular, it
implies that isoperimetric dimension is infinite unless volume growth is polynomial, in which
case isoperimetric dimension is equal to the polynomial degree of volume growth. The only
finitely generated groups of linear growth are virtually cyclic ones. That groups of polynomial
growth are virtually nilpotent is M. Gromov’s theorem of [18]. The isoperimetry of nilpotent
groups was originally due to N. Varopoulos, [42].

8.4. Grötzsch invariant

Following [20], we use capacities to define a kind of large-scale conformally invariant
distance on a metric space.

D 121. – Let X be a metric space. Fix parameters p; `;R; S . For x1, x2 2 X ,
let

ıp;`;R;S .x1; x2/ D inffcapp;`;R;S .im.
// I 
 continuous arc in X from x1 to x2g:

L 122. – Let f W X ! X 0 be a large-scale conformal map. Assume that f is a
bijection and that f �1 W X 0 ! X is continuous. For all R0 > 0, there exists R > 0 such that
for all `0 � 1, there exists ` � 1 and N 0 such that, for all x1, x2 2 X and all S � R,

ıp;`;R;S .x1; x2/ � N
0 ıp;`0;R0;1.f .x1/; f .x2//:
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Proof. – If 
 0 is a continuous arc joining f .x1/ to f .x2/, f �1 ı 
 0 is a continuous arc
joining x1 to x2, thus ıp;`;R;S .x1; x2/ � capp;`;R;1.f

�1 ı 
 0/. Therefore, according to
Proposition 112,

ıp;`;R;1.x1; x2/ � N
0capp;`;R;1.


0/;

and taking an infimum,

ıp;`;R;S .x1; x2/ � ıp;`;R;1.x1; x2/ � N
0 ıp;`0;R0;1.f .x1/; f .x2//;

where the first inequality exploits the fact that adding constraints on packings decreases
energies and capacities.

8.5. Upper bounds on capacities

D 123. – Say a metric space X has controlled balls if there exist R > 0 and a
measure � and continuous functions v > 0 and V <1 on ŒR;C1/ such that for every x 2 X
and every r � R,

v.r/ � �.B.x; r// � V.r/:

If such an estimate holds also for r 2 .0; R� and furthermore

8r 2 .0; R�; v.r/ � C rQ;

one says that X has locally Q-controlled balls.

In a Riemannian manifold or a simplicial complex with bounded geometry, balls are auto-
matically controlled. A Riemannian n-manifold with bounded geometry is locally n-Ahlfors
regular, for arbitrarily large values of R.

L 124. – Let X be a geodesic metric space which has controlled balls. Let p � 1

and ` > 1. Then ıp;`;R;1 is bounded above uniformly in terms of distance d . I.e. there exists a
function …p;`;R W RC ! RC such that, if d.x1; x2/ � R,

ıp;`;R;1.x1; x2/ � …p;`;R.d.x1; x2//:

If furthermoreX has locallyQ-controlled balls for someQ � p, then such an upper bound still
holds with R D 0, i.e., there exists a function …p;` such that

ıp;`;0;1.x1; x2/ � …p;`.d.x1; x2//:

Proof. – Fix r � R, set T .r/ D 2C 8r
`�1

and

C.r/ D sup
�2ŒR;T �

.2�/p

v.�/
:

For each x 2 X , define a function ux;r as follows: ux;r D 1 on B D B.x; r/, vanishes
outside 2B and is linear in the distance to x in between. Let us estimate its p-energy. Let
fBj g be a .`; R;1/-packing of X . If a ball Bi intersects 2B, and has radius > 4r=.` � 1/,
then `Bi contains 2B. No other ball of the packing can intersect 2B, hence an upper bound
on
P
j diameter.ux;r .Bj //p � 1. Otherwise, all balls of the `-packing contributing to energy
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are contained inB.x; T .r//, forT .r/ D 2rC 8r
`�1

. For each ballBj of radius �j , �j 2 ŒR; T .r/�
and

diameter.ux;r .Bj //p � diameter.Bj /p

� .2�j /
p

� C.r/ v.�j /

� C.r/ �.Bj /:

Summing up, X
j

diameter.Bj /p � C.r/
X
j

�.Bj /

� C.r/ �.B.x; T //

� C.r/V .T .r//:

This gives an upper bound on capp;`;R;1.B.x; r// which depends on its radius r , on p, onR
and on ` only.

If X has locally Q-controlled balls and Q � p, then

C 0.r/ D sup
�2.0;T �

.2�/p

v.�/
<1;

so the argument generalizes to arbitrary .`; 0;1/-packings.
Balls in geodesic metric spaces contain geodesics which are continuous arcs. Thus the

lower bound ıp;`;R;1 is bounded above by the capacity of a geodesic segment, which in turn
is bounded above by the capacity of a ball, which is estimated in terms of its radius, on p and
on ` only.

8.6. Strong non-parabolicity

Here, we are concerned with lower bounds on Grötzsch’ invariant ı.

D 125. – LetX be a metric space. Say thatX is strongly non-.p; `,R; S/-para-
bolic if ıp;`;R;S .x1; x2/ tends to infinity uniformly with d.x1; x2/. In other words, for every
R � S and ` > 1, there exists a function �p;`;R;S such that �p;`;R;S .T / tends to infinity when
T !1, and such that

ıp;`;R;S .x1; x2/ � �p;`;R;S .d.x1; x2//:

P 126. – Let X be a metric space. Fix ` � 1 and S � R > 0. If
EL

q;p

`;R;S
H 1.X/ D EL

q;p

`;R;S
NH 1.X/ for some finite q, thenX is strongly non-.p; `; R; S/-para-

bolic.

Proof. – Let x1; x2 2 X . Let 
 be a continuous arc joining x1 to x2. Fix R > 0 and
` � 1. Assume that d.x1; x2/ � 2R. For each j D 0; : : : ; k WD bd.x1; x2/=2`Rc, pick a
point yj on 
 such that d.yj ; x1/ D 2`Rj . Let Bj D B.yj ; R/. By construction, fBj g is a
.`; R;R/-packing ofX . Let u W X ! Œ0; 1� be a function of bounded support such that u D 1
on 
 . Then supBj u D 1, thus

kukLq
`;R;R

� k1=q :

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



882 P. PANSU

As in the proof of Lemma 115, the Lq;p cohomology assumption implies the existence of a
constant C such that, for every function u of bounded support,

kukLq
`;R;R

� C E
p

`;R;R
.u/1=p:

This shows that

capp.
/ � C k
p=q
D C b

d.x1; x2/

2`R
c
p=q;

this is a lower bound on ıp;`;R;R.x1; x2/. This yields a lower bound on ıp;`;R;S .x1; x2/ for
any S .

8.7. Consequences

C 127. – Let X and X 0 be geodesic metric spaces which are strongly non-
.p; `; R; S/-parabolic for somep � 1. Assume that both have controlled balls. Let f W X ! X 0

be a homeomorphism such that both f and f �1 are large-scale conformal maps. Then f is a
quasi-isometry.

Proof. – By strong non-.p; `; R; S/-parabolicity, ı invariants in X are bounded below,

ıp;`;R;S .x1; x2/ � �p;`;R;S .d.x1; x2//:

According to Lemma 124, they are bounded above in X 0,

ıp;`;R;1.x
0
1; x
0
2/ � …p;`;R.d.x

0
1; x
0
2//:

If f W X ! X 0 is a large-scale conformal homeomorphism, N 0ı ı f � ı up to changes in
parameters (Lemma 122),

N 0ıp;`0;R0;1.f .x1/; f .x2// � ıp;`;R;S .x1; x2/:

Combining these inequalities, we get for f ,

N 0…p;`0;R0.d.f .x1/; f .x2/// � �p;`;R;S .d.x1; x2//

and for f �1,

N 0…p;`0;R0.d.f
�1
ı f .x1/; f

�1
ı f .x2/// � �p;`;R;S .d.f .x1/; f .x2///;

hence

�p;`;R;S .d.f .x1/; f .x2/// � N
0…p;`0;R0.d.x1; x2//:

These inequalities show that f is a quasi-isometry.

C 128 (Proof of Theorem 2). – Let M , M 0 be bounded geometry Riemannian
manifolds or simplicial complexes with isoperimetric dimension > 1. Then homeomorphisms
M !M 0 which are large-scale conformal in both directions must be quasi-isometries.

Proof. – According to Lemma 118, M and M 0 satisfy the Lq;p cohomological assump-
tion of Proposition 126, therefore they are strongly non-.p; `; R; S/-parabolic for all p > 1,
` > 1, R > 0 and S < 1. Bounded geometry implies controlled balls, thus Corollary 127
applies.
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R 129. – This applies to Euclidean spaces of dimension � 2. Note that Exam-
ples 11 are roughly conformal in both directions, but large-scale conformal in only one direc-
tion.

R 130. – A natural question (Sylvain Maillot) is whether two geodesic spaces X
and X 0 can have a large-scale conformal map X ! X 0 and a large-scale conformal map
X 0 ! X without being quasi-isometric.

8.8. From coarse to uniformly conformal maps

P 131. – Let X be a metric space which is strongly non-.p; `; R; S/-parabolic
for some p � 1 and all ` � 1. LetX 0 be a metric space which has locallyQ-controlled balls for
some Q � p. Every coarsely conformal map X ! X 0 is uniformly conformal. Every roughly
conformal map X ! X 0 is large-scale conformal.

Proof. – Fix S � R > 0. Assume that f W X ! X 0 is coarsely (resp. roughly) conformal.
It suffices to show that for all T 0 > 0, there exists T0 > 0 such that f maps no T -ball B,
T � T0, into a T 0-ball B 0. Given `0 � 1, there exist ` � 1 and N 0 such that if f .B/ � B 0,
capp;`;R;S .B/ � N

0capp;`0;0;1.B
0/. This upper bound fails if T is sufficiently large, T � T0.

This shows that T -balls are never mapped into T 0-balls. So if f is coarsely conformal, it is in
fact .T0; S0; T 0;1/-coarsely conformal, for large enough T0 and for every S0 � T0, hence
it is uniformly conformal. If f is roughly conformal, it is in fact .T0;1; T 0;1/-coarsely
conformal, for large enough T0 thus f is large-scale conformal.

R 132. – The assumptions of Proposition 131 are satisfied for X D Rn provided
p < n and for X 0 D Rn0 for p � n0. So Proposition 131 applies if n0 < n, i.e., exactly
when there are no coarse conformal maps X ! X 0. In fact, the conclusion fails if n D n0, as
Examples 11 show.

Proposition 131 allows to modify the assumptions in the corollaries of Subsections 7.2
and 7.3. For instance,

C 133. – Let G be a finitely generated group. Let G0 be a connected nilpotent
Lie group equipped with a left-invariant Riemannian metric. If there exists a coarse conformal
map G ! G0, then G is virtually nilpotent and d.G/ � d.G0/.

Proof. – If G is virtually cyclic, then it is virtually nilpotent and d.G/ D 1 � d.G0/.
Otherwise, G has isoperimetric dimension Q > 1, thus it is strongly non-.p; `; R; S/-parabolic
for all 1 � p < Q. G0 is locally n0-Ahlfors regular for n0 D dimension.G0/. Assume
that Q > Q0. Since n0 � Q0, one can pick p such that n0 < p < Q. Proposition 131 asserts
that a coarse conformal map G ! G0 is automatically uniformly conformal. Corollary 102
shows that such a map cannot exist.

C 134. – LetG,G0 be non-elementary hyperbolic groups. LetM 0 be a Rieman-
nian manifold of bounded geometry, which is quasi-isometric to G0. If there exists a coarse
conformal map G !M 0, then

CohDim.G/ � ConfDim.G0/:
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Proof. – Non-elementary hyperbolic groups have infinite isoperimetric dimensions. Thus
G is strongly non-.p; `; R; S/-parabolic for all p. By assumption, M 0 is locally n0-Ahlfors
regular for n0 D dimension.M 0/. Choose some p � n0. Proposition 131 asserts that a coarse
conformal map G ! M 0 is automatically uniformly conformal. Composing with a quasi-
isometry, we get a uniformly conformal map G ! G0, so Corollary 106 applies.

Corollary 2 is a combination of Corollaries 133 and 134.

R 135. – Real hyperbolic spaceHn has a Poincaré model, it is a rough conformal
map ofHn to D� Sn�1. Corollary 134 implies that there is no rough conformal map ofHn

to a ball in Rn (otherwiseHn would map roughly conformally to anything). Thus D� Sn�1

should not be confused with Œ0; 1� � Sn�1.

8.9. Large scale conformality in one dimension

We have been unable to extend Theorem 2 to the virtually cyclic case. Here is a partial
result.

L 136. – Let f and g be continuous maps R! R such that

f and g are large-scale conformal;

g ı f and f ı g are coarse embeddings.

Then f is a quasi-isometry.

Proof. – Fix R0 � R, `0, `, N 0 as given by the definition of large-scale conformality. Let
QR be given by the definition of coarse embeddings: g ı f maps R-balls to QR-balls. To save

notation, assume that the same constants serve for g. Since we are on the real line, balls of
radius R are intervals of length 2R. In the correspondence between balls B 7! B 0, one can
assume that B 0 is a minimal interval containing f .B/ and of length � 2R0, i.e., B 0 D f .B/

itself if length.f .B// � 2R0.

The ballsBj D B.2`Rj;R/ are mapped into ballsB 0j forming an .N 0; `0; R0;1/-packing.
Assume that f .B0/ has length 2R00 � 2R0, in order that B 00 D f .B0/. Let fB 00j g be an
.`; R;1/-packing of B 00. The number of balls in this packing can be chosen to be at least
R0
0

2`R
. In turn, g maps B 00j into B 000j , which form an .N 0; `0; R0;1/-packing, which is the union

ofN 0 .`0; R0;1/-packings. One of them has at least R0
0

2`RN 0
elements. Every ball B 000j contains

g.B 00j / � g.B
0
0/ D g ı f .B0/ �

QB WD B.g ı f .0/; QR/;

so B 000j intersects QB. At most two of these balls contain boundary points, so all others are

contained in QB. At least one of these balls has radius � no larger than

QR

R0
0

2`RN 0
� 2
D

2`RN 0 QR

R00 � 4`RN
0
:

Since � � R0, we obtain an upper bound on R00. This shows that all R-balls are mapped
to R00-balls, i.e., f is a coarse embedding.
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THE PLURIPOTENTIAL
CAUCHY-DIRICHLET PROBLEM

FOR COMPLEX MONGE-AMPÈRE FLOWS

 V GUEDJ, C H. LU  A ZERIAHI

A. – We develop the first steps of a parabolic pluripotential theory in bounded strongly
pseudo-convex domains of Cn. We study certain degenerate parabolic complex Monge-Ampère equa-
tions, modeled on the Kähler-Ricci flow evolving on complex algebraic varieties with Kawamata log-
terminal singularities. Under natural assumptions on the Cauchy-Dirichlet boundary data, we show
that the envelope of pluripotential subsolutions is semi-concave in time and continuous in space, and
provides the unique pluripotential solution with such regularity.

R. – Nous développons une théorie pluripotentielle parabolique sur un domaine stricte-
ment pseudo-convexe borné de Cn. Nous étudions certaines équations de Monge-Ampère complexes
paraboliques dégénérées, modelées sur le flot de Kähler-Ricci sur les variétés algébriques complexes
à singularités Kawamata log-terminales. Sous des hypothèses naturelles sur les données de Cauchy-
Dirichlet, nous montrons que l’enveloppe des sous-solutions pluripotentielles est semi-concave en
temps et continue en espace, et qu’elle est l’unique solution pluripotentielle avec une telle régularité.

Introduction

The Ricci flow, first introduced by Hamilton [18] is the equation

@

@t
gij D �2Rij ;

evolving a Riemannian metric by its Ricci curvature. If the Ricci flow starts from a Kähler
metric, the evolving metrics remain Kähler and the resulting PDE is called the Kähler-Ricci
flow.

The authors are partially supported by the ANR project GRACK.
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890 V. GUEDJ, C.H. LU AND A. ZERIAHI

It is expected that the Kähler-Ricci flow can be used to give a geometric classification of
complex algebraic and Kähler manifolds, and produce canonical metrics at the same time.
Solving the Kähler-Ricci flow boils down to solving a parabolic scalar equation modeled on

det
�
@2ut

@zj @ Nzk
.t; z/

�
D e@tut .z/CH.t;z/C�ut .z/

where t 7! ut .z/ D u.t; z/ is a smooth family of strictly plurisubharmonic functions in Cn,
� 2 R and g D eH is a smooth and positive density.

It is important for geometric applications to study degenerate versions of these complex
Monge-Ampère flows, where the functions ut are no longer smooth nor strictly plurisubhar-
monic, and the densities may vanish or blow up (see [30, 4, 29, 11] and the references therein).

A viscosity approach has been developed recently in [10], following its elliptic counterpart
[9, 19, 20]. While the viscosity theory is very robust, it requires the data to be continuous
hence has a limited scope of applications. Several geometric situations encountered in the
Minimal Model program (MMP) necessitate one to deal with Kawamata log-terminal (klt)
singularities. The viscosity approach breaks down in these cases and a more flexible method
is necessary.

There is a well established pluripotential theory of weak solutions to degenerate elliptic
complex Monge-Ampère equations, following the pioneering work of Bedford-Taylor [1,
2]. This theory allows to deal with Lp-densities as established in a corner stone result of
Kołodziej [25], which provides a great generalization of [32].

No similar theory has ever been developed on the parabolic side. The purpose of this
article, the first of a series on this subject, is to develop a pluripotential theory for degenerate
complex Monge-Ampère flows. This article settles the foundational material for this theory
and focuses on solving the Cauchy-Dirichlet problem in domains of Cn.

We consider the following family of Monge-Ampère flows

(CMAF) dt ^ .dd cu/n D e@tuCF.t;z;u/g.z/dt ^ dV;

in �T WD �0; T Œ ��, where dV is the Euclidean volume form on Cn and

— T > 0 and � b Cn is a bounded strictly pseudoconvex domain;

— F.t; z; r/ is continuous in Œ0; T Œ �� � R, increasing in r , bounded in Œ0; T Œ �� � J ,
for each J b R;

— .t; r/ 7! F.t; �; r/ is uniformly Lipschitz and semi-convex in .t; r/;

— g 2 Lp.�/, p > 1, and g > 0 almost everywhere ;

— u W Œ0; T Œ ��! R is the unknown function.

Here d D @ C @ and d c D i.@ � @/=2 so that dd c D i@@ and .dd cu/n represents the
determinant of the complex Hessian of u in space (the complex Monge-Ampère operator)
whenever u is C2-smooth.

For less regular functions u, the Equation (CMAF) should be understood in the weak
sense of pluripotential theory as we explain in Section 2.

We let P.�T / denote the set of parabolic potentials, i.e., those functions u W �T ! Œ�1;C1Œ

defined in �T D �0; T Œ �� and satisfying the following conditions:
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— for any t 2 �0; T Œ, u.t; �/ is plurisubharmonic in �;

— the family fu.�; z/ I z 2 �g is locally uniformly Lipschitz in �0; T Œ.

We study in Section 1 basic properties of parabolic potentials. We show in Lemma 1.6
that if u 2 P.�T / and is bounded from above in�T then it can be uniquely extended as an
upper-semicontinuous function in Œ0; T Œ �� such that u.0; �/ is plurisubharmonic in �. We
show that parabolic potentials satisfy approximate submean-value inequalities (Lemma 1.8)
and enjoy good compactness properties (Proposition 1.17).

We show in Section 2 that parabolic complex Monge-Ampère operators are well defined
on P.�T / \ L

1
loc.�T / and enjoy nice continuity properties, allowing to make sense of

pluripotential sub/super/solutions to (CMAF) (see Definition 3.1). A crucial convergence
property is obtained in Proposition 2.9, under a semi-concavity assumption on the family
of parabolic potentials.

A Cauchy-Dirichlet boundary data is a function h defined on the parabolic boundary of�T
denoted by

@0�T WD .Œ0; T Œ � @�/ [ .f0g ��/;

such that

— the restriction of h on Œ0; T Œ � @� is continuous;

— the family fh.�; z/ I z 2 @�g is locally uniformly Lipschitz in �0; T Œ ;

— h satisfies the following compatibility condition : 8� 2 @�,

(0.1) h0 WD h.0; �/ 2 PSH.�/ \ L1.�/ and lim
�3z!�

h.0; z/ D h.0; �/:

The Cauchy-Dirichlet problem for the parabolic Equation (CMAF) with Cauchy-
Dirichlet boundary data h consists in finding u 2 P.�T / \ L

1.�T / such that (CMAF)
holds in the pluripotential sense in �T and the following Cauchy-Dirichlet boundary
conditions are satisfied :

8.�; �/ 2 Œ0; T Œ � @�; lim
�T 3.t;z/!.�;�/

u.t; z/ D h.�; �/;(0.2)

lim
t!0C

ut D h0 in L1.�/:(0.3)

In this case we say that u is a solution to the Cauchy-Dirichlet problem for the Equa-
tion (CMAF) with boundary values h.

Observe that a solution u to the Equation (CMAF) has plurisubharmonic slices in �
and the Cauchy condition (0.3) implies by a classical result in pluripotential theory
that .lim supt!0 ut /

� D h�0 2 PSH.�/, hence h0 D h�0 2 PSH.�/. This observation
shows that the Cauchy data h0 must be plurisubharmonic as it is required in the compati-
bility condition (0.1).

For a solution to the Cauchy-Dirichlet problem for the Equation (CMAF), the Cauchy
condition (0.3) implies that

8z 2 �; lim
t!0C

ut .z/ D h0.z/:

It is possible to consider less regular initial Cauchy data h.0; �/ (see [28, 27]), but we will
not pursue this here.
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We try and construct a solution to the Cauchy-Dirichlet problem by the Perron method,
considering the upper envelope U of pluripotential subsolutions.

The technical core of the paper lies in Section 3 and Section 4. In Section 3 we construct
subbarriers and controls from above to ensure that U has the right boundary values (see
Theorem 3.12). In Section 4 we prove that the Perron envelope of subsolutions is locally
uniformly Lipschitz and semiconcave in time.

T A. – Assume h is a Cauchy-Dirichlet boundary data in �T such that for all
0 < S < T , and for all .t; z/ 2 �0; S� � @�,

(�) t j@th.t; z/j � C.S/ and t2@2t h.t; z/ � C.S/:

Then the envelope U D Uh;g;F is locally uniformly Lipschitz and locally uniformly semi-
concave in t 2 �0; T Œ. Moreover, U satisfies the Cauchy-Dirichlet boundary conditions (0.2)
and (0.3).

Here C.S/ is a positive constant depending on S which may blow up as S ! T . The
proof of Theorem A, which shows in particular that U satisfies (�), is given in Theorem 4.2,
Theorem 4.7 and Theorem 4.8. The Lipschitz and semi-concave constants of U depend
explicitly on C.S/.

We prove in Theorem 5.1 that the envelope U is moreover (Lipschitz) continuous in space
if so are the data .h0; logg; F /.

Focusing for a while on the case of the unit ball with regular boundary data, we obtain
the following parabolic analogue of Bedford and Taylor’s celebrated result [1] :

T B. – Assume � D B is the unit ball in Cn and

G WD logg is C1;1 in NB;

h is uniformly Lipschitz in t 2 Œ0; T Œ, satisfies @2t h.t; z/ � C=t2, z 2 @B, and h is
uniformly C1;1 in z 2 NB;

F is Lipschitz and semi-convex in Œ0; T Œ � NB � J , for each J b R.

Then the upper envelope U WD Uh;g;F is locally uniformly C1;1 in z and locally uniformly
Lipschitz in t 2 �0; T Œ. For almost any .t; z/ 2 BT , we have

det
�
@j N@kU.t; z/

�
D e@tU.t;z/CF.t;z;U.t;z//g.z/:

In particularU is a pluripotential solution to the Cauchy-Dirichlet problem for the parabolic
Equation (CMAF) with boundary values h.

This result is obtained as a combination of Theorem 5.3 and Theorem 6.1. Using an
approximation and balayage process we then treat the case of more general domains� with
less regular boundary data, obtaining the following solution to our original problem :

T C. – Assume h is a Cauchy-Dirichlet boundary data in �T such that for all
0 < S < T , and for all .t; z/ 2 �0; S� � @�,

(�) t j@th.t; z/j � C.S/ and t2@2t h.t; z/ � C.S/:

The envelope of all subsolutions to (CMAF) with Cauchy-Dirichlet boundary data h is a
pluripotential solution to this Cauchy-Dirichlet problem.
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The proof of this fundamental result is given in Theorem 6.5. We eventually establish a
comparison principle, which shows that Uh;g;F is unique:

T D. – Same assumptions as in Theorem A. Let ˆ be a bounded pluripotential
subsolution to (CMAF) with boundary values hˆ. Let ‰ be a bounded pluripotential superso-
lution with boundary values h‰, such that‰ is locally uniformly semi-concave in t 2 �0; T Œ and
hˆ satisfies (�). Then

h‰ � hˆ on @0�T H) ˆ � ‰ in �T :

In particular, there is a unique pluripotential solution to the Cauchy-Dirichlet problem for
(CMAF) with boundary data h, which is locally uniformly semi-concave in t .

The proof of Theorem D is given in Section 6.3; it uses some ideas from [13, 6]. When
all the data .h; F; g; u/ are continuous, one can show that the solution U coincides with the
viscosity solution constructed in [10]. We refer the reader to [16] for a detailed comparison
of viscosity and pluripotential concepts.

Notations and assumptions on the data

We finish this introduction by fixing some notations that will be used throughout the
paper.

The domain. – In the whole article we let dV denote the Euclidean volume form in Cn

and � b Cn be a strictly pseudoconvex domain : there exists a smooth function � in a
neighborhood V of N� such that

� D fz 2 V I �.z/ < 0g;

where @z� ¤ 0 on @� and � is strictly plurisubharmonic in V . We set�T WD �0; T Œ�� with
T > 0. Most of the time we will assume that T < C1.

Recall that if a function u W � ! Œ�1;C1Œ is plurisubharmonic, then dd cu � 0 is a
positive current on �. Here d D @ C @ and d c D .i=2/.@ � @/ are both real operators so
that dd c D i@@.

We let B denote the Euclidean unit ball in Cn and �B denote the normalized Lebesgue
measure on B.

The function F . – We assume that F W Œ0; T Œ �� � R! R is continuous and

— bounded in Œ0; T Œ �� � J for each 0 < S < T , J b R;

— increasing in r : r 7! F.t; x; r/ is increasing for all .t; x/ 2 �T fixed;

— locally uniformly Lipschitz in .t; r/ : for each compact J b R and each 0 < S < T

there exists a constant � D �.S; J / > 0 such that for all t; � 2 Œ0; S�, z 2 �, r; r 0 2 J ,

(0.4) jF.t; z; r/ � F.�; z; r 0/j � �.jt � � j C jr � r 0j/I

— locally uniformly semi-convex in .t; r/ : for each compact subset Œ0; S��J b Œ0; T Œ�R
there exists a constant C D C.S; J / > 0 such that, for any z 2 �, the function

(0.5) .t; r/ 7! F.t; z; r/C C.t2 C r2/ is convex in Œ0; S� � J:
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The density g. – We assume that

— 0 � g 2 Lp.�/ for some p > 1 that is fixed thoughout the paper ;

— the set fz 2 � I g.z/ D 0g has Lebesgue measure zero.

Boundary data h. – We assume throughout the article that

— h W @0�T ! R is bounded, upper semi-continuous on @0�T ;

— the restriction of h on Œ0; T Œ � @� is continuous;

— t 7! h.t; z/ is locally uniformly Lipschitz in �0; T Œ: for all 0 < S < T there is C.S/ > 0
such that for all .t; z/ 2 �0; S� � @�,

t j@th.t; z/j � C.S/I

— h.0; �/ is bounded, plurisubharmonic in �, and satisfies

lim
�3z!�

h.0; z/ D h.0; �/; 8� 2 @�:

We eventually also assume that t 7! h.t; z/ is locally uniformly semi-concave in �0; T Œ : for
all 0 < S < T there is C.S/ > 0 such that

t2@2t h.t; z/ � C.S/; 8.t; z/ 2 Œ0; S� � @�:

The Kähler-Ricci flow. – Our assumptions on the data F; g; h are mild enough so that
the results of this article can be applied to the study of the Kähler-Ricci flow on mildly
singular Kähler varieties. We refer the interested reader to [15, Section 5] for more detail and
geometric applications.

The constants. – We fix once and for all various uniform constants:

(0.6) Mh WD sup
@0�T

jhj ; MF WD sup
�T

F.�; �;Mh/:

We fix a plurisubharmonic function � in �, continuous in N� so that

(0.7) .dd c�/n D gdV; � D 0 in @�;

in the weak sense in �. Such a function exists by [23, 25] (as we assumed that p > 1) and
there is moreover a uniform a priori bound on �,

k�kL1.�/ � cnkgk
1=n

Lp.�/
;

where cn > 0 is a uniform constant depending on n;�; p.

Acknowledgements. – We are indebted to the referees for their very careful reading and for
numerous useful suggestions which improved the presentation of the paper.

1. Families of plurisubharmonic functions

Parabolic potentials form the basic objects of our study. They can be seen as a weakly
regular family of plurisubharmonic functions. In this section we define them and establish
their first properties.
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1.1. Basic properties

1.1.1. Parabolic potentials. – We start with some basic definitions which will be used
throughout all the paper.

D 1.1. – Let u W �T WD �0; T Œ �� �! Œ�1;C1Œ be a given function.
We say that the family fu.�; z/ I z 2 �g is locally uniformly Lipschitz in �0; T Œ if for any

subinterval J b �0; T Œ there exists a constant � WD �J .u/ > 0 such that

(1.1) u.t; z/ � u.s; z/C �jt � sj; for all s; t 2 J and z 2 �:

D 1.2. – The set of parabolic potentials P.�T / is the set of functions
u W �T WD �0; T Œ �� �! Œ�1;C1Œ such that

— for all t 2 �0; T Œ, the slice ut W z 7! u.t; z/ is plurisubharmonic in �;

— the family fu.�; z/ I z 2 �g is locally uniformly Lipschitz in �0; T Œ.

PSH.�/ embeds in P.�T / as the class of time independent potentials. Basic operations
on plurisubharmonic functions extend naturally to parabolic potentials:

— if u; v 2 P.�T / then uC v 2 P.�T / and max.u; v/ 2 P.�T /;

— if u 2 P.�T / and t 7! c.t/, t 7! �.t/ � 0 are locally Lipschitz, then .z; t/ 7!
�.t/u.z; t/C c.t/ is also a parabolic potential.

Here is another interesting source of examples of parabolic potentials:

E 1.3. – Consider a parabolic potential ' 2 P.�T / such that @z' 2 L1.�T /.
Let‚t W � �! � be a family of holomorphic automorphisms of� depending smoothly on
a real parameter t 2 �0; T Œ. Then the function

 .t; z/ WD '.t;‚t .z//

is a parabolic potential on �T . For example the function

 .t; z/ WD logC
ˇ̌̌̌
z � t

1 � tz

ˇ̌̌̌
is a parabolic potential on �0; 1Œ � D.

It turns out that parabolic potentials enjoy joint upper semi-continuous regularity
in �0; T Œ ��, as the following result shows.

P 1.4. – Let u 2 P.�T /. Then u is upper semi-continuous in �T WD �0; T Œ ��,
hence locally bounded from above in �T .

This result follows from the more general Lemma 1.5 below which will be useful later.
Given a function � defined on a metric space .Z; d/, we define the upper semi-continuous
regularization uscZ� on Z by

uscZ� .z/ WD lim sup
z0!z

�.z0/ D inf
r>0

�
sup
B.z;r/

�
�
:

If � is locally bounded from above in Z, then uscZu is upper semi-continuous in Z : it is
the smallest upper semi-continuous function lying above u.
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Fix I � R an interval, .Y; d/ a metric space and � W I �Y �! Œ�1;1Œ a given function.
Recall that the family f�.�; y/Iy 2 Y g is uniformly upper continuous at some point t0 2 I if
for any " > 0, there exists ı > 0 such that for any t 2 I with jt � t0j � ı and any y 2 Y ,

�.t; y/ � �.t0; y/C ":

Observe that if the family f�.�; y/Iy 2 Y g is locally uniformly Lipschitz in I , then it is
uniformly upper semi-continuous in I .

L 1.5. – Let � W I � Y �! Œ�1;C1Œ be a function satisfying the following
conditions :

(i) the family f�.�; y/Iy 2 Y g is uniformly upper semi-continuous in I ,

(ii) For any t0 2 I , the function �t0 D �.t0; �/ is locally bounded from above in Y .

Then � is locally bounded from above in I � Y and for all .t; y/ 2 I � Y ,

.uscI�Y �/.t; y/ D .uscY �t /.y/:

In particular if for some point .t0; y0/ 2 J �Y , the function �.t0; �/ is upper semi-continuous
at the point y0 2 Y , then � is (jointly) upper semi-continuous at the point .t0; y0/ 2 J � Y .

Proof. – Fix .t0; y0/ 2 J � Y and " > 0. Then there exists ı > 0 such that for any t 2 J
with jt � t0j � ı and any y 2 Y ,

�.t; y/ � �.t0; y/C ":

Since �.t0; �/ is bounded from above in a neighborhood of y0, it follows that � is bounded
from above in a neighborhood of .t0; y0/. Moreover taking the limsup in the previous
inequality and letting "! 0C yields

uscJ�Y �.t0; y0/ � .uscY �t0/.y0/ < C1:

Since the reverse inequality is obvious, the lemma is proved.

The upper semi-continuity at t D 0 can be naturally obtained as follows :

L 1.6. – Let v W �T D �0; T Œ � � �! Œ�1;C1Œ be a function locally bounded
from above in �T and satisfying the following conditions :

(i) for any t 2 �0; T Œ the function vt WD v.t; �/ is plurisubharmonic in �;

(ii) for any z 2 � the function v.�; z/ is upper semi-continuous in �0; T Œ. Then v is upper
semi-continuous in �T .

Furthermore assume that the function v is bounded from above on�T and define for z 2 �,

v0.z/ WD .lim sup
t!0C

vt /
�.z/ D lim sup

�!z

 
lim sup
t!0C

vt .�/

!
:

Then v0 is plurisubharmonic in � and the extension Qv W Œ0; T Œ � � ! Œ�1;C1Œ of v to the
vertical slice f0g �� by Qv.0; z/ WD v0.z/ is upper semi-continuous in Œ0; T Œ ��.
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Proof. – Fix .t0; z0/ 2 �T . Since v is locally bounded from above we may assume that
for some r > 0 and ı 2 �0; rŒ small enough so that NB.z0; 2r/ b � and �t0�ı; t0CıŒ � �0; T Œ,
we have v � 0 in Œt0 � ı; t0 C ı� � NB.z0; 2r/.

Fix t such that jt � t0j � ı. Since vt � 0 in B.z; r C ı/, by the submean-value inequality
applied to the plurisubharmonic function vt on the ball B.z; rC ı/, we have for jz�z0j � ı,

(1.2) v.t; z/ �
1

Vol.B.z; r C ı//

Z
B.z0;r/

v.t; �/dV .�/:

It thus follows from Fatou’s Lemma and assumption .i i/ that

(1.3) lim sup
.t;z/!.t0;z0/

v.t; z/ �
1

Vol.B.z0; r C ı//

Z
B.z0;r/

v.t0; �/dV .�/:

Since v.t0; �/ is plurisubharmonic in �, letting ı ! 0C and r ! 0C we obtain

lim sup
.t;z/!.t0;z0/

v.t; z/ � v.t0; z0/;

which proves that v is upper semi-continuous at .t0; z0/.

Now set t0 D 0 and z0 2 �. Since fvt I t 2 �0; T Œg is a family of plurisubharmonic
functions in�which is uniformly bounded from above in�, it follows from a classical result
of Lelong that v0 is plurisubharmonic in �. Observe that the inequality (1.2) is still valid
for 0 < t < ı and jz � z0j � ı for ı > 0 small enough. Then it follows that

lim sup
.t;z/!.0;z0/

v.t; z/ �
1

Vol.B.z0; r C ı//

Z
B.z0;r/

v0.�/dV.�/:

Since v0 is plurisubharmonic, letting ı ! 0C and r ! 0C we obtain

lim sup
.t;z/!.0;z0/

v.t; z/ � v0.z0/ DW Qv.0; z0/;

which proves the semi-continuity of the extension Qv at the point .0; z0/.

1.1.2. Envelopes of parabolic potentials. – The next result provides a parabolic analogue of
a classical result of Lelong about negligible sets for plurisubharmonic functions; it will play
an important role in Section 3.

L 1.7. – Let U � P.�T / be a family of functions which is locally uniformly
bounded from above. Assume U WD supfu I u 2 Ug is locally uniformly Lipschitz in t 2 �0; T Œ.
Then

the upper semi-continuous regularization U � (in �T ) belongs to P.�T /;

for any t 2 �0; T Œ, U �.t; �/ D .Ut /� in � and the exceptional set

E.U / WD f.t; z/ 2 �T I U.t; z/ < U
�.t; z/g

has zero .2nC 1/-dimensional Lebesgue measure in �T � R2nC1.

The smallness of the exceptional set E.U / can be made more precise: all the t -slices
of E.U / have zero 2n-dimensional Lebesgue measure in �.
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Proof. – Our assumption ensures that the function U is locally bounded from above
in �T . The first statement follows immediately from (1.1). Since U is locally Lipschitz in t ,
there is no need to regularize in the t variable : it follows from Lemma 1.5 above that for all
.t; z/ 2 �T ,

U �.t; z/ D .Ut /
�.z/;

where the upper semi-continuous regularization in the LHS is in the .t; z/-variable,
while the upper semi-continuous regularization in the RHS is in the z-variable only,
t being fixed. A classical theorem of Lelong (see [17, Proposition 1.40]) ensures that
Et D fz 2 � I Ut .z/ < .Ut /

�.z/g has zero Lebesgue measure in Cn. Since E.U / D f.t; z/ 2
�T I z 2 Etg the second statement of the lemma follows from Fubini’s theorem.

1.1.3. Approximate submean-value inequalities. – Parabolic potentials satisfy approximate
submean-value inequalities:

L 1.8. – Let� � Cn be a domain and u 2 P.�T /. Fix .t0; x0/ 2 �T and "0; r0 > 0
so that Œt0 � "0; t0 C "0� � NB.x0; r0/ b �T . Then for any 0 < " � "0, 0 < r � r0,

u.t0; x0/ �

Z 1

�1

Z
B
u.t0 C "s; x0 C r�/ d�B.�/ ds=2C �0";

where �0 > 0 is the uniform Lipschitz constant of u in Œt0 � "0; t0 C "0� � B.x0; r/.

Proof. – Since u.t0; �/ is psh in�, the submean-value inequality yields, for all 0 < r � r0,

u.t0; z0/ �

Z
B
u.t0; z0 C r�/ d�B.�/:

The Lipschitz condition ensures that for 0 < r � r0, 0 < " � "0, and �1 � s � 1,Z
B
u.t0; z0 C r�/ d�B.�/ �

Z
B
u.t0 C "s; z0 C r�/ d�B.�/C �0"jsj:

Integrating in s we obtain the required inequality.

Parabolic potentials therefore enjoy interesting integrability properties.

C 1.9. – We have P.�T / � L
q
loc.�T / for any q � 1. Moreover if u 2 P.�T /

then for all .t; z/ 2 �T ,

u.t; z/ D lim
";r!0

Z 1

�1

Z
B
u.t C "s; z C r�/ d�B.�/ ds=2:

In particular if u; v 2 P.�T / and u � v a.e. in �T , then u � v everywhere. Here �B is the
normalized Lebesgue measure on the unit ball B � Cn.

Proof. – Let u 2 P.�T / and fixK b �T a compact subset. Then there exists a compact
interval J b �0; T Œ and a compact subset D b � such that K � J �D.
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Fix t0 2 J . Since u.t0; �/ is plurisubharmonic in � we have that u.t0; �/ 2 Lq.D/. Since
u.�; z/ is uniformly Lipschitz in J we infer u.t; z/ � u.t0; z/ C �J jt � t0j for all t 2 J and
z 2 D. It thus follows from Fubini’s theorem thatZ

J�D

ju.t; z/jqd�2n.z/dt D

Z
J�D

ju.t; z/jqd�2n.z/dt

� 2q�1
Z
J�D

ju.t0; z/j
q�2n.z/C 2

q�1�
q
JVol.D/

Z
J

jt � t0j
qdt:

This proves that u 2 Lq.K/, hence u 2 Lqloc.�T /.

Fix .t0; z0/ 2 �T and ı > 0. Since u.t0; �/ is psh in � we have

(1.4) u.t0; z0/ D lim
r!0C

Z
B
u.t0; z0 C r�/d�B.�/:

Fix "0 > 0, and r0 > 0 such that Œt0 � "0; t0 C "0� b �0; T Œ, and B.z0; r0/ b �. Let �0 be the
uniform Lipschitz constant of u in Œt0 � "0; t0 C "0� ��. Then for " 2 �0; "0Œ, r 2 �0; r0Œ,Z 1

�1

Z
B
u.t0 C "s; z0 C r�/ d�B.�/ ds=2 �

Z
B
u.t0; z0 C r�/ d�B.�/C �0":

From this and (1.4) we obtain

u.t0; z0/ � lim
";r!0

Z 1

�1

Z
B
u.t0 C "s; z0 C r�/d�B.�/ds=2:

The reverse inequality was already obtained in Lemma 1.8.

R 1.10. – Let � be a positive Borel measure s.t. PSH.�/ � L
q
loc.�;�/ for

some q � 1. The previous proof shows that P.�T / � Lq.�T ; ` ˝ �/, where ` is the
Lebesgue measure on �0; T Œ.

Besides the Lebesgue measure �2n, another important example is � D g�2n, where
g 2 Lp.�/ for some p > 1. By Hölder inequality, the measure � satisfies the integrability
condition with q WD p=.p � 1/.

1.2. Behavior on slices

We now estimate the L1-norm on slices in terms of the global L1-norm.

L 1.11. – Fix u; v 2 P.�T / and 0 < T0 < T1 < S < T . Then for all T0 � t � T1,

ku.t; �/ � v.t; �/kL1.�/ � 2M max
n
ku � vk

1=2

L1.�T1 /
; ku � vkL1.�T1 /

o
;

where M WD maxf
p
�Vol.�/; .S � T1/�1g; and � is the uniform Lipschitz cosntant of the

function t 7�!
R
�
.ju.t; z/ � v.t; z/jd�2n.z/ in ŒT0; T1�.

This lemma quantifies the following facts : for functions in P.�T /,

— convergence in L1.�T / implies convergence of their slices in L1.�/;

— boundedness in L1.�T / implies compactness of their slices in L1.�/.
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Proof. – Assume first that u; v are bounded from below in �T . Since u; v are locally
uniformly Lipschitz in t 2 ŒT0; S�, we deduce that for any T0 � t � S , T0 � s � S , and
z 2 �,

ju.t; z/ � v.t; z/j � �js � t j C ju.s; z/ � v.s; z/j;

where � WD �J .u/ C �J .v/ and �J .u/ (resp. �J .v/) is the uniform Lipschitz constant of u
(resp. v) on J WD ŒT0; S�. We inferZ

�

ju.t; z/ � v.t; z/jdV.z/ � �js � t jVol.�/C
Z
�

ju.s; z/ � v.s; z/jdV.z/:

Thus the function

t 7! �.t/ WD

Z
�

ju.t; z/ � v.t; z/jdV.z/

is a Lipschitz function in ŒT0; S� with Lipschitz constant �Vol.�/. The conclusion follows
from the next lemma, an elementary result in one real variable.

The general case is deduced from the previous one by considering the canonical approxi-
mants uj WD maxfu;�j g and maxfv;�j g which have the same properties as u and v respec-
tively.

We have used the following inequality :

L 1.12. – Fix 0 < S0 < S1 < S and let � W ŒS0; S� �! R be such that for all
s; � 2 ŒS0; S� with s � � , �.s/ � �.�/C �.� � s/: Then

max
S0�s�S1

�.s/ � 2M maxf
p
k�k; k�kg;

where M WD maxf
p
�; .S � S1/

�1g and k�k WD k�kL1.ŒS0;S�/.

Proof. – Fix 0 < ı � S � S1. Then for �; s 2 ŒS0; S1� with s � � ,

�.s/ � �.�/C �.� � s/:

Fix S0 � s � S1. Integrating in � on Œs; s C ı� � ŒS0; S�, we get

(1.5) �.s/ �
� ı

2
C

Z sCı

s

�.�/
d�

ı
�
ı�

2
C ı�1k�k:

The minimum of � 7�! ��=2 C ��1k�k is achieved at �0 WD
p
2k�k1=2=

p
�. If 2k�k �

�.S � S1/
2, i.e., �0 � S � S1, then �.t/ � 2

p
�k�k; for t 2 ŒS0; S1�. If 2k�k � �.S � S1/2,

applying (1.5) with ı D S � S1 yields

max
S0�t�S1

�.t/ � �.S � S1/=2C k�k.S � S1/
�1
� 2k�k.S � S1/

�1:

Alltogether we obtain

max
S0�t�S1

�.t/ � 2maxf
p
�k�k; k�k.S � S1/

�1
g:
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1.3. Time derivatives and semi-concavity

In this section we observe that a parabolic potential ' has well defined time derivatives @t'
almost everywhere.

Fix a positive Borel measure � on � such that PSH.�/ � L1loc.�;�/.

L 1.13. – Let ' 2 P.�T /. Then there exists a Borel set E � �T `˝ �-negligible
such that @t'.t; z/ exists for all .t; z/ … E.

In particular @t' 2 L1loc.�T / and for any continuous function 
 2 C0.R;R/, 
.@t'/ `˝� is
a well defined Borel measure in �T .

Proof. – By Remark 1.10 the set Q�T WD f.t; z/ 2 �T I'.t; z/ > �1g is of full
.`˝ �/-measure i.e., the set �T n Q�T has zero `˝ �-measure in R � Cn ' R2nC1.

We set, for .t; z/ 2 Q�T ,

@ut '.t; z/ WD lim sup
s!0

'.t C s; z/ � '.t; z/

s
D lim sup

Q�3s!0

'.t C s; z/ � '.t; z/

s
;

and

@lt'.t; z/ WD lim inf
s!0

'.t C s; z/ � '.t; z/

s
D lim inf

Q�3s!0

'.t C s; z/ � '.t; z/

s
:

The equalities above follow from the Lipschitz property of '. These two functions are
measurable in .�T ; `˝ �/, hence the set

E WD f.t; z/ 2 Q�T I @
l'.t; z/ < @u'.t; z/g [ f.t; z/ 2 �T I'.t; z/ D �1g

is `˝ �-measurable.
For each .t0; z0/ 2 �0; T Œ � � such that '.t0; z0/ > �1, the function t 7! '.t; z0/ is

locally Lipschitz in a neighborhood of t0, hence differentiable almost everywhere in this
neighborhood. Hence, for �-almost all z 2 �,

Ez WD ft 2 �0; T Œ I .t; z/ 2 Eg

has zero `-measure. Fubini’s theorem thus ensures that `˝ �.E/ D 0.

The previous lemma shows that @ut ' D @
l
t', `˝ �-almost everywhere in �T . These thus

define a function which we denote by @t' 2 L1loc.�T /.
When ' is semi-concave (or semi-convex) in t , we can improve the previous result.

D 1.14. – We say that ' W �T �! R is uniformly semi-concave in �0; T Œ if
for any compact J b �0; T Œ, there exists � D �.J; '/ > 0 such that for all z 2 �, the
function t 7�! '.t; z/ � �t2 is concave in J .

The definition of uniformly semi-convex functions is analogous. Note that such functions
are automatically locally uniformly Lipschitz.

For a bounded parabolic potential ' which is locally semi-concave in t the left and right
derivatives

@Ct '.t; z/ D lim
s!0C

'.t C s; z/ � '.t; z/

s
;

and

@�t '.t; z/ WD lim
s!0�

'.t C s; z/ � '.t; z/

s
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exist for all t 2 �0; T Œ, and @t'.t; z/ exists if @Ct '.t; z/ D @
�
t '.t; z/.

L 1.15. – Let ' W �T �! R be a continuous function which is uniformly semi-
concave in �0; T Œ. Then .t; z/ 7! @�t '.t; z/ is upper semi-continuous while .t; z/ 7! @Ct '.t; z/

is lower semi-continuous in �T . In particular, there exists a Borel set E � �T which is
`˝ �-negligible, such that @Ct ' and @�t ' coincide and are continuous at each point in �T nE.

By replacing ' with �' one obtains similar conclusions for uniformly semi-convex func-
tions.

Proof. – For simplicity we only treat the semi-convex case. It suffices to consider the case
when t 7! '.t; z/ is convex in �0; T Œ, for all z 2 �. In this case for all .t; z/ 2 �T , the slope
function

s 7�! ps.t; z/ WD
'.t C s; z/ � '.t; z/

s

is monotone increasing on each interval not containing 0. It is moreover continuous in .t; z/.
In particular,

@Ct '.t; z/ D lim
s!0C

ps.t; z/ D inf
s>0

ps.t; z/

is upper semi-continuous in �T and

@�t '.t; z/ D lim
s!0�

ps.t; z/ D sup
s<0

ps.t; z/

is lower semi-continuous in �T . This proves the first part of the lemma.

The second part follows from the fact that convex functions are locally Lipschitz in their
domain, and Lemma 1.13.

1.4. Compactness properties

We introduce a natural complete metrizable topology on the convex set P.�T /.

We recall the definition of the Sobolev space W 1;0
1;loc.�T / : this is the set of func-

tions u 2 L1loc.�T / whose partial time derivative (in the sense of distributions) satisfies
@tu 2 L

1
loc.�T /. It follows from Lemma 1.13 that

P.�T / � W
1;0
1;loc.�T /:

LetK � � be a compact subset. The local uniform Lipschitz constant of ' 2 P.�T / on
a compact subinterval J b �0; T Œ is given by

sup
t;s2J;s¤t

sup
z2K

� j'.s; z/ � '.t; z/j

js � t j
D k@t'kL1.J��/:

D 1.16. – We endow P.�T / with the semi-norms associated toW 1;0
1;loc.�T /:

given a compact subset J b �0; T Œ and u 2 W 1;0
1;loc.�/, these are

u 7�! k@tukL1.J�K/ C

Z
J

Z
K

ju.t; z/jdV.z/dt:
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The spacesLq.�T / are defined with respect to the .2nC1/-dimensional Lebesgue measure
in �T . For k; ` 2 N and q � 1, we denote by W k;`

q;loc.�T / the Sobolev space of Lebesgue
measurable functions whose partial derivatives with respect to t up to order k and partial
derivatives with respect to z up to order ` in the sense of distributions are in Lqloc.�T /.

Parabolic potentials enjoy useful compactness properties :

P 1.17. – Let .'j / � P.�T / be a sequence which

is locally uniformly bounded from above in �T ;

is locally uniformly Lipschitz in �0; T Œ;

does not converge locally uniformly to �1 in �T .

Then .'j / is bounded in L1loc.�T / and there exists a subsequence which converges to some
function ' 2 P.�T / in L1loc.�T /-topology.

If .'j / converges weakly to' in the sense of distributions in�T , then it converges inLqloc.�T /

for all q � 1.

The proof is an extension of Hartogs’ lemma for sequences of plurisubharmonic functions
(see e.g., [17, Theorem 1.46]).

Proof. – We first prove that .'j / is bounded in L1loc.�T /. Fix J b �0; T Œ and K b �.
From the assumptions it follows that, for each t 2 J fixed, 'j .t; �/ does not converge locally
uniformly in� to�1. Hence 'j .t; �/ is bounded inL1loc.�; dV /. The second condition thus
ensures that f'j g is uniformly bounded in L1.J �K/.

For each r 2 Q\ �0; T Œ, there exists a subsequence of 'j .r; �/ which converges in L1loc.�/

to some plurisubharmonic function '.r; �/ in �. After a Cantor process we can extract
a subsequence from f'j g, still denoted by f'j g, such that for each r 2 Q \ �0; T Œ, the
sequence f'j .r; �/g converges inL1loc.�/ to '.r; �/. Since the sequence f'j g is locally uniformly
Lipschitz in t , it follows that the function .r; z/ 7! '.r; z/ is also locally uniformly Lipschitz
in r . The function ' therefore uniquely extends to �0; T Œ �� by

'.t; z/ WD lim
Q3r!t

'.r; z/:

Since f'j g is uniformly Lipschitz in t it follows that f'j .t; �/g converges in L1loc.�/ to '.t; �/,
for all t 2 �0; T Œ and ' is locally uniformly Lipschitz in t 2 �0; T Œ. The latter then implies
that ' 2 P.�T /. By Fubini’s theorem and dominated convergence it follows that f'j g
converges in L1loc.�T / to '.

We now prove the last statement, assuming that ' 2 P.�T / and that the sequence f'j g
converges in the weak sense of distributions to '. We claim that for each t 2 �0; T Œ, f'j .t; �/g
converges in the sense of distributions in� to '.t; �/. Indeed, fix t0 2 �0; T Œ and let � W �! R
be a smooth test function in �. Let " > 0 be a small constant and let �" W R ! RC be a
smooth test function which is supported in Œt0 � "; t0 C "� and such that

R
R �".t/dt D 1. By

assumption,

(1.6) lim
j!C1

Z
�T

'j .t; z/�.z/�".t/dtdV .z/ D

Z
�T

'.t; z/�.z/�".t/dtdV .z/:
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Since the sequence f'j g is locally uniformly Lipschitz in t , there exists a constant �0
depending on "0 WD min.t0; T � t0/=2 such that

j'j .t; z/ � 'j .t0; z/j C j'.t; z/ � '.t0; z/j � �0jt � t0j;

for all t 2 Œt0 � "0; t0 C "0� and z 2 �. We infer
(1.7)ˇ̌̌̌Z

�T

'j .t; z/�.z/�".t/dtdV .z/ �

Z
�T

'j .t0; z/�.z/�".t/dtdV .z/

ˇ̌̌̌
� �0"

Z
�

j�.z/jdV.z/:

The same estimate holds for '. Combining (1.6) and (1.7) yields

lim
j!C1

Z
�

'j .t0; z/�.z/dV.z/ D

Z
�

'.t0; z/�.z/dV.z/CO."/:

We finally let "! 0 to conclude the proof of the claim.
Classical properties of plurisubharmonic functions now ensure that f'j .t0; �/g converges

in Lqloc.�/ to '.t0; �/. Since f'j g is locally uniformly Lipschitz in t , we conclude as above
that f'j g converges in Lqloc.�T / to '.

C 1.18. – The class P.�T / is a subset of Lqloc.�T / for all q � 1, and the
inclusions P.�T / ,! L

q
loc.�T / are continuous.

The weak topology and the Lqloc-topologies are thus all equivalent when restricted to the
class P.�T /. The set P.�T / is thus a complete metric space when endowed with any of
these topologies.

L 1.19. – We have P.�T / � W
1;1

loc .�T /.

Proof. – Fix u 2 P.�T /. The goal is to prove that u has partial derivative (in t and z)
in L1loc.�T /.

We first recall a basic estimate for the gradient of a plurisubharmonic function. Fix
z0 2 � and r > 0 such that the polydisk D.z0; 2r/ is contained in �. It follows from [21,
Theorem 4.1.8] (see also [17, Theorem 1.48] and its proof at page 32-33) that the derivative
of any plurisubharmonic function z 7! '.z/ exists inLploc.�/ for any p < 2 and the uniform
estimate �Z

D.z0;r/

jrz'j
pdV

�1=p
� C.p; r/

Z
D.z0;2r/

j'jdV

holds for a positive constant C.p; r/ depending only on r and p.
Fix J �K a compact subset of �T . Then by our previous analysis and the compactness

of K there exists a constant C > 0 depending on K and dist.K; @�/ and a compact
subset K b L b � such that�Z

K

jrz'j
pdV

�1=p
� C

Z
L

j'jdV;

for every ' 2 PSH.�/.
Now, for each t 2 �0; T Œ the derivative of u in z exists and belongs toLploc.�/ for anyp < 2

(with uniform bound). Since u is locally uniformly Lipschitz in t it follows that @tu.t; z/ is
bounded in J � K and u 2 L1.J � L; dtdV /. Altogether we obtain u 2 W

1;1
loc .�T / as

desired.
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2. Parabolic Monge-Ampère operators

2.1. Parabolic Chern-Levine-Nirenberg inequalities

We assume here that ' 2 P.�T / \ L
1
loc.�T /. For all t 2 �0; T Œ, the function

� 3 z 7! 't .z/ D '.t; z/ 2 R

is psh and locally bounded, hence the Monge-Ampère measures .dd c't /n are well defined
Borel measures in the sense of Bedford and Taylor [1].

We now show that this family depends continuously on t :

L 2.1. – Fix ' 2 P.�T /\L
1
loc.�T / and � a continuous test function in�T . Then

the function

�� W t 7�!

Z
�

�.t; �/.dd c't /
n

is continuous in �0; T Œ. Moreover if Supp.�/ b E1 b E2 b �T , then

(2.1) sup
0�t<T

ˇ̌̌̌Z
�

�.t; �/.dd c't /
n

ˇ̌̌̌
� C max

�T
j�j.max

E2
j'j/n;

where C > 0 is a constant depending only on .E1; E2; �T /.

In particular, t 7�! .dd c't /
n is continuous, as a map from �0; T Œ to the space of positive

Radon measures in � endowed with the weak�-topology.

Proof. – We can reduce to the case when the support of � is contained in a product of
compact subsets J �K � Eı � �0; T Œ��. LetL b � be a compact subset such thatK b Lı

and J � L � E.

We first prove (2.1). For any fixed t 2 �0; T Œ,ˇ̌̌̌Z
�

�.t; �/.dd c't /
n

ˇ̌̌̌
� max

�T
j�j

Z
K

.dd c't /
n:

The classical Chern-Levine-Nirenberg inequalities (see [17, Theorem 3.9]) ensure that there
exists a constant C D C.K;L/ > 0 such thatZ

�

�t .dd
c't /

n
� C max

�
j�j.max

L
j't j/

n
� C max

�T
j�j.max

L
j'j/n;

where C > 0 depends only on .K;L;�T /. This yields (2.1).

We now prove that �� is continous in �0; T Œ. Fix compact sets J b �0; T Œ;K b � such
that Supp.�/ � J �K. The continuity of �� on �0; T Œ nJ is clear. Fixing t0 2 J , we have for
any t 2 J ,Z

�

j�.t; �/ � �.t0; �/j.dd
c't /

n
�

�
sup
t2J

Z
K

.dd c't /
n

�
sup
K

j�.t; �/ � �.t0; �/j:

The second term on the right-hand side converges to 0 by uniform continuity of � while the
first term is finite thanks to the CLN inequality as before (see [17, Theorem 3.9]). Therefore,

lim
t!0

Z
�

j�.t; �/ � �.t0; �/j.dd
c't /

n
D 0:
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Since � is a continuous test function we also have

lim
t!t0

Z
�

�.t0; �/.dd
c't /

n
D

Z
�

�.t0; �/.dd
c't0/

n:

This proves the continuity of �� at t0, finishing the proof.

D 2.2. – Fix ' 2 P.�T / \ L
1
loc.�T /. The map

� 7!

Z
�T

�dt ^ .dd c'/n WD

Z T

0

dt

�Z
�

�.t; �/.dd c't /
n

�
defines a positive distribution in �T denoted by dt ^ .dd c'/n, which can be identified with
a positive Radon measure in �T .

P 2.3. – Fix ' 2 P.�T /\L
1
loc.�T / and let .'j / be a monotone sequence of

functions in P.�T / \ L
1
loc.�T / converging to ' almost everywhere in �T . Then

dt ^ .dd c'j /n ! dt ^ .dd c'/n

in the weak sense of measures in �T .

Proof. – Let � be a continuous test function in �T . By definition,Z
�T

�dt ^ .dd c'j /n D

Z T

0

dt

�Z
�

�.t; �/.dd c'j .t; �//n
�
DW

Z T

0

Fj .t/dt:

It follows from [2, Theorem 2.1 and Proposition 5.2] that Fj converges to F pointwise
in �0; T Œ. Lemma 2.1 ensures thatFj is uniformly bounded hence the conclusion follows from
Lebesgue convergence theorem.

R 2.4. – The conclusion of Proposition 2.3 also holds if the sequence .'j /
uniformly converges to ' 2 P.�T /.

2.2. Semi-continuity properties

It is difficult to pass to the limit in the parabolic equation, due to the time derivative. We
have the following general semi-continuity property :

L 2.5. – Let .�j / be positive Borel measures on a topological manifold Y which
converge weakly to � in the sense of Radon measures on Y . Let vj W Y �! R be a locally
uniformly bounded sequence of measurable functions which weakly converge to a measurable
function v in L2.Y; �/.

1. If k�j � �k ! 0 (total variation) then limj
R
Y
vj �j D

R
Y
v� and

lim inf
j!C1

evj �j � e
v�

in the weak sense of Radon measures in Y .

2. If vj ! v �-a.e. in Y and M WD f�j I j 2 Ng [ f�g is uniformly absolutely continuous
with respect to a fixed positive Borel measure Q� on Y , then for any continuous function
� W R! R,

�.vj /�j �! �.v/�;

as j !C1, in the weak sense of Radon measures in Y .
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Recall that a set M of positive Borel measures is uniformly absolutely continuous with
respect to a positive Borel measure Q� on Y if for any ı > 0 there exists ˛ > 0 such
that sup�2M �.B/ � ı whenever B � Y is a Borel subset with Q�.B/ � ˛

A typical example is when � D f� Q�, where sup�2M f� is Q�-integrable. When k�j��k ! 0

in the sense of total variation, then the set M WD f�j I j 2 Ng [ f�g is uniformly absolutely
continuous with respect to � D Q�.

Proof. – We first prove (1). Recall Young’s formula which states that

et D sup
s>0

fst � s log s C sg

for all t 2 R. It therefore suffices to prove that for all s > 0,

lim inf
j!C1

evj �j � .sv � s log s C s/�

in the weak sense of Radon measures on Y . Now for all s > 0

evj �j D sup
s>0

f.svj � s log s C s/�j g;

so it suffices to prove that lim infj vj �j � v� in the sense of Radon measures.
Let � be a test function on Y . Observe thatZ

Y

�vjd�j �

Z
Y

�vd� D

Z
Y

�.vj � v/d� C

Z
Y

�vjd.�j � �/:

The first term converges to zero by weak convergence. Since �vj is uniformly bounded by
a constant M the absolute value of the second term is less than Mk�j � �kSupp.�/, which
converges to 0.

We now prove (2). Set fj WD �.vj / and f WD �.v/ and writeZ
Y

�fjd�j �

Z
Y

�fd� D

Z
Y

�.fj � f /d�j C

Z
Y

�fd.�j � �/:

Observe that gj WD �.f � fj / ! 0 � a.e. in Y since vj ! v �-a.e. in Y . It follows
from Egorov’s theorem that the sequence .fj / converges Q�-quasi uniformly to f . Since the
sequence .�j / is uniformly absolutely continuous with respect to Q� it follows that the first term
above converges to 0 as j !C1. By Lusin’s theorem, the function f is Q�-quasi continuous
in Y , hence the second term also converges to 0 as j ! C1, completing the proof of the
lemma.

P 2.6. – Let J � R be a bounded open interval, D a bounded open set in Rm,
m 2 N�, and 0 � g 2 Lp.D/ with p > 1. Let . j / be a sequence of Borel functions in J �D
such that .e j g/ is uniformly bounded in L1.J �D;dtdV /. Assume that there exists E � D
with zero Lebesgue measure such that for all z 2 D n E,  j .�; z/ converge to a bounded Borel
function  .�; z/ in the sense of distributions on J and

(2.2) sup
j2N;z2DnE

ˇ̌̌̌Z
J

�.t; z/ j .t; z/dt

ˇ̌̌̌
< C1; for all � 2 C10 .J �D/:

Then for any positive smooth test function � 2 C10 .J �D/,

(2.3)
Z
J�D

�.t; z/e .t;z/g.z/dtdV � lim inf
j!C1

Z
J�D

�.t; z/e j .t;z/g.z/dtdV:
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Proof. – Fix C > 0 such that j j � C in X . Set 'j WD max. j ;�C/, j 2 N.
Then e'j is uniformly bounded in L1.J � D;gdtdV /. It follows that .'j / is bounded in
L2.J �D;g dt dV /. Up to extracting and relabeling, it follows from Banach-Saks theorem
that the arithmetic mean sequence

‰N WD
1

N

NX
jD0

'j

converges a.e. and in L2.J �D;gdtdV / towards a function ‰ 2 L2.J �D;gdtdV /.

Condition (2.2) and Lebesgue’s theorem ensure that  jg converges in the sense of distri-
butions on J �D to  g. This together with the convergence of ‰N towards ‰ ensure that
for any positive smooth test function � in J �D,Z

J�D

�‰gdtdV D lim
N!C1

Z
J�D

�‰NgdtdV

D lim
N!C1

1

N

NX
jD1

Z
J�D

�max. j ;�C/gdtdV

� lim
N!C1

1

N

NX
jD1

Z
J�D

� jgdtdV D

Z
J�D

� gdtdV:

This implies that ‰g �  g in L1.J �D/, hence e‰g � e g in L1.J �D/.

It thus follows from Fatou’s lemma that

lim inf
N!C1

Z
J�D

e‰N �gdtdV �

Z
J�D

e‰�gdtdV �

Z
J�D

e �gdtdV:

It follows now from the convexity of the exponential thatZ
X

e‰N �gdtdV �
1

N

NX
jD1

Z
X

e'j �gd�

�
1

N

NX
jD1

Z
X

e j �gd�C

Z
X

e�C�gdtdV;

hence letting N !C1 we getZ
e‰�gdtdV � lim inf

j!C1

Z
X

�e j gdtdV C e�C
Z
X

�gdtdV:

Letting C !C1 we obtain (2.3).

2.3. Semi-concavity and convergence

In the sequel we need more precise convergence results which require stronger assump-
tions :

D 2.7. – A function 
 W I ! R is �-concave if t 7! 
.t/ � �t2 is concave. It
is called locally semi-concave in I if for any subinterval J � I , there exists � D �.J; 
/ > 0
such that 
 is �-concave in J .
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A family A of semi-concave functions in some interval I � R is called locally uniformly
semi-concave if for any compact subinterval J b I , there exists a constant � D �.J; A / > 0

such that any 
 2 A is �-concave in J .

The following elementary lemma is useful :

L 2.8. – Let .
j / be a sequence of uniformly semi-concave functions in an interval
I � R which converges pointwise to a function 
 . Then there exists a countable subset S � I
such that for all t 2 I nS , the derivatives P
j .t/; P
.t/ exist and limj!C1 P
j .t/ D P
.t/. Moreover
if P
.t0/ exists then

lim
j!C1

@�t 
j .t0/ D lim
j!C1

@Ct 
j .t0/ D P
.t0/:

We include a proof for the reader’s convenience.

Proof. – We can assume that 
j is concave in I for all j and t0 D 0. Thus for all j 2 N
and t < 0,

t@�t 
j .0/ � 
j .t/ � 
j .0/:

Dividing by t < 0 and taking limits (first j ! C1, then t ! 0�), we obtain @�t 
.0/ �
lim supj!C1 @

�
t 
j .0/: Similarly lim infj!C1 @Ct 
j .0/ � @

C
t 
.0/: Since @�t 
j .0/ � @

C
t 
j .0/

we conclude that

@�t 
.0/ � lim sup
j!C1

@�t 
j .0/ � lim inf
j!C1

@Ct 
j .0/ � @
C
t 
.0/:

If P
.0/ exists, @�t 
.0/ D P
.0/ D @
C
t 
.0/, hence

lim
j!C1

@�t 
j .0/ D lim
j!C1

@Ct 
j .0/ D P
.0/:

Observe now that the derivatives of a concave function @˙t 
.t/ are monotone decreasing,
hence continuous outside a countable subset of I . Since @Ct 
.t/ D @

�
t 
.t/ almost everywhere

by Lemma 1.15, it follows that they are equal outside a countable set in I .

We now prove a convergence result that will play a key role in the sequel. We fix� a positive
Borel measure on� such that PSH.�/ � L1loc.�;�/ and let ` denote the Lebesgue measure
on R.

P 2.9. – Let .fj / be a sequence of positive functions converging to f

in L1.�T ; `˝ �/. Let .'j / be a sequence of functions in P.�T / which

converges `˝ �-almost everywhere in �T to a function ' 2 P.�T /;

is locally uniformly semi-concave in �0; T Œ.

Then limj!C1 P'j .t; x/ D P'.t; x/ for `˝ �-almost any .t; x/ 2 �T , and

�. P'j / fj `˝ �! �. P'/ f `˝ �;

in the weak sense of Radon measures in �T , for all � 2 C0.R;R/.
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Proof. – Fix a compact subinterval J b �0; T Œ. By definition there exists a constant � > 0
such that all the functions t 7�! uj .t; x/ WD 'j .t; x/��t2 are concave in J . By our hypothesis
there exists a�-negligible subsetE1 � �T such that for any .t; x/ … E1, the sequenceuj .t; x/
converges to u.t; x/ WD '.t; x/� �t2. It follows from Lemma 1.15 and Lemma 2.8 that there
exists a `˝ �-negligeable subset E2 � �T containing E1 such that P'j .t; x/ and P'.t; x/ are
well defined for all j and all .t; x/ … E2, with

lim
j!C1

P'j .t; x/ D P'.t; x/:

Since fj ! f in L1.�T ; ` ˝ �/, extracting a subsequence if necessary, we can find
g 2 L1.�T ; `˝ �/ such that 0 � fj � g in �T for any j 2 N and fj ! f ` ˝ �-almost
everywhere in �T . The measures .fj ` ˝ �/ are thus uniformly absolutely continuous with
respect to the positive Borel measure g `˝ �. Since . P'j / is bounded in L1loc.�T ; `˝�/, it
follows from Lebesgue convergence theorem that �. P'j / fj `˝�! �. P'/ f `˝� inL1loc.�T /.
Since this is true for any converging subsequence, the conclusion follows.

2.4. Elliptic tools

L 2.10. – Let u; v be bounded psh functions in � such that

.dd cu/n � ef1� and .dd cv/n � ef2�;

wheref1; f2 are bounded Borel functions in� and� is a positive Radon measure withL1 density
with respect to Lebesgue measure. Then

.dd c.�uC .1 � �/v//n � e�f1C.1��/f2�; for all ; � 2 Œ0; 1�:

Proof. – Observe first that

.dd c.�uC .1 � �/v//n D

nX
kD0

ak.dd
cu/k ^ .dd cv/n�k ;

where ak 2 .0; 1/, for all k and
Pn
kD0 ak D 1. It follows from the mixed Monge-Ampère

inequalities [26] (see also [7]) that for all k D 0; : : : ; n,

.dd cu/k ^ .dd cv/n�k � e.kf1C.n�k/f2/=n�:

Summing up the above inequalities and using the convexity of the exponential yields the
desired inequality.

L 2.11. – Let u be a psh function in � such that limz!� u.z/ D �.�/ where � is
a continuous function on @�. There exists a decreasing sequence .uj / of plurisubharmonic
functions which are continuous on N� and such that uj D � on @� and uj & u in �.

This result is classical but we include a proof for the reader’s convenience.

Proof. – It follows from the strictly pseudoconvex assumption on � that there exists a
harmonic function ˆ in � with boundary value �. We first take a sequence of continuous
functions ffj g � C . N�/ which decreases pointwise to u in N�. By considering min.fj ; ˆ/ we
can assume that fj D � on @�. For each j , consider the psh envelope

uj WD P.fj / WD supfv 2 PSH.�/ I v� � fj in N�g:
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Then u � uj � fj and uj # u. Hence .uj /� D .uj /
� D � on @�. It thus follows from [31,

Lemma 1] (see also [3, Proposition 3.2]) that uj is continuous in N�.

3. Boundary behavior of parabolic envelopes

Our aim is to solve the Cauchy-Dirichlet problem for (CMAF) with compatible boundary
data h using the Perron method of upper envelopes. In this section we prove that, under
natural assumptions, the parabolic Perron envelope has the right boundary values. We
assume T < C1.

3.1. Parabolic pluripotential subsolutions

Recall that for u 2 P.�T / the time derivative @tu exists a.e. in�T and satisfies the local
uniform bound j@tuj � �J .u/ in J ��, for each J b �0; T Œ (see Lemma 1.13).

D 3.1. – Fix u 2 P.�T /\L
1.�T /. The function u is called a pluripotential

subsolution to (CMAF) if it satisfies the inequality

dt ^ .dd cu/n � e PuCF.t;x;u/gdt ^ dV

in the sense of measures in �T . It is called a pluripotential supersolution to (CMAF) if the
reverse inequality holds in the sense of measures in �T .

If moreover u� � h in @0�T , we say that u is a pluripotential subsolution to the Cauchy-
Dirichlet problem for the parabolic complex Monge-Ampère Equation (CMAF) with
boundary data h. Here

u�.�; �/ WD lim sup
�T 3.t;z/!.�;�/

u.t; z/; .�; �/ 2 @0�T :

P 3.2. – Fix u 2 P.�T / \ L
1
loc.�T /.

(1) u is a pluripotential subsolution to (CMAF) if and only if for a.e. t ,

(3.1) .dd cut /
n
� e@tu.t;�/CF.t;�;ut /gdV;

in the sense of measures in �.
(2) If u is moreover locally semi-concave in t , it is a pluripotential subsolution to (CMAF)

if and only if for all t ,

.dd cut /
n
� e@

C
t u.t;�/CF.t;�;ut /gdV;

in the sense of measures in �.

Proof. – Recall that @tu makes sense almost everywhere and, in case u is semi-concave,
coincides with @Ct u which is well defined at every point.

Assume first that (3.1) holds for a.e. t . Let � 2 C10 .�T / be a non-negative test function.
Multiplying (3.1) by � and integrating in x we obtainZ

�

�.t; x/.dd cut /
n
�

Z
�

�.t; x/e@tuCF.t;x;ut /g.x/dV.x/:

Integrating with respect to t , we inferZ
�T

�.t; x/.dd cut /
n
^ dt �

Z
�T

�.t; x/e@tuCF.t;x;ut /g.x/dV.x/ ^ dt;
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i.e., u is a pluripotential subsolution to (CMAF).
Assume now that u is a pluripotential subsolution to (CMAF). Let .�j / be a sequence

of non-negative test functions on � which generates a dense subspace of the space of non-
negative test functions on � (for the C0-topology) and let ˛ be a non-negative test function
on �0; T Œ.

We consider the product test function defined on �0; T Œ �� by the formula

�.t; x/ D ˛.t/�j .x/:

It follows from Fubini theorem thatZ T

0

�Z
�

�j .x/.dd
cut /

n

�
˛.t/dt �

Z T

0

�Z
�

�j .x/e
@tuCF.t;x;ut /g.x/dV.x/

�
˛.t/dt:

We infer that for all t 2 Bj � Œ0; T Œ,Z
�

�j .x/.dd
cut /

n
�

Z
�

�j .x/e
@tuCF.t;x;ut /g.x/dV.x/;

where Bj has full measure in Œ0; T Œ. The set B D
T
j Bj � Œ0; T Œ has full measure and

the previous inequality holds for all t 2 B and for all j 2 N. Approximating an arbitrary
nonnegative test function � 2 C0.�/ by convex combinations of the �j ’s, we infer that for
almost every t ,

.dd cut /
n
� e@tu.t;�/CF.t;�;ut /gdV:

When u is moreover locally semi-concave in t the function @Ct u is lower semi-continuous
(see Lemma 1.15), hence

t 7!

Z
�

�.x/e@
C
t u.t;x/CF.t;x;ut .x//g.x/dV.x/

is lower semi-continuous by Fatou’s lemma. Since t 7!
R
�
�.dd cut /

n is continuous (by
Lemma 2.1), we infer that (3.1) holds for almost every t if and only if it holds for every t .

R 3.3. – Proposition 3.2 deals with subsolutions. A similar result holds for super-
solutions, using the partial derivative @�t u which is upper semi-continuous when u is locally
semi-concave (by Lemma 1.15 again). As a consequence, if u 2 P.�T / \ L

1
loc.�T / solves

(CMAF) and u is locally uniformly semi-concave in t 2 �0; T Œ then for almost all t 2 �0; T Œ,

.dd cut /
n
D e@tutCF.t;�;ut /gdV:

L 3.4. – For any u; v 2 P.�T / \ L
1
loc.�T /, we have

1fu�vg@t max.u; v/ D 1fu�vg@tu and 1fu>vg@t max.u; v/ D 1fu>vg@tu

almost everywhere in �T and

.dd c max.u; v//n ^ dt � 1fu>vg.dd cu/n ^ dt C 1fu�vg.dd cv/n ^ dt:

In particular the maximum of two subsolutions is again a subsolution.

Proof. – It follows from Lemma 1.19 that P.�T / � W
1;1

loc .�T /. The first identity is then
a classical result in the theory of Sobolev spaces (see e.g., [12, Lemma 7.6 page 152]). The
second inequality is a consequence of the elliptic maximum principle for psh functions (see
e.g., [17, Corollary 3.28]).
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It is therefore natural to consider the Perron envelope of subsolutions :

D 3.5. – We let S h;g;F .�T / denote the set of u 2 P.�T / such that

1. u is a pluripotential subsolution to (CMAF) in �T ;

2. u� � h on @0�T , i.e., for all .s; �/ 2 @0�T ,

lim sup
�T 3.t;z/!.s;�/

u.t; z/ � h.s; �/:

We let
U D Uh;g;F;�T WD supfu I u 2 S h;g;F .�T /g

denote the upper envelope of all subsolutions.

L 3.6. – The set S h;g;F .�T / is not empty, uniformly bounded in �T , stable under
finite maxima. The envelope U WD Uh;g;F;�T and its upper semi-continuous regularization U �

satisfy for all .t; z/ 2 �T ,

B�.z/ �Mh � U.t; z/ � U
�.t; z/ �Mh;

where B D eMF =n. In particular

(3.2) kU kL1.�T / �MU WDMh C cne
MF kgk

1=n

Lp.�/
:

Recall that
Mh WD sup

@0�T

jhj ; MF WD sup
�T

F.�; �;Mh/:

Proof. – Fix B D eMF =n. Since gdV D .dd c�/n we obtain eMF gdV D Bn.dd c�/n:

Set, for .t; z/ 2 �T ,
u.t; z/ WD B�.z/ �Mh:

Then u 2 S h;g;F .�T /, hence u � Uh;g;F;�T .

Fix u 2 S h;g;F .�T / and fix t 2 �0; T Œ. Then lim supz!� u.t; z/ � h.t; �/, for every
� 2 @�. It thus follows from the classical maximum principle for plurisubharmonic functions
that u.t; z/ �Mh for every z 2 �. Thus U.t; �/ �Mh for any t 2 �0; T Œ.

Therefore, the upper envelope U is well defined and satisfies the uniform estimates
u � U �Mh, in �T , hence

U.t; z/ WD supfu.t; z/ I u 2 S h;g;F .�T /; u � u �Mhg:

The stability under finite maxima follows from Lemma 3.4.

3.2. Construction of sub-barriers

The family t 7�! h.t; z/ (z 2 @�) is uniformly Lipschitz in �0; T Œ if there exists a
constant �.h/ > 0 such that

(3.3) jh.t; z/ � h.s; z/j � �.h/ jt � sj; 8.t; s/ 2 Œ0; T Œ2;8z 2 @�:

The parabolic boundary of �T consists in two different types of points. We provide
barriers for each type.
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3.2.1. Sub-barriers at boundary points of Dirichlet type. – We first construct subbarriers at
Dirichlet boundary points in Œ0; T Œ � @�.

L 3.7. – Assume h satisfies (3.3). Then there exists u 2 S h;g;F .�T / such that u.�; z/
(z 2 �) is uniformly Lipschitz in Œ0; T Œ and satisfies : for any .s; �/ 2 Œ0; T Œ � @�,

lim
.t;z/!.s;�/

u.t; z/ D h.s; �/:

If h0 is continuous on N� then u can be chosen to be continuous in Œ0; T Œ � N�.

Proof. – Fix t 2 Œ0; T Œ and set ht WD h.t; �/ 2 C .@�/. Let �t be the unique continuous
plurisubharmonic function in � such that

(3.4)

(
.dd c�t /

n D 0 in �;

limz!� �t .z/ D ht .�/ � h0.�/; 8� 2 @�:

The existence and continuity of �t on N� follows from classical results in pluripotential theory
(see [1, 2], [17, Theorem 5.12]). Moreover, �t can be characterized as the supremum of
all subsolutions to (3.4). Since t 7�! h.t; z/ (z 2 @�) is uniformly Lipschitz in Œ0; T Œ,
the tautological maximum principle reveals that the family of functions t 7�! �.t; z/ WD

�t .z/ .z 2 �) is uniformly Lipschitz in Œ0; T Œ with a Lipschitz constant �.�/ � �.h/. By
Lemma 1.5, .t; z/ 7�! �t .z/ is continuous in Œ0; T Œ � N�. Consider now, for .t; z/ 2 �T ,

u.t; z/ WD �t .z/C h0.z/C A�.z/;

where A > 0 is a large constant to be chosen later, and � is defined in (0.7). Observe that
u 2 P.�T / and u� � h in @0�T . It is clear that t 7�! u.t; z/ (z 2 �) is uniformly Lipschitz
in Œ0; T Œ with �.u/ � �.h/. Moreover

dt ^ .dd cu/n � Andt ^ .dd c�/n � Andt ^ gdV

in the weak sense of measures in�T . We chooseA > 0 so that n logA � �.h/CMF . It is then
clear that u 2 S h;g;F .�T /. By definition, u is continuous in Œ0; T Œ � � provided that h0 is
continuous on N�.

3.2.2. Sub-barriers at boundary points of Cauchy type. – We now construct sub-barriers at
boundary points in f0g ��.

L 3.8. – Assume h satisfies (3.3). Then there exists v 2 S h;g;F .�T / such that for
all � 2 N�,

lim sup
�T 3.t;z/!.0;�/

v.t; z/ D h0.�/; and lim
t!0C

v.t; �/ D h0.�/:

If h0 is continuous on N� then v can be chosen to be continuous on Œ0; T Œ � N�.

Proof. – By assumption on h we have, for all .t; z/ 2 Œ0; T Œ � @�,

h.0; z/ � h.t; z/C �t:

Set, for .t; z/ 2 �T ,

v.t; z/ WD h0.z/C t .�.z/ � C/C nŒt log.t=T / � t �;

where C WD �h C MF � min.n logT; 0/. Then v 2 S h;g;F .�T / and v is continuous
on Œ0; T Œ � N� if h0 is continuous on N�.
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3.3. Super-barriers

3.3.1. Super-barriers at boundary points of Dirichlet type. – For each t 2 Œ0; T Œ, we letHt be
the unique harmonic function in� with boundary value ht on @� and setH.t; z/ WD Ht .z/

(the existence of Ht is a classical fact; see e.g., [12, Theorem 2.14]). Recall that Ht can be
defined as the upper envelope of all subharmonic functions in�with boundary values� ht .
Observe that h0 � H.0; �/ in �, with equality at the boundary.

L 3.9. – For all .t; z/ 2 Œ0; T Œ �� we have U �.t; z/ � H.t; z/. In particular, for all
.s; �/ 2 Œ0; T Œ � @�,

lim sup
.t;z/!.s;�/

U �.t; z/ � h.s; �/:

Proof. – It follows directly from the maximum principle for subharmonic functions
that Ut � Ht , for all t 2 Œ0; T Œ. Fix S 2 �0; T Œ. Since the family fh.�; z/ I z 2 @�g is
equicontinuous in Œ0; S�, it follows by definition that the family fH.�; z/ I z 2 N�g is equicon-
tinuous in Œ0; S�, hence the function H is continuous in Œ0; T Œ � N�, by Lemma 1.5. Then
U �.t; z/ � H.t; z/ for any .t; z/ 2 �T . From the continuity of H , it follows that U � � H
in Œ0; T Œ � N�.

3.3.2. Boundary behavior at Cauchy boundary points. – So far we have constructed enough
barriers to ensure that the envelope of subsolutions either matches the boundary data (at
Dirichlet points), or stays below it. The following average argument will allow us to conclude
that it also coincides with the boundary data at Cauchy points :

L 3.10. – Let ' 2 P.�T / \ L1.�T / be a subsolution to (CMAF) such
that

R
D
.dd c't /

n � C , for every t 2 Œ0; T Œ, for some C > 0, where D is an open set
in �. Then, for each positive continuous test function � in D, there exists A > 0 such that

t 7!

Z
D

�'tgdV � At

is decreasing in �0; T Œ.

Proof. – Since ' is a subsolution to (CMAF) we obtain for a.e. t 2 �0; T Œ,Z
D

�e P'tCmF gdV �

Z
D

�e P'tCF gdV �

Z
D

�.dd c't /
n
� C;

where mF WD infŒ0;T Œ� N��Œ�MU ;MU � F . It follows from Jensen’s inequality thatZ
D

� P'tgdV � C2;

for a.e. t 2 �0; T Œ, where C2 > 0 is a uniform constant. We then infer that the function
t 7!

R
D
�'tgdV � C2t is decreasing in �0; T Œ.

C 3.11. – Assume fuj g � S h;g;F .�T / is a bounded sequence which is locally
uniformly Lipschitz in �0; T Œ (with Lipschitz constant independent of j ). If fuj g converges
in L1loc.�T / to u 2 P.�T / then

lim sup
.t;z/!.s;�/

u.t; z/ � h.s; �/; 8.s; �/ 2 @0�T :
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Recall that h W @0�T ! R is a boundary data (see the last section of the introduction)
and h0 WD h.0; �/ is a bounded psh function in �.

Proof. – For .s; �/ 2 �0; T Œ � @� the desired inequality holds thanks to Lemma 3.9. Fix
D b � and let � be a positive continuous test function in �. It follows from the Chern-
Levine-Nirenberg inequality [17, Theorem 3.9] that

R
D
.dd cu

j
t /
n is uniformly bounded.

Lemma 3.10 therefore provides us with a uniform constant A > 0 such thatZ
D

�u
j
t gdV �

Z
D

�h0gdV C At; 8t 2 �0; T Œ; 8j:

Letting j !C1, Lemma 1.11 ensures thatZ
D

�utgdV �

Z
D

�h0gdV C At; 8t 2 �0; T Œ:

If v is a cluster point of ut as t ! 0 then the above estimate yields v � h0 onD. SinceD was
chosen arbitrarily, v � h0 on �. The conclusion thus follows from Lemma 1.6.

3.4. Boundary behavior of the Perron envelope

T 3.12. – Assume h satisfies (3.3). Then the upper semi-continuous regularization
of the envelope U D Uh;g;F;�T satisfies

(i) for any .s; �/ 2 Œ0; T Œ � @�, lim�T 3.t;z/!.s;�/ U
�.t; z/ D h.s; �/:

(ii) for any z0 2 �,

lim
t!0C

U �.t; z0/ D h.0; z0/; and lim sup
�T 3.t;z/!.0;z0/

U �.t; z/ D h.0; z0/:

Here U � denotes the u.s.c. regularization of U in the variable .t; z/ in �T .

Proof. – Fix .s; �/ 2 Œ0; T Œ � @�. Lemma 3.7 and Lemma 3.9 yield .i/.
In view of Lemma 3.8 it remains to prove that for all z0 2 �,

lim sup
�T 3.t;z/!.0;z0/

U �.t; z/ � h0.z0/:

The envelope U is locally uniformly Lipschitz in �0; T Œ, as follows from Theorem 4.2. We
can thus apply Lemma 1.7 to conclude that U �.t; �/ D U �t in � for any t 2 �0; T Œ, where
U �t D .Ut /

� is the u.s.c. regularization of the function Ut (t fixed) in�. Using Lemma 1.6 it
is then enough to show that

lim sup
t!0

U �t .z0/ � h0.z0/;8z0 2 �:

Observe that U can be seen as the upper envelope of all ' 2 S h;g;F .�T / such that
sup�T j'j �MU , where MU is given in Lemma 3.6.

Fix � a continuous positive test function in�. We claim that there exists a constantC > 0

such that for all t 2 �0; T Œ,

(3.5)
Z
�1

�U �t gdV �

Z
�1

�h0gdV C Ct:

Indeed, fix t0 2 �0; T Œ. Since the set of subsolutions is stable under maximum, by
Choquet’s lemma, U �t0 D .limj!C1 '

j
t0
/� in �, where f'j g is an increasing sequence

in S h;g;F .�T / with j'j j � MU . The sequence f'j g depends on t0 but, as will be shown
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later, the constant C does not depend on t0. Now fix j 2 N, �1 b �2 b � compact subsets
of �. It follows from the Chern-Levine-Nirenberg inequality [17, Theorem 3.9] thatZ

�1

�.dd c'
j
t /
n
� C1; for all t 2 �0; T Œ;

where C1 depends only on �1; �2; � and MU . It thus follows from Lemma 3.10 thatZ
�1

�'
j
t gdV �

Z
�1

�h0gdV C C2t; for all t 2 �0; T Œ;

for a uniform constant C2 > 0. A classical theorem of Lelong (see [17, Proposition 1.40])
ensures that �

z 2 � I lim
j!C1

'
j
t0
.z/ < .Ut0/

�.z/

�
has volume zero in �. Therefore taking the limit as j ! C1 in the previous inequality
for t D t0, we deduce that Z

�1

�U �t0gdV �

Z
�1

�h0gdV C C2t0:

Since C2 does not depend on t0, the claim is proved.

Let w0 2 PSH.�/ be any cluster point of U �t as t ! 0C. We can assume that U �t
converge tow0 inLq.�/ for any q > 1. Then U �t g converge tow0g inL1.�/. Thus, by (3.5),R
�1
�w0gdV �

R
�1
�h0gdV . Since � � 0 was chosen arbitrarily, we infer that w0 � h0

almost everywhere in �1 with respect to gdV . The assumption on g finally yields w0 � h0
on �1. By letting �1 ! � we can then conclude that lim supt!0 U

�
t � h0 in �.

L 3.13. – If h0 is continuous on N� thenU �.t; �/ uniformly converges to h0 as t ! 0C.

Note that in Lemma 3.13 we merely assume that h is locally uniformly Lipschitz in
t 2 �0; T Œ.

Proof. – We first assume that h satisfies (3.3). It follows from Lemma 3.8 that there exists
a continuous subsolution u 2 S h;g;F .�T / :

u.t; z/ WD h0.z/C t .�.z/ � C/C �.t/;

where C is a uniform constant, �.t/! 0 as t ! 0 and � is defined by (0.7).

For each t 2 Œ0; T Œ, let Ht be the unique continuous harmonic function in � with
boundary value ht . Then

u � U � � H:

It follows moreover from Theorem 3.12 that U �.t; �/ converges in L1.�/ to h0 as t ! 0.
Hartogs’ lemma thus yields

lim sup
t!0

max
z2K

.U �.t; z/ � h0.z// � 0;

for any compact K b �. Since ut uniformly converges to h0 as t ! 0C we infer,
for any compact K b �,

(3.6) lim
t!0C

sup
z2K

jU �.t; z/ � h0.z/j D 0:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



918 V. GUEDJ, C.H. LU AND A. ZERIAHI

Fix " > 0. Since H0 and h0 are continuous on N� with h0 D H0 on @�, there exists ı > 0
small enough such that

sup
z2�ı

jH0.z/ � h0.z/j � ";

where �ı WD fz 2 N� I dist.z; @�/ < ıg. We also have, for .t; z/ 2 Œ0; T Œ � N�,

U �.t; z/ � h0.z/ � Ht .z/ � h0.z/ � H0.z/ � h0.z/C �ht:

Using this and the uniform convergence of ut to h0 as t ! 0 we obtain

lim
t!0

sup
z2�ı

jU �.t; z/ � h0.z/j � ":

Using (3.6) we infer
lim
t!0

sup
z2 N�

jU �.t; z/ � h0.z/j � ":

Letting "! 0C yields the conclusion.
For the general case (i.e., h is locally uniformly Lipschitz in �0; T Œ with h0 continuous

on N�), we proceed by approximation. Fix S 2 �T=2; T Œ, " > 0 small enough. Proposition 4.1
below ensures that Uh;g;F;�S D Uh;g;F;�T in �S . Set(

h�.t; �/ WD h.t C �; �/ if .t; �/ 2 Œ0; S� � @�

h�.0; z/ D h0.z/C  
�.z/ if z 2 �;

where  � is the maximal plurisubharmonic function in� such that �.�/ D h.�; �/�h.0; �/
in @�. Recall that � is the upper envelope of all psh functions in�whose boundary values
satisfy  � � h.�; �/ � h.0; �/ on @�.

Since h�.0; �/ D h."; �/ ! h.0; �/ uniformly on @� as � ! 0, it follows that  � ! 0

uniformly in N� as � ! 0. Therefore fh�g uniformly converges on @0�S to h as � ! 0.
Set U " WD Uh";g;F;�S . Then .U "/� uniformly converges to U � in �S . Since h� is uniformly
Lipschitz in t 2 Œ0; S�, the previous step (using Theorem 3.12) guarantees that .U "/�.t; �/
uniformly converges to h0 as t ! 0, hence U �t uniformly converges to h0 as t ! 0.

4. Time regularity of parabolic envelopes

We establish in this section time regularity of the envelope U WD Uh;g;F;�T by using and
adapting some classical ideas of pluripotential theory.

We work in�S for each 0 < S < T and eventually let S ! T . We thus assume T < C1,
the family fF.�; z; �/ I z 2 �g is uniformly Lipschitz and semi-convex in Œ0; T � � J for
each J b R, and h satisfies

(4.1) t j@th.t; z/j � �h; for all .t; z/ 2 �0; T Œ � @�;

for some positive constant �. The condition (4.1) is equivalent to the fact that for all
.t; z/ 2 �T and s > 0 with st < T , we have

(4.2) jh.t; z/ � h.st; z/j � �h
js � 1j

min.s; 1/
; z 2 @�:

If h is uniformly Lipschitz in t 2 Œ0; T Œ (as in (3.3)) then the above condition is automati-
cally satisfied. On the other hand the condition above implies that h.�; z/, z 2 @� is locally
uniformly Lipschitz in �0; T Œ.
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4.1. Lipschitz control in the time variable

The following identity principle plays a crucial role in the sequel. For simplicity we will
denote the restriction of h on @0�S , for 0 < S < T , by h.

P 4.1. – For all S 2 �0; T Œ we have Uh;g;F;�T D Uh;g;F;�S in �S .

Proof. – Set V WD Uh;g;F;�S and U WD Uh;g;F;�T . Fix u 2 S h;g;F .�S / and t0 2 �0; SŒ,
such that

.dd cu.t0; �//
n
� e@tu.t0;�/CF.t0;�;u.t0;�//gdV:

Set M1 WD sup� j@tu.t0; �/j < C1. If A �M1 the function

�T 3 .t; z/ 7! v.t; z/ WD

(
u.t; z/; if t 2 Œ0; t0�;

u.t0; z/ � A.t � t0/ if t 2 Œt0; T Œ;

is again a subsolution to (CMAF) in �T . Applying (3.3) on the interval J WD Œt0; T Œ, we
obtain that v� � h on @0�T if A � �J .h/.

We therefore chooseA � maxfM1; �J .h/g. Then v 2 S h;g;F .�T / hence v � U in�T . In
particular u � U on �t0 . Taking supremum over all candidates u we obtain V � U in �t0 .
Using Proposition 3.2 we can let t0 ! S to obtain V � U in �S . The reverse inequality is
clear.

T 4.2. – If h satisfies (4.1), then the envelope U WD Uh;g;F;�T satisfies

t j@tU.t; z/j � �U ; 8.t; z/ 2 �T ;

where �U > 0 is a uniform constant.

We will show that the constant �U is actually explicit,

(4.3) �U D .T C 1/.3MU C 2�h C 2nC �F .T CMU //:

This quantitative information will be crucial in perturbation arguments, to obtain uniform
Lipschitz constants of the approximants.

The proof of this theorem follows and adapt ideas developed by Bedford and Taylor
in their study of Dirichlet problems for elliptic complex Monge-Ampère equations (see [1,
Theorem 6.7], [5]).

Proof. – By the assumption on F , there exists a constant �F such that, for all z 2 � and
.tj ; rj / 2 Œ0; T Œ � Œ�2MU ; 2MU �, j D 1; 2,

(4.4) jF.t1; z; r1/ � F.t2; z; r2/j � �F .jt1 � t2j C jr1 � r2j/:

Fix u 2 S h;g;F .�T / such that sup�T juj � MU , where MU is defined in Lemma 3.6. Fix
0 < S < T and s � 1=2 close enough to 1 such that sS < T . Set, for .t; z/ 2 �S ,

vs.t; z/ WD s�1u.st; z/ � C js � 1j.t C 1/;

where

(4.5) C WD 2MU C 2�h C 2nC �F .T CMU /:
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We are going to prove that vs 2 S h;g;F .�S /. Since u is a subsolution to (CMAF), for a.e.
t 2 �0; SŒ we have

.dd cvs.t; �//n D s�n.dd cu.st; �/n

� e�n log sC@�u.st;�/CF.st;�;u.st;�//gdV

� e@tv
s.t;�/CC js�1jCF.t;�;s�1u.st;�//�n log s��F .T js�1jCjs�1�1jMU /gdV

� e@tv
s.t;�/CF.t;�;vs.t;�//gdV;

where in the last line we use (4.5) and the fact that F is increasing in r .
We now take care of the boundary values. For t 2 Œ0; S�; z 2 @� we have

vs.t; z/ � �C js � 1j C js�1 � 1jMU C h.st; z/

� �C js � 1j C 2js � 1jMU C h.t; z/C 2�hjs � 1j

� h.t; z/;

where in the second line we use (4.2), and in the last line we use again (4.5). For z 2 � we
similarly get .vs/�.0; z/ � h0.z/.

The computations above show that vs 2 S h;g;F .�S /. Proposition 4.1 thus yields vs � U
in �S . Taking supremum over u we arrive at

s�1U.st; z/ � C js � 1j.t C 1/ � U.t; z/; for all .t; z/ 2 �S :

Letting s ! 1 we infer, for all .t; z/ 2 �S ,

t j@tU.t; z/j �MU C C.T C 1/:

Letting S ! T yields the conclusion.

D 4.3. – Given a constant � > 0 we let S �
WD S �

h;g;F .�T / denote the set of
all u 2 S h;g;F .�T / such that, for all t 2 �0; T Œ,

(4.6) sup
�

j@tu.t; z/j � �=min.t; b/;

where b D min.1; T=2/, and we set

U � WD U �h;g;F;�T WD supfu I u 2 S �
h;g;F .�T /g:

We will need the following identity principle :

P 4.4. – For all S 2 �T � "; T Œ and � � 2T �h we have

U �h;g;F;�T D U
�
h;g;F;�S

in �S :

Proof. – The proof is similar to that of Proposition 4.1. Fix S 2 �T � "; T Œ and set
V WD U �

h;g;F;�S
, W WD U �

h;g;F;�T
. Fix u 2 S �

h;g;F .�S /. Using Proposition 3.2 we fix
t0 2 �T=2; SŒ, such that

.dd cu.t0; �//
n
� e@tu.t0;�/CF.t0;�;u.t0;�//gdV:

Since sup� j@tu.t0; �/j � �=b, the function

�T 3 .t; z/ 7! v.t; z/ WD

(
u.t; z/; if t 2 Œ0; t0�;

u.t0; z/ � �b
�1.t � t0/ if t 2 Œt0; T Œ;
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is still a subsolution to (CMAF) in �T . It follows from (4.2) that

jh.t; z/ � h.t0; z/j �
2�h

T
jt � t0j; for all t 2 Œt0; T Œ:

Using that � � 2T �h and b < 1, we thus obtain v� � h on @0�T . By construction, v satisfies
(4.6). Therefore v 2 S �

h;g;F .�T /, hence v � W in�T . We infer in particular u � W on�t0 .
Taking supremum over all candidates u we obtain V � W in �t0 . Using Proposition 3.2 we
can let t0 ! S to obtain V � W in �S . The reverse inequality is obvious.

T 4.5. – There exists an explicit �0 > 0 such that, for all � > �0,

sup
�T

t j@tU
�
j � �0:

Proof. – We use the same notations as in the proof of Theorem 4.2. By approximating F
we can assume that F.t; z; r/ does not depend on t 2 ŒT � "; T Œ for some � > 0. Define

(4.7) C WD �F T C 2�FMU C 2MF C 2�h C 2Mh C 2n;

and

(4.8) �0 WD 2MU C 3C.T C 1/C 2 sup
�

j�j:

Fix � > �0. By definition of �0 we have, for all t 2 �0; T Œ, 2�h � �0=t . Proposition 4.4 thus
ensures that, for all T � " < S < T ,

(4.9) U �h;g;F;�T D U
�
h;g;F;�S

in �S :

Fix u 2 S � , T � " < S < T , s > 0 close enough to 1 and set, for .t; z/ 2 �S ,

w.t; z/ WD as�1u.st; z/C .1 � a/� � C.1 � a/.t C 1/;

where a D 1 � 2js � 1j > 0, � is defined in (0.7).

Since u is a subsolution to (CMAF) we have, for almost all t 2 �0; T Œ,

.dd cs�1u.st; �//n � expf�n log s C @�u.st; z/C F.st; z; u.st; z//ggdV:

It thus follows from Lemma 2.10 that

.dd cw/n � expfa@tu.st; z/C aF.st; z; u.st; z// � an log sggdV

D expf@tw.t; z/C C.1 � a/ � an log s C aF.st; z; u.st; z//ggdV:

From (4.4) and the assumption that F is increasing in r we obtain

aF.st; z; u.st; z// D F.st; z; u.st; z//C .1 � a/F.st; z; u.st; z//

� F.t; z; as�1u.st; z// � js � 1j.�F T C 2�FMU C 2MF /

� F.t; z; w.t; z// � js � 1j.�F T C 2�FMU C 2MF /:

For .�; �/ 2 @0�S we have

w.�; �/ � as�1h.st; �/ � 2C js � 1j

� h.st; �/C jas�1 � 1jMh � 2C js � 1j

� h.t; �/C 2js � 1j�h C 2Mhjs � 1j � 2C js � 1j:
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The choice of C in (4.7) and the previous computations ensure that w 2 S h;g;F .�S /.
Moreover, for s 2 Œ1=2; 3=2�, t 2 �0; SŒ,

sup
�

j@tw.t; z/j �
.1 � 2js � 1j/�

min.st; b/
C 2C js � 1j:

Since �=t > �0=t > 3C , it follows that for s 2 Œ1; 3=2�, t 2 �0; SŒ,

sup
�

j@tw.t; z/j �
.3 � 2s/�

min.t; b/
C
2.s � 1/�

3t
�

�

min.t; b/
:

Hence w 2 S �
h;g;F .�S /. By definition of U � and (4.9) we have w � U � on �S . Taking

supremum over u 2 S �
h;g;F .�T / we obtain, for all .t; z/ 2 �S ,

as�1U �.st; z/ � 2C js � 1j.t C 1/C 2js � 1j�.z/ � U �.t; z/:

Letting s ! 1 yields

t j@tU
�.t; z/j � 2MU C 2C.T C 1/C 2 sup

�

j�j � �0;

where in the last inequality we use (4.8). This concludes the proof.

E 4.6. – Consider '.t; z/ WD t .z/ C n.t log t � t /; where  is a bounded
plurisubharmonic function in � with zero boundary values, solution of

.dd c /n D e gdV:

Then ' is a parabolic potential solution of

tn.dd c /n ^ dt D .dd c'/n ^ dt D e@t'gdV ^ dt:

This example shows that one cannot expect the solutions to be Lispchitz at time zero.

4.2. The maximal subsolution

We now prove that U 2 S h;g;F .�T /.

T 4.7. – Assume h satisfies (4.1) and setU WD Uh;g;F;�T . ThenU 2 S h;g;F .�T /

and satisfies the following properties:

1. lim�T 3.t;z/!.s;�/ U.t; z/ D h.s; �/ for all .s; �/ 2 Œ0; T Œ � @�;

2. lim sup�T 3.t;z/!.0;z0/ U.t; z/ D h.0; z0/ for all .0; z0/ 2 f0g ��;

3. limt!0 Ut .z/ D h0.z/ for all z 2 �.

If h0 is continuous then for all .s; �/ 2 @0�T ;

lim
�T 3.t;z/!.s;�/

U.t; z/ D h.s; �/:

Proof. – We proceed in several steps.

Step 1. – Assume h satisfies (3.3).

Theorem 3.12 ensures that U � has the desired boundary values. We are going to prove
that U � is a subsolution to (CMAF).
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Step 1.1. – Assume h0 is continuous on N�.

Fix � � �0, where �0 is defined in Theorem 4.5.

C 1. – We have U � D .U �/� 2 S �
h;g;F .�T /.

Indeed, since U � � U , the boundary condition .U �/�
ˇ̌
@0�T

� h is satisfied. We now
prove that .U �/� is a subsolution to (CMAF). A classical lemma of Choquet ensures that
there exists a sequence fuj g in S �

.h; g; F;�T / such that

.U �/� D

 
sup
j2N

uj

!�
in �T :

By Lemma 3.6, we can assume sup�T ju
j j �MU . Since S � is stable under taking maximum

we can assume that fuj g is increasing. By definition of S � , limj uj is locally uniformly
Lipschitz in t 2 �0; T Œ. Hence from Lemma 1.7 it follows that uj increases to .U �/� almost
everywhere in �T . We infer that dt ^ .dd cuj /n ! dt ^ .dd c.U �/�/n weakly in �T .
Moreover, the sequence f j g WD f@tuj C F.t; z; uj /g is bounded and converges in the sense
of distributions to @t .U �/� C F.t; z; .U �/�/. Proposition 2.6 thus yields

e@t .U
�/�CF.t;z;.U �/�/gdt ^ dV � lim inf

j
e@tu

jCF.t;z;uj /gdt ^ dV;

weakly in�T . Therefore, .U �/� is a subsolution to (CMAF) in�T . Hence .U �/� D U � and
Claim 1 is proved.

It now follows from Theorem 4.5 that U � D U �0 , for all � > �0.

C 2. – We have U D U �0 in �T .

Fix v 2 S h;g;F .�T /, S 2 �T=2; T Œ, " > 0 small enough. Define, for .t; z/ 2 Œ0; S� ��,

u.t; z/ WD v.t C "; z/ � C".1C t / � �."/;

where C > 0 is a uniform constant and �."/ WD sup N� jU
�."; z/ � h0.z/j converges to 0 (by

Lemma 3.13). Since v� � h on @0�T , we obtain for all .�; �/ 2 Œ0; S� � @�,

u.�; �/ � h.� C "; �/ � C" � h.�; �/;

if C � �h. By definition of �."/ we also have u.0; z/ � h0.z/ in �.

A direct computation shows that, for C > 0 large enough, u 2 S h;g;F .�S /. Since u is
uniformly Lipschitz in Œ0; S�, u 2 S �

h;g;F .�S / for some � > 0 large enough. Hence u � U �0

in �S . Letting " ! 0 we obtain v � U �0 in �S . Letting S ! T we arrive at v � U �0 ,
hence U � U �0 . Therefore U D U �0 is the maximal subsolution to (CMAF) with boundary
value h.
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Step 1.2. – We now remove the continuity assumption on h0.

Using Lemma 2.11 we can find a sequence hj0 of psh functions in � such that hj0 is
continuous on N�, hj0 D h0 on @�, and hj0 # h0 in �. We then define hj .t; z/ WD h.t; z/

for .t; z/ 2 Œ0; T Œ � @� and hj .0; z/ D h
j
0.z/ for z 2 �. We thus obtain a sequence of

continuous Cauchy-Dirichlet boundary data for�T such that hj D h on Œ0; T Œ� @� and hj

decreases pointwise to h. The previous step ensures thatU j WD Uhj ;g;F;�T is a subsolution to
(CMAF). Theorem 4.2 and Theorem 4.8 provide a uniform Lipschitz constant forU j . Since
hj decreases to h, U � U j decreases to some V 2 P.�T /. We thus have V �

ˇ̌
@0�T

� h, and
Proposition 2.6 reveals that V is a subsolution to (CMAF). It then follows that V D U .

Step 2. – To treat the general case we proceed by approximation as in the proof of
Lemma 3.13. Fix 0 < S < T and 0 < " < .T � S/=2. Define(

h�.t; �/ WD h.t C �; �/ if .t; �/ 2 Œ0; S� � @�

h�.0; z/ D h0.z/C  
�.z/ if z 2 �;

where  � is the maximal psh function in � such that  �.�/ D h.�; �/ � h.0; �/ in @�.
Then fh�g uniformly converges on @0�S to h as � ! 0. Since h� is uniformly Lipschitz in
t 2 Œ0; S�, the previous step and Theorem 3.12 ensure that U " WD Uh";g;F;�S 2 S h";F;g.�S /

satisfies the boundary conditions (1.), (2.), (3.). Moreover, it follows from Proposition 4.1
that the envelopes U " uniformly converge in �S to U as "! 0. Hence, Proposition 2.6 and
Proposition 2.3 (together with Remark 2.4) yield that U is a subsolution to (CMAF) and
U satisfies the boundary conditions (1.), (2.), (3.).

If h0 is continuous on N� then Lemma 3.13 and the three boundary conditions (1.), (2.),
(3.) give the last statement.

4.3. Semi-concavity in the time variable

In this section we assume that h satisfies (4.1) and there exists Ch > 0 such that, for all
z 2 @�,

(4.10) @2t h.t; z/ � Cht
�2

in the sense of distributions in �0; T Œ. Condition (4.10) is equivalent to the fact that
t 7! h.t; z/C Ch log t is concave in �0; T Œ. It implies in particular that h is locally uniformly
semi-concave in the t -variable.

T 4.8. – Assume h satisfies (4.1) and (4.10). The envelope U WD Uh;g;F;�T is
locally uniformly semi-concave in �0; T Œ : for all z 2 �,

@2tU.t; z/ � CU t
�2

in the sense of distributions in �0; T Œ, for some uniform constant CU > 0.

We will show that the constant CU is actually explicit,

(4.11) CU WD Ch C 2Mh C 8�h C .2�F C 3/.MU C 5�U C 1C CF T
2
C 16�2U /:

This quantitative information is important in perturbation arguments, to obtain uniform
semi-concavity constants of the approximants.
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By the assumption on F , there is a constant CF > 0 such that for all z 2 �, the function

(4.12) .t; r/ 7! F.t; z; r/C CF .t
2
C r2/ is convex in Œ0; T � � Œ�2MU ; 2MU �:

Proof. – It follows from Theorem 4.7 thatU 2 S h;g;F .�T /. Fix 0 < S < T , and s > 1=2
close to 1 enough such that sS < T . Set, for .t; z/ 2 �S ,

vs.t; z/ WD
s�1U.st; z/C sU.s�1t; z/

2
� C.t C 1/.s � 1/2;

where C > 0 is defined as

(4.13) C WD Ch C 1C 2Mh C 8�h C 2�F .MU C 4�U C T C CF T
2
C 16�2U /:

We are going to prove that vs 2 S h;g;F .�S /.

Boundary values of vs . It follows from (4.10) that for all z 2 @�; t 2 �0; SŒ,

h.st; z/C h.s�1t; z/

2
� h

�
.s C s�1/t

2
; z

�
C Ch log

�
s C s�1

2

�
� h

�
.s C s�1/t

2
; z

�
C Ch.s � 1/

2

� h.t; z/C .Ch C 1/.s � 1/
2;

where in the last line we use (4.2). We claim that for all .t; z/ 2 �0; SŒ � @�,

s�1h.st; z/C sh.s�1t; z/ � h.st; z/C h.s�1t; z/C .2Mh C 3�h/.s � 1/
2:

Indeed, write s D 1 � � and observe that s�1 D 1 C � C O.�2/; where jO.�2/j � 2�2

for j� j � 1=2. Thus for all .t; z/ 2 �0; SŒ � @�,

s�1h.st; z/C sh.s�1t; z/ � .1C �/h.st; z/C .1 � �/h.s�1t; z/C 2Mh�
2

� h.st; z/C h.s�1t; z/C �.h.st; z/ � h.s�1t; z//C 2Mh�
2:

Using (4.2), we obtain

s�1h.st; z/C sh.s�1t; z/ � h.st; z/C h.s�1t; z/C .2Mh C 4�h/.s � 1/
2;

which proves the claim.
Since U �

ˇ̌
@0�T

� h, the above estimate implies that .vs/� � h on @0�S . Using similarly
the estimate in Theorem 4.2, we obtain the following estimate which will be useful later: for
all .t; z/ 2 �0; SŒ � N�,

(4.14) j.U.st; z/C U.s�1t; z// � .s�1U.st; z/C sU.s�1t; z//j � .2MU C 4�U /.s � 1/
2:

Estimating the Monge-Ampère measure of vs . It follows from Proposition 3.2 that for almost
all t 2 �0; SŒ,

.dd cs�1U.st; �//n � en log s�1C@�U.st;�/CF.st;�;U.st;�//gdV:

Using Lemma 2.10 we infer

.dd cvs.t; �//n � ea.s/Ca.s
�1/gdV;

where

a.s/ D
1

2
.@�U.st; �/C F.st; �; U.st; �/// :
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By the semi-convexity assumption (4.12) on F , for � 2 �0; 1Œ, t1; t2 2 Œ0; T �, r1; r2 2
Œ�2MU ; 2MU � we have

F.�.t1; r1/C .1 � �/.t2; r2//

� �F.t1; r1/C .1 � �/F.t2; r2/C CF �.1 � �/
�
.t1 � t2/

2
C .r1 � r2/

2
�
:

Applying this for .t; r/ 7! F.t; z; r/, z 2 �, � D 1=2, t1 D st , t2 D s�1t , r1 D U.st; z/,
r2 D U.s

�1t; z/, we obtain

1

2
F.st; z;U.st; z//C

1

2
F.s�1t; z; U.s�1t; z//

� F

�
.s C s�1/t

2
; z; .U.st; z/C U.s�1t; z//=2

�
�
CF

4

�
t2.s � s�1/2 C .U.st; �/ � U.s�1t; �//2

�
:

Using (4.4), (4.14), and the fact that F is increasing in r , we thus get

1

2
F.st; z;U.st; z//C

1

2
F.s�1t; z; U.s�1t; z//

� F.t; z; vs.t; z// � �F .MU C 2�U C t /.s � 1/
2

�
CF

4

�
t2.s � s�1/2 C .U.st; �/ � U.s�1t; �//2

�
� F.t; z; vs.t; z// � .�F .MU C 2�U C T /C 2CF .T

2
C 2�2U //.s � 1/

2:

The choice of C (4.13) ensures that

a.s/C a.s�1/ � @tv
s.t; �/C F.t; �; vs.t; �//:

Altogether we conclude that vs 2 S h;g;F .�S /. Using Proposition 4.1 we infer vs � U

in �S . From this and (4.14) we obtain that for all .t; z/ 2 �S ,

U.st; z/C U.s�1t; z/

2
� U.t; z/ � .C C 2MU C 8�U /.s � 1/

2:

An elementary computation then yields (letting s ! 1) that 8.t; z/ 2 �S ,

t2@2tU.t; z/ � .9�U C 2MU C C/:

We finally let S ! T to conclude the proof.

5. Space regularity of parabolic envelopes

We establish the first steps of a balayage process by studying solutions constructed in
small balls, and establishing space regularity of Uh;g;F;BT : assuming adequate regularity
conditions on the data we prove that Uh;g;F;BT is locally C1;1 in z 2 B.

We assume that T < C1, and h satisfies (4.1) and (4.10).
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5.1. Continuity in the space variable

Let .Y; dY / be a metric space. The uniform partial modulus of continuity in the space
variable y 2 Y of a function u W Œ0; T Œ � Y �! R is

�.u; ı/ WD supfju.t; y1/ � u.t; y2/j I t 2 Œ0; T Œ; y1; y2 2 Y; dY .y1; y2/ � ıg:

In particular, the uniform partial modulus of continuity of F is defined as above with
Y WD � � R.

T 5.1. – Assume the following conditions :

G WD logg is continuous in � ;

there exists u 2 S h;g;F .�T / \ C .Œ0; T Œ � N�/, such that u D h on @0�T .

Then U WD Uh;g;F;�T is continuous on Œ0; T Œ � N� and

(5.1) �.U; ı/ � �.u; ı/C �.H; ı/C .�.F; ı/C �.G; ı//T:

Recall that Ht is the unique harmonic function in � with Ht D ht on @�.

A continuous subsolution which agrees with h on @0� is called a subbarrier. Such a
subbarrier (for the whole boundary @0�T as required in the Theorem) exists when h is
uniformly Lipschitz in Œ0; T Œ and continuous on @0�T by Lemma 3.7, Lemma 3.8 and
Lemma 3.9.

Proof. – It follows from Theorem 3.12 thatU continuously extends to the boundary @0�T
so that U D h on @0�T . We use the perturbation method of Walsh [31] to extend this prop-
erty to the interior and prove that U is continuous on Œ0; T Œ � N�.

Fix ı > 0 small enough. Since u D h D U in Œ0; T Œ � @�, we infer that for all t 2 Œ0; T Œ,
z 2 �; � 2 @� with jz � �j � ı,

(5.2) U.t; �/ D u.t; �/ � u.t; z/C �.u; ı/ � U.t; z/C �.u; ı/:

Fix � 2 Cn such that j�j � ı and set �� WD � � � and consider

W.t; z/ WD

(
U.t; z/; if t 2 Œ0; T Œ; z 2 � n�� ;

maxfU.t; z/; U.t; z C �/ � �.u; ı/g; if t 2 Œ0; T Œ; z 2 � \�� :

By (5.2) the two definitions coincide when .t; z/ 2 Œ0; T Œ �� and z C � 2 @�. Therefore
W 2 P.�T /. We are going to prove that W � O.ı/.t C 1/ 2 S h;g;F .�T / for some small
error term O.ı/.

The subsolution property. By Lemma 3.4, for a.e. .t; z/ 2 Œ0; T Œ � .� \��/,

@tW.t; z/ D 1fU.t;z/< QU.t;z/g@t
QU.t; z/C 1

fU.t;z/� QU.t;z/g@tU.t; z/;

where
QU.t; z/ WD U.t; z C �/ � �.u; ı/ in � \�� :

Moreover

e@t
QU.t;z/CF.t;z; QU.t;z//CG.z/dt ^ dV.z/

� e@tU.t;zC�/CF.t;zC�;U.t;zC�//C�.F;ı/CG.zC�/C�.G;ı/dt ^ dV.z/

� e�.F;ı/C�.G;ı/dt ^ .dd c QU/n;
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in the weak sense on �0; T Œ � .� \��/. We thus obtain

e@tW.t;z/CF.t;z;W.t;z//CG.z/dt ^ dV.z/ � eb.ı/dt ^ .dd cW /n;

i.e., the function defined on Œ0; T Œ � � by W1.t; z/ WD W.t; z/ � b.ı/t; is a subsolution to
(CMAF) in �0; T Œ ��. Here b.ı/ WD �.F; ı/C �.G; ı/.

Estimating boundary values. It follows from Theorem 3.12 that

lim
.t;z0/!.0;z/

U.t; z0/ D h0.z/; z 2 �:

By definition of W and the assumption that h0 D u on f0g ��, we obtain

lim
.t;z0/!.0;z/

W.t; z0/ � h0.z/; for all z 2 �:

Fix .�; �/ 2 Œ0; T Œ � @�.

Since U � H in �T and U D h in Œ0; T Œ � @�, we infer

lim
�0;T Œ�.�\�� /3.t;z/!.�;�/

W.t; z/ � max.h.�; �/;H.�; � C �// � h.�; �/C �.H; ı/;

and

lim
�0;T Œ�.�n�� /3.t;z/!.�;�/

W.t; z/ D lim
�0;T Œ�.�n�� /3.t;z/!.�;�/

U.t; �/ D h.�; �/:

From the computations above we conclude that W1 � �.H; ı/ 2 S h;g;F .�T /. Thus
W1 � �.H; ı/ � U in �T , hence

U.t; z C �/ � �.u; ı/ � �.H; ı/ � .�.F; ı/C �.G; ı//t � U.t; z/;

for .t; z/ 2 Œ0; T Œ � .� \��/ and � 2 Cn with j�j � ı. This gives (5.1).

The continuity of U on Œ0; T Œ � N� follows from Theorem 4.7, the continuity of h0, the
continuity of each slice U.t; �/ on N� and the fact that U is locally uniformly Lipschitz in
t 2 �0; T Œ.

C 5.2. – Assume that

1. G WD logg is Lipschitz in �;

2. the family fh.�; z/ I z 2 @�g is uniformly Lipschitz in Œ0; T Œ;

3. h0 is Lipschitz on N�;

4. the family fh.t; �/ I t 2 �0; T Œg is uniformly C1;1 on @�;

5. the function F is Lipschitz on Œ0; T Œ �� � J , for each J b R.

Then the family fU.t; �/ I t 2 Œ0; T Œg is uniformly Lipschitz on N�.

Proof. – It follows from Lemma 3.7, Lemma 3.8 and assumption (2.) that there exists
u 2 S g;h;F .�T / \ C .Œ0; T Œ � N�/ with u

ˇ̌
@0�T

D h. [17, Theorem 5.12] and (3.), (4.) ensure

that the family fu.t; �/ I t 2 Œ0; T Œg is uniformly Lipschitz on N�. We now invoke Theorem 5.1
to finish the proof.
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5.2. C1;1-regularity in the space variable

We prove the following regularity result:

T 5.3. – Assume � D B is the unit ball, T < C1, and

1. G WD logg 2 C 1;1. NB/;
2. h satisfies the assumptions of Corollary 5.2;

3. F is Lipschitz and semi-convex in Œ0; T Œ � NB � J , for each J b R.

Then the envelope Uh;g;F;BT is locally uniformly C1;1 in z 2 B.

By scaling and translating, the result still holds for any ball B.z0; r/ b Cn. In the proof
below we use C to denote various uniform constants which may be different from place to
place.

Proof. – The proof is a parabolic analogue of [1, Theorem 6.7]. We follow closely the
presentation of [17, Theorem 5.13].

Recall from Corollary 5.2 that the family fU.t; �/ I t 2 Œ0; T Œg is uniformly Lipschitz on NB.

Automorphisms of the ball B. – For a 2 B, we set

T a.z/ D
Pa.z/ � aC

p
1 � jaj2.z � Pa.z//

1 � hz; ai
I Pa.z/ D

hz; ai

jaj2
a;

where h�; �i denote the Hermitian product in Cn. It is well known (see [22, Lemma 4.3.1])
that T a is a holomorphic automorphism of the unit ball such that T a.a/ D 0 and
T a.@B/ D @B. Note that T 0 is the identity. We set

� D �.a; z/ WD a � hz; aiz:

Observe that �.�a; z/ D ��.a; z/. If jaj � 1=2 then

T a.z/ D z � � CO.jaj
2/;

whereO.jaj2/ � C0jaj2, withC0 a numerical constant independent of z 2 B when jaj � 1=2.
Thus T ˙a is the translation by�� up to small second order terms, when jaj is small enough.

We set, for .t; z/ 2 BT ,

Va.t; z/ WD
1

2
.U.t; T a.z//C U.t; T �a.z//:

We are going to prove that, for a uniform constant C > 0, the function Va � C jaj2.t C 1/
belongs to S h;g;F .BT /. We proceed in two steps.

Step 1: Boundary values of Va. – If q is C1;1. NB/ then, as in [17, Page 145],

(5.3)
ˇ̌
q.T a.z//C q.T �a.z// � 2q.z/

ˇ̌
� 2C.q/jaj2;

where C.q/ > 0 depends on the uniform C1;1-norm of q on NB.
Since the family fh.t; �/ I t 2 Œ0; T Œg is uniformly Lipschitz in @B, applying (5.3) yields

h.t; T a.z//C h.t; T �a.z// � 2h.t; z/C 2C.h/jaj
2;

for z 2 @B, jaj small enough, where C.h/ > 0 depends on the uniform C1;1-bound of h.t; �/
in a neighborhood of @B. We infer, for all .t; �/ 2 @0BT ,

Va.t; �/ � h.t; �/C C.h/jaj
2:
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Step 2: Estimating the Monge-Ampère measure of Va. – SinceU is a subsolution to (CMAF)
a direct computation shows that

.dd cU ı T a/
n
D j det T

0

aj
2.dd cU/n ı T a

� j det T
0

aj
2 exp

�
@tU.t; T a.z//C F.t; T a.z/; U.t; T a.z///CG.T a.z//

�
:

Since the function .a; z/ 7! �.0; z/ WD log j det T
0

a.z/j
2 C log j det T

0

�a.z/j
2 is smooth

in B1=2 � NB and �.0; z/ D 0, the Taylor expansion yields

�.a; z/C �.�a; z/ D O.jaj2/:

The assumption (3) provides us with a uniform constant C such that

1

2

˚
F.t; T a.z/;U.t; T a.z///C F.t; T �a.z/; U.t; T �a.z///

	
� F

�
t;

T a.z/C T �a.z/

2
; Va.t; z/

�
� C.kT a.z/ � T �a.z/k

2
C .U.t; T a.z/ � U.t; T �a.z//

2/

� F.t; z; Va.t; z// � C jaj
2;

where in the last inequality we have used T a.z/ C T �a.z/ � 2z D O.jaj2/,
T a.z/ � T �a.z/ D O.jaj/, and the Lipschitz regularity (in z 2 NB) of U . Using this,
and applying Lemma 2.10 and the uniform estimate (5.3) to the function G we obtain

.dd cVa.t; �//
n
� exp

˚
@tVa C F.t; z; Va.t; z//CG.z/ � C jaj

2
	
:

By the computations above we conclude that the function

BT 3 .t; z/ 7! Wa.t; z/ D Va.t; z/ � C jaj
2.t C 1/

belongs to S h;g;F .BT /. Therefore, for all .t; z/ 2 BT ,

Va.t; z/ � .T C 1/C jaj
2
� U.t; z/:

From this estimate, we proceed as in [17, page 146-147] to prove that the second order
partial derivatives (in z) of U are locally bounded in B.

We now show that U admits a Taylor expansion up to order .1; 2/ :

L 5.4. – Assume .h; g; F;BT / is as in Theorem 5.3. Then the envelope U admits the
following Taylor expansion at almost every point .t0; z0/ 2 BT ,

U.t; z/ D U.t0; z0/C .t � t0/@tU.t0; z0/C<P.z � z0/C L.z � z0/

C o.jt � t0j C jz � z0j
2/;

where P is a holomorphic polynomial of degree 2 and L is the Levi form of U.t0; z/ at z0.

Proof. – It follows from Theorem 4.8 that U is locally uniformly semi-concave in
t 2 �0; T Œ. Theorem 5.3 ensures that U is locally uniformly Lipschitz in z 2 B, hence, for all
t 2 �0; T Œ, U.t; �/ is twice differentiable at a.e. z 2 B.

LetA1 be the set of points .t0; z0/ 2 �T such thatU.�; z0/ is not differentiable at t0 andA2
be the set of points .t0; z0/ 2 �T such that U.t0; �/ is not twice differentiable at z0. It follows
from Fubini’s Theorem that the set A WD A1 [ A2 is of Lebesgue measure zero in �T .
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We show that the Taylor expansion holds at any point .t0; z0/ … A. Fix " > 0 and
.t0; z0/ … A. We first write for .t; z/ 2 �T ,

U.t; z/ � U.t0; z0/ D U.t; z/ � U.t0; z/C U.t0; z/ � U.t0; z0/:

Since .t0; z0/ … A1, the functionU.t0; �/ is twice differentiable at z0. Thus there exists r > 0
such that for jz � z0j < r ,

(5.4) jU.t0; z/ � U.t0; z0/ �<P.z � z0/ � L.z � z0/j � "jz � z0j
2:

On the other hand since .t0; z0/ … A2, @tU.t0; z0/ exists and we have

U.t; z/ � U.t0; z/ � .t � t0/@tU.t0; z0/ D

Z t

t0

.@C� U.�; z/ � @tU.t0; z0//d�

D

Z t

t0

.@�� U.�; z/ � @tU.t0; z0//d�:

Since @C� U is lsc and @�� U is usc, we can choose r so small that for jt � t0j C jz � z0j < r ,

(5.5) jU.t; z/ � U.t0; z/ � .t � t0/@tU.t0; z0/j � "jt � t0j:

The Taylor expansion thus follows from (5.4) and (5.5).

6. Pluripotential solutions

We finally prove in this section that Uh;g;F;�T is the unique pluripotential solution to the
Cauchy-Dirichlet problem for (CMAF) which is locally uniformly semi-concave.

6.1. The case of Euclidean balls

We first treat the case when � is a Euclidean ball in Cn. By scaling and translating, it
suffices to treat the case of the unit ball.

T 6.1. – Let � D B be the unit ball in Cn, T < C1, and assume that

1. G WD logg is C1;1 in NB;

2. h is uniformly C1;1 in z 2 @B, h0 is C1;1 in NB;

3. h is uniformly Lipschitz in t 2 Œ0; T Œ and @2t h � Ct
�2 on �0; T Œ � @B;

4. F is Lipschitz and semi-convex in .t; z; r/ 2 Œ0; T Œ � NB � J for each J b R.

Then for almost every .t; z/ 2 BT ,

det
�
@2U

@zj @ Nzk
.t; z/

�
D e

PU.t;z/CF.t;z;U.t;z//CG.z/:

In particularU is a pluripotential solution to the Cauchy-Dirichlet problem for the parabolic
Equation (CMAF) with boundary data h.
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Proof. – Theorem 4.7 and the Lipschitz assumption on h ensure that U is a subsolution
to (CMAF) with U D h on @0�T . It follows from Corollary 5.2 and Theorem 5.3 that U is
uniformly Lipschitz in z 2 NB and locally C1;1 in B. In particular U is twice differentiable in z
almost everywhere in �T , hence

.dd cU/n D det.Uj; Nk.t; z//dV .z/:

As U is also almost everywhere differentiable in t and a subsolution to the parabolic
Equation (CMAF), we infer by Proposition 3.2,

(6.1) det.Uj; Nk.t; z// � e
@tU.t;z/CF.t;z;U.t;z//CG.z/;

almost everywhere in BT .

We want to prove that equality holds in (6.1). We use the notation of the proof of
Lemma 5.4 and set E D BT n A. Arguing by contradiction we assume that

det
�
Uj; Nk.t0; z0/ � "In

�
> e

PU.t0;z0/CF.t0;z0;U.t0;z0//CG.z0/C";

at some point .t0; z0/ 2 E, for a small constant " > 0.

We use a bump construction to produce a subsolution v 2 S h;g;F .BT / which satisfies
v.t0; z0/ > U.t0; z0/ providing a contradiction. It follows from Lemma 5.4 that

U.t; z/ � U.t0; z0/ D .t � t0/@tU.t0; z0/C<P.z � z0/C L.z � z0/

C o.jt � t0j C jz � z0j
2/:(6.2)

Set Dr WD f.t; z/ I jt � t0j C jz � z0j2 < rg and define

w.t; z/ WD U.t0; z0/C @tU.t0; z0/.t � t0/C<P.z � z0/

C L.z � z0/C ı � 
.jz � z0j
2
C jt � t0j/;

where ı; 
 > 0 are constants to be specified later. Note that if 
 is small enough then
w 2 P.Dr /. For any .t; z/ 2 Dr , the Taylor expansion (6.2) ensures that

U.t; z/ � w.t; z/C 
.jt � t0j/C jz � z0j
2/ � ı C o.r/:

Hence for any .t; z/ 2 Dr nDr=2,

U.t; z/ � w.t; z/C 
r=2 � ı C o.r/ > w.t; z/;

if ı D 
r=4, and r > 0 is small enough. On the other hand for .t; z/ 2 Dr ,

.dd cw/n D dd c.U � 
 jz � z0j
2/n.t0; z0/;

and for .t; z/ 2 Dr , t ¤ t0,

@tw.t; z/ D @tU.t0; z0/ � 
.t � t0/=jt � t0j:

Thus if 
 < ", we obtain for any .t; z/ 2 Dr ,

.dd cw.t; z//n � e@tw.t;z/C
.t�t0/=jt�t0j//CF.t0;z0;U.t0;z0//CG.z0/C"dV

� e@tw.t;z/�
CF.t;z;w.t;z//CG.z/CR.t;z/C"dV;

where
R.t; z/ WD F.t0; z0; U.t0; z0// � F.t; z; w.t; z//C .G.z0/ �G.z//:
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Since U and F are locally Lipschitz, there exists A > 0 such that for r > 0 small enough
and .t; z/ 2 Dr ,

R.t; z/ � �A
p
r � 
 � ":

The function w is therefore a subsolution to (CMAF) in Dr .
The previous estimates ensure that the function

v.t; z/ WD

(
maxfU.t; z/; w.t; z/g if .t; z/ 2 Dr

U.t; z/ if .t; z/ 2 BT nDr
belongs to S h;g;F .BT /, hence v � U in BT . In particular, w � U in Dr which is a
contradiction since w.t0; z0/ D U.t0; z0/C ı > U.t0; z0/.

We now relax the regularity assumptions in Theorem 6.1.

P 6.2. – Assume � D B is the unit ball in Cn, T < C1, and

G WD logg is continuous in NB;

h is continuous on @0BT and satisfies (4.1) and (4.10);

F extends as a continuous function on Œ0; T Œ � NB � R which is uniformly Lipschitz and
uniformly semi-convex in .t; r/ 2 Œ0; T Œ � J for each J b R.

Then Uh;g;F;BT is a continuous solution to (CMAF) with boundary values h.

Proof. – It follows from Theorem 4.7 that U 2 S h;g;F .BT / satisfies the boundary
conditions (0.2), (0.3). It remains to prove that U is continuous on Œ0; T Œ � N� and solves
(CMAF) in �T . By Proposition 4.1 it suffices to prove these statements in BS for each fixed
S < T . We proceed in several steps.

Step 1. – Assume that h.�; z/ is uniformly Lipschitz in t 2 Œ0; T Œ. It follows from Theorem 5.1
that U is continuous on Œ0; T Œ � N�. The goal is to prove that U solves (CMAF) in BS . We
proceed by approximation as follows.

Let .Gj / D .loggj / be a sequence of smooth functions uniformly converging to G on NB.
Extending F continuously in an open neighborhood of Œ0; S�� NB�R and taking convolution
in .t; z; r/we can find a sequence Fj W Œ0; S�� NB�R of functions which are smooth in .t; z; r/
and

— Lipschitz and semi-convex in Œ0; S� � NB � J for each J b R;

— uniformly converge to F on Œ0; S� � NB � J , for each J b R.

We extend h as a continuous function in Œ0; T Œ � fjzj � 1=4g by setting

h.t; z/ WD h

�
t;
z

jzj

�
; z 2 Cn; jzj � 1=4I

The extension h satisfies (4.1) and (4.10) for all jzj � 1=4 (with the same constants �h; Ch
as the original function h defined on @0BT ). Taking convolution in the z variable we can find
a sequence . Ohj / of functions in Œ0; T Œ � fjzj > 1=3g which are smooth in z and

— are uniformly Lipschitz in t ;

— satisfy (4.10) with the same uniform constant Ch;

— uniformly converge to h on Œ0; S� � @B.
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Fix j 2 N and define hj by(
hj .t; z/ WD Ohj .t; z/ if .t; z/ 2 �0; T Œ � @B
hj .0; z/ D h0 CH

j if .t; z/ 2 f0g � B;

whereH j is the maximal plurisubharmonic function in B with boundary values Ohj .0; �/�h0.
Observe that hj is a Cauchy-Dirichlet boundary data on BT which satisfies the assumptions
of Theorem 6.1. Note also that hj uniformly converges to h on @0BT , since H j uniformly
converges to 0.

Set U j WD Uhj ;gj ;Fj .BS /, j 2 N. Theorem 6.1 ensures that U j is a pluripotential
solution to the Equation (CMAF) and U j D hj on @0BS . It also follows from Theorem 4.2
and Theorem 4.8 that U j is locally uniformly semi-concave in t 2 �0; S�. Moreover, (4.5)
and (4.13) ensure that the Lipschitz and semi-concave constants of U j are uniform. By
definition of the envelope, U j uniformly converges to U as j ! C1. It thus follows from
Proposition 2.9, Proposition 2.3, Remark 2.4 and Lemma 2.8 that U is a pluripotential
solution to (CMAF) in BS .

Step 2. – To treat the general case, we approximate h by a family of functions h" which
are Lipschitz up to zero, in such a way that they satisfy (4.1) and (4.10) with constants
independent of ". Here, Lipschitz up to zero means that for each S 2 �0; T Œ, there exists a
constant CS such that

jh".t; z/ � h".t 0; z/j � CS jt � t
0
j; t; t 0 2 Œ0; S�; z 2 @�:

We proceed as in the proof of Theorem 4.7. Fix S > 0 and " > 0 such that S C " < T , and
define (

h".t; �/ D h.t C "; �/ if .t; �/ 2 Œ0; S� � @B
h".0; z/ D h0.z/C �".z/ if z 2 B;

where �" is the maximal plurisubharmonic function in B such that �".�/ D h."; �/ � h0.�/

on @B. Then h" uniformly converges to h on @0BS .

Observe that h" is a Cauchy-Dirichlet boundary data satisfying (4.1) and (4.10) with
constants independent of ". By construction h" is uniformly Lipschitz in t 2 Œ0; S�. The
previous step shows that U " WD Uh";g;F;BS is a continuous pluripotential solution to
(CMAF) with boundary data h". By Proposition 4.1, U " uniformly converges to U

on BS . The continuity of U " ensures that U is continuous in BS . Since h0 is continuous,
Theorem 3.12 ensures that U is continuous in Œ0; SŒ � NB. It follows from Theorem 4.2
and Theorem 4.8 that the family U " is locally uniformly semi-concave in t 2 �0; SŒ with
constants independent of "; see (4.3) and (4.11). Arguing as in the last part of Step 1 we
conclude that U solves (CMAF) in BS .

E 6.3. – It is difficult to provide explicit examples of solutions, as the equation
is highly non linear. Here is a simple smooth radial solution for the unit ball: the function

.t; z/ 7!  .t; z/ D jjzjj2 C at C b

is a parabolic potential on RC �B, solution of (CMAF) in BC1 with F � 0, G � constant
and smooth boundary values.
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6.2. The case of bounded strictly pseudoconvex domains

We now consider the case of a smooth bounded strictly pseudoconvex domain.
We first prove the existence result in a particular case.

P 6.4. – Assume T < C1, h satisfies (4.1) and (4.10). Then Uh;g;F is a
pluripotential solution to the Cauchy-Dirichlet problem for the parabolic Equation (CMAF)
in �T with boundary conditions (0.2) and (0.3).

Proof. – It follows from Theorem 4.2, Theorem 4.7, Theorem 4.8 that U is locally
uniformly semi-concave in t 2 �0; T Œ, U 2 S h;g;F .�T / and it satisfies the boundary condi-
tions (0.2) and (0.3). It remains to verify that U solves (CMAF). We proceed in several
steps.

Step 1. – We first assume that h0 and G WD logg are continuous in N�. Then U is also
continuous on Œ0; T Œ � N� thanks to Theorem 5.1.

Let B b � be a small ball and hB denote the restriction of U on the parabolic boundary
of BT . The boundary data hB for the Cauchy-Dirichlet problem for (CMAF) satisfies the
assumption of Proposition 6.2. Also, the restriction of U on Œ0; T Œ � B is a continuous
subsolution to the Cauchy Dirichlet problem (CMAF) in BT with boundary data hB . It
follows from Proposition 6.2 that UB WD UhB ;g;F;BT is a pluripotential solution to (CMAF)
with boundary data hB and UB � U in BT .

The function V , which is defined as UB in BT and U in�T nBT , belongs to S h;g;F .�T /.
Hence V D U is a pluripotential solution to (CMAF).

Step 2. – We next assume h0 is continuous, but we merely assume g 2 Lp.
Let .gj / be a sequence of strictly positive continuous functions in N� that converges to g

in Lp.�/. Set U j WD Uh;gj ;F and U WD Uh;g;F . Since the Lp-norm of gj is uniformly
bounded, Theorem 4.2 and Theorem 4.8 ensure that the functions U j are locally uniformly
semi-concave (with constants independent of j ). It thus follows from Proposition 1.17 that
a subsequence of U j , still denoted by U j , converges almost everywhere in �T to a func-
tion V 2 P.�T /. Lemma 1.11 ensures that U jt converges in L1.�/ to Vt , for all t 2 �0; T Œ.
By Proposition 2.9, for almost all t 2 �0; T Œ, @tU j .t; �/ converges pointwise to @tV.t; �/. Thus,
for almost all t 2 �0; T Œ,

e@tU
j .t;�/CF.t;�;U j /gj

Lp.�/
�! e@tV.t;�/CF.t;�;V /g:

A result due to Kołodziej (see [24, end of the proof of Theorem 3], see also [8, Theorem 2.8])
ensures that U j .t; �/ uniformly converges to V.t; �/ and .dd cU j .t; �//n converges in the
sense of positive measures to .dd cV.t; �//n. Thus dt ^ .dd cU j /n weakly converges in �T
to dt ^ .dd cV /n (see the proof of Proposition 2.3). Hence V solves (CMAF) in �T .
Lemma 3.9 and Corollary 3.11 ensure that V �

ˇ̌
@0�T

� h. Thus V � U .

To prove that U � V we now use a perturbation argument following an idea of Kołodziej
[24] (see also [13]). For each j let �j be the unique continuous psh function in N�, vanishing
on @� such that .dd c�j /n D jgj � gjdV . It follows from [25] that

lim
j!C1

sup
N�

j�j j D 0:
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Fix 0 < S < T , " > 0 small enough and set, for .t; z/ 2 �S ,

W j .t; z/ WD W j;".t; z/ WD U.t C "; z/ � ı."/t C C."/�j .z/;

where ı."/ > 0; C."/ > 0 are constants to be chosen in such a way that ı."/! 0 butC."/may
blow up as "! 0. The goal is to prove thatW j 2 S h;gj ;F

.�S /. It follows from Lemma 3.13
that Ut uniformly converges on N� to h0, ensuring that

b."/ WD sup
@0�S

jU.t C "; z/ � h.t; z/j
"!0
�! 0:

A direct computation shows that

.dd cW j /n � .dd cU.t C "; �//n C C."/n.dd c�j /
n

� e@tU.tC";�/CF.tC";�;U.tC";�//g.z/dV C C."/njg � gj jdV:

By the Lipschitz condition (4.4) on F we can write

jF.t C "; �; U.t C "; �// � F.t; �; U.t C "; �//j � "�F :

Since r 7! F.t; z; r/ is increasing,

F.t; �; U.t C "; �// � F.t; �; W j .t; �// � A";

where A > 0 depends on �F ;MU . We choose ı."/ WD b."/C A". Then

.dd cW j /n � e@tU.tC";�/CF.t;�;W
j .t;�//�A"g.z/dV C C."/njg � gj jdV

� e@tW
j .t;�/CF.t;�;W j .t;�//g.z/dV C C."/njg � gj jdV

and W j
ˇ̌
@0�S

� h. We now choose

C."/ WD

 
sup
�S

exp f@tU.t C "; z/C F.t; z; U.t C "; z//g

!1=n
< C1:

Since r 7! F.t; z; r/ is increasing we obtain

.dd cW j /n � e@tW
j .t;�/CF.t;�;W j .t;�//gdV C e@tW

j .t;�/CF.t;�;W j .t;�//
jg � gj jdV

� e@tW
j .t;�/CF.t;�;W j .t;�//gjdV:

Thus W j 2 S h;gj ;F
.�S /. Together with Proposition 4.1 this yields

(6.3) W j;"
� Uh;gj ;F;�T ; for all .t; z/ 2 �S :

In (6.3) we first let j ! C1 and then " ! 0 to arrive at U � V . Hence U D V is a
pluripotential solution to the parabolic Monge-Ampère Equation (CMAF) with boundary
data h.
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Step 3. – We finally remove the continuity assumption on h0. Using Lemma 2.11 we find
a sequence hj of continuous Cauchy-Dirichlet boundary data for �T such that hj D h

on Œ0; T Œ � @� and hj decreases pointwise to h.
The previous step ensures that U j WD U.hj ; g; F / solves (CMAF). Theorem 4.2 and

Theorem 4.8 provide uniform concavity constants for U j . Since hj decreases to h, U � U j

decreases to some V 2 P.�T /. We thus have V �
ˇ̌
@0�T

� h, and Proposition 2.9 and
Proposition 2.3 reveal that V solves (CMAF). Thus V is a candidate defining U , hence
U D V .

We are now ready to prove a general existence result. Here T may take the value C1.
We assume that, for each 0 < S < T , there exists a constant C.S/ > 0 such that for all
.t; z/ 2 �0; S� � @�,

(6.4) t j@th.t; z/j � C.S/ I t
2@2t h.t; z/ � C.S/:

T 6.5. – If h satisfies (6.4) then U WD Uh;g;F is a pluripotential solution to
the Cauchy-Dirichlet problem for (CMAF) in �T with boundary values h. Moreover, U is
continuous in �0; T Œ � N� and locally uniformly semi-concave in t 2 �0; T Œ.

In particular, if h0 is continuous on N� then U is continuous on Œ0; T Œ � N�.

Proof. – For S 2 �0; T Œ we define U S WD Uh;g;F;�S . Proposition 6.4 ensures that U S

solves (CMAF) with U S D h on @0�S . It follows from Prop. 4.1 that, for 0 < S1 < S2 < T ,
U S1 D U S2 on �S1 . Letting S ! T we obtain a function V 2 P.�T / which solves
(CMAF) and satisfies V D h on @0�T . Obviously U � U S , for all S 2 �0; T Œ, hence U � V .
But V is also a candidate defining U , hence V � U . Therefore V D U solves (CMAF)
in �T . Moreover, by Theorem 4.2 and Theorem 4.8, U S is locally uniformly Lipschitz and
semiconcave in t 2 �0; SŒ, hence so is U .

It follows from Proposition 3.2 and Remark 3.3 that

.dd cUt /
n
D e@tUtCF.t;�;Ut /gdV

for almost every t 2 �0; T Œ. Since @tU is locally bounded and ht is continuous on @� for all
t 2 �0; T Œ, [25] ensures that Ut is continuous on N� for almost all t 2 �0; T Œ. Since U is locally
uniformly Lipschitz in t we infer that U is continuous in �0; T Œ � N�.

If h0 is continuous on N� then Theorem 4.7 and the continuity ofU.t; �/ (for each t 2 �0; T Œ
fixed) ensure that U is continuous on Œ0; T Œ � N�.

6.3. Uniqueness

We have proved in Section 6.2 the existence of a pluripotential solution to (CMAF) which
is locally uniformly semi-concave in t . Our next goal is to prove that this is the unique such
solution :

T 6.6. – Letˆ;‰ 2 P.�T /\L
1.�T /with boundary data hˆ; h‰. Assume that

1. ‰ is locally uniformly semi-concave in t 2 �0; T Œ;

2. ˆ is a subsolution while ‰ is a supersolution to (CMAF) in �T ;

3. hˆ satisfies (6.4).

Then hˆ � h‰ H) ˆ � ‰.
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Here hˆ; h‰ are Cauchy Dirichlet boundary data in �T . In particular, h‰.t; �/ is contin-
uous on @�, and the supersolution property of ‰ implies that ‰ is continuous in �0; T Œ � N�
(see Theorem 6.5).

An important consequence of this comparison principle is the following uniqueness result:

C 6.7. – Assume that ˆ;‰ 2 P.�T / \ L1.�T / are two pluripotential
solutions to (CMAF) with boundary values h satisfying (6.4). If ˆ;‰ are locally uniformly
semi-concave in t 2 �0; T Œ then ˆ D ‰ in �T .

Proof. – Let U WD Uh;g;F;�T . Then Theorem 6.5 ensures that U solves (CMAF) and
U;ˆ;‰ are continuous on �0; T Œ� N�. By definition, ˆ;‰ � U . It follows from Theorem 6.6
that U � ˆ;‰, hence equality.

We first establish Theorem 6.6 under extra assumptions :

L 6.8. – With the same assumptions as in Theorem 6.6, assume moreover thatˆ is C1

in t , continuous on �0; T Œ � N�, and ‰ is continuous on Œ0; T Œ � N�. Then hˆ � h‰ H) ˆ � ‰.

The first assumption (that ˆ is C1 in t ) means that .t; z/ 7! @tˆ.t; z/ exists and it is
continuous on �0; T Œ ��.

Proof. – We fix S 2 �0; T Œ, " > 0 small enough, and prove that

ˆ � ‰ C 2"t in �S :

The function
Œ0; S� � N� 3 .t; z/ 7! W.t; z/ WD ˆ.t; z/ �‰.t; z/ � 2"t

is upper semi-continuous and bounded. We are done if the maximum is attained on @0�S .
We thus assume that maxW is reached at some point .t0; z0/ 2 �0; S���. We want to prove
that W.t0; z0/ � 0. Assume, by contradiction that it is not the case. Then the set

K WD fz 2 � I W.t0; z/ D W.t0; z0/g

is compact and the maximum principle ensures that

@tˆ.t0; z/ � @
�
t ‰.t0; z/C 2"; for all z 2 K:

Since‰ is locally uniformly semi-concave in t 2 �0; T Œ and continuous on Œ0; T Œ� N�, the left
derivative @�t ‰.t; z/ exists and it is upper semi-continuous in �0; T Œ ��. Hence we can find
r > 0 so small that

@tˆ.t0; z/ � @
�
t ‰.t0; z/C "; for all z 2 B;

where B D Br WD fz 2 � I dist.z;K/ < rg.
Since ˆ is a subsolution (which is C1 in t ) while ‰ is a supersolution to (CMAF), Propo-

sition 3.2 and Remark 3.3 ensure that

.dd c'/n � eF.t0;z;'.z//�F.t0;z; .z//C".dd c /n;

setting ' WD ˆ.t0; �/;  WD ‰.t0; �/. Since ' and  are continuous in �, F is increasing in r ,
and '.z/ �  .z/C 2"t0 on K, up to shrinking B we can assume that

.dd c'/n � e".dd c /n in B:
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Set now 'r WD ' C mr , where mr WD min@B. � '/. Since  � 'r on @B, the comparison
principle [1] yieldsZ

f <'r g\B

e".dd c /n �

Z
f <'r g\B

.dd c'r /
n
�

Z
f <'r g\B

.dd c /n:

Therefore .dd c /n does not charge the set fz 2 B I  .z/ < 'r .z/g and the domination
principle (see e.g., [13, Proposition 1.2]) yields 'r �  in B. In particular

'.z0/ �  .z0/Cmin
@B
. � '/ D 'r .z0/ �  .z0/ � 0:

Since K \ @B D ;, we obtain, for all z 2 @B, W.t0; z/ < W.t0; z0/ hence

'.z/ �  .z/ < '.z0/ �  .z0/ � max
@B
.' �  /;

a contradiction. Thus ˆ � ‰ C 2"t and we conclude by letting "! 0.

We next establish an estimate for supersolutions to (CMAF).

L 6.9. – Assume ‰ 2 P.�T / has boundary data h‰. If ‰ is a pluripotential
supersolution to (CMAF) then for all .t; z/ 2 �T ,

‰.t; z/ � h‰.0; z/ � c.t/;

where c.t/ > 0 satisfies limt!0C c.t/ D 0.

Proof. – Fix 0 < S < T . For s > 0 small enough we set

(6.5) ı.s/ WD supfjh‰.�; z/ � h‰.t; z/j I z 2 @�; t; � 2 Œ0; S�; jt � � j � sg:

Since h‰ is continuous on Œ0; T Œ � @�, we have lims!0C ı.s/ D 0.

Fix s 2 �0; .T � S/=2Œ. We are going to prove that

‰.s; z/ � h‰.0; z/ � ı.s/C s.�.z/ � C/C n.s log.s=T / � s/;

where � is defined in (0.7) and C is a uniform constant.
Fix " 2 �0; s� and let h" denote the restriction of .t; z/ 7! ‰.t C "; z/ on @0�s . Then h" is

a continuous boundary data on �s . Set, for .t; z/ 2 �s ,

u".t; z/ WD ‰."; z/ � ı.s/C t .�.z/ � C1/C n.t log.t=T / � t /;

where C1 is a positive constant. By definition of ı.s/ we have

u".t; z/ � ‰.t C "; z/ D h".t; z/; for all .t; z/ 2 @0�s :

Arguing as in the proof of Lemma 3.8 we see that forC1 > 0 big enough (depending onMF ),
u" is a pluripotential subsolution to (CMAF) in �s . Moreover, u" is of class C1 in t 2 Œ0; s�.
On the other hand, a direct computation shows that, for C2 > 0 large enough and under
control (depending on �F ), the function

Œ0; s� �� 3 .t; z/ 7! w".t; z/ WD ‰.t C "; z/C C2"t

is a pluripotential supersolution to (CMAF) and w" � h" on @0�s . By assumption on ‰,
w" is continuous on Œ0; s� � N�. It thus follows from Lemma 6.8 that w" � u" on Œ0; s� � �.
We conclude by letting "! 0.

We next remove the continuity assumption on ‰ in Lemma 6.8.
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L 6.10. – With the same assumptions as in Theorem 6.6, assume moreover that ˆ is
C1 in t and continuous on �0; T Œ � N�. Then

hˆ � h‰ H) ˆ � ‰:

Proof. – Since h‰ is continuous on Œ0; T Œ�@�, the proof of Theorem 6.5 shows that‰ is
continuous in �0; T Œ � N�, but it may not be continuous on Œ0; T Œ � N�. We use an idea in [6],
exploiting the regularity of ‰ at positive times close to zero. We fix S 2 �0; T Œ and prove
that ˆ � ‰ on �S .

Fix s 2 �0; .T � S/=2Œ and set, for .t; z/ 2 Œ0; S� � N�,

v.t; z/ WD ‰.t C s; z/C c.s/C ı.s/C Ast;

where ı.s/ is defined in (6.5), A > 0 is a constant, and c.s/ > 0 is as in Lemma 6.9 (which
ensures ‰.s; z/ � h‰.0; z/ � c.s/).

From the definition of ı.s/ it follows that v.t; z/ � ‰.t; z/ D h‰.t; z/ on Œ0; S� � @�.
For A > 0 large enough (depending on �F ), a direct computation shows that v is a
supersolution to (CMAF). Since v is continuous on Œ0; S�� N�, Lemma 6.8 then applies and
yields ˆ.t; z/ � v.t; z/ on Œ0; S� ��. We conclude by letting s ! 0.

We are now ready to prove the comparison principle.

Proof of Theorem 6.6. – We can assume without loss of generality that ˆ D Uhˆ;g;F .
From assumption (3.) and Theorem 6.5 we deduce that Uhˆ;g;F is continuous on �0; T Œ� N�.
We would like to apply Lemma 6.10 butˆ is a priori not C1 in t . We are going to regularizeˆ
by taking convolution in t .

Fix 0 < S < T . For s > 0 near 1 we set, for .t; z/ 2 �S ,

W s.t; z/ WD s�1ˆ.st; z/ � C js � 1j.t C 1/:

If C > 0 is large enough, the proof of Theorem 4.2 ensures that W s 2 S hˆ;g;F .�S /. Let
f�"g">0 be a family of smoothing kernels in R approximating the Dirac mass ı1. For " > 0

small enough we define

(6.6) ˆ".t; z/ WD

Z
R
W s.t; z/�".s/ds:

We are going to prove thatˆ" (orˆ"�O."/) is again a subsolution and use the previous step
to conclude.

Let H denote the space of Hermitian positive definite matrices H that are normalized
by detH D 1, and let �H denote the Laplace operator

�H' WD
1

n

nX
j;kD1

hjk
@2'

@zj @ Nzk
:

Fix H 2 H . Since W s 2 S hˆ;g;F .�T /, Proposition 3.2 and [14, Main Theorem] yield

�HW
s.t; z/ � exp

�
@tW

s.t; z/C F.t; z;W s.t; z//

n

�
g.z/1=n:
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By definition of ˆ" we obtain, using the convexity of the exponential,

�Hˆ
".t; z/ D

Z
R
�HW

s.t; z/�".s/ds

� g.z/1=n
Z
R

exp
�
@tW

s.t; z/C F.t; z;W s.t; z//

n

�
�".s/ds

� g.z/1=n exp
�
1

n

�Z
R
.@tW

s.t; z/C F.t; z;W s.t; z/// �".s/ds

��
:

Step 1. To simplify we first treat the case when F is convex in r . – Thus

�Hˆ
".t; z/ D

Z
R
�HW

s.t; z/�".s/ds

� g.z/1=n exp
�
1

n

�
@tˆ

".t; z/C F

�
t; z;

Z
R
W s.t; z/�".s/ds

���
D g.z/1=n exp

�
1

n
.@tˆ

".t; z/C F.t; z;ˆ".t; z///

�
:

Using Proposition 3.2 and [14, Main Theorem] again, we infer thatˆ" is a subsolution to
(CMAF) in �S .

We now check that .ˆ"/� �O."/ � hˆ on @0�S . Indeed, for z 2 @� we have W s.t; z/ �

hˆ.t; z/, for all s, thus ˆ".t; z/ � hˆ.t; z/ for all .t; z/ 2 Œ0; S� � @�. It remains to check
that .ˆ"/�.0; z/ � hˆ.0; z/, for all z 2 �. It follows from Theorem 6.5 that Uhˆ;g;F;�T has
boundary value hˆ, hence, for C large enough

lim
t!0

W s.t; z/ � hˆ.0; z/ � C js � 1j; for all z 2 N�:

From the definition of ˆ" in (6.6) it follows that

lim
t!0

ˆ".t; z/ � hˆ.0; z/; 8z 2 N�:

Henceˆ"�O."/t 2 S hˆ;g;F .�S /. Moreover,ˆ" is of class C1 in t 2 �0; SŒ andˆ" converges
pointwise to ˆ as " ! 0. Using Lemma 6.10 we obtain ˆ" � ‰ in �S . The conclusion
follows by letting "! 0.

Step 2. We now treat the case when F is merely uniformly semi-convex in r . – It follows from
(4.2) and Theorem 4.2 that the functions s 7! W s.t; z/, .t; z/ 2 �S , are uniformly Lipschitz
in Œ1=2; 3=2�. Note also thatW s andˆ are uniformly bounded in�S . Thus for all .t; z/ 2 �S ,
s 2 Œ1=2; 3=2�,

jW s.t; z/ �ˆ.t; z/j � C js � 1j; and j.W s.t; z//2 �ˆ2.t; z/j � C js � 1j;

for some uniform constant C , henceZ
R
W s.t; z/�".s/ds D ˆ.t; z/CO."/; and

Z
R
.W s/2.t; z/�".s/ds D ˆ

2.t; z/CO."/:

We thus have

(6.7)
Z
R
.W s/2.t; z/�".s/ds �

�Z
R
W s.t; z/�".s/ds

�2
D O."/:
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Recall (assumption (0.5)) that the function r 7! F.t; z; r/ C CF r
2 is convex in a large

interval J b R, for fixed .t; z/ 2 �S . Jensen’s inequality yieldsZ
R

�
F.t; z;W s.t; z//C CF .W

s.t; z//2
�
�".s/ds

� F

�
t; z;

Z
R
W s.t; z/�".s/ds

�
C CF

�Z
R
W s.t; z/�".s/ds

�2
:

Using this and (6.7) we obtainZ
R
F.t; z;W s.t; z//�".s/ds � F

�
t; z;

Z
R
W s.t; z/�".s/ds

�
� O."/:

We repeat the previous step to conclude that ˆ" �O."/t 2 S hˆ;g;F .�S /.
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APPLICATIONS OF THE MORAVA K-THEORY
TO ALGEBRAIC GROUPS

 P SECHIN  N SEMENOV

A. – In this article we discuss an approach to cohomological invariants of algebraic
groups based on the Morava K-theories.

We show that the second Morava K-theory detects the triviality of the Rost invariant and, more
generally, relate the triviality of cohomological invariants and the splitting of Morava motives.

We compute the Morava K-theory of generalized Rost motives and of some affine varieties and
characterize the powers of the fundamental ideal of the Witt ring with the help of the MoravaK-theory.
Besides, we obtain new estimates on torsion in Chow groups of quadrics and investigate torsion in
Chow groups ofK.n/-split varieties. An important role in the proofs is played by the gamma filtration
on Morava K-theories, which gives a conceptual explanation of the nature of the torsion.

Furthermore, we show that under some conditions if theK.n/-motive of a smooth projective variety
splits, then its K.m/-motive splits for all m � n.

R. – Dans cet article nous présentons une approche des invariants cohomologiques des
groupes algébriques basée sur les K-théories de Morava.

Nous montrons que la deuxième K-théorie de Morava détecte la trivialité de l’invariant de Rost
et, plus généralement, établissons un rapport entre la trivialité des invariants cohomologiques et le
déploiement des motifs de Morava.

Nous calculons laK-théorie de Morava des motifs généralisés de Rost et de quelques variétés affines
et caractérisons les puissances de l’idéal fondamental de l’anneau de Witt à l’aide de la K-théorie
de Morava. Par ailleurs, nous obtenons de nouvelles estimations de la torsion dans les groupes de
Chow des quadriques et étudions la torsion dans les groupes de Chow des variétés K.n/-déployées.
La gamma-filtration de K-théorie de Morava joue un rôle important dans les preuves, et fournit une
explication conceptuelle de la nature de la torsion.

De plus, nous montrons que sous certaines conditions, si leK.n/-motif d’une variété projective lisse
est déployé, alors son K.m/-motif est déployé pour tout m � n.

The authors gratefully acknowledge the support of SPP 1786 “Homotopy theory and algebraic geometry”
(DFG). The first author was partially supported by the HSE University Basic Research Program, Russian Academic
Excellence Project ‘5–100’ and by the Moebius Contest Foundation for Young Scientists, by Simons Foundation,
and by DFG-FOR 1920. The second author gratefully acknowledges Université Paris 13.
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946 P. SECHIN AND N. SEMENOV

1. Introduction

The present article is devoted to applications of the Morava K-theory to cohomological
invariants of algebraic groups and to computations of the Chow groups of quadrics.

1.1. Cohomological invariants

In his celebrated article on irreducible representations [55] Jacques Tits introduced the
notion of a Tits algebra, which is an example of cohomological invariants of algebraic
groups of degree 2. This invariant of a linear algebraic group G plays a crucial role in the
computation of theK-theory of twisted flag varieties by Panin [39] and in the index reduction
formulas by Merkurjev, Panin and Wadsworth [34]. It has important applications to the
classification of linear algebraic groups and to the study of associated homogeneous varieties.

The idea to use cohomological invariants in the classification of algebraic groups goes
back to Jean-Pierre Serre. In particular, Serre conjectured the existence of an invariant of
degree 3 for groups of type F4 and E8. This invariant was later constructed by Markus Rost
for all G-torsors, where G is a simple simply-connected algebraic group, and is now called
the Rost invariant (see [9]).

Moreover, the Serre-Rost conjecture for groups of type F4 says that the map

H 1
et.F;F4/ ,! H 3

et.F;Z=2/˚H
3
et.F;Z=3/˚H

5
et.F;Z=2/

induced by the invariants f3, g3 and f5 described in [23, §40] (f3 and g3 are the modulo 2
and modulo 3 components of the Rost invariant), is injective. The validity of the Serre-Rost
conjecture would imply that one can exchange the study of the setH 1

et.F;F4/ of isomorphism
classes of groups of type F4 over F (equivalently of isomorphism classes of F4-torsors or
of isomorphism classes of Albert algebras) by the study of the abelian group H 3

et.F;Z=2/˚
H 3

et.F;Z=3/˚H 5
et.F;Z=2/.

In the same spirit one can formulate the Serre Conjecture II, saying in particular
that H 1

et.F;E8/ D 1 if the field F has cohomological dimension 2. Namely, for such
fields Hn

et.F;M/ D 0 for all n � 3 and all torsion modules M . In particular, for groups
over F there are no invariants of degree � 3, and the Serre Conjecture II predicts that the
groups of type E8 over F themselves are split.

Furthermore, the Milnor conjecture on quadratic forms (proven by Orlov, Vishik and
Voevodsky) together with the Milnor conjecture on the étale cohomology (proven by
Voevodsky) provides a classification of quadratic forms over fields in terms of the Galois
cohomology, i.e., in terms of cohomological invariants.

In the present article we will relate the MoravaK-theory with some cohomological invari-
ants of algebraic groups.

1.2. Morava K-theory and Morava motives

Let n be a positive integer and let p be a prime. The Morava K-theory K.n/� is a free
oriented cohomology theory in the sense of Levine-Morel [28] whose coefficient ring is Z.p/,
whose formal group law modulo p has height n, and the logarithm is of the type

logK.n/.x/ D x C
a1

p
xp

n

C
a2

p2
xp

2n

C � � �
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with ai 2 Z�
.p/

. If n D 1 and all ai are equal to 1, then the theory K.1/� is isomorphic to
Grothendieck’s K0 ˝ Z.p/ as a presheaf of rings. Moreover, there is some kind of analogy
between Morava K-theory in general and K0.

More conceptually, algebraic cobordism of Levine-Morel can be considered as a functor
to the category of graded comodules over the Hopf algebroid .L;LB/, where L is the Lazard
ring and LB D LŒb1; b2; : : :�. This Hopf algebroid parametrizes the groupoid of formal
group laws with strict isomorphisms between them, and the category of comodules over
it can be identified with the category of quasi-coherent sheaves over the stack of formal
groups M fg. This stack modulo p has a descending filtration by closed substacks M�n

fg

which classify the formal group laws of height � n. Moreover, M�n
fg n M�nC1

fg has an

essentially unique geometric point which corresponds to the MoravaK-theoryK.n/�˝Fp.
This chromatic picture puts K.n/� into an intermediate position between K0 and CH�.

We remark also that Levine and Tripathi construct in [29] a higher Morava K-theory in
algebraic geometry.

1.3. Morava K-theories, split motives and vanishing of cohomological invariants

There are three different types of results in this article which fit into the following guiding
principle. The leading idea of this principle has been probably well understood already by
Voevodsky, since he considered the Morava K-theory in his program on the proof of the
Bloch-Kato conjecture in [63].

G . – Let X be a projective homogeneous variety, let p be a prime
number and let K.n/� denote the corresponding Morava K-theory.

Then vanishing of cohomological invariants of X with p-torsion coefficients in degrees no
greater than nC 1 should correspond to the splitting of the K.n/�-motive of X .

First of all, due to the Milnor conjecture the associated graded ring of the Witt ringW.F /
of a field F of characteristic not 2 is canonically isomorphic to the étale cohomology of
the base field with Z=2-coefficients: Hn

et.F;Z=2/ ' I n=I nC1, where I denotes the funda-
mental ideal of W.F /. Therefore, the projective quadric which corresponds to a quadratic
form q 2 I n has a canonical cohomological invariant of degree n. The guiding principle
suggests that the K.n/�-motive of an even-dimensional projective quadric is split if and
only if the class of the corresponding quadratic form in the Witt ring lies in the ideal I nC2.
Indeed, we prove this statement in Proposition 6.18.

Secondly, we relate cohomological invariants of simple algebraic groups to Morava
K-theories. We show in Section 9 that for a simple simply-connected group G with trivial
Tits algebras the Morava K-theory K.2/� detects the triviality of the Rost invariant of G.
Note that in a similar spirit Panin showed in [39] that the Grothendieck’s K0 detects the
triviality of Tits algebras. Moreover, for a group G of type E8 the Morava K-theory K.4/�

for p D 2 detects the splitting of the variety of Borel subgroups of G over a field extension
of odd degree (Theorem 9.1). All these results agree with the guiding principle.

Thirdly, we relate the property of being split with respect to MoravaK-theoriesK.n/� for
different n. Namely, we prove in Proposition 7.10 that if a smooth projective geometrically
cellular variety X over a field F of characteristic 0 satisfies the Rost nilpotence principle for
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Morava K-theories and has a split K.n/�-motive, then it has a split K.m/�-motive for all
m � n. In particular, Morava motives provide a linearly ordered series of obstructions for
a projective homogeneous variety to be isotropic over a base field extension of a prime-to-p
degree.

1.4. Operations in Morava K-theories and applications to Chow groups

The study of cohomological invariants of algebraic groups is partially motivated by the
interest in Chow groups of torsors. Whenever some cohomological invariants vanish, one
may ask whether this yields any restrictions on the structure of Chow groups, e.g., exis-
tence, order or cardinality of torsion in certain codimensions. We approach this question by
studying projective homogeneous (or, more generally, geometrically cellular) varieties X for
which the K.n/�-motive is split. In order to obtain information about Chow groups from
Morava K-theories we use operations.

The first author constructed in [49] and [51] generators of all (not necessarily additive)
operations from the Morava K-theory to CH�˝Z.p/ and from the Morava K-theory to
itself. The latter allows one to define the gamma filtration on the Morava K-theory, and it
turns out that its i -th graded factor maps surjectively onto CHi

˝Z.p/ for all i � pn. These
operations and their various properties are constructed using the classification of operations
given in a series of articles by Vishik (see [60], [61]).

Let X be a smooth geometrically cellular variety such that the pullback map from K.n/�.X/

to K.n/�.XE / is an isomorphism, where XE D X �F E is the base change to a field E
for which XE becomes cellular. The operations above as well as symmetric operations of
Vishik allow us to show that there is no p-torsion in Chow groups of X in codimensions up
to pn�1

p�1
(Theorem 7.19). Moreover, we prove that p-torsion is finitely generated in Chow

groups of codimension up to pn, and we provide a combinatorial method to estimate this
torsion (Theorem 7.23).

For quadratic forms from the ideal ImC2 of the Witt ring of a fieldF of characteristic zero
theK.m/�-motive of the corresponding quadric is split as mentioned above. Thus, we obtain
that there is no torsion in Chow groups of codimensions less than 2m and we also calculate
uniform finite upper bounds on the torsion in CH2m

which do not depend on the quadric
(see Theorem 8.14). In this way Morava K-theory provides a conceptual explanation of the
nature of this torsion.

These results fit well in the quite established history of estimates on torsion of quadrics
obtained among others by Karpenko, Merkurjev and Vishik. In particular, Karpenko conjec-
tured in [16, Conjecture 0.1] that for every integer l the Chow group CHl of an n-dimensional
quadric over F is torsion-free whenever n is bigger than some constant which depends only
on l . This was confirmed only for l � 4. Recall that by the Arason-Pfister Hauptsatz every
anisotropic non-zero quadratic form from Im has dimension at least 2m and therefore, the
absence of torsion in Chow groups of small codimensions of corresponding quadrics can be
considered as an instance of the Karpenko conjecture. Note also that there are examples of
quadrics from ImC2 having non-trivial torsion in CH2m

.
Finally, we discuss an approach to cohomological invariants which uses an exact

sequence (3.6) of Voevodsky (see below). This exact sequence involves motivic cohomology
of some simplicial varieties. For example, this sequence was used in [52] to construct an
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invariant of degree 5modulo 2 for groups of type E8 with trivial Rost invariant and to solve
a problem posed by Serre.

Acknowledgements. – We are sincerely grateful to Alexander Vishik for encouragement and
interest in the development of results related to quadrics and for useful comments on the
relation between Morava K-theories and cohomological invariants.

We would like to thank sincerely Alexey Ananyevskiy, Stefan Gille, Olivier Haution,
Nikita Karpenko, Fabien Morel, Alexander Neshitov, and Maksim Zhykhovich for discus-
sions and e-mail conversations on the subject of the article. The second author started to
work on this subject during his visit to University Paris 13 in 2014. He would like to express
his sincere gratitude to Anne Quéguiner-Mathieu for her hospitality and numerous useful
discussions.

Finally, we would like to thank the anonymous referees for their comments and sugges-
tions.

2. Definitions and notation

In the present article we assume that F is a field of characteristic 0. By Fsep we denote a
separable closure of F .

Let G be a semisimple linear algebraic group over a field F (see [54], [23]). A G-torsor
over F is an algebraic variety P equipped with an action of G such that P.Fsep/ ¤ ; and
the action of G.Fsep/ on P.Fsep/ is simply transitive.

The set of isomorphism classes of G-torsors over F is a pointed set (with the base point
given by the trivialG-torsorG) which is in natural one-to-one correspondence with the (non-
abelian) Galois cohomology set H 1

et.F;G/.

Let A be some algebraic structure over F (e.g., an algebra or quadratic space) such
that Aut.A/ is an algebraic group over F . Then an algebraic structure B is called a twisted
form of A, if over a separable closure of F the structures A and B are isomorphic. There is a
natural bijection between H 1

et.F;Aut.A// and the set of isomorphism classes of the twisted
forms of A.

For example, if A is an octonion algebra over F , then Aut.A/ is a group of type G2 and
H 1

et.F;Aut.A// is in one-to-one correspondence with the twisted forms of A, i.e., with the
octonion algebras over F (since any two octonion algebras over F are isomorphic over a
separable closure of F and since any algebra, which is isomorphic to an octonion algebra
over a separable closure of F , is an octonion algebra).

By Q=Z.n/ we denote the Galois-module colim�˝n
l

taken over all l (see [23, p. 431]).

In the article we use notions from the theory of quadratic forms over fields (e.g., Pfister-
forms, Witt-ring). We follow [23], [24], and [6]. Further, we use the notion of motives; see
[31], [6].
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3. Geometric constructions of cohomological invariants

First, we describe several geometric constructions of cohomological invariants of torsors
of degree 2 and 3.

Let G be a semisimple algebraic group over a field F . In general, a cohomological
invariant of G-torsors of degree n with values in a Galois-module M is a transformation of
functors H 1

et.�; G/! Hn
et.�;M/ from the category of field extensions of F to the category

of pointed sets (see [23, 31.B]).

3.1. Tits algebras and the Picard group

In his celebrated article [55] Jacques Tits introduced invariants of degree 2, called nowa-
days the Tits algebras.

There exists a construction of Tits algebras based on the Hochschild-Serre spectral
sequence. For a smooth variety X over F one has

Hp.�;H
q
et.Xsep; G //) H

pCq
et .X; G /;

where � is the absolute Galois group,Xsep D X�Fsep and G is an étale sheaf. The first terms
of the induced exact sequence are

0! H 1.�;H 0
et.Xsep; G //! H 1

et.X; G /! H 0.�;H 1
et.Xsep; G //! H 2.�;H 0

et.Xsep; G //:

Let G D Gm and let X be a smooth projective geometrically irreducible variety. Then

H 1.�;H 0
et.Xsep;Gm// D H 1.�; F �sep/ D 0;

by Hilbert’s Theorem 90, H 1
et.X;Gm/ D Pic.X/, H 0.�;H 1

et.Xsep;Gm// D .PicXsep/
� , and

H 2.�;H 0
et.Xsep;Gm// D H 2.�; F �sep/ D Br.F /. Thus, we obtain an exact sequence

(3.2) 0! PicX ! .PicXsep/
� f
�! Br.F /:

The map PicX ! .PicXsep/
� is the restriction map and the homomorphism

.PicXsep/
� f
�! Br.F /

was described by Merkurjev and Tignol in [35, Section 2]. If X is the variety of Borel
subgroups of a semisimple algebraic groupG, then the Picard group ofXsep can be identified
with the free abelian group with basis !1; : : : ; !n consisting of the fundamental weights, i.e.,
PicXsep D ƒ, where ƒ denotes the weight lattice. If !i is �-invariant (e.g., if G is of inner
type), then f .!i / D ŒAi � is the Brauer class of the Tits algebra of G corresponding to the
(fundamental) representation with the highest weight !i (see [35] for a general description
of the homomorphism f ).

Moreover, one can continue the exact sequence (3.2), namely, the sequence

(3.3) 0! PicX ! .PicXsep/
� f
�! Br.F /! Br.F.X//

is exact, where the last map is the restriction homomorphism (see [35]).
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3.4. Tits algebras and K0

There is another interpretation of the Tits algebras related to Grothendieck’sK0 functor.
LetG be a semisimple algebraic group over F of inner type and letX be the variety of Borel
subgroups of G. By Panin [39] the K0-motive of X is isomorphic to a direct sum of jW j
motives, where W denotes the Weyl group of G. Denote these motives by Lw , w 2 W .

For w 2 W consider

�w D
X

f˛k2…jw
�1.˛k/2ˆ

�g

w�1.!k/ 2 ƒ;

where… is the set of simple roots, ˆ� is the set of negative roots, andƒ is the weight lattice.
Let ƒr be the root lattice and

ˇWƒ=ƒr ! Br.F /

be the Tits homomorphism, which sends a fundamental weight !i to ŒAi � (see [55]). In
particular, the homomorphism ˇ is essentially the homomorphism f from Section 3.1. Then
over a splitting field K of G, the motive .Lw/K is isomorphic to a Tate motive and the
restriction homomorphism

K0.Lw/! K0..Lw/K/ D Z

is an injection Z ! Z given by the multiplication by indAw , where ŒAw � D ˇ.�w/. In
particular, different motives Lw can be parametrized by the Tits algebras.

Moreover, if all Tits algebras of G are split, then the K0-motive of X is a direct sum of
Tate motives over F .

3.5. Tits algebras and simplicial varieties

Let Y be a smooth irreducible variety over F . Consider the Čech simplicial scheme XY

associated with Y , i.e., the simplicial scheme

Y
 
!
 
Y � Y

 
!
 
!
 
Y � Y � Y � � �

Then for all n � 2 there is a long exact sequence of cohomology groups (see [48,
Corollary 2.2] and [65, Proof of Lemma 6.5]):

(3.6) 0! H
n;n�1
M .XY ;Q=Z/

g
�! Hn

et.F;Q=Z.n � 1//! Hn
et.F.Y /;Q=Z.n � 1//;

whereHn;n�1
M is the motivic cohomology and the homomorphism g is induced by the change

of topology from Nisnevich to étale (note that by [64, Lemma 7.3] XY is contractible in the
étale topology).

Let n D 2 and let Y be the variety of Borel subgroups of a semisimple algebraic group G
of inner type. Then H 2

et.F;Q=Z.1// D Br.F / and we have a long exact sequence

0! H
2;1
M .XY /

g
�! Br.F /! Br.F.Y //:

Thus, combining this exact sequence with exact sequence (3.3) and using explicit description
of the homomorphism f from Section 3.1, we obtain that H 2;1

M .XY / D ƒ=ƒ0, where
ƒ0 denotes the kernel of f . Note also thatƒr � ƒ0. Thus, the Tits homomorphism ˇ factors
through H 2;1

M .XY / by means of the homomorphism g. This gives one more interpretation
of the Tits algebras via a change of topology.
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3.7. Rost invariant

If G is a simple simply connected algebraic group, then there exists an invariant

H 1
et.�; G/! H 3

et.�;Q=Z.2//

of degree 3 ofG-torsors which is called the Rost invariant (see [9]). In a particular case when
G is the spinor group, this invariant is called the Arason invariant.

IfG is of inner type, the Rost invariant can be constructed as follows. Let Y be aG-torsor.
Then there is a long exact sequence (see [9, Section 9])

0! A1.Y;K2/! A1.Ysep; K2/
�

h
�! Ker

�
H 3

et.F;Q=Z.2//! H 3
et.F.Y /;Q=Z.2//

�
! CH2.Y /;

(3.8)

whereA1.�; K2/ is theK-cohomology group (see [46], [9, Section 4]),� is the absolute Galois
group, and Ysep D Y �F Fsep. Moreover, A1.Ysep; K2/

� D Z and CH2.Y / D 0. The Rost
invariant of Y is the image of 1 2 A1.Ysep; K2/

� under the homomorphism h. We remark that
sequence (3.8) for the Rost invariant is analogous to the sequence (3.3) for the Tits algebras
arising from the Hochschild-Serre spectral sequence.

We remark also that if G is a group of inner type with trivial Tits algebras (simply-
connected or not), then there is a well-defined Rost invariant of G itself (not of G-torsors);
see [12, Section 2].

4. Oriented cohomology theories and the Morava K-theory

In this section we will introduce a cohomology theory—the Morava K-theory. We will
prove later that it detects the triviality of some cohomological invariants (in particular, of
the Rost invariant) of algebraic groups.

4.1. Characteristic numbers

Let X be a smooth projective irreducible variety over a field F . Given a partition
J D .l1; : : : ; lr / of length r � 0 with l1 � l2 � � � � � lr > 0 one can associate with it a
characteristic class

cJ .X/ 2 CHjJ j.X/ .jJ j D
X
i�1

li /

of X as follows. Let PJ .x1; : : : ; xr / be the smallest symmetric polynomial (i.e., with a
minimal number of non-zero coefficients) containing the monomial xl11 � � � x

lr
r . We can

express PJ as a polynomial on the standard symmetric functions �1; : : : ; �r as

PJ .x1; : : : ; xr / D QJ .�1; : : : ; �r /

for some polynomialQJ . Let ci D ci .�TX / denote the i -th Chern class of the virtual normal
bundle of X . Then

cJ .X/ D QJ .c1; : : : ; cr /:

For jJ j D dim.X/, the degrees of the characteristic classes are called the characteristic
numbers.
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If J D .1; : : : ; 1/ (i times), then cJ .X/ D ci .�TX / is the usual Chern class. If
dimX D pn � 1 and J D .pn � 1/ for some prime number p, we write cJ .X/ D Spn�1.X/.
The degree of the class SdimX .X/ is always divisible by p and we set

sdimX .X/ D
degSdimX .X/

p

and call it the Milnor number of X (see [28, Section 4.4.4], [52, Section 2]).

D 4.2. – Let p be a prime. A smooth projective varietyX is called a �n-variety
if dimX D pn�1, all characteristic numbers ofX are divisible byp and sdimX .X/ ¤ 0 modp.

4.3. Oriented cohomology theories and Borel-Moore homology theories

In this article we consider oriented cohomology theories A� in the sense of Levine-Morel
(see [28, Definition 1.1.2]). By a variety we always mean a quasi-projective variety.

For a smooth variety X over F with the irreducible components X1; : : : ; Xl we set
A�.X/ WD

Ll
iD1A

dimXi��.Xi /. Then the assignmentX 7! A�.X/ defines an oriented Borel-
Moore homology theory in the sense of Levine-Morel (see [28, Definition 5.1.3]). Moreover,
by [28, Proposition 5.2.1] this gives a one-to-one correspondence between oriented coho-
mology theories and oriented Borel-Moore homology theories on the category of smooth
varieties over F .

Given an oriented Borel-Moore homology theory on the category of smooth varieties
over F we extend it to all separated schemes of finite type over F via

A�.Y / WD colimV!YA�.V /;

where the colimit runs over all projective morphisms V ! Y , where V are smooth varieties
over F , and with push-forward maps as transition maps.

For an oriented Borel-Moore homology theory A� we say that it satisfies the localization
axiom, if for every quasi-projective F -scheme X and a closed F -embedding j WZ ! X with
the open complement i WU ! X the sequence

A�.Z/
j�
�! A�.X/

i�

�! A�.U /! 0

is exact.

4.4. Free theories

Consider the algebraic cobordism �� of Levine-Morel (see [28]). By [28, Theorem 1.2.6]
the algebraic cobordism is a universal oriented cohomology theory, i.e., there is a (unique)
morphism of theories �� ! A� for every oriented cohomology theory A� in the sense of
Levine-Morel.

Each oriented cohomology theory A� is equipped with a 1-dimensional commutative
formal group law FA. For�� the respective formal group law F � is the universal one, and
the canonical morphism L! ��.SpecF / from the Lazard ring is an isomorphism (see [28,
Theorem 1.2.7]).

In this article, when necessary, we consider our oriented cohomology theories as Borel-
Moore homology theories and extend them to all separated schemes of finite type over F
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as in Section 4.3. Conversely, every oriented Borel-Moore homology theory restricted to the
category of smooth varieties gives an oriented cohomology theory.

D 4.5 (Levine-Morel, [28, Remark 2.4.14(2)]). – Let R be a commutative
ring, let F R be a formal group law over R, and let L! R be the respective ring morphism.
Then �� ˝L R is an oriented Borel-Moore homology theory which is called a free theory.
Its ring of coefficients is R, and its associated formal group law is F R.

For example, the Chow theory is a free theory with the additive formal group law and with
the coefficient ringZ (see [28, Theorem 1.2.19]). In this articleK0 stands for a free theory with
the multiplicative formal group law and with the coefficient ring Z. If X is a smooth variety
over F , then K0.X/ is Grothendieck’s K0-theory of locally free coherent sheaves on X (see
[28, Theorem 1.2.18]).

By [28, Corollary 4.4.3] every free theory A� is generically constant, i.e., for every integral
scheme X over F the canonical map

A�.SpecF /! A�.SpecF.X// WD colimU�XA�CdimX .U /

is an isomorphism, where the colimit is taken over all non-empty open subschemes of X .

By [28, Theorem 3.2.7] the algebraic cobordism theory satisfies the localization axiom.
Hence, every free theory satisfies the localization axiom as well.

In [60, Definition 4.1] Vishik defines theories of rational type in geometric terms and proves
in [60, Proposition 4.7] that the generically constant theories of rational type are precisely the
free theories. Vishik’s definition allows to describe efficiently the sets of operations between
such theories and Riemann-Roch type results for them.

4.6. Brown-Peterson cohomology and Morava K-theories

For a prime number p and a positive integer n we consider the n-th Morava K-theory
K.n/� with respect to p. Note that we do not include p in the notation. We define this theory
as a free theory with the coefficient ring Z.p/Œvn; v�1n � where deg vn D �.pn � 1/ and with a
formal group law which we will describe below.

The variable vn, as it is invertible, does not play an important role in computations
with Morava K-theories, and sometimes we will prefer to set it to be equal to 1. It will be
always clear from the context which n-th Morava K-theory we use, i.e., with Z.p/Œvn; v�1n �-
or Z.p/-coefficients.

We follow [14] and [43]. There exists a universal p-typical formal group law F BP over
a ring BP . The latter ring is non-canonically isomorphic to the ring Z.p/Œv1; v2; : : :�, and
from now on we choose the isomorphism defined by Hazewinkel (see [43, Appendix 2]). The
canonical morphism from F � over L.p/ D L˝ Z.p/ to F BP over the ring Z.p/Œv1; v2; : : :�
defines a multiplicative projector on ��

.p/
WD �� ˝ Z.p/ whose image is the Brown-Peterson

cohomology BP �.

The logarithm of the formal group law of the Brown-Peterson theory equals

l.t/ D
X
i�0

mi t
pi

;
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where m0 D 1 and the remaining variables mi are related to vj following Hazewinkel as
follows:

mj D
1

p
�
�
vj C

j�1X
iD1

miv
pi

j�i

�
;

see, e.g., [43, Appendix 2.2.1]. Let e.t/ be the compositional inverse of l.t/. Then the Brown-
Peterson formal group law is given by e.l.x/C l.y//. We remark that the coefficients of the
logarithm l.t/ lie in QŒv1; v2; : : :�, but the coefficient ring of BP � is BP D Z.p/Œv1; v2; : : :�.
Note also that deg vi D �.pi � 1/.

We define an n-th Morava K-theory K.n/� as a free theory with a pn-typical formal
group law F over Z.p/Œvn; v�1n � (or over Z.p/) such that the height of F modulo p is n (see
[51, Definition 3.9]). Thus, even for a fixed prime p and a fixed height n there exist non-
isomorphic n-th Morava K-theories (which are though isomorphic as presheaves of abelian
groups, see [51, Theorem 5.3]).

As in topology we denote by K.0/� the theory CH�˝Q (independently of a prime p).

In the classical construction of the n-th Morava formal group law one takes theBP formal
group law and sends all vj with j ¤ n to zero. Modulo the ideal J generated by p; xp

n
; yp

n

the formal group law for the n-th Morava K-theory equals then

F K.n/.x; y/ D x C y � vn

p�1X
iD1

1

p

 
p

i

!
xip

n�1

y.p�i/p
n�1

mod J

and the logarithm of the corresponding particular n-th Morava K-theory equals

logK.n/.t/ D
1X
iD0

1

pi
v

pin�1
pn�1
n tp

in

:

More generally, every n-th Morava K-theory is obtained from BP � by sending all vj with
n - j to zero, but vj with njj are sent to some multiples of the corresponding powers of vn
(and the set of all thus obtained theories is independent of the choice of variables vj ).

For a variety X over F one has

K.n/�.X/ D ��.X/˝L Z.p/Œvn; v�1n �;

and vn is a �n-element in the Lazard ring L.

We remark that classically in topology one considers the Morava K-theory with the
coefficient ring FpŒvn; v�1n �, but in the present article it is crucial that we consider an integral
version. Note also that as was mentioned above two n-th Morava K-theories are additively
isomorphic, but are in general not multiplicatively isomorphic.

If n D 1, for a particular choice of K.1/� there exists a functorial (with respect to
pullbacks) isomorphism of algebras K.1/�.X/=.v1 � 1/ ' K0.X/ ˝ Z.p/, which can
be obtained with the help of the Artin-Hasse exponent (for the latter see [44, Chapter 7,
Section 2]).
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4.7. Euler characteristic

The Euler characteristic of a smooth projective irreducible variety X with respect to an
oriented cohomology theory A� (A�-Euler characteristic) is defined as the push-forward

�A� .1X / 2 A
�.SpecF /

of the structural morphism � WX ! SpecF . E.g., for A� D K0 ˝ ZŒv1; v�11 � with push-
forwards defined as in [28, Example 1.1.5] the Euler characteristic of X equals

vdimX
1 �

X
.�1/i dimH i .X; OX /;

see [7, Ch. 15]. If X is geometrically irreducible and geometrically cellular, then this element
equals vdimX

1 (see [69, Example 3.6]).

For the MoravaK-theoryK.n/� and a smooth projective irreducible varietyX of dimen-
sion d D pn � 1 the Euler characteristic modulo p equals the element vn � u � sd for some
u 2 F�p , where sd is the Milnor number of X (see [28, Proposition 4.4.22(3)]). In particular,
it is invertible, if X is a �n-variety. If dimX is not divisible by pn � 1, then the Euler char-
acteristic of X equals zero, since the target graded ring has non-trivial components only in
degrees divisible by pn � 1.

4.8. Motives

For a theory A� we consider the category of A�-motives over F , which is defined in the
same way as the category of Grothendieck’s Chow motives with CH� replaced by A� (see
[31], [6]). Namely, the morphisms between two smooth projective irreducible varietiesX and
Y over F are given by AdimY .X � Y /.

ByT.l/, l � 0, we denote the Tate motives in the category ofA�-motives. They are defined
in the same way as the Tate motives in the category of Chow motives. Namely, theA�-motive
of the projective line splits as a direct sum of theA�-motive of SpecF , which we denote by T,
and another motive, which we denote by T.1/. Then T.l/ is defined as T.1/˝l for l � 0.

D 4.9. – For an oriented cohomology theory A� and a motive M in the cate-
gory of A�-motives over F we say that M is split, if it is isomorphic to a finite direct sum of
Tate motives over F .

Note that this property depends on the theory A�, i.e., there exist smooth projective
varieties whose motives are split for some oriented cohomology theories, but not for all
oriented cohomology theories. For example, it follows from Proposition 6.2 below that the
n-th Morava K-theory K.n/� for p D 2 of an anisotropic m-fold Pfister quadric over F is
split, if n < m � 1. On the other hand, the Chow motive of an anisotropic Pfister quadric is
never split.
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4.10. Rost nilpotence for oriented cohomology theories

Let A� be an oriented cohomology theory and consider the category of A�-motives
over F . Let M be an A�-motive over F . We say that the Rost nilpotence principle holds
for M , if the kernel of the restriction homomorphism

End.M/! End.ME /

consists of nilpotent elements for all field extensions E=F .
By [5, Section 8] Rost nilpotence holds for Chow motives of all twisted flag varieties.
Rost nilpotence is a tool which allows to descend motivic decompositions over E to

motivic decompositions over the base field F . E.g., assume that Rost nilpotence holds forM
and that we are given a decomposition ME '

L
Mi over E into a finite direct sum. The

motives M and Mi are defined as pairs .X; �/ and .XE ; �i /, where X is a smooth projective
variety over F , � 2 A�.X �X/ and �i 2 A�.XE �XE / are some projectors. Assume further
that all �i are defined over F , i.e., there exists �i 2 A�.X � X/ such that .�i /E D �i . We
would like to modify �i to make it a projector, while at the moment we only know that the
difference �ı2i ��i is in the kernel of the map toA�.XE �XE / and, thus, is nilpotent. In fact,
considering a commutative subring ofA�.X�X/ generated by �i for a particular index i , one
can show that some power of the element �i is a projector. It follows then that M '

L
Ni

for some motives Ni over F , and the scalar extension .Ni /E is isomorphic to Mi for every i
(for more details see [5, Section 8], [42, Section 2]).

Let M be a Chow motive. By [62, Section 2] there is a unique (up to isomorphism) lift
of the motive M to the category of ��-motives and, since �� is the universal oriented
cohomology theory, there is a respective motive in the category of A�-motives for every
oriented cohomology theory A�. We denote this A�-motive by MA.

By [13, Corollary 4.5] if M D .X; �/ is a direct summand of the Chow motive of a
twisted flag variety, then Rost nilpotence holds forMA for every oriented cohomology theory
obtained from �� by a change of coefficients.

4.11. Generalized Riemann-Roch theorem

We follow [61]. Let A� be a theory of rational type, let B� be an oriented cohomology
theory and let �WA� ! B� be an operation (which does not necessarily preserve the grading
and does not have to be additive).

For a smooth variety Z over a field F and any c � 0 denote by GcZ the composition

A�.Z/! A�.Z/ŒŒzA1 ; : : : ; z
A
c ��

�Z�.P1/�c

��������! B�.Z/ŒŒzB1 ; : : : ; z
B
c ��

˛ 7�! ˛ � zA1 � � � z
A
c ;

where we have identified A�.Z/ŒŒzA1 ; : : : ; z
A
c �� with A�.Z � .P1/�c/ and similarly for B�,

i.e., zi is the first Chern class of the pullback along the projection of the canonical line
bundle O.1/ over the i -th product component of .P1/�c .

Note that by the so-called “continuity of operations” ([61, Proposition 5.3]) for every c
and Z the series GcZ.1Z/ is divisible by zB1 � � � z

B
c . We denote the quotient by F cZ and set

F c D F cpt.1/ 2 BŒŒz
B
1 ; : : : ; z

B
c �� (we denote B D B�.pt/). We write GcZ.˛/jzB

i
Dyi

when we
plug in nilpotent elements yi 2 B�.Z/ in this series (similarly, for F cZ and F c).
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Finally, denote by !Bt 2 BŒŒt ��dt the canonical invariant 1-form of the formal group
law FB such that !B.0/ D dt (see [60, Section 7.1]).

The following proposition is a particular case of a general form of Riemann-Roch type
theorems [61, Theorem 5.19].

P 4.12 (Vishik). – LetX be a smooth variety over a field F . Let i WZ ,! X be
a closed embedding of a smooth subvariety of codimension c. Let ˛ 2 A�.Z/ and denote
by �1; : : : ; �c the B-roots of the normal bundle NZ=X .

Let k � 0 and let Li be line bundles over Z for 1 � i � k. Denote by xi D cA1 .Li /,
yi D c

B
1 .Li / their first Chern classes.

Then

�

 
i�.˛

kY
iD1

xi /

!
D i�RestD0

GcCkZ .˛/jzB
i
DtCB�i ;1�i�c; z

B
cCj
Dyj ;1�j�k

t �
Qc
iD1.t CB �i /

!Bt :

We will need only the following instance of this proposition.

C 4.13. – We have �.i�1Z/ D i�.��.F c/jzB
i
D�i

/, where

��WBŒŒzB1 ; : : : ; z
B
c ��! B�.Z/ŒŒzB1 ; : : : ; z

B
c ��

is induced by the pullback of the structure map � WZ ! SpecF .
In particular, the right-hand side depends only on the action of operation � on products of

projective spaces and the B-Chern classes of the normal bundle of Z.

Proof. – Indeed, 1Z D ��.1/ andGcZ.�
�.1// D �.��.1/zA1 � � � z

A
c / D �

�.�.zA1 � � � z
A
c // D

��Gcpt.1/. It follows that F cZ.1Z/ D �
�F cpt.1/ D �

�F c .
We can rewrite the formula in Proposition 4.12 as

�.i�1Z/ D i�RestD0F cZ.1Z/jziDtCB�i

!Bt
t

Y
i

t CB �i

t CB �i
:

Since !Bt .0/ D dt , we get the required formula.

4.14. Topological filtration on free theories

For a free theoryA� and a smooth varietyX we define the topological filtration (sometimes
referred to as a filtration by codimension of support) as the kernel of the restriction maps to
open subvarieties which have a complement of codimension bounded below:

(4.15) � iA�.X/ WD
[

U�X W codimX .XnU/�i

Ker.A�.X/! A�.U //:

Since the restriction maps commute with pullbacks, it is clear that � iA� is a subpresheaf
of A�.

We denote by QA� WD �1A� the subpresheaf consisting of all elements which vanish in the
generic points of varieties. Note that since A� is generically constant, for every irreducible
variety X we have a canonical splitting of abelian groups: A�.X/ D A˚ QA�.X/, where
A stands for A�.SpecF /.

One shows using the localization axiom for free theories ([28, Theorem 3.2.7]) that
this definition is equivalent to the one given using images of push-forwards as in [28,
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Section 4.5.2] (cf. [51, Proposition 1.17(1)] for a relation between the topological filtration
on �� and on free theories).

There exists a canonical surjective map of L-modules ��WCHi
˝L ! � i��=� iC1��

(see [28, Corollary 4.5.8]), and we denote by �AWCHi
˝LA ! � iA�=� iC1A� the map

of A-modules obtained by the change of coefficients of �� from L to A.
Besides, we denote gri� QA

j WD � i QAj =� iC1 QAj , where � i QAj is defined as in Formula (4.15)
with A� replaced by QAj .

5. Gamma filtration on Morava K-theories

5.1. Operations from Morava K-theories

In the article [51] the first author classified all operations from the n-th MoravaK-theory
to the so called pn-typical oriented theories whose coefficient ring is a free Z.p/-module.

We will exploit these operations only when the target theory is either the n-th Morava
K-theory itself or the Chow theory with p-local coefficients. There exist certain generators
of the algebra of all operations constructed in [51] which in these cases are denoted by cK.n/i

and cCH
i respectively, and we summarize their properties in this section.

In this section we consider Morava K-theories with Z.p/-coefficients, i.e., we set vn D 1.
This agrees with [49, 51]. This reduction to Z.p/-coefficients does not break the grading
completely. Namely, one can show the following proposition.

P 5.2 ([49, Proposition 4.1.5] & [51, Proposition 3.15]).

1. Morava K-theories K.n/� are Z=.pn � 1/-graded as presheaves of rings.

2. The grading is compatible with push-forwards, i.e., for a projective morphism f WX ! Y

of codimension c the push-forward map increases the grading in Morava K-theories by
c W f�WK.n/

i .X/! K.n/iCc.Y /.

In particular, the first Chern class of any line bundle L over a smooth variety X lies
in K.n/1.X/.

3. The topological filtration on the graded component of the n-th MoravaK-theory changes
only every pn � 1 steps, i.e., we have

�jCs.p
n�1/C1 QK.n/j D �jCs.p

n�1/C2 QK.n/j D � � � D �jC.sC1/.p
n�1/ QK.n/j ;

where j 2 Œ1; pn � 1�, s � 0.

In particular, grj� QK.n/� D QK.n/j =�jCp
n�1 QK.n/j for j W 1 � j � pn � 1.

We denote the graded components ofK.n/� asK.n/1,K.n/2, � � � ,K.n/p
n�1 and freely use

the notation K.n/i , K.n/i mod pn�1, K.n/iCr.p
n�1/ to denote the component K.n/j where

j � i mod pn � 1, 1 � j � pn � 1.

T 5.3 ([49, Theorem 4.2.1], [51, Theorem 3.16]). – There exist operations
c
K.n/
i WK.n/i mod pn�1 ! K.n/i mod pn�1 and cCH

i WK.n/
i ! CHi

˝Z.p/ for i 2 Z>0

satisfying the following properties (we omit the indexK.n/ resp. CH in the notation of ci , since
the index is always clear from the context):
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1. For any smooth variety X and for every pair of elements x; y 2 K.n/�.X/ the modified
Cartan’s formula holds:

ctot.x C y/ D F K.n/.ctot.x/; ctot.y//;

where F K.n/ is the formal group law for the Morava K-theory, ctot D
P
i�1 ci t

i , t is
a formal variable and we naturally consider each operation cj to be defined on the whole
group K.n/� via the composition with the natural projection to K.n/j .

The equality takes place in K.n/�.X/˝Z.p/
Z.p/ŒŒt �� or CH�.X/˝ Z.p/ŒŒt ��.

2. Every operation from the presheaf QK.n/� to the corresponding target theory can be
uniquely expressed as a formal power series in ci ’s with Z.p/-coefficients.

5.4. The gamma filtration

The above operations from the n-th MoravaK-theory to itself allow to define the gamma
filtration verbatim as for theK-theory. We recall first the classical picture, since the situation
with Morava K-theories is very similar.

Recall that for K0 the Chern classes ci WK0 ! CHi can be restricted to additive maps

ci W gri�K
0
! CHi ;

where gri�K
0 stand for the graded components of the topological filtration �� on K0.

There is also a canonical map .�K0
/i WCHi

! gri�K
0 which sends a cycle Z to the class

of the coherent sheaf Œ OZ �. The compositions .�K0
/i ı ci , ci ı .�K0

/i are multiplications
by .�1/i�1.i � 1/Š. In particular, ci is surjective if one inverts .i � 1/Š.

The gamma filtration 
� forK0 is an approximation of the topological filtration. One has

 i � � i for all i , and 
 i D � i for i � 2. Moreover, the induced map

gri
K
0
! gri�K

0 ci
�! CHi

is surjective for i � 2.

A similar picture holds for the Morava K-theories. The canonical additive map

.�K.n//i WCHi
˝Z.p/ ! � iK.n/�=� iC1K.n/�

is defined using [28, Corollary 4.5.8]. It is possible to calculate the compositions .�K.n//i ı cCH
i ,

cCH
i ı .�K.n//i , and they turn out to be isomorphisms in a bigger range compared to K0.

P 5.5 ([51, Proposition 6.2]). – The canonical map

.�K.n//i WCHi
˝Z.p/ ! � iK.n/�=� iC1K.n/�

is an isomorphism for 0 � i � pn, and the map cCH
i is its inverse for 1 � i � pn.

In general, it is hard to calculate the topological filtration for K.n/�.X/ even if X is
a geometrically cellular variety and K.n/�-motive of X is split. The problem is that
the topological filtration is not strictly respected by the base change restrictions like
K.n/�.X/! K.n/�.X/. The gamma filtration which we will now describe is a computable
approximation to the topological filtration which lacks such “handicap”.
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D 5.6 ([51, Definition 6.1]). – Define the gamma filtration on K.n/� of a
smooth variety X by the following formulas:


0K.n/�.X/ D K.n/�.X/;


mK.n/�.X/ WD

*
c
K.n/
i1

.˛1/ � � � c
K.n/
ik

.˛k/

ˇ̌̌̌
ˇ̌ X
j

ij � m; ij � 1; k � 1; j̨ 2 K.n/
�.X/

+
;

where the h ; i-brackets denote the generation as Z.p/-modules and m � 1.

It is clear from the definition that 
mK.n/� is an ideal subpresheaf of K.n/�.

T 5.7 ([51, Proposition 6.2]). – The gamma filtration and the topological filtra-
tion satisfy the following properties:

(i) 
 i � � i for all i ;

(ii) cCH
i j� iC1K.n/� D 0, cCH

i j
 iC1K.n/� D 0;

(iii) the operation cCH
i is additive when restricted to � iK.n/� or 
 iK.n/� and the map

cCH
i ˝ idQW gri
K.n/

�
˝Z.p/

Q! CHi
˝Q

is an isomorphism;

(iv) cCH
i induces an additive isomorphism between gri�K.n/

� and CHi
˝Z.p/ for 1 � i � pn;

(v) cCH
i restricted to 
 iK.n/� is surjective for 1 � i � pn;

(vi) gri
K.n/
� D gri
K.n/

i mod pn�1.

In Section 8 we will use the Riemann-Roch formula (Proposition 4.12, Corollary 4.13) to
perform computations with the gamma filtration. Let us sketch how it applies.

We follow the notation of Section 4.11. Let �WA� ! B� be an operation, let X be a
smooth variety, and let i WZ ,! X be its smooth closed subvariety of codimension c.

It follows from the Riemann-Roch formula that the value �.i�1Z/ is equal to b � 1Z
modulo .cC1/-st part of the topological filtration, where b 2 B is the coefficient of zB1 � � � z

B
c

in the series�.zA1 � � � z
A
c /. The following technical statements describe this coefficient for some

operations for the Morava K-theory.

P 5.8 ([51, Proposition 6.11]). – Let c
K.n/
pn be the respective operation

from K.n/1 to 
p
n
K.n/1.

Denote by ej , j � 0, the coefficient of the monomial z1 � � � z1Cj.pn�1/ in the series
c
K.n/
pn .z1 � � � z1Cj.pn�1// 2 K.n/

1..P1/�1Cj.pn�1//.
Then for all primes p and for all j � 1 we have ej 2 Z�

.p/
.

P 5.9 ([51, Proposition 6.13] for p D 2). – Let j � 0.
There exist operations �; W K.n/1 ! 
2

nC1�1K.n/1 which satisfy the following.
Denote by gj ; fj 2 Z.2/, the coefficients of the monomial z1 � � � z1Cj.2n�1/ in the series

�.z1 � � � z1Cj.2n�1//,  .z1 � � � z1Cj.2n�1// 2 K.n/
1..P1/�1Cj.2n�1//, respectively. Then

1. we have gj D fj D 0 for j D 0; 1.

Let j � 2.
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2. We have gj 2 2tj Z�.2/ where tj D �2.j � 1/C 2 if j is odd, and tj D 1 if j is even. Here
�2 denotes the 2-adic valuation on integers.

3. We have fj 2 22
nZ�

.2/
.

6. Some computations of the Morava K-theory

D 6.1. – Let m � 2 and let ˛ 2 Hm
et .F; �

˝m
p / be a non-zero pure symbol.

A motive Rm D .X; �/ in the category of Chow motives with Z.p/-coefficients is called the
(generalized) Rost motive for ˛, if it is indecomposable, splits as a sum of Tate motives
over F.X/ and for every field extension K=F the following conditions are equivalent:

1. .Rm/K is decomposable;

2. .Rm/K '
Lp�1
iD0 Z.p/.b � i/ with b D pm�1�1

p�1
;

3. ˛K D 0 2 Hm
et .K;�

˝m
p /.

The fields K from this definition are called splitting fields of Rm.
The Rost motives were constructed by Rost and Voevodsky (see [48], [65]). Namely, for

all pure symbols ˛ there exists a smooth geometrically irreducible projective �m�1-varietyX
(depending on ˛) over F such that the Chow motive ofX has a direct summand isomorphic
to Rm and for every field extension K=F the motive .Rm/K is decomposable iff XK has a
0-cycle of degree coprime to p. The variety X is called a norm variety of ˛. Moreover, it
follows from [67, Lemma 9.2] that for a given ˛ the respective Rost motive is unique.

E.g., ifp D 2 and˛ D .a1/[� � �[.am/with ai 2 F �, then one can take forX the projective
quadric given by the equation hha1; : : : ; am�1ii ? h�ami D 0, where hha1; : : : ; am�1ii denotes
the Pfister form. (We use the standard notation from the quadratic form theory as in [23]
and [6].)

As in Section 4.10 using [62, Section 2] one finds a unique lift of the Rost motive Rm
to the category of A�-motives for every oriented cohomology theory A�. We will denote
this A�-motive by the same letter Rm, since A� will be always clear from the context.
Recall that by T.l/, l � 0, we denote the Tate motives in the category of A�-motives. If
A� D CH�˝Z.p/, we keep the usual notation T.l/ D Z.p/.l/.

Moreover, it follows from [13, Lemma 4.2] that Rost nilpotence holds forRm with respect
to every free theory A�, since Rm splits over the residue fields of all points of X .

P 6.2. – Let p be a prime number, let n � 0 and m � 2 be integers and
b D pm�1�1

p�1
. For a non-zero pure symbol ˛ 2 Hm

et .F; �
˝m
p / consider the respective Rost

motive Rm. Then

1. If n < m � 1, then the K.n/�-motive Rm is a sum of p Tate motives
Lp�1
iD0 T.b � i/.

2. If n D m � 1, then the K.n/�-motive Rm is a sum of the Tate motive T and an
indecomposable motive L such that

(6.3) K.n/�.L/ ' .Z˚.p�1/
.p/

˚ .Z=p/˚.m�2/.p�1//˝ Z.p/Œvn; v�1n �:

For a field extension K=F the motive LK is isomorphic to a direct sum of Tate motives
iff the symbol ˛K D 0. If p > 2, then this is additionally equivalent to the condition that
the motive LK is decomposable.
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3. If n > m�1, then theK.n/�-motiveRm is indecomposable andK.n/�.Rm/ is isomorphic
to the group

(6.4) CH�.Rm/˝ Z.p/Œvn; v�1n � ' .Z˚p
.p/
˚ .Z=p/˚.m�2/.p�1//˝ Z.p/Œvn; v�1n �:

For a field extension K=F the motive .Rm/K is decomposable iff ˛K D 0. In this
case .Rm/K is a sum of p Tate motives.

Proof. – Let X be a norm variety of dimension pm�1 � 1 for ˛. Denote by Rm the
scalar extension of Rm to its splitting field. By [67, Theorem 10.6] (cf. [62, Theorem 3.5,
Proposition 4.4]) the restriction map for the Brown-Peterson theory BP �

(6.5) resWBP �.Rm/! BP �.Rm/ D BP
˚p

is injective, and the image equals

(6.6) BP �.Rm/ ' BP ˚ I.m � 1/
˚.p�1/;

where I.m � 1/ is the ideal in the ring BP D Z.p/Œv1; v2; : : :� generated by the elements
fv0; v1; : : : ; vm�2g where v0 D p. We remark that the article [67, Theorem 10.6] deals with
the bigraded version of the Brown-Peterson cohomology theory ABP �;�

0

. Nevertheless, due
to Levine’s comparison result [27] Yagita identifies ABP 2�;� with BP �.

The projectors for the motive Rm lie in the group K.n/p
m�1�1.Rm ˝ Rm/, and by [28,

Theorem 4.4.7] the elements of K.n/p
m�1�1.Rm ˝ Rm/ are Z.p/-linear combinations of

elements of the form

(6.7) vsn � ŒY ! X �X�; s 2 Z;

where Y is a resolution of singularities of a closed irreducible subvariety of X � X , and
�s.pn � 1/C codimY D pm�1 � 1.

(1) Assume first that n < m � 1. Since the ideal I.m � 1/ contains vn for n < m � 1 and
vn is invertible inK.n/, we immediately get that all elements inK.n/�.Rm/ are rational, i.e.,
are defined over the base field.

Therefore, since the motiveRm is geometrically split, all elements inK.n/�.Rm˝Rm/ are
rational, and hence by Rost nilpotence forRm this gives the first statement of the proposition.

(3) Let n > m � 1. First of all, taking the tensor product �
N
BP.SpecF /K.n/ with

Formula (6.5) and using (6.6) one immediately gets Formula (6.4) for K.n/�.Rm/ and
CH�.Rm/.

We have dimX D pm�1 � 1 < pn � 1 D � deg vn.
Since every projector inK.n/p

m�1�1.Rm ˝Rm/ is a linear combination of elements of the
form (6.7) and dim.X �X/ D 2.pm�1� 1/, we must have s D 0 in all summands. Therefore,
every projector � in K.n/p

m�1�1.Rm ˝ Rm/ comes from the connective Morava K-theory
CK.n/� (the connective Morava K-theory is a free oriented cohomology theory with the
same formal group law as the MoravaK-theory, but with the coefficient ring Z.p/Œvn�). Thus,
we have the following commutative diagram

CK.n/�.Rm ˝Rm/ //

��

CK.n/�.Rm ˝Rm/� _

��

K.n/�.Rm ˝Rm/ // K.n/�.Rm ˝Rm/
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and the rational projector N� comes from some rational projector N� 2 CK.n/�.Rm ˝ Rm/.
Note that the right vertical arrow is injective, since Rm is a direct sum of Tate motives.

By [62, Section 2] the CK.n/�-motive Rm is indecomposable, since so is the respective
Chow motive. Therefore N� is either zero or the identity projector. Therefore, so is N� and,
hence, by Rost nilpotence for Rm so is the projector �. Therefore, the K.n/�-motive Rm is
indecomposable.

(2) Assume now that n D m � 1. Since the K.n/�-Euler characteristic of X equals u � vn
for some u 2 Z�

.p/
(see Section 4.7), the element v�1n � u

�1.1 � 1/ 2 K.n/�.Rm ˝Rm/ is a
projector defining the Tate motive T where 1 � 1 2 K.n/0.X � X/. Note that this projector
lies in K.n/�.Rm ˝ Rm/, since this is true over a splitting field of Rm and since 1 � 1 is a
rational element. Thus, we get the decomposition Rm ' T˚ L for some motive L.

Taking the tensor product �
N
BP.SpecF /K.n/ with Formula (6.5) and using (6.6) one

immediately gets Formula (6.3) for K.n/�.L/.

We claim now that L is indecomposable. If p D 2, then this is clear, since in this case L
over a splitting field of Rm is a Tate motive. So, we assume that p > 2.

We have dimX D pm�1 � 1 D pn � 1. Since every projector in K.n/p
n�1.Rm ˝ Rm/ is

a linear combination of elements of the form (6.7) and dim.X � X/ D 2.pn � 1/, we must
have s D 0, 1 or �1 in all summands.

If a projector contains a summand with s D �1, then by dimensional reasons this
summand is up to a scalar of the form v�1n .1 � 1/. Subtracting this summand we obtain
a rational element, say N� , in K.n/p

n�1.Rm ˝ Rm/ which comes from a rational element
in CK.n/p

n�1.Rm ˝ Rm/. To prove the indecomposability of L it is sufficient to prove its
indecomposability modulo p.

We denote by Ch� the Chow theory modulo p. The Chow motive Rm is a direct sum of
Tate motives with pairwise distinct twists, the Chow motive Rm is indecomposable over F
and some power of any rational cycle in End.Rm/ is a rational projector. Therefore, one can
see that the only rational cycles in Chp

n�1.Rm ˝Rm/ are scalar multiples of the diagonal.

Thus, by dimensional reasons N� is of the form a�Rm
C bvn.pt � pt/, where a; b 2 Z=p,

�Rm
is the diagonal of Rm and pt � pt is the class of a rational point on X �X .

Therefore, the original rational projector in K.n/�.Rm ˝Rm/ is modulo p of the form

a�Rm
C bvn.pt � pt/C cv�1n .1 � 1/

for some c 2 Z=p. Composing this element with itself and using that

.pt � pt/ ı .1 � 1/ D 1 � pt;

.1 � 1/ ı .pt � pt/ D pt � 1;

.pt � pt/ ı .pt � pt/ D 0;

.1 � 1/ ı .1 � 1/ D u � vn.1 � 1/;

we obtain that this element is a projector only if .a; b; c/ D .0; 0; 0/ (the trivial projector),
.a; b; c/ D .1; 0; 0/ (the diagonal), .a; b; c/ D .0; 0; u�1/ (the projector v�1n � u

�1.1 � 1/), or
.a; b; c/ D .1; 0;�u�1/ (the complementary projector �Rm

� v�1n � u
�1.1 � 1/). Thus, the

motive L is indecomposable.
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R 6.8. – Recall that some generalized Rost motives appear as direct summands
of motives of some twisted flag varieties (e.g., Pfister quadrics for p D 2 or varieties of
type F4 for .m; p/ D .3; 3/ or .5; 2/ or of type E8 for .m; p/ D .3; 5/; see [48], [37], [30], [42,
Section 7]). The above proposition demonstrates a difference between K0 and the Morava
K.n/-theory, when n > 1. By [39]K0 of all twisted flag varieties is Z-torsion-free. This is not
the case for K.n/�, n > 1.

Moreover, the same arguments as in the proof of the proposition show that the connective
K-theory CK.1/� (see [2]) of Rost motives Rm for m > 2 contains non-trivial Z-torsion.

R 6.9. – The same proof shows that the Johnson-Wilson theory E.n/� of the
Rost motiveRm is split, if n < m�1. By definition, the coefficient ring of the Johnson-Wilson
theory E.n/� equals Z.p/Œv1; : : : ; vn�Œv�1n �.

R 6.10. – The Chow groups of the Rost motives are known; see [45, Theorem 5],
[21, Theorem 8.1], [22, Theorem RM.10], [67, Corollary 10.8], [57, Section 4.1].

The proof of the following proposition is close to [1, Section 8].

P 6.11. – Let A� be an oriented generically constant cohomology theory in
the sense of Levine-Morel satisfying the localization axiom. Let Z be a smooth variety over a
field F . Assume that there exists a smooth projective variety Y with invertible Euler character-
istic with respect to A� and such that for every point y 2 Y (not necessarily closed) the natural
pullback

A�.F.y//! A�.ZF.y//

is an isomorphism.

Then the pullback of the structural morphism Z
�
�! SpecF induces an isomorphism

A�.F /
�
�! A�.Z/:

Before proving this proposition we prove the following lemma.

L 6.12. – Let X be a variety over F , let Z be a smooth variety over F and let
A� be as in Proposition 6.11. Assume that the natural pullback A�.F.x//! A�.ZF.x// is an
isomorphism for every point x 2 X . Then the pullback A�.X/! A�.Z �X/ of the projection
is surjective.

Proof. – We use the Borel-Moore homology theory associated with A� as explained in
Section 4.3.

LetX1; : : : ; Xl be the irreducible components ofX with generic points x1; : : : ; xl . We have
the following commutative diagramLl

iD1 colim
X 0�Xi

A�.X
0/ //

��

A�.X/ //

��

Ll
iD1A�.F.xi //

//

��

0

Ll
iD1 colim

X 0�Xi

A�.Z �X
0/ // A�.Z �X/ //

Ll
iD1A�.ZF.xi //

// 0,
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where the vertical arrows are pullbacks of the respective projections, the colimits are taken
over all closed codimension � 1 subvarieties of irreducible components of X and the rows
are exact by the localization property.

By the assumptions the right vertical arrow is an isomorphism. Note that every closed
subvarietyX 0 ofX satisfies the assumption of the lemma. Therefore, we can argue by induc-
tion on the dimension of varieties X 0 that the left vertical arrow is surjective. It follows by a
diagram chase that the middle vertical arrow is surjective as well.

Proof of Proposition 6.11. – We omit gradings in the proof.
Let aWY ! SpecF be the structural morphism, let bWZ � Y ! Y and cWZ � Y ! Z be

the projections. Consider now the following commutative diagram:

A.F /

'

��

a�

##

�� // A.Z/

c�yy

'

��

A.Y /
b� //

a�
{{

A.Z � Y /

c�

%%

A.F /
�� // A.Z/.

By Lemma 6.12 applied to the variety Y the homomorphism b� is surjective. The left and
the right vertical arrows are isomorphisms, since they are multiplications by the A�-Euler
characteristic of Y which is invertible.

Therefore, by a diagram chase the bottom horizontal arrow is surjective. But A.F / is
a direct summand of A.Z/ because the theory A� is generically constant. Therefore, the
bottom arrow is an isomorphism.

Let .a1/ [ � � � [ .am/ 2 Hm
et .F;Z=2/ be a pure symbol, ai 2 F �. The quadratic form

q D hha1; : : : ; am�1ii ? h�ami is called a norm form and the respective projective quadric
given by q D 0 is called a (projective) norm quadric. The respective affine norm quadric is
an open subvariety of the projective norm quadric given by the equation

hha1; : : : ; am�1ii D am;

i.e., setting the last coordinate to 1.

C 6.13. – Let 0 � n < m � 1 and set p D 2. Consider the affine norm
quadric Xaff of dimension 2m�1 � 1 corresponding to a pure symbol in Hm

et .F;Z=2/. Then the

pullback of the structural morphism Xaff �
�! SpecF induces an isomorphism

K.n/�.Xaff/ D K.n/�.F /:

Proof. – Let ˛ WD .a1/ [ � � � [ .am/ 2 H
m
et .F;Z=2/ be our pure symbol, ai 2 F �, q the

norm form for ˛, andQ the respective projective norm quadric given by q D 0. Let Y be the
projective norm quadric of dimension 2n � 1 corresponding to the subsymbol

.a1/ [ � � � [ .anC1/ 2 H
nC1
et .F;Z=2/:

We need to check the conditions of Proposition 6.11. By the choice of Y it is a �n-variety
(see, e.g., [52, Section 2]). Therefore, by Section 4.7 itsK.n/�-Euler characteristic is invertible.
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Moreover, the quadratic form q is split completely over F.y/ for any point y of Y . In
particular, Xaff

F.y/
is a split odd-dimensional affine quadric. The complementQ0 WD Q nXaff

is the projective Pfister quadric hha1; : : : ; am�1ii D 0 of dimension 2m�1�2, and bothQ and
Q0 are split over F.y/.

Let W be a split affine quadric of odd dimension 2k � 1 � 1. Then it is well known
thatW is given by the equation

Pk
iD1 xiyi D 1 in the affine space Ak�Ak , and the projection

W ! Ak n f0g, .x; y/ 7! y, is a rank .k � 1/ affine bundle over Ak n f0g. Therefore, by
homotopy invariance K.n/�.Xaff

F.y/
/ D K.n/�.W / D K.n/�.Ak n f0g/ D K.n/�.F.y// with

k D 2m�2. We are done.

R 6.14. – In the proof of Corollary 6.13 the motive of W in the category DM
of Voevodsky (see [32, Lecture 14]) is isomorphic by homotopy invariance to the motive of
Ak n f0g. The Gysin exact triangle [32, 14.5.5] immediately implies that the motive ofAk n f0g
is isomorphic to Z˚ Z.k/Œ2k � 1�. In particular, the motive of Xaff in the category DM of
motives of Voevodsky is not a Tate motive even if the base field is algebraically closed.

Let now B be a central simple F -algebra of a prime degree p and c 2 F �. Consider the
Merkurjev-Suslin variety

MS.B; c/ D f˛ 2 B j Nrd.˛/ D cg;

where Nrd stands for the reduced norm on B.

C 6.15. – In the above notation the structural morphism induces an isomorphism

A�.MS.B; c// ' A�.F /;

when A is Grothendieck’s K0 or the first Morava K-theory with respect to the prime p.

Proof. – Let Y D SB.B/ denote the Severi-Brauer variety of B. We need to check the
conditions of Proposition 6.11. The variety Y is a geometrically cellular �1-variety (see [33,
Section 7.2]). Thus, by Section 4.7 its A�-Euler characteristic is invertible.

Over a point y 2 Y the variety MS.B; c/ is isomorphic to SLp, since MS.B; c/ over F.y/
is an SLp-torsor over F.y/ and H 1

et.F.y/; SLp/ is trivial. Since GLp is an open subvariety
in Ap2

, by the localization sequence ��.GLp/ D L. Moreover, GLp is isomorphic as a
variety (not as a group scheme) to SLp �Gm with the isomorphism sending a matrix ˛ to the
pair .ˇ; det˛/ where ˇ is obtained from ˛ by dividing its first row by det˛. The composite
morphism

SLp ,! GLp
'
�! SLp �Gm ! SLp;

where the first morphism is the natural embedding and the last morphism is the projection,
is the identity. Taking pullbacks in this sequence, one gets that ��.SLp/ D L and, hence,
A�.SLp/ D A�.F.y// for A� as in the statement of the present corollary. We are done.

Let J be an Albert algebra over F (see [23, Chapter IX]) and NJ denote the cubic norm
form on J . For d 2 F � consider the variety

Z D f˛ 2 J j NJ .˛/ D dg:

The group G of isometries of NJ is a group of type 1E6 and it acts on Z geometrically
transitively. Note also that Z is in general anisotropic.
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C 6.16. – In the above notation the natural map K0.F / ! K0.Z/ is an
isomorphism.

Proof. – Let Y be the variety of Borel subgroups of the group G. We need to check the
conditions of Proposition 6.11. The K0-Euler characteristic of Y is invertible, since Y is
geometrically cellular.

Let y 2 Y be a point. ThenG splits overF.y/, the varietyZ has a rational point overF.y/
and its stabilizer is the split group of type F4, i.e., Z is isomorphic to E6=F4 over F.y/,
where E6 and F4 stand for the split groups of the respective Dynkin types. Finally, by [68,
Theorem 2] K0.E6=F4/ ' K0.F.y//. We are done.

R 6.17. – In [68] Yakerson computes the whole higherK-theory of twisted forms
of E6=F4 by means of cocycles from Z1.F;F4/. Note that such twisted forms are isotropic.

Consider the Witt-ring of the field F and denote by I its fundamental ideal.

P 6.18. – Let m � 2 and set p D 2. A non-degenerate even-dimensional
quadratic form q belongs to Im iff theK.n/�-motive of the respective projective quadric is split
for all 0 � n < m � 1.

R 6.19. – Note that by Proposition 7.10 below the K.m � 2/�-motive of the
respective quadric splits iff itsK.n/�-motive is split for all 0 � n < m�1. We do not use this
in the proof of Proposition 6.18.

Proof of Proposition 6.18. – Note that the statement of the proposition is clear form D 2,
since K.0/� is defined as CH˝Q and I 2 consists of all non-degenerate even-dimensional
quadratic forms with trivial discriminant. Therefore, q belongs to I 2 iff theK.0/�-motive of
the respective projective quadric is split. So, we assume that m > 2. It is also clear that it
suffices to prove the proposition for 0 < n < m � 1.

Assume that q does not belong to Im. Let 1 � s < m be the maximal integer with q 2 I s ,
and assume that theK.s� 1/�-motive of the respective quadric is split. If s D 1, then as was
mentioned above its K.0/�-motive is not split. So, we can assume that s > 1.

By [38, Theorem 2.10] there exists a field extension K of F such that the anisotropic part
of qK is similar to an anisotropic s-fold Pfister form, say q0. Thus, qK is isomorphic to an
orthogonal sum of q0 (up to a scalar multiple) and a hyperbolic form. Let Q and Q0 be the
projective quadrics over K associated with qK and q0 resp. By [47, Proposition 2] the Chow
motive of Q is isomorphic to a sum of Tate motives and a Tate twist of the motive of Q0.
Therefore, by Vishik-Yagita [62, Section 2] the same decomposition holds for the cobordism
motives and, hence, for the Morava motives. But by Proposition 6.2 the K.s � 1/�-motive
of Q0 and, hence, of Q is not split. Contradiction.

Conversely, assume that q belongs to Im and let Q be the respective projective quadric.
Let 1 � n < m � 1. Then we can present q as a finite sum of (up to proportionality) m-fold
Pfister forms. We prove our statement using induction on the length of such a presentation
in the Witt-ring. If the length is zero, i.e., if q is a split form, then the K.n/�-motive of Q is
split for all n.

Let ˛ be an m-fold Pfister form in the decomposition of q. Let Xaff be the affine norm
quadric of dimension 2nC1�1 corresponding to a subsymbol of ˛ fromHnC2

et .F;Z=2/ (note
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that n C 2 � m). Then the length of q over F.Xaff/ is strictly smaller than the length of q
over F .

Applying Lemma 6.12 to the varietiesX D Q�Q andZ D Xaff and using Corollary 6.13
we obtain that the pullback of the natural projection

K.n/�.Q �Q/! K.n/�.Xaff
�Q �Q/

is surjective.

But by the localization sequence

K.n/�.Xaff
�Q �Q/! K.n/�..Q �Q/F.Xaff//

is surjective. By the induction hypothesis on the length of q, the restriction homomorphism

K.n/�..Q �Q/F.Xaff//! K.n/�..Q �Q/ eF /
to a splitting field eF of QF.Xaff/ is surjective. Therefore, the restriction homomorphism

K.n/�.Q �Q/! K.n/�..Q �Q/ eF /
is surjective.

In particular, since the projectors for the Morava motive of Q lie in K.n/�.Q � Q/, it
follows from Rost nilpotence that the K.n/�-motive of Q over F is split.

R 6.20. – The same statement with a similar proof holds for the variety of totally
isotropic subspaces of dimension k for all 1 � k � .dim q/=2. Note that in the case of a
Pfister form, the motive of such a variety is still a direct sum of Rost motives.

The same proof also shows the following proposition.

P 6.21. – If q 2 Im for some m � 2 and q0 D q ? hci for some c 2 F �, then
the K.n/�-motive of the respective projective quadric q0 D 0 is split for all 0 � n < m � 1.

Conversely, if q0 is an odd-dimensional quadratic form such that the K.n/�-motive of the
respective projective quadric q0 D 0 is split for some n � 0, then in the Witt ring q0 D q ? hci
for some q 2 I nC2 and c 2 F �.

Proof. – The proof is almost verbatim as of Proposition 6.18. For the reader’s conve-
nience we sketch the proof of the second part of the proposition.

Set q D q0 ? h�disc.q0/i in the Witt ring. Then q 2 I nC2. Indeed, otherwise as in
the proof of Proposition 6.18 over some field extension K of F the anisotropic part of the
form qK will be similar to an anisotropic s-fold Pfister form with 2 � s < n C 2. Then the
motive of the respective Pfister quadric is a direct sum of Tate twists of Rost motivesRs . But
by Proposition 6.2 theK.n/�-motiveRs is not split. Besides, it follows from [47, Theorem 17]
that the motive of the quadric q0 D 0 contains over K a Tate twist of Rs . Hence, the
K.n/�-motive of the projective quadric q0 D 0 is not split over K and, hence, is not split
over F .
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7. K.n/-split varieties and p-torsion in Chow groups

In this section we obtain several general results concerning MoravaK-theories. First, with
the help of the Landweber-Novikov operations we prove that if a projective homogeneous
variety is split with respect to K.n/�, then it is split with respect to K.m/� for mW 1 � m � n
(Corollary 7.11). Recall that by results of [62] if the motive of a smooth projective varietyX is
split with respect to the Chow theory, then it is split for every oriented theory.

Thus, to prove the non-splitting of the p-local Chow motive of a projective homogeneous
variety one could consecutively check the splitting of the Morava motives MK.1/, MK.2/,
etc. If one of these motives is non-split, then the p-local Chow motive is non-split as well.
Conversely, if all Morava motives are split, then the p-local Chow motive is split as well. In
fact, by Corollary 7.12 below it suffices to consider the n-th MoravaK-theory such that pn is
greater than or equal to the dimension of the variety. In this sense one could interpret
CH�˝Z.p/ as a Morava K-theory of an infinite height.

Secondly, we investigate properties of smooth projective geometrically cellular varietiesX
for which the pullback restriction map K.n/�.X/ ! K.n/�.X/ is an isomorphism. Using
symmetric operations we show in Theorem 7.19 that CHi .X/ has no p-torsion for such
varieties where i � pn�1

p�1
. Finally, in Theorem 7.23 we use the gamma filtration on K.n/�

to prove finiteness of p-torsion in Chow groups of such varieties in codimensions up to pn.

7.1. Landweber-Novikov operations and split K.n/�-motives

As was mentioned in Section 4.4 every formal group law .R; F R/ yields a free theory
�� ˝L R. It is natural to ask about relationships between free theories corresponding
to isomorphic formal group laws. For simplicity, taking an isomorphism between formal
group laws .R; F R/ and .R; F 0R/ which is the identity on R (i.e., it is a change of the
“parameter” of the formal group law), one obtains an isomorphism of the presheaves of
rings of corresponding free theories. Moreover, a considerable part of such isomorphisms
can be obtained via the specialization of the total Landweber-Novikov operations on the
level of algebraic cobordism. These operations put severe constraints on the structure of
the algebraic cobordism as an L-module, and we will use this in the study of the Morava
K-theories of K.n/�-split varieties.

Recall that there exists a graded Hopf algebroid .L;LB/ which represents the formal
group laws and strict isomorphisms between them (see, e.g., [43, App. 1.1.1, App. 2.1.16]),
where LB D LŒb1; b2; : : :�. The total Landweber-Novikov operation

S tot
L�N W�

�
! �� ˝L LB

is a multiplicative operation which in some sense corresponds to the universal strict isomor-
phism of formal group laws, see [60, Example 3.9].

P 7.2 ([50, Proposition 2.10]). – The action of the Landweber-Novikov oper-
ations makes �� into a functor to the graded comodules over the Hopf algebroid .L;LB/.

In particular,L D ��.SpecF / is canonically a comodule over .L;LB/, and its subcomod-
ules are the same as the ideals which are invariant with respect to the Landweber-Novikov
operations. The only non-zero prime ideals among them are I.p;m/ D .p; v1; : : : ; vm�1/ and
I.p/ D

S
m I.p;m/, where p is a prime number and vi ’s are �i -elements ([26, Theorem 2.2]).
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The situation with BP � is very similar with ��. For every smooth variety X the
BP -module BP �.X/ is a direct summand of ��.X/˝ Z.p/ (see, e.g., [50, Proposition 2.4]),
and one can restrict the action of the Landweber-Novikov operations to BP �.X/ which
makes it a graded comodule over the Hopf algebroid .BP;BP�BP/ (for the latter see [43,
Appendix 2.1.27]). In particular, there is an action of the Landweber-Novikov operations
onBP and the only non-zero invariant prime ideals are of the form I.k/ D .p; v1; : : : ; vk�1/

([26, Theorem 2:2BP ]).
The abelian category of comodules over .L;LB/ (or over .BP;BP�BP/) was extensively

studied by topologists. Note also that .L;LB/ is canonically isomorphic to .MU�;MU�.MU //,
and the latter notation is often used in the literature.

P 7.3 ([25, Theorem 3.3], [26, Theorem 2.2, 2.3, 2:2BP ; 2:3BP ]).
LetM be a graded comodule over .L;LB/ (over .BP;BP�BP/, respectively) which is finitely

presented as an L-module (as a BP -module, respectively). Then M has a filtration

M DM0 �M1 � � � � �Md D 0

such that for every i the module Mi=MiC1 is isomorphic to L=I.pi ; ni / or L (BP=I.mi / or
BP , respectively) after a shift of grading, where pi is a prime number and ni is a positive integer
(mi is a positive integer, respectively).

C 7.4. – Fix a prime p and for s � 1 denote by K.s/ Š Z.p/Œvs; v�1s � the
L-algebra corresponding to a choice of a formal group law for a Morava K-theory K.s/�. If
for M as in Proposition 7.3 we have M ˝L K.n/ D 0 for some n � 1, then M ˝L K.m/ D 0

for all mW 1 � m < n.

Proof. – We call by a filtration of an .L;LB/-comoduleM just any filtration from Propo-
sition 7.3. We will prove a stronger statement by induction on the minimal length d of a filtra-
tion of M . Namely, if M ˝L K.n/ D 0, then TorLi .M;K.m// D 0 for all i � 0 and m � n,
and the graded factors of the filtration on M can be only of the form L=I.q; k/ with q ¤ p
or with q D p and n � k � 1.

For the base of induction d D 1 we just need to check the statement for modules
L=I.q; k/. In both cases (if q ¤ p or if q D p and n � k � 1) TorLi .L=I.q; k/;K.m// D 0

because it is naturally both a K.m/-module and an L=I.q; k/-module (compatible with the
structure of an L-module). If q ¤ p, then q is invertible in K.m/ D Z.p/Œvm; v�1m �. If
q D p and m � k � 1, then vm is invertible in K.m/ and is zero in L=I.q; k/. Therefore,
TorLi .L=I.q; k/;K.m// D 0 for all i � 0. Clearly, if q D p and n > k � 1, then
L=I.q; k/˝L K.n/ ¤ 0.

For the induction step suppose that M has a filtration of length d C 1, which means that
there exists a short exact sequence of .L;LB/-comodules:

0! N !M ! L=I.q; k/! 0;

where N has a filtration of length d . Tensoring this sequence with K.n/, we see from the
above that either q ¤ p or q D p and n � k�1. Tensoring withK.m/, 1 � m � n, we obtain
that N ˝K.n/ D 0 and TorLi .N;K.m// ' TorLi .M;K.m// for all i � 0 and 1 � m � n. We
then apply the induction hypothesis to N to conclude that TorLi .M;K.m// D 0 for all i � 0
and all m, 1 � m � n.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



972 P. SECHIN AND N. SEMENOV

R 7.5. – Let CH.p/ denote the coefficient ring of CH�˝Z.p/ and let M be as in
Corollary 7.4. Analogously one can show that if M ˝L CH.p/ D 0, then M ˝L K.m/ D 0

for all m � 1.

R 7.6. – The language of stacks might provide a more geometric view on the
statement above. Indeed, the category of graded comodules over the Hopf algebroid .L;LB/
can be identified with the category of quasi-coherent sheaves over the stack of formal groups
M fg (see, e.g., [36]). Working modulo p this stack has an exhaustive descending filtration by
closed substacks where the n-th piece of it M�n

fg classifies formal groups of height bigger
than or equal to n. Moreover, these substacks are the only irreducible closed (reduced)
substacks, and M�nC1

fg is in some sense a divisor in M�n
fg whose complement has a unique

geometric point which corresponds to the n-th Morava K-theory.

The support of a coherent sheaf G over M fg is closed, and therefore the reduced support
is the closed substack M�m

fg for some m. In particular, the fiber of G over the points corre-
sponding to the n-th Morava K-theory is zero if n < m and non-zero if m � n. This gives a
vague explanation of Corollary 7.4.

C 7.7. – LetC be a finitely presentedBP -module endowed with the structure of
a .BP;BP�BP/-comodule.

If C ˝BP K.n/ D 0, then C ˝BP BP Œv�1n � D 0.

Proof. – By Proposition 7.3 the BP -module C has a filtration with the graded factors
BP=I.ki /. The same proof as of Corollary 7.4 in which one replaces L with BP and I.p; k/
with I.k/ shows that if C ˝BP K.n/ D 0, then for the graded factors of the filtration above
for all i we have n � ki � 1, i.e., vn 2 I.ki /. The claim follows.

The following lemma is straightforward.

L 7.8. – LetX be a geometrically cellular smooth projective variety over a fieldF and
let A� be a free oriented cohomology theory. Assume that the A�-motive MA.X/ satisfies the
Rost nilpotence property. Denote X D X �F F . Then the following statements are equivalent:

1. MA.X/ is split;

2. the restriction map A�.X �X/! A�.X �F X/ is an isomorphism;

3. the restriction map A�.X �X/! A�.X �F X/ is a surjection;

4. the restriction map A�.X/! A�.X/ is an isomorphism;

5. the restriction map A�.X/! A�.X/ is a surjection.

Proof. – To prove the implication .5/) .3/ note thatX is cellular, its motive is split and
all elements inA�.X/ and, therefore, inA�.X �F X/ are rational. The implication .3/) .1/

follows from Rost nilpotence.

C 7.9. – Assume that two free theoriesA� andB� are isomorphic as presheaves
of sets, and the motivesMA.X/ andMB.X/ satisfy the Rost nilpotence property. ThenMA.X/ is
split iff MB.X/ is split.
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Proof. – Indeed, an isomorphism between A� and B� commutes with the change of the
base field. Thus, whenever one of the mapsA�.X/! A�.X/, B�.X/! B�.X/ is surjective,
so is the other one.

In particular, it follows from the above corollary and [13, Corollary 4.5] that for a fixed
prime p, a fixed integer n and a projective homogeneous variety X there is a well-defined
property for MK.n/.X/ to be split which does not depend on the choice of an n-th Morava
K-theory.

P 7.10. – Let 1 � m � n, and let X be a smooth projective geometrically
cellular variety such that MK.m/.X/ satisfies the Rost nilpotence property.

If MK.n/.X/ is split, then MK.m/.X/ is split.

Proof. – By Lemma 7.8 it is sufficient to prove that the map K.m/�.X/! K.m/�.X/ is
surjective, whenever K.n/�.X/! K.n/�.X/ is so.

Consider the following short exact sequence of .L;LB/-comodules:

��.X/
�
�! ��.X/! C ! 0:

Clearly, the map � ˝L K.m/ is surjective iff C ˝L K.m/ D 0. However, C ˝L K.n/ D 0

by the assumption, and C is a coherent L-module by [50, Proposition 2.21, Remark 2.24].
Therefore, Corollary 7.4 applies.

C 7.11. – If X is a projective homogeneous variety such thatMK.n/.X/ is split,
then MK.m/.X/ is split for all 1 � m � n.

Proof. – By [13, Corollary 4.5] for every free theory A� the motive MA.X/ satisfies the
Rost nilpotence property.

C 7.12. – Let X be a projective homogeneous variety with dimX � pn. Then
the Chow motive ofX with Z.p/-coefficients is split if and only if theK.n/�-motive ofX is split.

Proof. – If the Chow motive of X with Z.p/-coefficients is split, then obviously the
K.n/�-motive of X is split as well.

Assume now that the K.n/�-motive of X is split. The operations

cCH
i WK.n/

�.X/! CHi .X/˝ Z.p/

are surjective for i � pn and commute with extensions of scalars (see Theorem 5.7).

Therefore, condition (5) of Lemma 7.8 is satisfied for A� D CH�˝Z.p/. This implies the
corollary.
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7.13. Symmetric operations of Vishik and K.n/�-split varieties

We have used above the Landweber-Novikov operations which are stable ([60, Defini-
tion 3.4]) and provide constraints on the structure of cobordism which do not “see” the
grading. Being interested in the Chow groups and in the topological filtration of small
codimension we employ more subtle unstable operations, among which the most powerful
are symmetric operations.

Recall that Vishik has defined symmetric operations in algebraic cobordism first forp D 2
in [57] using elaborate and elegant constructions and then for all primes in [59] using [60, 61,
Theorems 5.1] classifying all operations. We follow the latter approach and explain several
properties of these operations.

Fix a set of integers Ni D fij j 0 < j < pg of all representatives of non-zero integers
modulo p, and denote i D

Qp�1
jD1 ij . There exists a Quillen-type Steenrod operation in

algebraic cobordism
St.Ni/W�� ! ��Œi�1�ŒŒt ��Œt�1�;

which induces a morphism of formal group laws uniquely defined by the power series

.x/ D x

Qp�1
jD1 .x C� ij �� t /. We will sometimes drop Ni from the notation of St.

T 7.14 (Vishik, [59, Theorem 7.1]). – There exists a unique operation
ˆ.Ni/W�� ! ��Œi�1�Œt�1�, called the symmetric operation, such that

(7.15) .�p � St.Ni/ �
p �� t

t
ˆ.Ni//W�� ! ��Œi�1�ŒŒt ��t;

where �p is the p-power operation.

It is convenient to use “slices” of the symmetric operationˆ.Ni/, defined as the coefficients
of the monomials t l for l � 0. We will denote these operations as ˆl .Ni/ D ˆl .

Fix a prime p and for simplicity we will work p-locally, in particular, using BP � instead
of ��. Recall that there exists a multiplicative projector on �� ˝ Z.p/ making BP � a direct
summand of �� ˝ Z.p/. This allows one to restrict the symmetric operation to BP � even
though it is non-additive (see [58, Section 3]).

Recall that following Hazewinkel we have chosen the generators vn of the ring BP

(see Section 4.6). Symmetric operations ˆl allow to “divide” certain elements of BP � by
elements vn as was observed, e.g., in [50, Section 3.2]. The following is an instance of this
property.

P 7.16. – Let k > 0 and let ˛ 2 BP�k.p
n�1/ such that ˛ � vkn mod I.n/.

Then ˆ�k.p�1/.pn�1/�.pn�1/.˛/ � �v
k�1
n mod I.n/.

Proof. – By the definition of the symmetric operation we have the following identity in
the ring BP ŒŒt ��Œt�1� in the coefficients of t�0:

(7.17) ˛p � St.˛/ Dt
�0

Œp� �ˆ.˛/; Œp� WD
p �BP t

t
:

Recall that St is a generalized specialization of the total Landweber-Novikov operation
([58, p. 977]), i.e., it can be obtained from the unstable total Landweber-Novikov operation
�� ! �� ˝L LŒb˙10 ; b1; b2; : : :�, defined by the inverse Todd genus

P1
iD0 bi t

i . Therefore,
it is an (infinite) BP -linear combination of the Landweber-Novikov operations (see [58,
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Section 3] for more details). In particular, St preserves the ideals I.n/, hence St.˛/ � St.vkn/
mod I.n/.

It follows from the Riemann-Roch theorem for multiplicative operations (see, e.g., [50,
Lemma 2.16]) that

St.vn/ � vnt�.p�1/.p
n�1/ mod I.n/:

The series Œp� appearing above is graded of degree 0 where we take deg t D 1. Moreover,
it starts with p, and therefore modulo I.n/ the smallest power of t appearing in it is equal
to pn � 1 and its coefficient is proportional to vn. The choice of Hazewinkel implies that it
is exactly vn ([43, A2.2.4]), i.e., Œp� D vntp

n�1 C higher degree terms.
Combining all this together, Equation (7.17) modulo I.n/ looks as:

vkpn � v
k
n t
�k.p�1/.pn�1/

�
t�0

.vnt
pn�1

C higher degree terms/ˆ.˛/ mod I.n/;

from which the statement follows using [50, Lemma 3.3] and the fact that BP=I.n/ is an
integral domain.

The previous proposition can be used to study rational elements in theBP �-theory as the
following lemma shows. It will be a crucial step in the proof of Theorem 7.19 below.

For an element z 2 BP r .X/ we write deg z D r .

L 7.18. – Let f WX ! Y be a morphism of smooth quasi-projective varieties. Let
z 2 BP r .X/. Assume that r > pn�1

p�1
and for some k � 0 the element vknz belongs to the image

of BP �.Y / under the map f �.
Then there exists a homogeneous element ˇ 2 BP such that the element ˇz belongs to the

image of f � modulo � rC1BP �.X/ and

ˇ � vbn mod I.n/ for some b � 0;

deg.ˇz/ D r � b.pn � 1/ > pn�1
p�1

.

Proof. – Let x 2 BP �.Y / be such that f �.x/ D vknz. We will apply the symmetric
operation ˆ to x several times producing the needed element y 2 BP �.Y / such that
f �.y/ � ˇz mod � rC1BP �.X/ for ˇ as in the statement of the proposition. Since all
operations commute with pullbacks, we just have to calculate how the operation ˆ acts
on vknz.

Moreover, all operations preserve the topological filtration, and by [59, Proposition 7.14]
there is a simple description of the action of the symmetric operation on gr��BP

�. Namely,
for any � 2 BP and z as above we have

ˆ.�z/ � ir � t r.p�1/ �ˆ��r.p�1/.�/z mod � rC1BP �.X/;

where ˆ��r.p�1/.�/ is the part of the polynomial ˆ.�/ 2 BP Œt�1� with the degree of t no
greater than �r.p � 1/.

Thus, to be able to use Proposition 7.16 and “divide” vknz by vn we need that k > 0 (if
k D 0 we do not have to do anything) and

�k.p � 1/.pn � 1/ � .pn � 1/ � �r.p � 1/:

Equivalently, .r � k.pn � 1//.p � 1/ � pn � 1 or deg.vknz/ �
pn�1
p�1

.
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We can continue this process until we get the desired element ˇz modulo � rC1BP �.X/,
where deg.ˇz/ D r � b.pn � 1/ > pn�1

p�1
.

T 7.19. – LetX be a smooth projective geometrically cellular variety such that the
pullback map f �WK.n/�.X/! K.n/�.X/ is an isomorphism, where X D X �F F .

Then the pullback maps

(7.20) grr�K.n/
�.X/! grr�K.n/

�.X/; CHr .X/˝ Z.p/ ! CHr .X/˝ Z.p/

are isomorphisms for r � pn�1
p�1

.

In particular, CHr .X/ has no p-torsion for all r � pn�1
p�1

.

Proof. – For a smooth projective cellular variety Y and a free theory A�, the A-module A�.Y /
is free, generated by chosen classes of desingularizations of (closed) cells. We will call these
elements classes of cells, and the codimension of the class of a cell is the codimension of
the corresponding cell. Moreover, the r-th part of the topological filtration on A�.Y / is
generated by the cells of codimension no less than r .

It follows that CHr .X/ ˝ Z.p/ is torsion-free, and the last claim of the theorem follows
from claim (7.20).

For simplicity of notation we switch now from MoravaK-theories withZ.p/Œvn; v�1n �-coef-
ficients to Morava K-theories with Z.p/-coefficients by sending vn to 1. Clearly, this does
not affect neither assumptions, nor conclusions of the theorem.

Under the assumptions of the theorem the pullback map from grr�K.n/
�.X/ to

grr�K.n/
�.X/ is surjective for r W 0 � r � pn � 1 since

(7.21) grr� QK.n/
�
D QK.n/r=� rCp

n�1 QK.n/r

in this range of r by Proposition 5.2(3). On the other hand, grr�K.n/
�.X/ is a freeZ.p/-module

generated by the classes of cells of codimension r . Thus, to prove the theorem it is sufficient
to show that preimages under f � of classes of all cells of codimension greater than pn�1

p�1

lie in �>
pn�1
p�1 K.n/�.X/. Indeed, this would imply that f � is an isomorphism between

� rCp
n�1K.n/r .X/ and � rCp

n�1K.n/r .X/ for r � pn�1
p�1

, and therefore f � is also an isomor-

phism on grr� QK.n/
r by Formula (7.21).

For the class z of a cell in BP r .X/ denote by zK.n/ its image in K.n/�.X/. Also abusing
notation we denote the preimage of this element in K.n/�.X/ under f � by the same letter.

We now argue by decreasing induction on r from dimX C 1 to pn�1
p�1
C 1 that

zK.n/ 2 �
pn�1
p�1 C1K.n/�.X/:

Base of induction. – The assertion is trivial for r D dimX C 1, since BP r .X/ D 0.
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Induction step. – Assume that for all classes zs of cells in BP>r .X/ the classes zs;K.n/ lie

in �
pn�1
p�1 C1K.n/�.X/.

Denote by C the cokernel of the map BP �.X/ ! BP �.X/. It is a finitely presented
BP -module with the structure of a comodule over the Hopf algebroid .BP;BP�BP/ ([50,
Proposition 2.21, Remark 2.24]). Moreover, C ˝ K.n/ D 0 by the assumptions of the
theorem, and, therefore, by Corollary 7.7 the pullback map

BP �.X/Œv�1n �! BP �.X/Œv�1n �

is surjective. In particular, for every class of a cell z 2 BP r .X/ of codimension r there exists
k � 0 such that vknz is a rational element.

If z 2 BP r .X/ is the class of a cell of codimension r > pn�1
p�1

, then by Lemma 7.18

applied to f W X ! X we obtain that the element ˇz C
P
s ˛szs 2 BP

j .X/ is rational for
some j > pn�1

p�1
, ˛s; ˇ 2 BP such that ˇmaps to 1 inK.n/ and zs are classes of cells of bigger

codimension (recall that � rC1BP �.X/ is generated by cells of codimension at least r C 1).
Let y be an element of BP j .X/ which maps to ˇz C

P
s ˛szs 2 BP j .X/ under the

pullback map. Then y 2 �jBP j .X/, since BP j D �jBP j (the last formula holds by
the definition of the topological filtration and by the fact that BP contains no elements of
strictly positive degree). Therefore, the image of y in K.n/�.X/ also lies in �jK.n/�.X/,
and at the same time its image in K.n/�.X/ has the form zK.n/ C

P
Œ˛s�K.n/zs;K.n/ where

Œ˛s�K.n/ is the image of ˛s under the canonical morphism BP ! K.n/ D Z.p/. However, by
the induction assumption the preimages under the isomorphism f � of the elements zs;K.n/

already lie in �
pn�1
p�1 C1K.n/�.X/, hence the claim.

As explained above it follows that the pullback map gri�K.n/
�.X/ ! gri�K.n/

�.X/ is
an isomorphism for i � pn�1

p�1
. The operation cCH

i W gri�K.n/
� ! CHi

˝Z.p/ commutes
with pullbacks by definition and induces an isomorphism for i � pn by Theorem 5.7, (iv)).
It follows that the map CHi .X/ ˝ Z.p/ ! CHi .X/ ˝ Z.p/ is also an isomorphism for
i � pn�1

p�1
.

7.22. Finiteness of torsion in Chow groups via the gamma filtration

We consider the Morava K-theory K.n/� with vn set to be 1.
Above we have used the topological filtration on Morava K-theories to show that there

is no p-torsion in Chow groups of certain varieties up to codimension pn�1
p�1

. However,
calculating graded factors of the topological filtration gri�K.n/

� in the range between
pn�1
p�1
C 1 and pn seems to be out of reach at the present stage, even though it would still

yield CHi
˝Z.p/ by Theorem 5.7. Yet another approach to estimate p-torsion in Chow

groups is to use the gamma filtration instead of the topological filtration.

T 7.23. – Fix a primep and letK.n/� be the correspondingn-th MoravaK-theory.
Assume that X is a geometrically cellular smooth projective variety such that the restriction
map K.n/�.X/! K.n/�.X/ is an isomorphism, where X D X �F F .

Then the p-torsion in CHj .X/ is a quotient of the p-torsion in grj
K.n/�.X/ for j � pn.
In particular, the p-torsion in the Chow groups of X is finite in codimensions up to pn and it

can be bounded based on the variety X only.
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Proof. – As the gamma filtration is defined using the operations which commute with
pullbacks by definition, the gamma filtrations on K.n/�.X/ and K.n/�.X/ coincide via the
change of the base field. Therefore, the graded pieces of the gamma filtration of X depend
only on X .

Note that as X is cellular, its Chow motive is of Tate type, i.e., is split, and, therefore, its
algebraic cobordism motive is of Tate type as well. Therefore,K.n/�.X/ is a finitely generated
freeZ.p/-module generated by the classes of desingularizations of the closed cells. This proves
that the graded pieces of the gamma filtration (on bothK.n/�.X/ andK.n/�.X/) are finitely
generated, and thus have finite torsion.

By Theorem 5.7, (v)) and (iii)) we have surjective additive maps

cCH
j W grj
K.n/

�.X/! CHj .X/˝ Z.p/

for j � pn, which are isomorphisms rationally. Therefore, CHj .X/ has finite torsion for
every j � pn which is bounded above by the torsion of grj
K.n/�.X/.

An advantage of this approach is that the calculations are of a purely combinatorial nature
and are often amenable as we will show in the case of quadrics in the next section. However,
the bounds obtained by the gamma filtration are not exact in general (see Remark 8.15).

8. Bounds on torsion in Chow groups via Morava K-theory

In this section we will provide some bounds on torsion in Chow groups of quadrics. Before
doing this we would like to summarize known results in this direction. We apologize in
advance in case we forgot to mention some contributions.

8.1. Karpenko’s bounds in small codimensions

P 8.2 (Karpenko). – Let Q be a smooth projective anisotropic quadric of
dimension D defined over a field of characteristic not 2.

[15, Theorem 6.1]: Tors CH2.Q/ D 0 for D > 6;

[17, Theorem 6.1]: Tors CH3.Q/ D 0 for D > 10;

[17, Theorem 8.5]: Tors CH4.Q/ D 0 for D > 22.

When the dimension of a quadric is smaller than in the above proposition, Karpenko
gives some bounds for the torsion in CH3 and CH4 and explicitly computes CH2 (see [15,
Theorem 6.1], [18]).

We remark at this point that there are examples of quadrics having infinite torsion in CH4

(see [20]).
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8.3. Rost motives and excellent quadrics

The Chow groups of Pfister quadrics and more generally of excellent quadrics are explic-
itly known. This was computed by Rost in [45, Theorem 5], see also [21, Theorem 7.1,
Theorem 8.1]. More generally, Yagita computed the multiplicative structure of the Chow
rings of excellent quadrics (see [66]).

In particular, the following result holds.

P 8.4 (Rost). – LetQ˛ be the Pfister quadric corresponding to a pure non-zero
symbol ˛ 2 Hn

et.F;Z=2/, n � 3.

Then Tors CHi .Q˛/ D 0 for i < 2n�2 and Tors CH2n�2

.Q˛/ D Z=2.

8.5. Vishik’s calculation for generalized Albert’s forms

Consider a generalized Albert form of dimension 6�2r overF , i.e., a form of the type �˝',
where � is an Albert form, i.e., � D ha; b;�ab;�c;�d; cd i for some a; b; c; d 2 F �, and
' is an r-fold Pfister form. Note that by [56, Lemma 1.4] there exist anisotropic generalized
Albert forms of dimension 6 � 2r over suitable fields.

For a quadratic form q denote by Q the respective projective quadric.

P 8.6 (Vishik, [56, Main Theorem]). – If a generalized Albert form q of
dimension 6 � 2r with r � 1 is anisotropic, then Tors CH2rC1.Q/ ¤ 0.

Below we will show that there is no torsion in CHj .Q/ for j < 2r C 1 (Corollary 8.16).

Finally, there are numerous results with computations of the Chow groups of generic
quadrics and generic orthogonal Grassmannians (see [19], [40], [53]).

8.7. The gamma and the topological filtration on Morava K-theories of quadrics

In this section p D 2. Denote by Q a split quadric of dimension D and assume that
D � 2nC2 � 3.

Denote by d WD ŒD=2� the dimension of the maximal isotropic projective space inside Q
and by �WPd ! Q the corresponding inclusion map. Denote by h 2 K.n/�.Q/ the first Chern
class of the canonical line bundle O.1/. Abusing notation we will denote by the same letter
the pullbacks of this class along restrictions to open subsets of Q.

The following proposition is well-known. We consider the Morava K-theory K.n/� with
vn set to be 1.

P 8.8. – The natural linear projection map bWQ n Pd ! Pd induces an
isomorphism b�WK.n/�.Pd /! K.n/�.Q n Pd /.

Moreover, there is a short (split) exact sequence of abelian groups:

0!

dM
sD0

Z.2/ls
��
�! K.n/�.Q/

��

��! K.n/�.Pd /! 0;

where the map �� is a morphism of rings compatible with the gamma filtration and ls is the class
of a linear projective space inside Q of dimension s.
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Proof. – Since the statement of the proposition is well-known, we only sketch the proof.

Let .V; q/ be the quadratic space of dimension D C 2 with a split quadratic form q. Let
W � V be the maximal totally isotropic subspace of V . Then dimW D d C1. The map �� is
the push-forward of the embedding �WPd D P.W / ,! Q.

The quadratic form q induces a natural linear map V ! W �. This map induces a
morphism bWQ n P.W / ,! P.V / n P.W / ! P.W �/ D Pd which is an affine bundle of
rank D � d . Therefore, by homotopy invariance the homomorphism b� is an isomorphism.

Let � WQ n P.W / ,! Q be the open embedding. Then by the localization axiom the
sequence

K.n/�.Pd /
��
�! K.n/�.Q/

��

�! K.n/�.Q n Pd /! 0

is exact. Now the homomorphism �� is defined as .b�/�1 ı��. Using the fact that all objects
here are free Z.2/-modules of suitable ranks one can check that the resulting exact sequence
is exact on the left and is split.

Note that �� in Proposition 8.8 induces surjective maps of abelian groups

grr
K.n/
�.Q/! grr
K.n/

�.Pd /

for r � 0. A direct calculation shows that grr
K.n/
�.Pd / has no torsion for all r , i.e., it equals

Z.2/ for 0 � r � d and 0 for r > d . Thus, we have

hr 2 
 rK.n/�.Q/ n 
 rC1K.n/�.Q/

for 0 � r � d (one could also see this using rational comparisons of Theorem 5.7).

We claim that the torsion in grr
K.n/
�.Q/ is generated by elements of Im ��. Indeed, take

an element˛ from 
 rK.n/�.Q/. By Proposition 8.8 one can express˛ as a linear combination
of elements from Im �� and elements hk with k � r . Taking ˛modulo 
 rC1K.n/�.Q/we may
assume that it is a linear combination of elements from Im �� and the element hr , say, with a
coefficient a.

If ˛ gives a torsion element in grr
K.n/
�.Q/, then it maps to a torsion element in grr
K.n/

�.Pd /,
hence to 0. But it maps to a¯r where ¯ is the first Chern class of O.1/ on Pd . Therefore,
a D 0.

We recall the multiplication structure in K.n/�.Q/.

P 8.9. – 1. We have h � li D li�1 where we denote l�1 D 0.

2. If the dimension of the quadric is odd, then hdC1 � 2ld mod .lj j 0 � j < d/.
Moreover, hdC1 is expressible in terms of lj with j � d mod 2n � 1.

Proof. – To prove (1.) note that h can be represented by a general hyperplane section
of Q, so that it intersects transversally the linear subspace representing the class li . The
product h � li is represented by their intersection, which is then a linear subspace of dimension
one less.

Part (2.) follows from the well-known multiplication in the Chow ring of Q.
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For simplicity of notation set lr D 0 for r < 0.

Let D � d � 1C j mod 2n � 1 where j 2 Œ0; 2n � 2�.

From now on we consider a non-split smooth projective quadricQ of positive dimension
such that the restriction map

K.n/�.Q/! K.n/�.Q/(8.10)

to a splitting field ofQ is an isomorphism. Note that in this case dimQ � 2nC2� 3. Indeed,
in view of Lemma 7.8, if dimQ is even, this follows from Proposition 6.18 and the Arason-
Pfister Hauptsatz. If dimQ is odd, then by Proposition 6.21 the respective quadratic form
is of the type f ? hci for some anisotropic form f 2 I nC2 and c 2 F �. Therefore, since
the dimension of the anisotropic part of f ? hci is at least dim f � 1, it follows from the
Arason-Pfister Hauptsatz that dimQ � 2nC2 � 3.

Abusing notation we will consider the elements h; li of K.n/�.Q/ defined above also as
the corresponding elements of K.n/�.Q/ with respect to the isomorphism (8.10).

L 8.11. – Let k 2 Œ0; d �. Assume that the element lk lies in


 rK.n/�.Q/ mod
M
s<k

Z.2/ls

(resp. in � rK.n/�.Q/ mod
L
s<k Z.2/ls) for some r � 1.

Then for every u � 0 the element lk�u lies in 
 rCuK.n/�.Q/ (resp. in � rCuK.n/�.Q/).

Proof. – The proof is the same for the gamma and for the topological filtration and
exploits only its multiplicativity. We confine ourselves to the case of the gamma filtration.
By our assumptions we have lk C

P
s<k asls 2 


rK.n/�.Q/ for some as 2 Z.2/.
We prove the statement by decreasing induction starting with the highest u D k C 1. In

this case l�1 D 0 and the claim is trivial.

By Proposition 8.9 we have

hu � .lk C
X
s<k

asls/ D lk�u C
X
u�s<k

asls�u:

The left-hand side lies in 
 rCuK.n/�.Q/ by the multiplicativity of the gamma filtra-
tion and the fact that h 2 
1K.n/�.Q/, while the “tail” of the right-hand side lies
in 
 rCuC1K.n/�.Q/ by the induction assumption. Therefore, we have lk�u 2 
 rCuK.n/�.Q/.

Denote by H the first Chern class of the canonical line bundle O.1/ on Q in the Brown-
Peterson cohomology. Again abusing notation, denote by the same letter the corresponding
class in BP �.Q/. Denote by Lr 2 BP �.Q/ the class of a linear subspace inside Q of
dimension r . Note that the canonical map of theories

�K.n/WBP
�.Q/! K.n/�.Q/

sends H to h and Lr to lr .

L 8.12. – We have ld 2 �jC2
n
K.n/�.Q/.
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Proof. – One could argue as in the proof of Theorem 7.19 to show that ld 2 �2
n
K.n/�.Q/.

A more direct approach of the use of Theorem 7.19 is the following. Let i be the maximal
positive integer such that ld 2 � iK.n/�.Q/. If i < 2n, then ld defines a non-trivial element
of the group gri�K.n/

�.Q/. However, this group maps isomorphically to gri�K.n/
�.Q/where

the class of ld is zero. Contradiction and, therefore, i � 2n, i.e., ld 2 �2
n
K.n/�.Q/.

However, ld 2 K.n/1Cj .Q/ and �2
n
K.n/1Cj .Q/ D �jC2

n
K.n/1Cj .Q/ by Proposi-

tion 5.2(3). This implies the claim.

P 8.13. – In the notation of this section we have

1. grs�K.n/
�.Q/ D Z.2/ for 1 � s � 2n � 1;

2. if j ¤ 0, then gr2
n

� K.n/
�.Q/ D Z.2/;

3. if j D 0 and the dimension of the quadric is odd, then the torsion subgroup of gr2
n


 K.n/
�.Q/

is at most Z=2;

4. if j D 0 and the dimension of the quadric is even, let d D 1 C r.2n � 1/ for some (1)

r � 2. If r is even, then the torsion in gr2
n


 K.n/
�.Q/ is at most Z=2. If r is odd, then

the torsion in gr2
n


 K.n/
�.Q/ is at most Z=2s , where s D min.�2.r � 1/C 2; 2n/. Here

we denote by �2 the 2-adic valuation.

Proof. – (1): This follows from Theorem 7.19.
(2): If j ¤ 0, then by Lemma 8.12 the element ld lies in �2

nC1K.n/�.Q/ and therefore, by
Lemma 8.11 the same holds for ls , s < d . Thus, the graded factors grs�K.n/

�.Q/ for s � 2n

have to be generated by some power of h and have no torsion.
(3, 4): If j D 0, then we will show now that ld 2 
2

n
K.n/�.Q/ � �2

n
K.n/�.Q/. Let

�WPd ,! Q be the inclusion of the maximal isotropic linear subspace. In order to calculate
c
K.n/
2n .ld / D c

K.n/
2n .��1Pd /we apply the generalized Riemann-Roch formula (Corollary 4.13).

Using Proposition 5.8 we have cK.n/2n .��1Pd / is equal to

er ld C
X
s>0

bsld�s.2n�1/

with bs 2 Z.2/, where r is such that d D 1 C r.2n � 1/ and er 2 Z�
.2/

. This element lies

in 
2
n
K.n/�.Q/ by the definition of the gamma filtration.

By Lemma 8.11 we obtain that all other elements ls , s < d , lie in the higher parts of the
gamma filtration. It follows that the torsion in the group gr2

n


 K.n/
�.Q/ is generated by ld .

(Only 3): If the dimension of the quadric is odd, then by Proposition 8.9 we have
hdC1 D 2ld C

P
s>0 ˇsld�s.2n�1/ for some ˇs 2 Z.2/. By the multiplicativity of the gamma

filtration this element lies in 
dC1K.n/�.Q/. Recall that d � 2nC1 � 2 by our assumptions,
and therefore, dC1 > 2n. Thus, by the results above ld�s.2n�1/ 2 


2nC1K.n/�.Q/ for s > 0,
and we obtain that 2ld 2 
2

nC1K.n/�.Q/. This proves the claim.

(Only 4) Let us consider the element �.ld / 2 
2
nC1�1K.n/1.Q/ for the operation �

from Proposition 5.9. Using the Riemann-Roch formula and Proposition 5.9, 2.) we obtain
that this element is equal to gr ld C

P
s>0 bsld�s.2n�1/ for some bs 2 Z.2/ (gr was defined

(1) The case r D 2 is the well-known case of a Pfister quadric.
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in Proposition 5.9). Since the elements ld�s.2n�1/ lie in 
2
nC1�1K.n/�.Q/, we obtain that

gr ld 2 

2nC1�1K.n/�.Q/. If r is even, thengr 2 2Z�.2/. If r is odd, then �2.gr / D �2.r�1/C2.

If we use the operation  from Proposition 5.9 instead of �, we obtain that

22
n

ld 2 

2nC1�1K.n/�.Q/:

The result now follows.

Combining this together with Theorem 5.7 and Propositions 6.18 and 6.21 we obtain the
following theorem.

T 8.14. – LetQ be a smooth quadric of positive dimension over a field F such that
the corresponding quadratic form q lies either in the ideal I nC2 or in the set hciCI nC2 inside the
Witt ring for some c 2 F �. LetD be the dimension ofQ, d WD ŒD=2�, and let j 2 Œ0; 2n�2� be
such that D � d � 1C j mod 2n � 1.

Then CH0���2n�1.Q/ D Z and

1. if j ¤ 0, then CH2n

.Q/ D Z.

2. if j D 0, and the dimension of the quadric is odd, then the torsion in CH2n

.Q/ is at most
Z=2;

3. if j D 0 and the dimension of the quadric is even, d D 1 C r.2n � 1/, then the torsion
in CH2n

.Q/ is at most Z=2s where s D 1, if r is even, and

s D min.�2.r � 1/C 2; 2n/

otherwise. Here we denote by �2 the 2-adic valuation.

R 8.15. – One can show that the estimates one gets using just the gamma filtra-
tion are not so strong if j ¤ 0. Namely, if j ¤ 0 one obtainsZ=2 in the components CH�jC1.
This shows that the graded factors of the gamma filtration do not give exact bounds for the
topological filtration even in small codimensions.

C 8.16. – Let q be a generalized anisotropic Albert form of dimension 6 � 2r .
Then Tors CHj .Q/ D 0 for all j < 2r C 1.

Proof. – Indeed, the Albert form lies in I 2.F /, and therefore, q lies in I rC2.F /. Since
d � 2 mod .2r � 1/, Theorem 8.14 implies the claim.

Vishik has communicated to the authors that one can show the above corollary using
techniques of [53].
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9. Morava K-theory and cohomological invariants

In this section we relate the MoravaK-theory with cohomological invariants of algebraic
group; see also Proposition 6.18.

T 9.1. – Let p be a prime number. Let G be a simple algebraic group over F and
let X be the variety of Borel subgroups of G. Then

1. G is of inner type iff the K.0/�-motive of X is split.

2. (Panin). Assume thatG is of inner type. All Tits algebras ofG are split iff theK0-motive
with integral coefficients of X is split.

3. Assume that G is of inner type and the p-components of the Tits algebras of G are split.
Then the p-component of the Rost invariant ofG is zero iff theK.2/�-motive ofX is split.

4. Let p D 2. Assume that G is of type E8. Then G is split by an odd degree field extension
iff the K.m/�-motive of X is split for some m � 4 iff the K.m/�-motive of X is split for
all m � 4.

Proof. – (1) Recall that K.0/� D CH�˝Q by definition. If G is of inner type, then it is
well-known that the Chow motive of X with rational coefficients is split (e.g., this follows
from [39, Theorems 2.2 and 4.2], since K0 and CH� are isomorphic theories with rational
coefficients). On the other hand, if G is of outer type, then the absolute Galois group of F
acts non-trivially on the Chow group ofXFsep (see [35, Section 2.1] for the description of the
action on the Picard group of XFsep ). Therefore, the Chow motive of X with any coefficients
cannot be split in this case.

(2) Follows from [39]; see also Section 3.4.
(3) First we make several standard reductions. Since all prime numbers coprime to p are

invertible in the coefficient ring of the Morava K-theory, by transfer argument we are free
to take finite field extensions of the base field of degree coprime to p. Hence we can assume
that not only the p-components of the Tits algebras are split, but that the Tits algebras are
completely split (and the same for the Rost invariant).

Types A and C. – If G is a group of inner type A or C with trivial Tits algebras, then G is
split and the statement follows. Indeed, by [23, §26] the group G is isogenous to SL1.A/ for
a central simple algebra A or, respectively, to Sp.B; �/ for a central simple algebra B with
a symplectic involution � . By [23, §27.B] the algebra A, respectively, the algebra B is a Tits
algebra ofG. Therefore, if A, respectively, B is split, thenG is split, and the statement of the
proposition is obvious.

Types B and D. – If G is a group of inner type B or D, then G is isogenous to Spin.V; q/
or, respectively, to Spin.D; �/ for an odd-dimensional quadratic space .V; q/ or, respectively,
for an algebraD with an orthogonal involution � with trivial discriminant. By [23, §27.B] the
even Clifford algebraC0.V; q/, respectively, the algebraD and the Clifford algebrasC˙.D; �/
are Tits algebras ofG. Therefore, if the Tits algebras ofG are split, we are in the situation of
quadratic forms.

Now the statement of the proposition follows from Proposition 6.18 (in the even-
dimensional case) and from Proposition 6.21 (in the odd-dimensional case). Indeed, an even-
dimensional quadratic form with trivial discriminant lies in I 4 (resp. an odd-dimensional
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quadratic form lies in I 4 C hci for some c 2 F �) iff its Clifford and its Rost invariants are
zero (see [23, §31.B] for a description of the Rost invariant in the case of quadratic forms).

Exceptional types. – Let nowG be a group of an exceptional type. Taking coprime to p field
extensions we assume that our base field is p-special. Assume that the K.2/�-motive of X is
split, but the Rost invariant of G is not trivial.

There is a field extension K of F such that the Rost invariant of GK is a non-zero pure
symbol. Indeed, for groups of types E6, F4, G2, E7 with p D 3 and E8 with p D 5 this is
already the case for K D F (see [11, Part II]).

IfG is of type E7 withp D 2, then by [41, Theorem 5.7] the varietyY of maximal parabolic
subgroups of G of type 6 (enumeration of simple roots follows Bourbaki) is not generically
split. Over its function fieldK D F.Y / the anisotropic kernel of GK is of type D4 and, thus,
the Rost invariant of GK is a non-zero pure symbol.

If G is of type E8 with p D 2, then by [41, Theorem 5.7] one can take K D F.Y /, where
Y is the variety of maximal parabolic subgroups ofG of type 6 (the anisotropic kernel ofGK
will be again of type D4), and if G is of type E8 with p D 3, then one can take K D F.Y /,
where Y is the variety of maximal parabolic subgroups ofG of type 7 (the anisotropic kernel
of GK will be of type E6).

In all cases the motive of XK is a direct sum of Rost motives corresponding to this non-
zero symbol of degree 3 (see [42]). This gives a contradiction with Proposition 6.2.

Conversely, if the Rost invariant of G is zero and G is not of type E8 with p D 2, then
by [8, Theorem 0.5] (for exceptional groups different from E8), [3] and [11, Proposition 15.5]
(for E8 at the prime 5), [4] and [10, Section 10c] (for E8 at the prime 3) the group G is split
and the statement of the proposition follows.

Therefore, it remains to consider the case when G is a group of type E8 with trivial Rost
invariant. By [52, Theorem 8.7] G has an invariant u 2 H 5

et.F;Z=2/ such that for every
field extension K=F the invariant uK D 0 iff GK splits over a field extension of K of
odd degree. Exactly as in the proof of Proposition 6.18 (note that we can represent u by
a quadratic form from I 5) we can pass to a splitting field eF of u such that the restriction
homomorphism K.2/�.X � X/ ! K.2/�..X � X/ eF / is surjective. Therefore, by Rost
nilpotence the K.2/�-motive of X is split.

(4) If G is split by an odd degree field extension, then the K.m/�-motives of X are split
for all m, since p D 2. Conversely, if G does not split over an odd degree field extension
of F and the even component of the Rost invariant of G is non-trivial, then by item (3) the
K.2/�-motive of X is not split and, hence, by Proposition 7.10 the K.m/�-motives are not
split for all m � 2.

Besides, ifG does not split over an odd degree field extension ofF and the even component
of the Rost invariant of G is trivial, then the invariant u is defined and is non-zero. By [38,
Theorem 2.10] there is field extensionK ofF such that uK is a non-zero pure symbol. OverK
the motive ofX is a direct sum of Rost motives corresponding to uK . By Proposition 6.2 the
K.m/�-Rost motives for a symbol of degree 5 are not split, if m � 4.

Finally we remark that sequence (3.6) can be used to define the Rost invariant in general,
the invariant f5 for groups of type F4 (see [23, §40]) and an invariant of degree 5 for groups
of type E8 with trivial Rost invariant (see [52]). Namely, for the Rost invariant let G be a
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simple simply-connected algebraic group over F . Let Y be a G-torsor and set n D 3. Then
sequence (3.6) gives an exact sequence

0! H
3;2
M .XY ;Q=Z/! Ker

�
H 3

et.F;Q=Z.2//! H 3
et.F.Y /;Q=Z.2//

�
! 0:

But by sequence (3.8) Ker
�
H 3

et.F;Q=Z.2// ! H 3
et.F.Y /;Q=Z.2//

�
is a finite cyclic group.

Therefore, H 3;2
M .XY ;Q=Z/ is a finite cyclic group and the Rost invariant of Y is the image

of 1 2 H 3;2
M .XY ;Q=Z/ in H 3

et.F;Q=Z.2//.
To construct invariants of degree 5 for F4 (resp. for E8) one takes n D 5 and Y to

be the variety of parabolic subgroups of type 4 for F4 (the enumeration of simple roots
follows Bourbaki) and resp. the variety of parabolic subgroups of any type for E8. In both
casesH 5;4

M .XY ;Q=Z/ is cyclic of order 2 and the invariant is the image of the only non-zero

element of H 5;4
M .XY ;Q=Z/ in H 5

et.F;Q=Z.4//; see [52].
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ON THE DYNAMICS
OF MINIMAL HOMEOMORPHISMS OF T2

WHICH ARE NOT PSEUDO-ROTATIONS

 A KOCSARD

A. – We prove that any minimal 2-torus homeomorphism which is isotopic to the iden-
tity and whose rotation set is not just a point exhibits uniformly bounded rotational deviations on the
perpendicular direction to the rotation set. As a consequence of this, we show that any such homeo-
morphism is topologically mixing and we prove Franks-Misiurewicz conjecture under the assumption
of minimality.

R. – Soit f un homéomorphisme minimal du toreT2 qui est isotope à l’identité. Nous mon-
trons que si son ensemble de rotation �.f / n’est pas trivial (i.e., il n’est pas un singleton), alors les dévia-
tions rotationnelles dans la direction perpendiculaire à l’ensemble de rotation sont uniformément bor-
nées. Par conséquent, nous prouvons qu’un tel homéomorphisme f est topologiquement mélangeant
et on donne une démonstration de la conjecture de Franks et Misiurewicz pour homéomorphismes mi-
nimaux.

1. Introduction

The study of the dynamics of orientation preserving circle homeomorphisms has a
long and well established history that started with the celebrated work of Poincaré [27]. If
f WT D R=Zý denotes such a homeomorphism and Qf WRý is a lift of f to the universal
cover, he showed that there exists a unique � 2 R, the so called rotation number of Qf , such
that

Qf n.z/ � z

n
! �; as n!1; 8z 2 R;

where the convergence is uniform in z. Moreover, in this case a stronger (and very useful,
indeed) condition holds: every orbit exhibits uniformly bounded rotational deviations, i.e.,ˇ̌̌

Qf n.z/ � z � n�
ˇ̌̌
� 1; 8n 2 Z; 8z 2 R:

In this setting, the homeomorphism f has no periodic orbit if and only if the rotation
number is irrational; and any minimal circle homeomorphism is topologically conjugate to
a rigid irrational rotation.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
doi:10.24033/asens.24750012-9593/04/© 2021 Société Mathématique de France. Tous droits réservés



992 A. KOCSARD

However, in higher dimensions the situation dramatically changes. If f WTd D Rd=Zd ý is
a homeomorphism homotopic to the identity and Qf WRd ý is a lift of f , then one can define
its rotation set by

�. Qf / WD

(
� 2 Rd W 9nk " C1; zk 2 Rd ; � D lim

k!C1

Qf nk .zk/ � zk

nk

)
:

This set is always compact and connected, and as we mentioned above, it reduces to a point
when d D 1. But for d � 2 some examples with larger rotation sets can be easily constructed.

In the two-dimensional case, which is the main scenario of this work, Misiurewicz and
Ziemian showed in [24] that the rotation set is not just connected but convex. So, when
d D 2 all torus homeomorphisms of the identity isotopy class can be classified according
to the geometry of their rotation sets: they can either have non-empty interior, or be a non-
degenerate line segment, or be just a point. In the last case, such a homeomorphism is called
a pseudo-rotation.

Regarding the boundedness of rotational deviations, this property has been shown to be
very desirable in the study of the dynamics of pseudo-rotations (see for instance the works
of Jäger and collaborators [9, 10, 11]). However, it has been proved in [12] and [15] that,
in general, pseudo-rotations do not exhibit bounded rotational deviations in any direction
of R2, i.e., it can hold

sup
z2R2;n2Z

D
Qf n.z/ � z � n�. Qf /; v

E
D C1; 8v 2 S1:

When �. Qf / is a (non-degenerate) line segment, of course there exist points with different
rotation vectors, so we cannot expect to have any boundedness at all for rotational deviations
on the plane. However, in such a case there exists a unit vector v 2 S1 and a real number ˛
such that �. Qf / is contained in the line fz 2 R2 W hz; vi D ˛g, so one can analyze the
boundedness of rotational v-deviations, i.e., whether there exist constants M.z/ 2 R such
that ˇ̌̌D

Qf n.z/ � z � n�; v
Eˇ̌̌
D

ˇ̌̌D
Qf n.z/ � z; v

E
� n˛

ˇ̌̌
�M.z/; 8n 2 Z;

and any � 2 �. Qf /.
Unlike the case of pseudo-rotations, when �. Qf / is a non-degenerate line segment

in general it is expected to have uniformly bounded rotational v-deviations, i.e., the
constant M.z/ can be taken independently of z. This result has been already proved by
Dávalos [3] in the case where �. Qf / has rational slope and intersects Q2, extending a previous
result of Guelman, Koropecki and Tal [7]. In those works periodic orbits of f play a key
role.

However, the situation is considerably subtler when dealing with periodic point free home-
omorphisms. So far there did not exist any a priori boundedness of rotational deviations of
torus homeomorphisms which are not pseudo-rotations and with no periodic points. In fact,
it had been conjectured that any periodic point free homeomorphism should be a pseudo-
rotation. More precisely, Franks and Misiurewicz had proposed in [5] the following

C 1.1 (Franks-Misiurewicz Conjecture). – Let f WT2 ý be a homeomor-
phism homotopic to the identity and Qf WR2 ý be a lift of f such that �. Qf / is a non-degenerate
line segment.
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Then, the following dichotomy holds:

(i) either �. Qf / has irrational slope and one of its extreme points belongs to Q2;

(ii) or �. Qf / has rational slope and contains infinitely many rational points.

Recently Avila has announced the existence of a minimal smooth diffeomorphism whose
rotation set is an irrational slope segment containing no rational point, providing in this way
a counter-example to the first case of Franks-Misiurewicz Conjecture. On the other hand, Le
Calvez and Tal have proved in [21] that if �. Qf / has irrational slope and contains a rational
point, then this point is an extreme one.

The second case of Conjecture 1.1 remains open, i.e., whether there exists a homeomor-
phism f such that �. Qf / has rational slope and �. Qf /\Q2 D ;, and in fact this is one of the
main motivations of our work.

The main result of this paper is the following a priori boundedness for rotational deviations
of minimal homeomorphisms:

T A. – Let f WT2 ý be a minimal homeomorphism homotopic to the identity which
is not a pseudo-rotation. Then there exists a unit vector v 2 R2 and a real numberM > 0 such
that for any lift Qf WR2 ý, there is ˛ 2 R so that

(1)
ˇ̌̌D
Qf n.z/ � z; v

E
� n˛

ˇ̌̌
�M; 8z 2 R2; 8n 2 Z:

As a consequence of Theorem A and a recent result due to Koropecki, Passeggi and
Sambarino [14], we get a proof of the second case of Franks-Misiurewicz Conjecture
(Conjecture 1.1) under minimality assumption. More precisely we get the following:

T B. – There is no minimal homeomorphism ofT2 in the identity isotopy class such
that its rotation set is a non-degenerate rational slope segment.

As a consequence of Theorem B, some results of [13] and a recent generalization of a
theorem of Kwapisz [18] due to Beguin, Crovisier and Le Roux [2], we have the following

T C. – If f WT2 ý is a minimal homeomorphism homotopic to the identity and is
not a pseudo-rotation, then f is topologically mixing.

Moreover, in such a case the rotation set off is a non-degenerate irrational slope line segment
and its supporting line does not contain any point of Q2.

1.1. Strategy of the proof of Theorem A

Theorem A is certainly the most important result of the paper and its proof is rather long
and technical. So, for the sake of readability, here we summarize the main steps of the proof
in a rather informal way.

We proceed by contradiction. First of all one can observe that there is no loss of generality
assuming the rotation set �. Qf / is transversal to the horizontal axes, i.e., it intersects the upper
and lower horizontal semi-planes (see Propositions 2.5 and 2.16 for details). This means there
exist points with a positive asymptotic vertical mean speed and others with a negative one.
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Then we define the stable sets at infinity ƒC
h
; ƒ�

h
� R2 as the unbounded connected

components of the maximal Qf -invariant sets of the upper and lower semi-plane, respectively.
More precisely,

ƒC
h
WD cc

�n
z 2 R2 W pr2

�
Qf n.z/

�
� 0; 8n 2 Z

o
;1

�
and

ƒ�h WD cc
�n
z 2 R2 W pr2

�
Qf n.z/

�
� 0; 8n 2 Z

o
;1

�
;

where pr2WR2 ! R denotes the projection on the second coordinate and cc.�;1/ the union of
the unbounded connected components of the corresponding set. In §5, we study the geometry
of these stable sets at infinity, showing in particular that they are non empty (Theorem 5.1),
and they are in fact the union of “infinitely long hairs”. Then, assuming estimate (1) is
false, we show in Theorem 5.5 that these “hairs” exhibit arbitrarily large oscillations in the
horizontal direction.

Then, in §6 we define the stable sets at infinity but this time with respect to the direction
determined by the rotation set. At this point some new important technical problems appear.
In fact, the number ˛ in (1) represents the mean asymptotic speed of every point with respect
to the perpendicular direction to the rotation set, and we know a posteriori, by Theorem C,
that it is always irrational, and in particular, non-zero. That means if we just define these sets
analogously to what we did above forƒC

h
andƒ�

h
, we shall just get empty sets. Nevertheless,

if we modify the definition writing

ƒCv WD cc
�n
z 2 R2 W

D
Qf n.z/; v

E
� n˛ � 0; 8n 2 Z

o
;1

�
and

ƒ�v WD cc
�n
z 2 R2 W

D
Qf n.z/; v

E
� n˛ � 0; 8n 2 Z

o
;1

�
;

we get non-empty sets, but they are not dynamically defined. So, this is the reason why
we have to introduce the fiber-wise Hamiltonian skew-products in §6.1 in order to get these
sets ƒCv and ƒ�v as dynamical ones (see §6.2 for details).

Then, always assuming that (1) does not hold, we use these sets to show that the
induced fiber-wise Hamiltonian skew-product exhibits a certain form of topologically
mixing behavior along the fibers (Theorem 6.7). Then we use this dynamical information to
show the sets ƒCv ; ƒ

�
v ; ƒ

C

h
; ƒ�

h
are pairwise disjoint (Proposition 7.1). Finally, we finish the

proof showing that this disjointedness is incompatible with the large horizontal oscillation
of the connected components of the sets ƒC

h
and ƒ�

h
we proved in Theorem 5.5.
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2. Preliminaries and notations

2.1. Maps, topological spaces and groups

Given any map f WX ý, we write Fix.f / for its set of fixed points and

Per.f / WD
[
n�1

Fix.f n/

for the set of periodic ones. If A � X denotes an arbitrary subset, we define its positively
maximal f -invariant subset by

I C
f
.A/ WD

\
n�0

f �n.A/:

When f is bijective, we can also define its maximal f -invariant subset by

(2) If .A/ WD I C
f
.A/ \I C

f �1.A/ D
\
n2Z

f n.A/:

When X is a topological space and A � X is any subset, we write intA for the inte-
rior of A and NA for its closure. When A is connected, we write cc.X;A/ for the connected
component of X containing A. As usual, �0.X/ denotes the set of connected components
of X . When X is connected and A � X , we say that A disconnects X when X n A is not
connected. Given two connected sets U; V � X , we say that A separates U and V when
cc.X n A;U / ¤ cc.X n A; V /.

The space X is said to be a continuum when it is compact, connected and non-trivial, i.e.,
it is neither empty nor a singleton.

A homeomorphism f WX ý is said to be non-wandering when given any non-empty open
set U � X , there exists a positive integer n such that f n.U / \ U ¤ ;.

We say that f is topologically mixing when for every pair of non-empty open sets
U; V � X , there exists N 2 N such that f n.U / \ V ¤ ;, for every n � N .

The homeomorphism f is said to be minimal when it does not exhibit any proper
f -invariant closed set, i.e., X and ; are the only closed f -invariant sets.

If .X; d/ is a metric space, the open ball of radius r > 0 and center at x 2 X will be
denoted by Br .x/. Given an arbitrary set A � X and a point x0 2 X , we write

d.x0; A/ WD inf
y2A

d.x0; y/:

For any " > 0, the "-neighborhood of A is given by

(3) A" WD fx 2 X W d.x;A/ < "g D
[
x2A

B".x/:

The diameter of A � X is defined by diamA WD supx;y2A d.x; y/ and we say A is
unbounded whenever diamA D C1. Making a slight abuse of notation, we shall write
cc.A;1/ to denote the union of the unbounded connected components of A.

The space of (non-empty) compact subsets of X will be denoted by

K .X/ WD fK � X W K is compact, K ¤ ;g

and we endow this space with its Hausdorff distance dH defined by

dH .K1; K2/ WD max
�

max
x2K1

d.x;K2/;max
y2K2

d.y;K1/

�
;
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for every K1; K2 2 K .X/.

Whenever M1;M2; : : :Mn are n arbitrary sets, we shall use the generic notation
pri WM1 �M2 � : : : �Mn !Mi to denote the i th-coordinate projection map.

Finally, whenX is a compact topological space, we shall always consider the vector space
of continuous functions C 0.X;Rd / endowed with the uniform norm given by

k�kC0 WD max
1�i�d

max
x2X

ˇ̌
pri
�
�.x/

�ˇ̌
; 8� 2 C 0.X;Rd /:

2.2. Topological factors and extensions

Let .X; dX / and .Y; dY / be two compact metric spaces. We say that a homeomorphism
f WX ý is a topological extension of a homeomorphism gWY ý when there exists a contin-
uous surjective map hWX ! Y such that h ı f D g ı h; and we say g is a topological factor
of f . In such a case, h is called a semi-conjugacy.

As usual, when h is a homeomorphism, f and g are said to be topologically conjugate, and
h is said to be a conjugacy.

2.3. Euclidean spaces, tori and the annulus

We consider Rd endowed with its usual Euclidean structure, which is denoted by h�; �i. We
write kvk WD hv; vi1=2 for its induced norm and d.v;w/ WD kv � wk for its induced distance
function.

The unit .d � 1/-sphere is denoted by Sd�1 WD fv 2 Rd W kvk D 1g. For any v 2 Rd n f0g
and any r 2 R we define the (open) half-space

(4) Hvr WD
n
z 2 Rd W hz; vi > r

o
:

Given any ˛ 2 Rd , we write T˛ for the translation T˛W z 7! z C ˛ on Rd .

The d -dimensional torus Rd=Zd will be denoted by Td and we write � WRd ! Td for the
canonical quotient projection. We will always consider Td endowed with the distance

dTd .x; y/ WD min
˚
d. Qx; Qy/ W Qx 2 ��1.x/; Qy 2 ��1.y/

	
; 8x; y 2 Td

Given any ˛ 2 Td , we write T˛ for the torus translation T˛WTd 3 z 7! zC˛. A point ˛ 2
Rd is said to be totally irrational when T�.˛/ is minimal on Td .

In several places along this paper the symbol “˙” shall have the following meaning:
given v 2 Rd , we write˙v to denote either the vector v or �v.
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2.3.1. The plane R2. – In the particular case of d D 2, given any v D .a; b/ 2 R2, we define
v? WD .�b; a/. For any ˛ 2 R and any v 2 S1, we shall use the following notation for the
straight line through the point ˛v and perpendicular to v:

(5) `v˛ WD ˛v C Rv? D f˛v C tv? W t 2 Rg:

We say a vector v 2 R2 n f0g has rational slope when there exists ˛ > 0 such that ˛v 2 Z2;
and it is said to have irrational slope otherwise.

We will also need the following notation for strips on R2: given any v 2 S1 and r < s, we
define the (closed) strip

(6) Avr;s WD Hvr nH
v
s D fz 2 R2 W r � hz; vi � sg:

A Jordan curve is any subset of R2 which is homeomorphic to S1. A Jordan domain is any
bounded open subset of R2 whose boundary is a Jordan curve.

We shall need the following theorem due to Janiszewski (see for instance, [17, Chapter X,
Theorem 2]):

T 2.1. – IfX1; X2 � S2 are two continua such thatX1\X2 is not connected, then
X1 [X2 disconnects S2, i.e., S2 n .X1 [X2/ is not connected.

2.3.2. The annulus. – The open annulus is given by A WD T � R. Its universal covering map
will be denoted by P WR2 ! A and is defined by

(7) P.x; y/ WD
�
�.x/; y

�
D .x C Z; y/; 8.x; y/ 2 R2:

We will always consider the annulus endowed by the distance

dA.x; y/ WD min
˚
k Qx � Qyk W Qx 2 P�1.x/; Qy 2 P�1.y/

	
; 8x; y 2 A:

We write OA WD Atf�1;C1g for the two-end compactification of the annulusA. Observe
that OA is homeomorphic to the 2-sphere S2.

We will need the following elementary result about unbounded connected subsets of A:

L 2.2. – Let C � A be a closed connected unbounded set. If P is the covering map
given by (7), then every connected component of P�1.C / is unbounded in R2.

Proof. – Reasoning by contradiction, let us suppose there is a bounded connected
component K of P�1.C / � R2.

If we write C for the closure of C in OA, we get that C is compact and connected as well,
and contains at least one of the two ends. Without loss of generalization, we can assume the
upper endC1 belongs to C .

Then we consider a sequence of open connected subsets .Un/n�1 of OA satisfying the
following properties: C � Un � OA and UnC1 � Un, for every n � 1; and

C D
\
n�1

Un D
\
n�1

Un:

Such a sequence of nested open sets can be constructed as follows: one considers a distance
function d OA on OA which is compatible with its topology and then defines Un WD C 1=n, for
every n � 1, where C 1=n denotes the 1=n-neighborhood of C with respect to the distance d OA
as defined by (3).
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Now let z0 be an arbitrary point of K � R2. So we have P.z0/ 2 C � Un, for
every n � 1. Since Un is open and connected, there is a continuous curve 
nW Œ0; 1� ! Un
such that 
n.0/ D P.z0/, 
n.1/ D C1 and 
n.t/ 2 A, for each n 2 N and every t 2 Œ0; 1/.

Then observe that, since P is a covering map, there exists a unique continuous curve
Q
nW Œ0; 1/! R2 such that Q
n.0/ D z0 and P ı Q
n D 
n.

If OR2 WD R2tf1g denotes the one-point compactification of R2, one sees that each Q
n has
a unique continuous extension from Œ0; 1� to OR2 just defining Q
n.1/ WD 1. In this way,
each Q
n

�
Œ0; 1�

�
is a compact subset of OR2, and by compactness of the Hausdorff space K . OR2/,

there exists a sub-sequence nj ! 1 and a non-empty compact subset L � OR2 such
that Q
nj

�
Œ0; 1�

�
! L, as nj ! 1, where the convergence is considered with respect to the

Hausdorff distance. One can easily verify that L is connected, both points z0 and1 belong
to L and P

�
L n f1g

�
� C . In particular, L n f1g is a closed, connected, unbounded subset

of P�1.C / � R2 andK\ .Lnf1g/ ¤ ;, contradicting the supposition thatK is a bounded
connected component of P�1.C /.

2.4. Ergodic theory and cocycles

Given a topological space X , we write BX to denote its Borel � -algebra.
The Haar (probability) measure on .Td ;BTd /, also called Lebesgue measure, will be

denoted by Lebd . By a slight abuse of notation, we will also write Lebd for the Lebesgue
measure on Rd ; and for the sake of simplicity of notation, we shall just write Leb instead
of Leb1.

Given an arbitrary � -finite measure space .X;B; �/, a map f W .X;B/ý is said to be non-
singular (respect to �) when it is measurable and, for every B 2 B, it holds �.f �1.B// D 0
if and only if �.B/ D 0. A non-singular map f W .X;B/ý is said to be conservative (with
respect to �) when for every B 2 B such that �.B/ > 0, there exists n � 1 satisfying
�
�
B \ f �n.B/

�
> 0.

As usual, we say that a measurable map f W .X;B/ý preserves � when f?� D �, where
f?�.B/ WD �.f

�1.B//, for every B 2 B; and f is said to be an automorphism of .X;B; �/
when it is bijective and its inverse is measurable and preserves �, too.

Given an invertible map f WX ý, a function �WX ! R and any n 2 Z, one defines the
Birkhoff sum

(8) S n
f .�/ WD

8̂̂<̂
:̂
Pn�1
jD0 � ı f

j ; if n � 1I

0; if n D 0I

�
P�n
jD1 � ı f

�j ; if n < 0:

Putting together two classical results of Atkinson [1, Theorem] and Schmidt [28, Propo-
sition 6], we get the following

T 2.3. – Let .X;B; �/ be a probability space, f W .X; B; �/ý be an ergodic
automorphism and � 2 L1.X;B; �/ be a real function such that

R
X
� d� D 0. Then, the

skew-product automorphism F WX � Rý given by

(9) F.x; t/ WD
�
f .x/; t C �.x/

�
; 8.x; t/ 2 X � R;

is conservative with respect to the F -invariant � -finite measure �˝ Leb.
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2.5. Groups of homeomorphisms

From now on and until the end of this section, M will denote an arbitrary topological
manifold. We write Homeo.M/ for the group of homeomorphisms from M onto itself. The
subgroup formed by those homeomorphisms which are homotopic to the identity idM will
be denoted by Homeo0.M/.

2.5.1. Torus homeomorphisms and their lifts. – The group of lifts of torus homeomorphisms
which are homotopic to the identity will be denoted by

H̃omeo0.Td / WD
n
Qf 2 Homeo0.Rd / W Qf � idRd 2 C 0.Td ;Rd /

o
:

Notice that in this definition, as it is usually done, we are identifying the elements of C 0.Td ;Rd /
with those Zd -periodic continuous functions from Rd to itself.

Making some abuse of notation, we also write � W H̃omeo0.Td / ! Homeo0.Td / for the
map that associates to each Qf the only torus homeomorphism � Qf such that Qf is a lift of � Qf .
Notice that with our notations, it holds �T˛ D T�.˛/ 2 Homeo0.Td /, for every ˛ 2 Rd .

Given any Qf 2 H̃omeo0.Td /, we define its displacement function by

(10) � Qf WD
Qf � idRd 2 C 0.Td ;Rd /:

Observe that this function can be naturally considered as a cocycle over f WD � Qf because

(11) � Qf n D

n�1X
jD0

� Qf ı f
j ; 8n � 1:

For the sake of readability, we shall use the usual notation for cocycles defining

�
.n/

Qf
WD � Qf n ; 8n 2 Z:

The map Rd 3 ˛ 7! T˛ 2 H̃omeo0.Td / defines an injective group homomor-
phism, and hence, Rd naturally acts on H̃omeo0.Td / by conjugacy. However, since every
element of H̃omeo0.Td / commutes with Tp, for all p 2 Zd , we conclude Td itself acts

on H̃omeo0.Td / by conjugacy, i.e., the map AdWTd � H̃omeo0.Td / ! H̃omeo0.Td / given
by

(12) Adt . Qf / WD T �1Qt ı
Qf ı TQt ; 8.t;

Qf / 2 Td � H̃omeo0.Td /; 8Qt 2 ��1.t/;

is well-defined.

2.5.2. Invariant measures. – We write M.M/ for the space of Borel probability measures
on M . A measure � 2 M.M/ is said to have total support when �.A/ > 0 for every non-
empty open set A � M . We say � is a topological measure if it has total support and no
atoms.

For every � 2M.M/, we consider the group of homeomorphisms

Homeo�.M/ WD ff 2 Homeo.M/ W f?� D �g :

Given f 2 Homeo.M/, we writeM.f / WD f� 2M.M/ W f?� D �g.

The following classical result is due to Oxtoby and Ulam [26]:
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T 2.4. – Let M be a compact topological manifold and �; � 2 M.M/ two
topological measures. Then, there exists h 2 Homeo.M/ such that h?� D �.

For the sake of simplicity of notation, on the two-dimensional torus we define the group
of symplectomorphisms (also called area-preserving homeomorphisms) by

Symp.T2/ WD
˚
f 2 Homeo.T2/ W Leb2 2M.f /

	
:

It is well known that its connected component containing the identity, which will be
denoted by Symp0.T2/, coincides with Symp.T2/ \Homeo0.T2/. We write

S̃ymp0.T2/ WD ��1
�
Symp0.T2/

�
< H̃omeo0.T2/:

2.6. Rotation set and rotation vectors

Let f 2 Homeo0.Td / be an arbitrary homeomorphism and Qf 2 H̃omeo0.Td / be a lift
of f . The rotation set of Qf is given by

(13) �. Qf / WD
\
m�0

[
n�m

8<:�
.n/

Qf
.z/

n
W z 2 Rd

9=;:
It can be easily shown that �. Qf / is non-empty, compact and connected.

When d D 1, by classical Poincaré theory of circle homeomorphisms [27] we know
that �. Qf / reduces to a point, but in general this does not hold in higher dimensions.

We summarized some elementary facts about rotation sets which are due to Misiurewicz
and Ziemian [24, Proposition 2.1]:

P 2.5. – Given any Qf 2 H̃omeo0.Td /, the following properties hold:

(i) �. Qf n/ D n�. Qf / WD fn� 2 Rd W � 2 �. Qf /g, for any n 2 Z;

(ii) �.Tp ı
Qf / D Tp

�
�. Qf /

�
, for any p 2 Zd .

As a consequence of (ii) of Proposition 2.5, we see that given any f 2 Homeo0.Td / and
any lift Qf WRd ý of f , we can define

�.f / WD �.�. Qf // � Td :

We say that f 2 Homeo0.Td / is a pseudo-rotation when �.f / is a singleton.

By (11) and (13), we know the rotation set is formed by accumulation points of Birkhoff

averages of the displacement function. So given any � 2 M.f /, one can define its rotation
vector by

��. Qf / WD

Z
Td

� Qf d�:

Thus, by Birkhoff ergodic theorem we get ��. Qf / 2 �. Qf /, for every f -invariant ergodic
probability measure �. Moreover, the following holds:
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T 2.6 (Theorem 2.4 in [24]). – Let f 2 Homeo0.Td / and Qf WRd ý be a lift of f .
Then, for every extreme point w 2 �. Qf /, there exists an ergodic measure � 2 M.f / such
that ��. Qf / D w. Consequently, it holds

Conv
�
�. Qf /

�
D

n
��. Qf / W � 2M.� Qf /

o
;

where Conv.�/ denotes the convex hull operator.

However, in the two-dimensional case rotation sets are always convex:

T 2.7 (Theorem 3.4 in [24]). – For every Qf 2 H̃omeo0.T2/, we have

�. Qf / D
n
��. Qf / W � 2M

�
� Qf

�o
:

2.7. Hamiltonian homeomorphisms

In the symplectic setting, that is when Qf 2 S̃ymp0.T2/, the rotation vector of Leb2 is also
called the flux of Qf and is usually denoted by Flux. Qf / WD �Leb2

. Qf /. In this case, it can be

easily shown that the flux map FluxW S̃ymp0.T2/ ! R2 is indeed a group homomorphism.
Since

Flux.Tp ı
Qf / D Tp.Flux. Qf //; 8p 2 Z2; 8f 2 S̃ymp0.T2/;

this homomorphism clearly induces a map Symp0.T2/ ! T2 which, by some abuse of
notation, will be denoted by Flux, too.

The kernel of this homomorphism FluxW Symp0.T2/! T2 is denoted by

Ham.T2/ WD ff 2 Symp0.T2/ W Flux.f / D 0g C Symp0.T2/;

i.e., it is a normal subgroup of Symp0.T2/. The elements of Ham.T2/ are called Hamiltonian
homeomorphisms.

Analogously, the kernel of FluxW S̃ymp0.T2/! R2 is denoted by

H̃am.T2/ WD
n
Qf 2 S̃ymp0.T2/ W Flux. Qf / D 0

o
:

R 2.8. – Notice that Ham.T2/ and H̃am.T2/ can be naturally identified. In fact,
the restriction �jH̃am.T2/

W H̃am.T2/! Ham.T2/ is a continuous group isomorphism.

Observe the following short exact sequence splits:

0 �! Ham.T2/ ,! Symp0.T2/
Flux
���! T2 �! 0:

In fact, the map T2 3 ˛ 7! T˛ is a section of Flux, and thus, the group Symp0.T2/ can
be decomposed as a semi-direct product Symp0.T2/ D T2 n Ham.T2/. In other words,
given ˛; ˇ 2 T2 and h; g 2 Ham.T2/, we have

.T˛ ı h/ ı .Tˇ ı g/ D T˛Cˇ ı
�
Adˇ .h/ ı g

�
;

where the T2-action Ad is given by (12).

This elementary fact about the group structure of Symp0.T2/ is our main inspiration for
the construction of the fiber-wise Hamiltonian skew-product we will perform in §6.1.
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2.8. Rotation set, periodic points and minimality

The following result due to Handel asserts that the rotation set of a periodic point free
homeomorphism has empty interior:

T 2.9 (Handel [8]). – Let f 2 Homeo0.T2/ be such that Per.f / D ; and
Qf 2 H̃omeo0.T2/ be a lift of f . Then, there exist v 2 S1 and ˛ 2 R so thatD

Qf n.z/ � z; v
E

n
! ˛; as n!1;

where the convergence is uniform for z 2 R2. In other words, the rotation set �. Qf / � `v˛, where
the straight line `v˛ is given by (5).

The following result due to Franks will play a fundamental role in our work:

T 2.10 (Franks [4]). – If Qf 2 S̃ymp0.T2/ and Flux. Qf / D .p1=q; p2=q/ 2 Q2,
then there exists z 2 R2 such that

Qf q.z/ D z C .p1; p2/:

In particular, �.z/ 2 Per.� Qf /.

Every probability measure which is invariant under a minimal homeomorphism is neces-
sarily a topological measure. Hence, as a straightforward consequence of Theorems 2.4 and
2.10, we get the following

C 2.11. – If f 2 Homeo0.T2/ is minimal and Qf 2 H̃omeo0.T2/ is a lift of f ,
then

�. Qf / \Q2 D ;:

2.9. Classification of plane fixed points

Let V; V 0 � R2 be two non-empty open sets and let f WV ! V 0 be a homeomorphism.
Following the terminology of Le Calvez [20], a fixed point z0 2 Fix.f / is said to be:

— isolated when it is an isolated point of the set Fix.f /;

— accumulated when every neighborhood of z0 contains a periodic orbit of f different
from z0;

— dissipative when z0 admits a local basis .Un/n�0 of neighborhoods such that
f .@Un/ \ @Un D ;, for every n � 0, i.e., each neighborhood is either attractive or
repulsive;

— indifferent when there exists a neighborhood W of z0 such that W � V and for every
Jordan domain U � W which is a neighborhood of z0 it holds

cc
�
If .U /; z0

�
\ @U ¤ ;;

where If .U / denotes the maximal f -invariant subset of U given by (2).
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2.10. Fixed point indexes

If f WV ! V 0 is as in §2.9, and 
 WS1 ! V is a Jordan curve such that 
.S1/\Fix.f / D ;,
then one defines the index of f along 
 as the integer

i.f; 
/ WD deg
�
S1 3 t 7!

f .
.t// � 
.t/

kf .
.t// � 
.t/k
2 S1

�
;

where deg.�/ denotes the topological degree.

When z0 2 Fix.f / is isolated, then one can define the index of f at z0 as

i.f; z0/ WD i.f; @U /;

where U denotes any Jordan domain satisfying U � V and U \ Fix.f / D fz0g. Since this
index does not depend on the choice of U , this notion is well-defined.

We will need the following topological version of Leau-Fatou’s flower theorem due to Le
Calvez [19], that has been lately improved by Le Roux [23]:

T 2.12. – Let us suppose f WV ! V 0 is an orientation-preserving homeomorphism
and z0 2 Fix.f / is an isolated fixed point such that i.f; z0/ � 2. Then there exist two open
non-empty subsets W C; W � � V n fz0g such that

(i) f n.W C/ is well-defined for every n � 0, f m.W C/ \ f n.W C/ D ; whenever m and n
are different non-negative integers and !f .z/ D fz0g, for every z 2 W C;

(ii) f �n.W �/ is well-defined for every n � 0, f �m.W �/ \ f �n.W �/ D ; whenever m and
n are different non-negative integers and f̨ .z/ D fz0g, for every z 2 W �;

where f̨ and !f denote the ˛-and !-limit sets, respectively.

The following result about indexes of iterates of non-accumulated fixed points is due
to Le Calvez and Yoccoz [22] but its proof has never been published (see for instance [20,
Proposition 3.3]):

T 2.13. – If f is an orientation-preserving homeomorphism and z0 2 Fix.f / is
isolated, non accumulated, non indifferent and non dissipative, then there exist integers q � 1
and r � 1 such that (

i.f k ; z0/ D 1; if k 62 qZI
i.f k ; z0/ D 1 � rq; if k 2 qZ:

2.11. Minimal homeomorphisms

In this paragraph we recall some classical and elementary results about minimal homeo-
morphisms that we shall frequently use all along the paper.

We say that a subset A � Z has bounded gaps if there exists N 2 N such that

(14) A \ fn; nC 1; : : : ; nCN g ¤ ;; 8n 2 Z:

The minimum natural number N such that (14) holds shall be denoted by G .A/.

The following three results are very well-known, but we decided to include them here just
for the sake of reference:
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P 2.14. – If .X; d/ is a compact metric space and f WX ý is a minimal home-
omorphism, then for every non-empty open set U � X and any x 2 X , the visiting time set

�.x; U; f / WD fn 2 Z W f n.x/ 2 U g

has bounded gaps.

As a consequence of this result, one can easily show the following:

C 2.15. – For every ˛ 2 Td , any x 2 Td and any neighborhood V � Td of x,
the visiting time set �.x; V; T˛/ has bounded gaps.

P 2.16. – If .X; d/ is a connected compact metric space and f WX ý is a
minimal homeomorphism, then f n is minimal for every n 2 Z n f0g.

The last result we recall here is due to Gottschalk and Hedlund and deals with cohomo-
logical equations:

T 2.17 (Gottschalk, Hedlund [6]). – Let X be a compact metric space and
f WX ý be a minimal homeomorphism. Let �WX ! R be a continuous function and assume
there exists x0 2 X such that

sup
n2N

ˇ̌̌̌
ˇ̌n�1X
jD0

�
�
f j .x0/

�ˇ̌̌̌ˇ̌ <1:
Then, there is a continuous function uWX ! R such that u ı f � u D �. In particular,

sup
n2N

ˇ̌̌̌
ˇ̌n�1X
jD0

�
�
f j .x/

�ˇ̌̌̌ˇ̌ � 2 kukC0 <1; 8x 2 X:

3. An ergodic deviation result

This section is devoted to prove an abstract ergodic deviation theorem that will play a key
role in §7. Even though this result might be already known to some experts, we were not able
to find any reference in the literature and thus we have decided to include its proof here.

T 3.1. – Let .X;B; �/ be a probability space, f W .X;B; �/ý an ergodic auto-
morphism and � 2 L1.X;B; �/ such that

R
X
� d� D 0. Let us suppose that

(15) sup
n�0

S n
f �.x/ D C1; and inf

n�0
S n
f �.x/ > �1;

for �-a.e. x 2 X , where S n
f � denotes the Birkhoff sum given by (8).

Then, it holds

sup
n�0

S n
f �.x/ D C1; and inf

n�0
S n
f �.x/ > �1;

for �-a.e. x 2 X .

To prove Theorem 3.1, first we need a lemma which is a simple consequence of Theorem 2.3:
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L 3.2. – Let .X;B; �/, f and � be as in Theorem 3.1 and let us assume there exists
M > 0 such that

(16) sup
n2N

S n
f �.x/ < M; for �-a.e. x 2 X:

Then, it holds

(17) inf
n2N

S n
f �.x/ � �M; for �-a.e. x 2 X:

Proof of Lemma 3.2. – Let us suppose (17) is false. So, if we define

Amn WD
˚
x 2 X W Sm

f �.x/ � �M � 1=n
	
;

for each m; n � 1, we have �
�S

m;n�1Am;n

�
> 0. Then, there exist N; n � 1 such that the

set A WD ANn satisfies �.A/ > 0 and

(18) SN
f �.x/ � �M �

1

n
; 8x 2 A:

Now, let us consider the skew-product F WX � Rý given by (9) and define the set
QA WD A � Œ�1=2n; 1=2n� � X � R. Since � ˝ Leb. QA/ D n�1�.A/ > 0, by Theorem 2.3 we

know there exists k � 1 such that � ˝ Leb
�
QA \ F �k. QA/

�
> 0. By classical arguments in

ergodic theory, this implies that there exists a sequence kj !C1 such that

�˝ Leb
�
QA \ F �kj . QA/

�
> 0; 8j 2 N:

This is equivalent to say that the set

Bj WD

�
x 2 A W f kj .x/ 2 A;

ˇ̌̌
S
kj

f
�.x/

ˇ̌̌
�
1

n

�
has positive �-measure, for every j .

Now, choosing j large enough in order to have kj > N , and combining this with (18), we
get

S
kj�N

f

�
f N .x/

�
D S

kj

f
.x/ � SN

f .x/ > �
1

n
CM C

1

n
DM;

for �-a.e. x 2 Bj . Since �.Bj / > 0, this contradicts (16).

Proof of Theorem 3.1. – Of course we can assume j�.x/j <1, for every x 2 X . By (15),
there exist K > 0 and A 2 B with �.A/ > 0 such that

(19) S n
f �.x/ > �K; 8n � 0;

for �-a.e. x 2 A.
Consider the functions �CA ; �

�
A WX ! N0 [ f1g given by

�CA .x/ WD minfn � 0 W f n.x/ 2 Ag;

��A .x/ WD minfn � 0 W f �n.x/ 2 Ag; 8x 2 X:

Since f is ergodic, �CA and ��A are finite �-a.e. We also define the first return time to A
by rA WD �CA ı f

ˇ̌
A
C 1.

Now, we consider the probability space .A;BA; �A/ given by BA WD fB 2 B W B � Ag

and �A WD �.A/�1�
ˇ̌
A

and the ergodic automorphism fAW .A;BA; �A/ý given by the first
return map:

fA.x/ WD f
�
C

A
.f .x//

�
f .x/

�
D f rA.x/.x/;
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for �-a.e. x 2 A. We also define the function �A.x/ WD S
rA.x/

f
�.x/. Then it holds

�A 2 L
1.A;BA; �A/ and

R
A
�A d� D 0. On the other hand, by (19) we know

(20) S n
fA
�A.x/ > �K; 8n � 0;

for �A-a.e. x 2 A.
Then, applying Lemma 3.2 in this context, we conclude that for �A-a.e. x 2 A it holds

(21) S n
fA
�A.x/ � K; 8n � 0:

Now, let us consider the measurable functions M WA! R and N WA! N0 given by

(22) M.x/ WD sup
1�n�rA.x/

S n�1
f �.x/;

and

(23) N.x/ WD inf
˚
n � 0 W n < rA.x/; S n

f �.x/ DM.x/
	
;

and notice they are well defined �-a.e. x 2 A.
For each pair .m; n/ 2 N � N0, let us consider the set

Anm WD fx 2 A W m �M.x/ <1; N.x/ D ng :

Putting together (15) and (21) it follows that

(24) �

�[
n�0

Anm

�
> 0; 8m 2 N:

By (24), for each m 2 N there exists nm 2 N so that �.Anm
m / > 0. So, let us define the set

(25) B WD
\
m2N

\
i�0

[
j�i

f j .Anm
m /:

Since f is an ergodic automorphism, B has full �-measure.
Now, let us consider an arbitrary point x 2 B and any m 2 N. Since Anm

m � A, it clearly
holds ��A .x/ <1. By (25), there exists a natural number j D j.x;m/ > nm such that

(26) f �j
�
f ��

�
A
.x/.x/

�
2 Anm

m :

Since both points f ��
�
A
.x/.x/ and f �j

�
f ��

�
A
.x/.x/

�
belong to A, there exists jA 2 N such

that
f
�jA
A

�
f ��

�
A
.x/.x/

�
D f �j

�
f ��

�
A
.x/.x/

�
:

Now invoking (20), (22), (23) and (26), we get

S
���

A
.x/�jCnm

f
�.x/ D S

���
A
.x/

f
�.x/C S

�jCnm

f
�
�
f ��

�
A
.x/.x/

�
D S

���
A
.x/

f
�.x/C S

�jA
fA

�A
�
f ��

�
A
.x/.x/

�
C S nm

f
�
�
f
�jA
A

�
f ��

�
A
.x/.x/

��
� S

���
A
.x/

f
�.x/ �K Cm:

(27)

Since m is arbitrary in (27), �.B/ D 1 and j > nm, we have proved that

sup
n�0

S n
f �.x/ D C1; for �-a.e. x 2 X:
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On the other hand, let us consider the set

C WD
\
i�0

[
j�i

f j .A/:

Since f is ergodic, it holds �.C/ D 1.
Now, consider any x 2 C and any n 2 N. Thus, ��A .x/ and ��A

�
f �n.x/

�
are both finite, and

both points f ��
�
A
.x/.x/ and f �n��

�
A
.f �n.x//.x/ belong to A. So, there exists lA D lA.x; n/ 2

N such that
f
lA
A

�
f �n��

�
A
.f �n.x//.x/

�
D f ��

�
A
.x/.x/:

Then, we have

S �nf �.x/ D S
�n���

A
.f �n.x//

f
�.x/C S

��
A
.f �n.x//

f
�
�
f �n��

�
A
.f �n.x//.x/

�
> S

�n���
A
.f �n.x//

f
�.x/ �K

D S
���

A
.x/

f
�.x/ � S

nC��
A
.f �n.x//���

A
.x/

f
�
�
f �n��

�
A
.f �n.x//.x/

�
�K

D S
���

A
.x/

f
�.x/ � S

lA
fA
�A
�
f �n��

�
A
.f �n.x//.x/

�
�K

� S
���

A
.x/

f
�.x/ � 2K;

where the first inequality follows from (19) and the second one from (21).
From this last estimate, and since �.C/ D 1, it follows that

inf
n�0

S n
f �.x/ > �1; for �-a.e. x 2 X:

4. Rotational deviations

In this section we enter into the core of this work: the study of rotational deviations
for 2-torus homeomorphisms in the identity isotopy class.

Let us start by recalling some definitions we introduced in [13]. Let f WT2 ý be a home-
omorphism homotopic to the identity and Qf 2 H̃omeo0.T2/ be a lift of f . Let us suppose
that there exist v 2 S1 and ˛ 2 R such that

(28) �. Qf / � `v˛ D f˛v C tv
?
W t 2 Rg:

Observe that, by Theorem 2.9, this hypothesis is always satisfied when f is periodic point
free.

We say that a point z0 2 T2 exhibits bounded v-deviations when there exists a real
constant M DM.z0; f / > 0 such that

(29)
D
Qf n. Qz0/ � Qz0 � n�; v

E
D

D
�
.n/

Qf
.z0/; v

E
� n˛ �M; 8n 2 Z;

for any Qz0 2 ��1.z0/, any � 2 �. Qf / and where � Qf denotes the displacement cocycle of Qf
given by (10).

Moreover, we say that f exhibits uniformly bounded v-deviation when there exists
M DM.f / > 0 such thatD

�
.n/

Qf
.z/; v

E
� n˛ �M; 8z 2 T2; 8n 2 Z:
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Even though the straight lines `v˛ and `�v�˛ coincide as subsets of R2, there is no a priori
obvious relation between boundedness of v-deviation and .�v/-deviation, because in our
definition of “bounded v-deviations” given by (29) we are just considering boundedness from
above.

However, we got the following result that relates both v-and .�v/-deviations:

T 4.1 (Corollary 3.2 in [13]). – If f 2 Homeo0.T2/ and Qf WR2 ý is a lift of f
such that condition (28) holds, then f exhibits uniformly bounded v-deviations if and only if
Qf exhibits uniformly bounded .�v/-deviations.

As a particular case of our definition of boundedness rotational deviations, let us recall
that a homeomorphism f 2 Homeo0.T2/ is said to be annular (see for instance [16, 11])
when there exist a lift Qf 2 H̃omeo0.T2/, M > 0 and v 2 S1 with rational slope such that

(30)
ˇ̌̌D
�
.n/

Qf
.z/; v

Eˇ̌̌
�M; 8z 2 T2; 8n 2 Z:

Observe that in such a case, the rotation set �. Qf / is contained in the line `v0, i.e., the straight
line parallel to v and passing through the origin.

On the other hand, a homeomorphism f 2 Homeo0.T2/ is said to be eventually annular
when there exists k 2 N such that f k is annular.

In [13] we proved that boundedness of v-deviations is equivalent to the existence of a
certain invariant topological object called torus pseudo-foliation.

4.1. Pseudo-foliations

In this paragraph we recall the notions of plane and torus pseudo-foliations we introduced
in [13].

4.1.1. Plane pseudo-foliations. – Let F be a partition of R2. We shay that F is a plane
pseudo-foliation when every atom of F is closed, connected, has empty interior and discon-
nects R2 in exactly two connected components.

Given any z 2 R2, we write Fz for the atom of the partition F containing the point z. If
hWR2 ý is an arbitrary map, we say that F is h-invariant when

h
�
Fz

�
D Fh.z/; 8z 2 R2:

Let us recall the following result of [13, Proposition 5.1]:

P 4.2. – If F is a plane pseudo-foliation, then both connected components
of R2 nFz are unbounded, for every z 2 R2.
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4.1.2. Torus pseudo-foliations. – A partition F of T2 is said to be a toral pseudo-foliation
whenever there exists a plane pseudo-foliation eF , called the lift of F , satisfying

�
� eFz

�
D F�.z/; 8z 2 R2:

Notice that such a plane pseudo-foliation is Z2-invariant, i.e., eF is Tp-invariant for every
p 2 Z2.

In [13] we have gotten the following result that guarantees the existence of an asymptotic
homological direction for torus pseudo-foliations:

T 4.3. – If eF is the lift of torus pseudo-foliation, then there exist v 2 S1 and
M > 0 such that

jhw � z; vij �M; 8z 2 R2; 8w 2 eFz :

The vector v given by Theorem 4.3 is unique up to multiplication by .�1/. So, we will call
it the asymptotic direction of either the torus pseudo-foliation F or its lift eF .

One of the main results of [13] is the following:

T 4.4 (Theorem 5.5 in [13]). – Let f 2 Homeo0.T2/ be a periodic point free,
area-preserving, non-wandering and non-eventually annular homeomorphism. If f exhibits
uniformly bounded v-deviations, for some v 2 S1, then there exists an f -invariant pseudo-
foliation whose asymptotic direction is given by v?.

4.2. Rotational deviations for minimal homeomorphisms

In this paragraph we present some simple results about rotational deviations of minimal
homeomorphisms. So, from now on let us assume that f 2 Homeo0.T2/ is minimal and
Qf WR2 ý is a lift of f . By Theorem 2.9 we know there exist v and ˛ such that the rotation

set of Qf is contained in the line `v˛, i.e., inclusion (28) holds.

The following result is an improvement of Theorem 4.1 under the minimality assumption:

P 4.5. – If f is minimal, Qf is a lift of f and v and ˛ are such that condition
(28) holds, then the following properties are equivalent:

(i) f does not exhibit uniformly bounded v-deviations;

(ii) f does not exhibit uniformly bounded .�v/-deviations;

(iii) for every z 2 T2 it holds

sup
n�0

ˇ̌̌D
�
.n/

Qf
.z/; v

E
� n˛

ˇ̌̌
D sup

n�0

ˇ̌̌D
�
.n/

Qf
.z/; v

E
� n˛

ˇ̌̌
D1:

Proof. – This is a straightforward consequence of Theorems 2.17 and 4.1.

For the proof of Theorem B we shall need the following

P 4.6. – If f 2 Homeo0.T2/ is a minimal homeomorphism, then it is not
eventually annular.
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Proof. – By Proposition 2.16, f k is minimal for any k 2 N. So, it is enough to show
that f is not annular.

Reasoning by contradiction, let us suppose f is annular. Then, there exist a lift Qf WR2 ý

and v 2 S1 with rational slope such that

sup
n2Z; z2T2

ˇ̌̌D
�
.n/

Qf
.z/; v

Eˇ̌̌
<1:

Since v has rational slope, by Proposition 2.5 there is no loss of generality assuming
v D .1; 0/. So, by Theorem 2.17, there exists u 2 C 0.T2;R/ satisfying

(31) pr1 ı� Qf D u ı f � u:

Now, let us consider the continuous maps Qg; QhWR2 ý given by

Qg.x; y/ WD
�
x; y C pr2 ı� Qf .x; y/

�
;

Qh.x; y/ WD
�
x � u.x; y/; y

�
;

for every .x; y/ 2 R2.

As consequence of (31), we know Qh ı Qf D Qg ı Qh, and hence, h ı f D g ı h, where g
and h are the continuous torus maps whose lifts are Qg and Qh, respectively. However, since
h is homotopic to the identity, it is surjective and g is clearly not minimal, contradicting the
minimality of f .

So, f is not annular.

Even though our next result is rather simple, it may be useful in future works:

T 4.7. – Let f 2 Homeo0.T2/ be a minimal homeomorphism, Qf WR2 ý a lift of f
and� any point in�. Qf /. Then for every " > 0 there exists ı > 0 such that for anyn 2 Z satisfying
d.n�;Z2/ < ı, there is z 2 R2 such that


 Qf n.z/ � z � n�


 < ":

Proof. – By Theorem 2.7, there exists � 2 M.f / such that ��. Qf / D �. Since
f is minimal, � is a topological measure (i.e., has total support and no atoms). So, by
Theorem 2.4, there exists h 2 Homeo.T2/ such that h?Leb2 D �. Moreover, after pre-
composing with a linear automorphism of T2 if necessary, we can assume that h is isotopic
to the identity. Then, if Qh 2 H̃omeo0.T2/ is a lift of h and we write Qg WD Qh�1 ı Qf ı Qh, we have
Qg 2 S̃ymp0.T2/ and Flux. Qg/ D �.

Observing the displacement function� Qh is Z2-periodic, and hence, uniformly continuous,
so given any " > 0 there exists ı > 0 such that



� Qh.x/ �� Qh.y/

 < "whenever dT2.x; y/ < ı.

On the other hand, we have

Flux
�
T �n� ı Qgn

�
D Flux

�
T �n�

�
C Flux.g/ D �n�C n� D 0:

So, T �n� ı Qgn 2 H̃am.T2/ for every n 2 Z. By Theorem 2.10, for each n there exists zn 2 R2

such that T �n� ı Qgn.zn/ D zn. Then,

Qf n
�
Qh.zn/

�
D Qh.zn C n�/ D zn C n�C� Qh.zn C n�/;
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and consequently, defining wn WD Qh.zn/, we get


 Qf n.wn/ � wn � n�


 D 

� Qh.zn C n�/ �� Qh.zn/

 < ";
whenever d.n�;Z2/ < ı.

5. Stable sets at infinity: transverse direction

All along this section f 2 Homeo0.T2/ will continue to denote a minimal homeomor-
phism and Qf 2 H̃omeo0.T2/ a lift of f . Here we start the study of stable sets at infinity asso-
ciated to (certain lifts of) f . We begin considering stable sets at infinity with respect to the
horizontal direction assuming there exists a lift Qf such that the rotation set �. Qf / intersects
the horizontal axis.

We call this “a transverse direction” because, under the hypotheses of Theorem A, there is
no loss of generality assuming �. Qf / intersects transversely the horizontal axis, modulo finite
iterates, conjugacy and appropriate choice of the lift.

To simplify our notation, in this section we will write u to denote either the vector .0; 1/
or .0;�1/.

T 5.1. – Let f and Qf be as above, and assume �. Qf / intersects the horizontal axis,
i.e.,

(32) �. Qf / \ `
.0;1/
0 ¤ ;:

For each r 2 R and u 2 f.0; 1/; .0;�1/g, consider the set

(33) ƒur WD cc
�
I Qf

�
Hur
�
;1

�
;

where I Qf

�
Hur
�

denotes the maximal invariant set given by (2).

Then, it holds:

(i) ƒur D T.1;0/.ƒ
u
r /, T.0;1/.ƒ

u
r / D ƒ

u
rC1, and ƒur � ƒ

u
s , for any r 2 R and any s < r;

(ii) ƒur \ `
u
r ¤ ;, for every r 2 R;

(iii) I Qf
.Hur / \I Qf

.H�ur 0 / D ;, for every r; r 0 2 R;

(iv) given any r and any connected unbounded closed subset � � ƒur , it holds

� \ `us ¤ ;; 8s > inffjpr2.z/j W z 2 �gI

(see Figure 1);

(v)
S
r2Rƒ

u
r D R2I

(vi) For each r 2 R, the set I Qf
.Hur / has empty interior and does not disconnect R2, i.e.,

R2 nI Qf
.Hur / is connected. In particular, this implies thatƒur has empty interior and does

not disconnect R2 as well.
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F 1. � � ƒur intersects `us for u D .0; 1/ and s > pr2.z/.

Proof. – Statement ((i)) easily follows from the fact that Hur � Hus whenever r > s and
recalling that Qf commutes with every integer translation.

To show ((ii)), let A be the open annulus and P WR2 ! A the covering map as defined in
§2.3.2. Since Qf commutes with all deck transformations of P , it induces a homeomorphism
onA; and if we write OA WD Atf�1;C1g for the two-end compactification of the annulusA,
this homeomorphism admits a unique extension to OA. More precisely, one can define Of 2
Homeo. OA/ by

Of .z/ WD

8̂̂<̂
:̂
C1; if z D C1I

�1; if z D �1I

P
�
Qf . Qz/

�
; if z 2 A; Qz 2 P�1.z/:

Now, we want to show both fixed points �1 andC1 are indifferent for Of , according to
the classification of fixed points given in §2.9.

Since f is minimal, it holds Fix. Of / D Per. Of / D f�1;C1g. In particular, both fixed
points are non-accumulated.

On the other hand, since OA is homeomorphic to S2 and Of is isotopic to the identity, by
Lefschetz fixed point theorem one gets

(34) i
�
Of n;�1

�
C i

�
Of n;C1

�
D L. Of n/ D �. OA/ D 2; 8n 2 Z n f0g:

Then, we make the following

C 5.2. – Fixed point indexes atC1 and �1 satisfy

(35) i
�
Of n;˙1

�
� 1; 8n 2 Z n f0g:
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Since the statement is completely symmetric, we will just prove Claim 5.2 for the
pointC1. Let us proceed by contradiction. Suppose that i. Of ;C1/ � 2. Then, letW C and
W � � A denote the open sets given by Theorem 2.12.

Let � 2 M.f / be any ergodic f -invariant measure. We will consider the three possible
cases: pr2.��. Qf // is either positive, negative or zero. Let us start assuming pr2.��. Qf // > 0.
Then by Birkhoff ergodic theorem, for �-almost every z 2 T2 and every Oz 2 .id � �/�1.z/,
it holds

(36) Of �n. Oz/! �1 2 OA; as n!C1;

where id� � WA D T�R! T2 denotes the natural covering map. Since f is minimal, � is a
topological measure and hence, taking into accountW � is open, there exists a point Oz 2 W �

satisfying (36). This contradicts the fact that ˛ Of . Oz/ D fC1g, for every Oz 2 W �.

Analogously, one gets a contradiction assuming pr2
�
��. Qf /

�
< 0.

So, it just remains to consider the case pr2
�
��. Qf /

�
D 0. In such a case, as a consequence of

Theorem 2.3, we know that Of W OAý is non-wandering, i.e., �. Of / D OA. In fact, let OV � A be
a non-empty open set and suppose diam OV < 1=4; let us define V WD .id � �/. OV / � T2.
Since id � � is a covering map, V is open and thus, �.V / > 0. On the other hand, since we
are assuming pr2

�
��. Qf /

�
D 0, we haveZ

T2

pr2 ı� Qf d� D 0:

Then, invoking Theorem 2.3 we know that there exist z 2 V and n � 1 such that f n.z/ 2 V

and
ˇ̌̌
S n
f

�
pr2 ı� Qf

�
.z/
ˇ̌̌
D

ˇ̌̌
pr2 ı�

.n/

Qf
.z/
ˇ̌̌
< 1=4. This implies OV \ Of �n. OV / ¤ ;. So,

A � �. Of /, then clearly we have �. Of / D OA. But the both sets W C and W � given by
Theorem 2.12 are wandering for Of , getting a contradiction.

So, i. Of ;C1/ � 1. By Proposition 2.16, one can easily adapt the previous reasoning for
the general case, i.e., where i. Of n;C1/ � 2, with jnj � 2; and Claim 5.2 is proven.

Now, putting together (34) and (35) we conclude that

(37) i
�
Of k ;�1

�
D i

�
Of k ;C1

�
D 1; 8k 2 Z n f0g:

By an argument similar to the one we used to prove Claim 5.2, one can show both fixed
points�1 andC1 are not dissipative (i.e., they are neither attractive nor repulsive). In fact,
arguing by contradiction let us suppose, for instance, that there is a trapping neighborhood
V ofC1, i.e., V � OA is an open set such thatC1 2 V ,�1 62 V and Of .V / � V . Following
the very same reasoning we used to prove Claim 5.2 one can conclude in this case that

pr2
�
��. Qf /

�
> 0; 8� 2M.f /:

However this last estimate is incompatible with the convexity of �. Qf / and our hypoth-
esis (32). So, �1 andC1 are non-dissipative.

Now, combining this last assertion, Theorem 2.13 and (37) we show that C1 and �1
are indifferent (according to the classification of fixed points given in §2.9). In other words,
if we define

(38) V ˙.0;1/r WD P
�
H˙.0;1/r

�
t f˙1g � OA;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1014 A. KOCSARD

F 2. Oƒur WD P
�1
�
I Of .V

u
r /;C1

�
� ƒur , with u D .0; 1/.

it can be easily verified that V ˙.0;1/r is a neighborhood of˙1 and therefore,

cc
�
I Of

�
V ˙.0;1/r

�
;˙1

�
\ @V ˙.0;1/r ¤ ;; 8r 2 R;

where @V ˙.0;1/r D T � frg � A. In particular, the set

(39) Oƒ˙.0;1/r WD P�1
�

cc
�
I Of

�
V ˙.0;1/r

�
;˙1

�
n f˙1g

�
� R2

intersects the horizontal line `˙.0;1/r , for every r 2 R. By Lemma 2.2, every connected
component of Oƒ˙.0;1/r is unbounded, so it holds

(40) Oƒur � ƒ
u
r ; 8r 2 R:

Hence, (ii) is proven (see Figure 2 for an illustrative representation of the construction we
have performed).

Assertion (iii) easily follows from Proposition 4.5 and Proposition 4.6. In fact, let us

assume there exists z 2 I Qf

�
H.0;1/r

�
\ I Qf

�
H.0;�1/r 0

�
, for some r; r 0 2 R. Then, this implies

that

r � pr2
�
�
.n/

Qf
.z/
�
D

n�1X
jD0

pr2 ı� Qf
�
Qf j .z/

�
� �r 0; 8n 2 N:

So, by Proposition 4.5, f should be annular and by Proposition 4.6, this is incompatible with
minimality of f .

Then, let us prove (iv) reasoning by contradiction. Suppose there exists a connected closed
unbounded set � � ƒur such that �\`us D ;, for some real number s > inffjpr2.z/j W z 2 �g.
This means � is contained in Aur;s , where the strip Aur;s is given by (6).
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By (i) we know that ƒur is T1;0-invariant. So,

� 0 WD
[
n2Z

T n1;0.�/ � ƒ
u
r ;

and � 0 is contained in Aur;s as well. Moreover, since I Qf

�
Hur
�

is a closed Qf -invariant set, and

� 0 � ƒur � I Qf

�
Hur
�
, we conclude that

(41) � 0 � I Qf

�
Hur
�
\ Aur;s :

On the other hand, since � is unbounded, one sees that � 0 is contained in the interior of
the strip Ar�1;sC1 and separates both connected components of its boundary.

Then let us write O� 0 WD P.� 0/ and OAur�1;sC1 WD P.Aur�1;sC1/, where P WR2 ! A denotes
the covering map given by (7). Observe that, since � 0 is T1;0-invariant and T1;0 generates the
group of deck transformations of P , O� 0 is a compact subset of A.

So O� 0 � OAur�1;sC1 and when O� 0 is considered as a compact subset of OA D Atf�1;C1g,
it separates the horizontal circle P.`usC1/ and the point � sign.u/1 2 OA, where sign.u/ D 1,
for u D .0; 1/ and sign.u/ D �1, for u D .0;�1/.

In the proof of (ii) we have shown that the set cc
�
I Of

�
V �u�s�1

�
;� sign.u/1

�
intersects the

boundary of V �u�s�1, where the set V �u�s�1 is given by (38), and so we have

cc
�
I Of

�
V �u�s�1

�
;� sign.u/1

�
\ O� 0 ¤ ;:

By (40), this implies that

; ¤ Oƒ�u�s�1 \ �
0 � I Qf

�
H�u�s�1

�
\I Qf

�
Hur
�
;

contradicting (iii).

In order to prove (v), first notice that, as a consequence of (i), the set
S
r2Rƒ

u
r is

Z2-invariant, i.e., it is Tp-invariant, for every p 2 Z2.

On the other hand, since the set ƒur is defined as the union of unbounded connected
components of an Qf -invariant closed set, it is Qf -invariant itself.

So, the set
S
r2Rƒ

u
r is invariant under the abelian subgroup h Qf ; fTpgp2Z2i < HomeoC.R2/

which acts minimally on R2. Then,
S
r2Rƒ

u
r is dense in R2, as desired.

Last assertion (vi) is a rather straightforward consequence of (iii), (iv) and (v).

In fact, first observe that, combining (iii) and (v) one easily shows that ƒur has empty
interior.

On the other hand, if R2 n ƒur were not connected, then there should exist a connected
component V 2 �0.R2 nƒur / such that V � Hur .

By (v), there exists r 0 2 R such thatƒ�ur 0 \V ¤ ;. If z0 is any point inƒ�ur 0 \V , then by (iv)
we know that cc

�
ƒ�ur 0 ; z0

�
is not contained in the strip Aur;�r 0 . Consequently, the connected

set cc
�
ƒ�ur 0 ; z0

�
is not contained in V . So it intersects the boundary of V which is contained

in ƒur . This contradicts (iii) and (vi) is proved.
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F 3. Definition of the set �uz .s/ sets for u D .0; 1/

Let us continue assuming Qf 2 H̃omeo0.T2/ is a lift of a minimal homeomorphism f and
condition (32) holds. Fixing a real number r , for each z 2 ƒur \ `

u
r and every s > r we define

the set

(42) �uz .s/ WD cc
�
ƒur \ Aur;s; z

�
;

where the strip Aur;s is given by (6) (see Figure 3).

As consequence of Theorem 5.1, we get the following result about the geometry of the
sets �uz .s/:

C 5.3. – For every r 2 R and u 2 f.0; 1/I .0;�1/g the following conditions are
satisfied:

(i) for every z 2 ƒur \ `
u
r and any s > r ,

(43) T n1;0
�
�uz .s/

�
\ �uz .s/ D ;; 8n 2 Z n f0gI

(ii) for any s > r , there exists a real number D D D.f; s; r/ > 0 such that

(44) diam
�
pr1

�
�uz .s/

��
� D; 8z 2 ƒur \ `

u
r ;

and so, �uz .s/ is compact;

(iii) for every U 2 �0
�
Hur nƒur

�
,

(45) T n1;0.U / \ U D ;; 8n 2 Z n f0g:

See Figure 4 for a graphical representation of these properties.

Proof. – Let us fix real numbers s > r and let z denote an arbitrary point in ƒur \ `
u
r .

Reasoning by contradiction, let us start supposing diam
�
pr1.�

u
z .s/

�
is infinite. Then, the set

� WD
[
n2Z

T n1;0
�
�uz .s/

�
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F 4. �uz .s/ and their horizontal translations for u D .0; 1/

disconnects R2 and since I Qf

�
Hur
�

is T1;0-invariant, � � I Qf

�
Hur
�
. So, I Qf

�
Hur
�

disconnects
R2 contradicting (vi) of Theorem 5.1. Thus it holds

(46) diam
�

pr1
�
�uz .s/

��
<1; 8z 2 ƒur \ `

u
r ; 8s > r:

Now suppose (43) is false, i.e., there exist z, s and n such that

Tn;0
�
�uz .s/

�
\ �uz .s/ ¤ ;;

with n ¤ 0. Then, since ƒur is T1;0-invariant, the set[
m2Z

Tmn;0
�
�uz .s/

�
� ƒur

is connected, contains �uz .s/ and so, it coincides with �uz .s/. Since n ¤ 0, we conclude that
diam.pr1.�

u
z .s/// D1, contradicting (46).

Property (44) is a straightforward consequence of (43) and (46). In fact, for fixed real
numbers s > r and any point w 2 ƒur \ `

u
r , by (46) we know that diam.pr1.�w.s/// is finite.

Then, given any z 2 ƒur \ `
u
r , there exists a unique n 2 Z such that pr1 ı T

n
1;0.w/ � pr1.z/ <

pr1 ı T
nC1
1;0 .w/. By (43), T n1;0

�
�uw.s/

�
and T nC11;0

�
�uw.s/

�
are disjoint. Thus, it holds

diam
�

pr1
�
�uz .s/

��
� diam

�
pr1

�
�uw.s/

��
C 2; 8z 2 ƒur \ `

u
r ;

and (44) is proved.

To prove (45), we first need to introduce some definitions: for each connected compo-
nent U 2 �0

�
Hur nƒur

�
we define its boundary at level r by

(47) @urU WD .@U \ `
u
r / nƒ

u
r D .U \ `

u
r / nƒ

u
r ;

where @U denotes the boundary of U in R2 (see Figure 5).

So, the boundary at level r operator satisfies the following property:
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F 5. @urU definition for a u D .0; 1/.

C 5.4. – Every boundary at level r is connected and non-empty. In other words, the
operator

@ur W�0
�
Hur nƒ

u
r

�
! �0

�
`ur nƒ

u
r

�
given by (47) is a well-defined bijection.

To prove our claim, let us consider an arbitrary point z 2 ƒur \ `
u
r whose existence

is guaranteed by (ii) of Theorem 6.1 and define �uz WD cc
�
ƒur ; z

�
. Then, notice that �uz

disconnects the half-plane Hur . In fact, let us consider the one-point compactification of the
plane cR2 WD R2 t f1g. Then, the closures b̀ur and c�uz in cR2 are compact and connected,
and the points z and1 belong to both continua. Since ƒur does not disconnect R2 and is
T1;0-invariant, then the intersection b̀u

r \
c�uz cannot be connected. Thus, by Theorem 2.1,b̀u

r [
c�uz disconnects cR2 and consequently, Hur n �uz is not connected. This implies @urU is

connected for every U 2 �0
�
Hur nƒur

�
, and Claim 5.4 is proved.

On the other hand, since Hur , `ur andƒur are T1;0-invariant, we observe the translation T1;0
naturally acts on �0

�
Hur n ƒur

�
and, consequently, on �0

�
`ur n ƒ

u
r

�
, too. Moreover, it can be

easily seen that the following diagram commutes

�0
�
Hur nƒur

� T1;0
//

@u
r

��

�0
�
Hur nƒur

�
@u

r

��

�0
�
`ur nƒ

u
r

� T1;0
// �0

�
`ur nƒ

u
r

�
;

the boundary at level r operator @ur being bijective. Hence, the actions of T1;0 on both sets
are conjugate and, clearly, there is no periodic orbit for T1;0W�0

�
`ur nƒ

u
r

�
ý. So, there is no

periodic orbit for T1;0W�0
�
Hur nƒur

�
ý either, and (45) is proved.

The rest of this section is devoted to studying the geometry of sets �uz .s/ given by (42),
assuming f is not a pseudo-rotation and does not exhibit uniformly bounded v-deviations.
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We will show that the connected sets �uz .s/ exhibit unbounded oscillations in the v direction,
as s !C1:

T 5.5. – Let us assume f is minimal and Qf is a lift of f such that its rotation
set �. Qf / intersects the upper and lower open semi-planes, i.e., with our notation it holds

(48) �. Qf / \H.0;1/0 ¤ ; and �. Qf / \H.0;�1/0 ¤ ;:

On the other hand, we know there exist v 2 S1 and ˛ 2 R such that inclusion (28) holds.

If f does not exhibit uniformly bounded v-deviations, then for every r 2 R, any z 2 ƒur \ `
u
r

and s > r , it holds

(49) lim
s!C1

sup
w2�u

z .s/

hw; vi D C1;

and

(50) lim
s!C1

inf
w2�u

z .s/
hw; vi D �1:

The proof of Theorem 5.5 will follow combining Theorem 3.1 and the following

L 5.6. – Under hypotheses of Theorem 5.5, the following holds:

(51) lim
s!C1

sup
w2�u

z .s/

jhw; vij D C1:

Proof of Lemma 5.6. – For the sake of simplicity of notation, all along this proof we shall
just write ƒCr and ƒ�r instead of ƒ.0;1/r and ƒ.0;�1/r , and do the same for any object that
depends on the vectors .0; 1/ or .0;�1/. Let us fix an arbitrary real number r . We will just
prove (51) for ƒCr . The other case is completely analogous.

By our hypothesis (48) and Theorem 2.6, there exist two ergodic measures �C; �� 2M.f /
such that pr2

�
��C.

Qf /
�
> 0 and pr2

�
���. Qf /

�
< 0.

By Birkhoff ergodic theorem, for �C-almost every x 2 T2 and any Qx 2 ��1.x/, it holds
pr2. Qf

n. Qx// ! C1 and pr2. Qf
�n. Qx// ! �1, as n ! C1. Analogously, for ��-almost

every x 2 T2 and any Qx 2 ��1.x/, it holds pr2. Qf
n. Qx// ! �1 and pr2. Qf

�n. Qx// ! C1,
as n!C1. In particular, this implies that

�C
�
�.ƒCr / [ �.ƒ

�
r /
�
D ��

�
�.ƒCr / [ �.ƒ

�
r /
�
D 0:

Then, given any �C-generic point xC 2 T2 n �.ƒCr /, we can find a point zC 2 ��1.xC/
such that

(52) pr2
�
Qf n.zC/

�
> r C 2




� Qf 


C0
; 8n � 0:

So we can define

Un WD cc
�
HCr nƒ

C
r ;
Qf n.zC/

�
2 �0.HCr nƒ

C
r /; 8n � 0:

We claim that the sequence of boundaries at level r , i.e., .@Cr .Un//n�0 where @Cr is given by
(47), exhibits bounded “rotational deviations”. More precisely, we make the following
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C 5.7. – There exists a constant C > 0 such that for any sequence of real numbers
.an/n�0 satisfying

.an; r/ 2 @
C
r .Un/; 8n � 0;

it holds ˇ̌̌̌
an � n

˛

pr1.v/

ˇ̌̌̌
� C; 8n � 0:

To prove our claim, first observe that, since we are assuming condition (48), v is not
vertical, i.e., its first coordinate pr1.v/ does not vanish, because the rotation set is not
horizontal.

Since the measure �� has total support on T2 and the set U0 � R2 is open, there is a
point w� 2 U0 such that �.w�/ is ��-generic and consequently, it holds that
pr2

�
Qf n.w�/

�
! �1 as n ! C1. Since zC; w� 2 U0 and U0 is arc-wise connected,

there is a continuous path 
 W Œ0; 1� ! U0 connecting w� and zC. Then for every n suffi-
ciently large, Qf n.w�/ belongs to semi-plane H��r and so, there exists tn 2 Œ0; 1� such
that Qf n

�

.tn/

�
2 @Cr .Un/. By inclusion (28) we know that

1

n

D
Qf n
�

.tn/

�
� 
.tn/; v

E
! ˛; as n!C1:

By Claim 5.4 we know diam.@Cr .Un// � 1 and since both points Qf n
�

.tn/

�
and .an; r/ belong

to @Cr .Un/ for n sufficiently big, we conclude that

(53) lim
n!C1

an

n
D

˛

pr1.v/
:

To finish the proof of our claim, we use a classical sub-additive argument: let us show there
exists C > 0 such that

(54) jamCn � am � anj � C; 8m; n � 0:

To prove this, let us define the following total order on �0.HCr n ƒCr /: given any pair of
connected components V; V 0 2 �0.HCr nƒCr /, we write

V � V 0 ” pr1.w/ < pr1.w
0/; 8w 2 @Cr V; 8w

0
2 @Cr V

0:

For each n � 0, let us write pn WD ban � a0c 2 Z, where b�c denotes the integer part
operator. Then, observe that

T
pn�1
1;0 .U0/ � Un � T

pnC1
1;0 .U0/; 8n � 0:

Since Qf commutes with every integer translation, preserves orientation and the point zC

has been chosen such that (52) holds, we have

T
pn�1
1;0 .Um/ � UmCn � T

pnC1
1;0 .Um/; 8m; n � 0:

In particular, this implies that am C pn � 1 < amCn < am C pn � 1 and then,

jamCn � am � anj � ja0j C 1; 8m; n � 0:

Then, Claim 5.7 easily follows from (53), (54) and an elementary fact about sub-additive
sequences (see for instance [25, Lemma 2.2.1]).
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Continuing with the notation we introduced in the proof of Claim 5.7 and since we are
assuming f exhibits unbounded v-deviations, by ((iii)) of Proposition 4.5 we know that for
every M > 0 there exists n D n.M/ � 0 such thatˇ̌̌D

Qf n.zC/; v
E
� n˛

ˇ̌̌
> M:

Hence, ˇ̌̌D
Qf n.zC/ � .an; r/; v

Eˇ̌̌
�

ˇ̌̌D
Qf n.zC/; v

E
� anpr1.v/

ˇ̌̌
� jrpr2.v/j

�

ˇ̌̌D
Qf n.zC/; v

E
� n˛

ˇ̌̌
� jpr1.v/C j � jrpr2.v/j

�M � jpr1.v/C j � jrpr2.v/j ;

(55)

where C is the constant given by Claim 5.7.
Finally, estimate (51) easily follows from Corollary 5.3, (55) and the fact that M is arbi-

trary.

Then, Theorem 5.5 will follow combining Theorem 3.1 and Lemma 5.6.

Proof of Theorem 5.5. – By Lemma 5.6 we know that, for each u 2 f.0; 1/; .0;�1/g,
either (49) or (50) holds.

Reasoning by contradiction and for the sake of concreteness, let us suppose that for
every r 2 R and every z 2 ƒCr \ `

C
r condition (50) does not hold. Notice here we continue

using the notation we introduced in the proof of Lemma 5.6. Analyzing the argument we
used in the proof of Lemma 5.6, this implies that

(56) sup
n�0

D
�
.n/

Qf
.x/; v

E
� n˛ D C1 and inf

n�0

D
�
.n/

Qf
.x/; v

E
� n˛ > �1;

for �C-almost every x 2 T2.
On the other hand, by (iii) of Theorem 5.1 and invoking Lemma 5.6 forƒ�r , we conclude

that (50) holds and (49) does not, for any z 2 ƒ�r \ `
�
r and every r 2 R.

However, applying Theorem 3.1 to the ergodic system .f; �C/ and the real function

� WD
D
� Qf ; v

E
� ˛, and taking into account (56), we conclude that

sup
n�0

D
�
.�n/

Qf
.x/; v

E
� n˛ D C1 and inf

n�0

D
�
.�n/

Qf
.x/; v

E
� n˛ > �1;

for �C-a.e. x 2 T2.
Now, taking into account that pr2.�

.�n/

Qf
.x// ! �1, as n ! C1 and �C-a.e. x 2 T2,

we can repeat the argument we used to prove Lemma 5.6 for negative times and a�C-generic
point to show that (49) holds for the setƒ�r as well. Then, we have gotten a contradiction and
Theorem 5.5 is proved.

Combining Corollary 5.3 and Theorem 5.5 one can easily strengthen this last result getting
the following

C 5.8. – If f , Qf , v and r are as in Theorem 5.5 and � is a closed connected
unbounded subset of ƒur , then it holds

� inf
z2�
hz; vi D sup

z2�

hz; vi D C1:
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6. Stable sets at infinity: parallel direction

Our next purpose consists in defining stable sets at infinity with respect to the same
direction of a supporting line of the rotation set. More precisely, if f 2 Homeo0.T2/,
Qf WR2 ý is a lift of f and we suppose there are v 2 S1 and ˛ such that the rotation

set �. Qf / is contained in the line `v˛, we want to define stable sets at infinity with respect to v,
i.e., associated to the families of semi-planes Hvr and H�vr , with r 2 R.

In such a case it might happen that there is no lift Qf of f such that the supporting line
of �. Qf / passes through the origin, and therefore, if we naively definedƒvr . Qf / D I Qf

.Hvr /, we

would get ƒvr . Qf / D ; for every Qf and every r 2 R.

To overpass this difficulty, we shall use the fiber-wise Hamiltonian skew-product to define
such stable sets at infinity.

6.1. The fiber-wise Hamiltonian skew-product

Since we are assuming f is minimal, by Theorem 2.4 we do not lose any generality
assuming f is area-preserving, i.e., f 2 Symp0.T2/ and let Qf 2 S̃ymp0.T2/ denote an
arbitrary lift of f .

Then, we define the fiber-wise Hamiltonian skew-product associated to Qf , which can be
considered as a particular case of the construction performed in [13]. In very rough words the
main idea of this construction consists in splitting our homeomorphism f into a “rotational”
part and a “Hamiltonian” or “rotationless” one. Doing that, the “Hamiltonian” part is
responsible by rotational deviations. The main technical advantage of dealing with such
skew-products is that an arbitrary point exhibits bounded rotational deviations if and only
if its orbit is bounded.

This novel object is certainly the main character of this work and will play a fundamental
role in the rest of the paper.

For the sake of simplicity, we fix some notations we shall use until the end of the paper:
we write Q� WD Flux. Qf / 2 R2 and � WD �. Q�/ D Flux.f / 2 T2.

Then we define the map H WT2 ! H̃am.T2/ by

Ht WD Adt
�
T �1
Q� ı

Qf
�
D T �1

Qt
ı T �1
Q� ı

Qf ı TQt ; 8t 2 T2; 8Qt 2 ��1.t/;

where Ad denotes the T2-action given by (12).

ConsideringH as a cocycle over the torus translation T�WT2 ý, one defines the fiber-wise
Hamiltonian skew-product associated to f as the map F WT2 � R2 ý given by

F.t; z/ WD
�
T�.t/;Ht .z/

�
; 8.t; z/ 2 T2 � R2:

Notice that F depends just on f and not on the chosen lift Qf .

One can easily verify that

F.t; z/ D
�
t C �; z C� Qf

�
t C �.z/

�
� Q�

�
; 8.t; z/ 2 T2 � R2;
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where� Qf 2 C
0.T2;R2/ is the displacement function given by (10). We will use the following

usual notation for cocycles: given n 2 Z and t 2 T2, we write

H
.n/
t WD

8̂̂<̂
:̂
idT2 ; if n D 0I

HtC.n�1/� ıHtC.n�2/� ı � � � ıHt ; if n > 0I

H�1tCn� ı � � � ıH
�1
t�2� ıH

�1
t��; if n < 0:

Then we have

F n.t; z/ D
�
T n� .t/;H

.n/
t .z/

�
D

�
t C n�;Adt

�
T �n
Q� ı Qf n

�
.z/
�
;(57)

for every .t; z/ 2 T2 � R2 and every n 2 Z.
Hence, if �. Qf / has empty interior, there exist ˛ 2 R and v 2 S1 such that inclusion (28)

holds, and from (57) it easily follows that a point z 2 R2 exhibits bounded v-deviations if
and only if D

H
.n/
0 .z/ � z; v

E
�M; 8n 2 Z;

where M DM.z; f / denotes the positive constant given by (29).

6.2. Fibered stable sets at infinity

Continuing with previous notation, let ˛ 2 R and v 2 S1 be such that property (28) holds.
Notice that in such a case, h Q�; vi D ˛.

Then, for each r 2 R and each t 2 T2 we define the fibered .r; v/-stable set at infinity by

(58) ƒvr
�
Qf ; t
�
WD pr2

�
cc
�
ftg � R2 \IF

�
T2 �Hvr

�
;1

��
� R2;

where Hvr is the semi-plane given by (4), ftg � R2 is naturally endowed with the euclidean
distance of R2, cc.�;1/ denotes the union of unbounded components as defined in 2.1, and
pr2WT2 � R2 ! R2 is the projection on the second coordinate.

Let us also define the .r; v/-stable set at infinity as

ƒvr
�
Qf
�
WD

[
t2T2

ftg �ƒvr
�
Qf ; t
�
� T2 � R2:

For the sake of simplicity, if there is no risk of confusion we shall just writeƒvr .t/ andƒvr
instead of ƒvr

�
Qf ; t
�

and ƒvr
�
Qf
�
, respectively.

Now we recall some results of [13]:

T 6.1 (Theorem 3.4 in [13]). – Assuming inclusion (28) holds, for every r 2 R the
set ƒvr is non-empty, closed and F -invariant. Moreover, ƒvr .t/ ¤ ;, for every t 2 T2.

Analogously, the same assertions hold for the .r;�v/-stable set at infinity.

The following result describes some elementary properties of .r; v/-stable sets at infinity:

P 6.2 (Proposition 3.6 in [13]). – For each t 2 T2 and any r 2 R, the
following properties hold:

(i) ƒvr .t/ � ƒ
v
r 0.t/, for every r 0 < r;

(ii) ƒvr .t/ D
T
s<r ƒ

v
s .t/;

(iii) ƒv
rChQt ;vi

�
t 0 � �

�
Qt
��
D TQt

�
ƒvr .t

0/
�
, for all Qt 2 R2 and every t 0 2 T2;
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(iv) Tp

�
ƒvr .t/

�
D ƒv

rChp;vi
.t/, for every p 2 Z2.

We shall need the following additional regularity result:

P 6.3. – Continuing with the same notation of Proposition 6.2, the map
t ! ƒvr .t/ is compactly upper semi-continuous, i.e., if t0 2 T and U � R2 is an open set such
that ƒvr .t0/ � U and R2 n U is compact, then there is a neighborhood W.t0/ of t0 in T2 such
that

ƒvr .t/ � U; 8t 2 W.t0/:

Proof. – This is a straightforward consequence of the very definition of .r; v/-stable sets
at infinity given by (58).

In fact, arguing by contradiction, let us suppose there exists a sequence ftngn�1 of points
of T such that tn ! t0 as n!C1 and

ƒvr .tn/ \ .R
2
n U/ ¤ ;; 8n � 1:

For each n � 1, let us consider a point zn 2 ƒvr .tn/ \ .R2 n U/. Since the complement
of U is compact, there exists a sub-sequence fznj

gj�1 converging to a point z1 2 R2 n U .
However, the whole setƒvr is closed in T2 �R2 and thus, z1 2 ƒvr .t0/ as well, contradicting
the fact that ƒvr .t0/ � U .

We also need the following

T 6.4 (Theorem 4.1 in [13]). – If f 2 Symp0.T2/ is periodic point free, i.e.,
Per.f / D ;, then for every t 2 T2 the set[

r�0

ƒv�r .t/

is dense in R2.

As a rather straightforward consequence of Theorems 2.17 and 6.4 we get the following

C 6.5. – If f 2 Symp0.T2/ is minimal and does not exhibit uniformly bounded
v-deviations, then, for every r 2 R and any t 2 T2, the following assertions hold:

(i) ƒvr .t/ \ƒ
�v
r 0 .t/ D ;, for any r 0 2 R;

(ii) ƒvr .t/ has empty interior;

(iii) ƒvr .t/ does not disconnect R2, i.e., R2 nƒvr .t/ is connected.

Proof. – To prove (i) let us start assuming there exists z 2 ƒvr .t/\ƒ
�v
r 0 .t/. Thus, putting

together (57) and (58) we get

r �
D
T �1
Qt
ı T �n
Q� ı Qf n ı TQt .z/; v

E
� �r 0; 8n 2 Z; 8Qt 2 ��1.t/;

and consequently, if we define � 2 C 0.T2;R/ by �.x/ WD
D
� Qf .x/; v

E
, then it holds

r � S n
f �
�
t C �.z/

�
� �r 0; 8n 2 Z:

Then, since f is minimal, by Theorem 2.17 we conclude that � is a continuous coboundary
for f , and hence, f exhibits uniformly bounded v-deviations, contradicting our assumption.

Property (ii) is a straightforward consequence of Theorem 6.4 and property (i).
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Finally, in order to show (iii) let us suppose there exist r 2 R and t 2 T such that ƒvr .t/
disconnects R2. So, there exists U 2 �0

�
R2 nƒvr .t/

�
such that U \H�v�r D ;. Then one can

easily check that the boundary ofU is completely contained inƒvr .t/ and thus,U is contained
in ƒvr .t/ as well, contradicting property (ii).

6.3. Rotational deviations and the spreading property

From now on and until the end of this section, we shall assume f 2 Symp0.T2/ is a

minimal homeomorphism such that there is a lift Qf 2 S̃ymp0.T2/ satisfying

Q� D Flux. Qf / D . Q�1; 0/ 2 R2(59)

�. Qf / \H.0;1/0 ¤ ; and �. Qf / \H.0;�1/0 ¤ ;:(60)

Notice that, since f is minimal, by Corollary 2.11 we know that Q�1 2 R nQ.

Then, if F WT2 � R2 ý denotes the fiber-wise Hamiltonian skew-product induced by Qf ,
the closed set T�f0g�R2 � T2�R2 is F -invariant. Making some abuse of notation and for
the sake of simplicity, we shall writeF to denote the restriction of the fiber-wise Hamiltonian
skew-product to this set. More precisely, from now on we have F WT � R2 ý where

F.t; z/ D
�
t C �1; z C� Qf

�
.t; 0/C �.z/

�
� . Q�1; 0/

�
; 8.t; z/ 2 T � R2;

and �1 WD �. Q�1/.

In a joint work with Koropecki [12], we introduced the notion of topological spreading,
which is stronger than topological mixing:

D 6.6. – A homeomorphism h 2 Homeo.T2/ is said to be spreading when for
any lift Qh 2 H̃omeo.T2/, any R; " > 0 and any non-empty open set U � R2, there exists
N 2 N such that for every n � N , there exists a point zn 2 R2 such that Qhn.U / is "-dense in
the ball BR.zn/.

Motivated by this notion, we will prove the following theorem, which is the main result of
this section:

T 6.7. – Let us suppose f does not exhibit uniformly bounded v-deviations. Then,
for every pair of non-empty open sets U; V � R2, there exists N 2 N such that for every t 2 T
it holds

F n
�
ftg � U

�
\ T � V ¤ ;; 8n � N:

We shall divide the proof of Theorem 6.7 in several lemmas. Notice that without loss of
generality we can assume the open set V in Theorem 6.7 is bounded.

L 6.8. – There exists r 2 R such that

ƒvr .t/ \ V ¤ ; and ƒ�vr .t/ \ V ¤ ;; 8t 2 T:

Proof. – This is a straightforward consequence of Theorem 6.4, properties (i) and (iii) of
Proposition 6.2, and compactness of T.
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From now on we fix a real number r 2 R such that the conclusion of Lemma 6.8 holds.
Since we are assuming V is bounded and f does no exhibit uniformly bounded v-devia-

tions, by Theorem 2.1 we know that the setƒvr .t/[ƒ
�v
r .t/[V disconnectsR2, for every t 2 T.

For the sake of simplicity of notation, for each t 2 T let us write

�t WD ƒ
v
r .t/ [ƒ

�v
r .t/ [ V:

Now for each " > 0, we define the following set:

Z2.v; "/ WD
˚
p 2 Z2 W jhp; vij � "

	
:

Notice that by (60), the rotation set �. Qf / is not a horizontal segment, so v is not vertical,
i.e., pr1.v/ ¤ 0. By classical arguments about approximations by rational numbers one can
easily get the following

L 6.9. – For each " > 0, there exists N 2 N such that for every n 2 Z, there exist
p 2 fn; nC 1; : : : ; nCN g and p 2 Z2.v; "/ satisfying pr2.p/ D p.

Proof. – This easily follows from Corollary 2.15 and the fact that v is not horizontal.

L 6.10. – For every t 2 T2 there exist two connected components
W Ct ; W

�
t 2 �0.R2 n �t / such that the following property holds: for every z 2 R2 n �t ,

there exist " > 0 and M 2 N such that

Tp.z/ 2 W
C
t ; and T �1p .z/ 2 W �t ;

for every p 2 Z2.v; "/ satisfying pr2.p/ > M .

Proof. – Let z be any point in R2 n �t . By statement (ii) of Proposition 6.2, there exists
" > 0 such that z 62 ƒvr�2".t/ [ƒ

�v
r�2".t/, and so we can consider the positive number

ı WD
1

2
d
�
z;ƒvr�2".t/ [ƒ

�v
r�2".t/

�
:

Hence, we have

(61) Tp

�
Bı.z/

�
\
�
ƒvr .t/ [ƒ

�v
r .t/

�
D ;; 8p 2 Z2.v; "/:

Now, since by Corollary 6.5 the set ƒvr�2".t/ [ ƒ
�v
r�2".t/ has empty interior and does

not disconnect R2, for each m 2 Z2 we can find a continuous path 
mW Œ0; 1� ! R2 such
that 
m.0/ D z, 
m.1/ 2 Tm

�
Bı.z/

�
and

(62) 
m.s/ 62 ƒ
v
r�2".t/ [ƒ

�v
r�2".t/; 8s 2 Œ0; 1�:

Let N denote the natural number given by Lemma 6.9 for v and " as above and consider
the set

A WD
˚
p 2 Z2.v; 2"/ W 0 � pr2.p/ � N

	
:

Since A is a non-empty finite set and V is bounded, we can define the real number

(63) M WD 1C sup
m2A

sup
s2Œ0;1�

ˇ̌
pr2

�

m.s/

�ˇ̌
C sup
w2V

jpr2.w/j <1:

Consider any two points m;p 2 Z2.v; "/ satisfying 0 � pr2.p/ � pr2.m/ � N and
pr2.m/ > M . Thus, we have Tm ı 
p�m is a continuous path connecting Tm.z/ and the
ball Tp

�
Bı.z/

�
; since m 2 Z2.v; "/ and (62) holds, the image of Tm ı
p�m does not intersect

ƒvr .t/ [ƒ
�v
r .t/; and since p �m 2 A and pr2.m/ > M , invoking (63) we conclude that the
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image of Tm ı 
p�m does not intersect V either. So, by (61), Tm.z/ and Tp.z/ belong to the
same connected component of R2 n �t .

Hence, choosing any m 2 Z2.v; "/ satisfying pr2.m/ > M , we can define

W Ct WD cc
�
R2 n �t ; Tm.z/

�
;

and combining the last argument with Lemma 6.9, one can show that Tp.z/ 2 W Ct , for
any p 2 Z2.v; "/ such that pr2.p/ > M .

To prove the uniqueness of W Ct , let w be any other point in R2 n �t . Let "0 � " be any
positive number such that w 2 R2 n .ƒvr�2"0.t/ [ ƒ

�v
r�2"0.t//. So, since by Corollary 6.5

the set ƒvr�2"0.t/ [ ƒ
�v
r�2"0.t/ does not disconnect R2, then there exists a continuous path


 W Œ0; 1�! R2 such that 
.0/ D w, 
.1/ D z and


.s/ 62 ƒvr�2"0.t/ [ƒ
�v
r�2"0.t/; 8s 2 Œ0; 1�:

So, the image of Tp ı 
 does not intersect ƒvr .t/ [ ƒ
�v
r .t/, for any p 2 Z2.v; "0/, and does

not intersect V either, provided pr2.p/ is sufficiently large. Thus, Tp.w/ 2 W
C
t for such a p

and uniqueness of W Ct is proven.
Finally, defining W �t WD cc

�
R2 n �t ; T �1m .z/

�
for m as above, one can easily show that

analogous properties hold.

In order to finish the proof of Theorem 6.7, we fix a non-empty open setU � R2. Without
loss of generality we can assume that U is bounded, connected and

(64) U \
�
ƒvr .0/ [ƒ

�v
r .0/

�
D ;;

where r is the real number we fixed after Lemma 6.8. Since U is compact and ƒvr [ ƒ
�v
r is

contained in R2 n U , by Proposition 6.3 we know the maps t 7! ƒvr .t/ and t 7! ƒ�vr .t/ are
both compactly upper semi-continuous. Thus, there is � > 0 such that

(65) B�.0/ � U \
�
ƒvr [ƒ

�v
r

�
D ;;

where B�.0/ denotes the �-ball centered at 0 2 T with respect to the distance dT.
Now, by minimality of f and recalling that �1 D �. Q�1/ where Q�1 2 R n Q, there exists

k � 1 such that

(66)
k[
iD0

f i
�
�.U /

�
D T2; and

k[
iD0

T i�1

�
B�.0/

�
D T:

Let us define

U WD
k[
iD0

F i .B�.0/ � U/ � T � R2;

and for every t 2 T, let us write

U .t/ WD pr2
�
U \ ftg � R2

�
� R2:

Notice that by (65), U \ .ƒvr [ƒ
�v
r / D ;. So, by (ii) of Proposition 6.2, there exists " > 0

such that
U .t/" \

�
ƒvr�2".t/ [ƒ

�v
r�2".t/

�
D ;; 8t 2 T;

where .�/" denotes the "-neighborhood given by (3).
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On the other hand, by our hypothesis (60) there exists Q�C 2 �. Qf / such that pr2. Q�
C/ > 0.

So, let ı be a positive number given by Theorem 4.7 for f , Q�C and "=2. Without loss of
generality we can assume ı < minf�; "

4
g, where � was chosen in (65).

Now, consider the translation T WD T�1;� Q�C
WT � T2 D T3 ý and the visiting time

set � WD �.0; Bı.0/; T / defined in Corollary 2.15.
Then, by Theorem 4.7 and (66) we get that, for each n 2 � there exist zn 2 U ,

jn 2 f0; 1; : : : ; kg, pn 2 Z2 and qn 2 Z such that


pn � n Q�

C


 < ı, jqn � n Q�1j < ı

and 


 Qf n� Qf jn.zn/
�
� Qf jn.zn/ � n Q�

C




 < "

2
;

or equivalently,

(67) F n
�
F jn.0; zn/

�
2 f.jn C n/�1g � T

�1
qn;0
ı Tpn

.U .jn�1/"/:

Observe that

jhv;pn � .qn; 0/ij D
ˇ̌˝
v;pn � n Q�

C
C n. Q�1; 0/ � .qn; 0/

˛ˇ̌
�
ˇ̌˝
v;pn � n Q�

C
˛ˇ̌
C jhv; n. Q�1; 0/ � .qn; 0/ij � 2ı <

"

2
:

(68)

So, in particular, this implies that pn � .qn; 0/ 2 Z2.v; "/.
Then observe that since we are assuming U is connected, U .t/" has finitely many

connected components for every t 2 T, and then we can apply Lemma 6.10 to conclude that
there exists M > 0 such that

(69) F i
�
ftg � Tp

�
U .t/"

��
� ft C i�1g �W

C

tCi�1

for every p 2 Z2.v; "/ satisfying pr2.p/ > M , any t 2 T and every 0 � i � maxfk;G .�/g,
where G .�/ denotes the maximum length gap of � , just defined after (14).

Putting together (67), (68) and (69), and observing U is open, we conclude that there is
a positive number �C0 > 0 such that fixing any NC0 2 � verifying pr2.pNC

0

/ > M , where

p
N
C

0

2 Z2 is chosen as above, it holds

(70) Fm.ftg � U/ � ft Cm�1g �W
C
m�1

; 8m � NC0 ; 8t 2 B�0
.0/:

Analogously, one may prove a similar statement for some Q�� 2 �. Qf /\H�0 , showing that
there exist ��0 > 0 and N�0 2 N such that

(71) Fm.ftg � U/ � ft Cm�1g �W
�
m�1

; 8m � N�0 ; 8t 2 B�0
.0/:

Putting together, (64), (70) and (71) we can conclude that

(72) Fm.ftg � U/ \
�
ft Cm�1g � V

�
¤ ;; 8m � N0; 8t 2 B�0

.0/;

where N0 WD maxfNC0 ; N
�
0 g and �0 WD minf��0 ; �

C
0 g.

Then, invoking property 57 one can repeat above argument to show that property (72) in
fact holds for any s in T, i.e., given any s 2 T, there exist �s > 0 and Ns 2 N such that

Fm.ftg � U/ \
�
ft Cm�1g � V

�
¤ ;; 8m � Ns; 8t 2 B�s

.s/:

Finally, by compactness of T there are points s1; s2; : : : sr 2 T such that
r[

jD1

B�sj
.sj / D T:
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Defining N WD maxfNsj W 1 � j � rg, one can easily verify that the conclusion of
Theorem 6.7 holds for any n � N .

7. Proof of Theorem A

In this section we finish the proof of Theorem A. To do this let us suppose f does not
exhibit uniformly bounded v-deviations. By Proposition 2.5, Theorem 2.4 and Proposi-
tion 2.16 there is no loss of generality if we assume that f is a minimal symplectic homeo-
morphism and admits a lift Qf 2 S̃ymp0.T2/ whose rotation set �. Qf / is transversal to the
horizontal axis and they intersect at the rotation vector of Lebesgue, i.e., it holds

�. Qf / \H.0;1/0 ¤ ;; and �. Qf / \H.0;�1/0 ¤ ;;

and where Flux. Qf / D . Q�1; 0/, for some Q�1 2 R. Notice that by Corollary 2.11, Q�1 is irrational.
So, we can define the fiber-wise Hamiltonian skew-product F WT � R2 ý as in §6.3.
By analogy with (33), for each r 2 R and u 2 f.0; 1/; .0;�1/g we define the stable set at

infinity with respect to horizontal direction (we called it the transversal direction in §5) by

(73) ƒur
�
t
�
WD pr2

�
cc
�
ftg � R2 \IF

�
T2 �Hur

�
;1

��
� R2:

One can easily see that stable sets at infinity defined by (33) and (73) are very close related
and, in fact,

ƒur .t/ D T
�1
Qt ;0
.ƒur /; 8Qt 2 �

�1.t/; 8r 2 R:
In particular, this implies that all topological and geometric results we proved in Theo-
rems 5.1 and 5.5, and Corollary 5.3 for the sets ƒur continue to hold mutatis mutandis for
the new ones ƒur .t/.

Then we have the following

P 7.1. – If f does not exhibit uniformly bounded v-deviations, then

ƒ.0;1/r .t/ \ƒvs .t/ D ;;

for every r; s 2 R and every t 2 T.

Proof. – Arguing by contradiction, let us suppose there exist r; s 2 R and t 2 T such
that C WD ƒ.0;1/r .t/\ƒvs .t/ ¤ ;. We claim that, in such a case, every connected component
of C is bounded in R2. In order to prove our claim, let us suppose there exists an unbounded
closed connected component � 2 �0.C /.

Since � is contained in ƒ
.0;1/
r .t/, invoking ((iv)) of Theorem 5.1 we know that � is

“vertically unbounded”, i.e., it is not contained in any horizontal strip. On the other hand,
since � � ƒvs .t/ � Hvs , we get that

hz; vi � s; 8z 2 �;

which contradicts Corollary 5.8.
So, every connected component of C is bounded in R2. Invoking Theorem 2.1 and

taking into account thatƒ.0;1/r .t/[ƒvs .t/ is unbounded, we conclude thatƒ.0;1/r .t/[ƒvs .t/

should disconnect R2. Now let us consider two different connected components V1 and V2
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of R2 n
�
ƒ
.0;1/
r .t/ [ƒvs .t/

�
, and let U � R2 be a non-empty connected open set and " > 0

such that

U \
�
ƒur .t

0/ [ƒvs .t
0/
�
D ;;

for t 0 2 T satisfying dT.0; t 0/ < ".

Then, invoking Theorem 6.7 we know that there is a natural number N such that

F n
�
B".0/ � U

�
\ T � Vi ¤ ;;

for every i D 1; 2 and every n � N . In particular, there is some n0 � N and t 0 2 B".0/ such
that Rn0

�1
.t 0/ D t and F n0.ft 0g �U/ intersects ftg � V1 and ftg � V2, and therefore, intersects

ftg �
�
ƒ
.0;1/
r .t/ [ƒvs .t/

�
as well, getting a contradiction.

Now, by Proposition 7.1, given any r 2 R and any z 2 ƒvr .0/, we can define the set

Us WD cc
�
H.0;1/s nƒ.0;1/s .t/; z

�
; 8s < pr2.z/:

Since ƒvr .t/ � Hvr and is connected, combining Theorem 5.5 and Proposition 7.1 we
conclude that

(74) ƒvr .t/ \ @
.0;1/
s .Us/ ¤ ;; 8s < pr2.z/;

where @.0;1/s denotes the boundary operator as level s given by (47).

However, Theorem 5.5 also implies that there is some s0 < pr2.z/ such that

(75) @.0;1/s0
.Us0/ � H�v�r :

Since ƒvr .t/ � Hvr , we see that (74) and (75) cannot simultaneously hold, and Theorem A is
proved.

8. Proof of Theorem B

Let us suppose there exists a minimal homeomorphism f 2 Homeo0.T2/ such that its
rotation set is a non-degenerate rational slope segment. So, if Qf WR2 ý is a lift of f , then
there are v 2 S1 and ˛ 2 R such that inclusion (28) holds. We know that v has rational slope
and, by Corollary 2.11, ˛ is an irrational number.

Then, by Theorem A f exhibits uniformly bounded v-deviations, i.e., estimate (1) holds.
As a straightforward consequence of Theorem 2.17 one can show that f is a topological
extension of an irrational circle rotation (see [10, Proposition 2.1] for details). But this
contradicts the following result due to Koropecki, Passaggi and Sambarino [14, Theorem I]:

T 8.1. – If f 2 Homeo0.T2/ is a topological extension of an irrational circle
rotation, then f is a pseudo-rotation.
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9. Proof of Theorem C

Let v 2 S1 and ˛ 2 R such that �. Qf / � `v˛. By Theorem A we know that f exhibits
uniformly bounded v-deviations. On the other hand, invoking Theorem B we conclude v has
irrational slope.

Then, the first step of proof consists in showing the existence of an f -invariant torus
pseudo-foliation (see §4.1 for definitions). Since f is minimal, by Theorem 2.4 there is no
loss of generality assuming it is area-preserving, and by Proposition 4.6, f is not eventually
annular. So we can invoke Theorem 4.4 to conclude f leaves invariant a torus pseudo-
foliation F . Let eF denote its lift to R2.

In order to study some topological and geometric properties of eF , let us recall some
simple steps of its construction from [13]. Since f exhibits uniformly bounded v-deviations,
by [13, Corollary 3.2], there exists a constantC > 0 such that every .r; v/-stable set at infinity
given by (58) satisfies

HvrCC � ƒ
v
r .0/; 8r 2 R:

So, for each r 2 R, we define the open set Ur WD cc
�

int
�
ƒvr .0/

�
;HvrCC

�
; and then, we

consider the function H WR2 ! R given by

(76) H.z/ WD supfr 2 R W z 2 Urg; 8z 2 R2:

In the proof of [13, Theorem 5.5], we showed that

(77) H
�
Qf .z/

�
D H.z/C ˛; 8z 2 R2

and then we defined the pseudo-leaves (i.e., the atoms of the partition eF ) byeFz WD H
�1
�
H.z/

�
; 8z 2 R2:

In general the functionH is just semi-continuous, but under our minimality assumption,
we will show it is indeed continuous. In fact, let �WT2 ! R be given by

(78) �.z/ WD
D
� Qf .z/; v

E
� ˛; 8z 2 T2:

Since f exhibits uniformly bounded v-deviations, invoking Theorem 2.17 we know there is
u 2 C 0.T2;R/ satisfying

(79) � D u ı f � u:

However, putting together (58), (76) and (78) one can show that the function u0WR2 ! R
given by

u0.z/ WD hz; vi �H.z/; 8z 2 R2

is semi-continuous, Z2-periodic and satisfies � D u0 ı f � u0, as well. By minimality and
classical arguments on semi-continuous functions, we have that u�u0 is a constant, and thus,
u0 is continuous. Consequently, function H given by (76) is continuous as well.

So, for simplicity from now on we can assume that functions H and u given by (76) and
(79), respectively, satisfy

(80) H.z/ D hz; vi � u.z/; 8z 2 R2;

where u 2 C 0.T2;R/.
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In order to complete the proof of Theorem C, let U; V � T2 be two non-empty open
subsets. We want to show there exists N 2 N such that f n.U / \ V ¤ ;, for all n � N .
Without loss of generality we can assume both of them are connected and inessential. Let
QU ; QV � R2 be two connected components of ��1.U / and ��1.V /, respectively.

Since pseudo-leaves of eF have empty interior, there exist two points z0; z1 2 QV such
that H.z0/ < H.z1/; let us write ı WD 1=2

�
H.z1/ � H.z0/

�
. Notice that for every z 2 R2

satisfying H.z0/ < H.z/ < H.z1/, the corresponding pseudo-leaves eFz separate the
points z1 and z2 in R2, i.e., the connected components cc

�
R2 n eFz ; z0

�
and cc

�
R2 n eFz ; z1

�
are different. In particular, the pseudo-leaves eFz must intersect the connected set QV .

On the other hand, by compactness, there exists a finite set fp1;p2; : : : ;pkg � Z2

satisfying the following property: for every z 2 Œ0; 1�2, there is 1 � nz � k such that the
pseudo-leaf H�1

�
r
�

intersects Tpnz
. QV /, for every r 2 .H.z/ � ı;H.z/C ı/, and moreover,

it separates the points Tpnr
.z0/ and Tpnr

.z1/ in R2.
Since every set of the form H�1.r � ı; r C ı/ is arc-wise connected, by compactness

there exists a real number M > 0 such that for every z 2 Œ0; 1�2 and any continuous arc

 W Œ0; 1�! R2 such that

(81) 
.t/ 2 H�1
�
H.z/ � ı;H.z/C ı

�
; 8t 2 Œ0; 1�

and

(82) min
t2Œ0;1�

pr2 ı 
.t/ < �M < M < max
t2Œ0;1�

pr2 ı 
.t/;

there exists tz 2 Œ0; 1� such that 
.tz/ 2 Tpnz
. QV /.

Now, let z be an arbitrary point of QU , and write r WD H.z/ and

(83) QUz WD cc
�
QU \H�1.r � ı; r C ı/; z

�
:

Since we are assuming the rotation set �. Qf / is an irrational slope segment, there exist
two f -invariant Borel probability measures � and � such that pr2

�
��. Qf /

�
¤ pr2

�
��. Qf /

�
.

By minimality of f , � and � have total support, and this means there exist two points
z�; z� 2 Uz such that

(84)
Qf n.z�/ � z�

n
! ��. Qf /; and

Qf n.z�/ � z�

n
! ��. Qf /;

as n!1.
By (83), QUz is arc-wise connected. So, there is a continuous curve � 2 Œ0; 1� ! QUz such

that �.0/ D z� and �.1/ D z� . Then, by (84) we conclude there exists a natural number NM
such that

(85)
ˇ̌̌
pr2 ı Qf

n
�

.0/

�
� pr2 ı Qf

n
�

.1/

�ˇ̌̌
> 2M; 8n � NM ;

where M is the positive real constant invoked in (82).
Observing that, by (77) and (83), one has

Qf n
�
QUz
�
D cc

�
Qf n. QU/ \H�1.r C n˛ � ı; r C n˛ C ı/; Qf n.z/

�
; 8n 2 Z:

This implies that, putting together (81), (82) and (85) one can conclude that, for each n � NM
there exists qn 2 Z2 and in 2 f1; : : : ; kg such that

Tqn
ı Qf ı 
Œ0; 1� \ Tpin

�
QV
�
¤ ;; 8n � NM
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and this proves f is topologically mixing, because the image of 
 is completely contained
in QU .

In order to show that `v˛ \Q2 D ;, we invoke a recent result of Beguin, Crovisier and Le
Roux [2] which extends a previous one due to Kwapisz [18]. In fact, if there is any rational
point on `v˛, one can show that f is flow equivalent to a homeomorphism g 2 Homeo0.T2/
such that �. Qg/ is a vertical line segment, for any lift QgWR2 ý of g (see [18, §§2,3] and [2]
for details). Since minimality is preserved under flow equivalence, we conclude that g is a
minimal homeomorphism and its rotation set is a non-degenerate rational slope segment,
contradicting Theorem B.
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THE FRANKS-MISIUREWICZ CONJECTURE
FOR EXTENSIONS OF IRRATIONAL ROTATIONS

 A KOROPECKI, A PASSEGGI
 M SAMBARINO

A. – We show that a toral homeomorphism which is homotopic to the identity and
topologically semiconjugate to an irrational rotation of the circle is always a pseudo-rotation (i.e., its
rotation set is a single point). In combination with recent results, this allows us to complete the study
of the Franks-Misiurewicz conjecture in the minimal case.

R. – On montre qu’un homéomorphisme du tore homotope à l’identité et topologiquement
semiconjugué à une rotation irrationnelle du cercle est une pseudo-rotation (c’est-à-dire, son ensemble
de rotation se réduit à un point). À l’aide de résultats récents, ceci conclut l’étude de la conjecture de
Franks-Misiurewicz pour les homéomorphismes minimaux.

1. Introduction

It is a general goal in mathematics to classify objects by means of simpler invariants
associated to them. In the study of the dynamics of surface maps, the rotation set is a
prototypical example of this approach. Being a natural generalization in different contexts of
the Poincaré rotation number of orientation preserving circle homeomorphisms, it provides
basic dynamical information for surface maps in the homotopy class of the identity [20, 23,
9].

In the two dimensional torus, it can be said that a theory has emerged supported on this
invariant (see [20] for a wide exposition). If F is a lift of a torus homeomorphism f in the
homotopy class of the identity, its rotation set is defined by

�.F / D

�
lim
i!1

F ni .xi / � xi

ni
W where ni %C1; xi 2 R2

�
:

In the seminal article [20] Misiurewicz and Ziemian proved the convexity and compactness
of rotation sets. The finite nature for the possible geometries of a convex set in the plane given
by points, non-trivial line segments, or convex sets with nonempty interior, allowed to start
a systematic study based on these three cases.
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Results concerning this theory can be classified in two different directions. A first direction
aims to obtain interesting dynamical information from knowing the geometry of the rotation
set, where the list of results is huge. For instance it is known that when the rotation set has
nonempty interior the map has positive topological entropy [19] and abundance of periodic
orbits and ergodic measures [8, 7, 21]; bounded deviations properties are found both for the
nonempty interior case and the non-trivial segment case [6, 1, 18, 15] (see also [2, 22] as
possible surveys (1)).

A second direction aims to establish which kind of convex sets can be realized as rota-
tion sets. Here we find fundamental problems which remain unanswered (compared with the
first direction, it can be said, the state of art is considerably underdeveloped). For convex
sets having nonempty interior, all known examples achieved as rotation sets have countably
many extremal points [16, 5]. For rotation sets with empty interior, there is a long-standing
conjecture due to Franks and Misiurewicz [10], which is the matter of this work. The conjec-
ture aims to classify the possible rotation sets with nonempty interior, and it states that any
such rotation set is either a singleton or a non-trivial line segment I which falls in one of the
following cases:

(i) I has rational slope and contains rational points (2);

(ii) I has irrational slope and one of the endpoints is rational.

For case (ii) A. Avila has presented a counterexample in 2014 (3), where a non-trivial
segment with irrational slope containing no rational points is obtained as rotation set.
Moreover, the counterexample is minimal (T2 is the unique compact invariant set) and C1,
among other interesting features.

Still concerning case (ii), P. Le Calvez and F. A. Tal showed that whenever the rotation set
is a non-trivial segment with irrational slope and containing a rational point, this rational
point must be an endpoint of the segment [18], so segments of irrational slope containing
rational points obey the conjecture.

Item (i), however, remains open: is it true that the only nontrivial segments of rational
slope realized as a rotation set are those containing rational points? Although partial
progress has been made in recent years [11, 14, 13, 15], the question remained open even in
the minimal case.

In this article we prove that, in contrast to Avila’s counter example, case (i) in the conjec-
ture is true for minimal homeomorphisms. As we see in the next paragraph, we prove that
case (i) must hold in the family of extensions of irrational rotations which in particular
provides the answer for minimal homeomorphisms.

1.1. Precise statement, context and scope.

The family of extensions of irrational rotations is given by those toral homeomorphisms
in the homotopy class of the identity which are topologically semi-conjugate to an irrational
rotation of the circle. The study of the conjecture in this particular family was introduced in
[13], following a program by T. Jäger: supported in the ideas presented in [11], one may first

(1) Unfortunately both surveys are far from being up to date.
(2) I.e., points with both coordinates rational.
(3) Still unpublished.
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aim to show that every possible counter example for the rational case (i) in the conjecture
must be contained in this family, and as a second step one may study the conjecture in
the class of extensions of irrational rotations. There is significant progress in the first step
of the program under some recurrence assumptions [11, 14, 15]. On the other hand, for
the second step the only known result states that if a counter-example exists, the fibers of
the conjugation must be topologically complicated [13]. This sole fact does not lead to a
contradiction, since such a fiber structure is possible for extensions of irrational rotations (see
[3]). Our main result in this article completely solves the second step of Jäger’s program: there
are no counter examples to the Franks-Misiurewicz conjecture in the family of extensions of
irrational rotations.

The rotation set of an extension of an irrational rotation in T2 contains no rational
points, and it must be either a singleton or an interval of rational slope (see for instance
[13]). In [14] it is proved that every area-preserving homeomorphism homotopic to the
identity having a bounded deviations property is an extension of an irrational rotation (see
also [11]). Recently A. Kocsard showed that minimal homeomorphisms having a non-trivial
interval with rational slope as rotation set have the bounded deviations property [15], and as
a consequence every minimal homeomorphism having a non-trivial interval with rational
slope as rotation set must be an extension of an irrational rotation.

Our main result is the following:

T 1. – The rotation set of a lift of any extension of an irrational rotation is a
singleton.

Using the previously mentioned results we find that case (i) in the Franks-Misiurewicz
conjecture is true for minimal homeomorphisms:

T 2. – The rotation set of a lift of any minimal homeomorphism of T2 homotopic
to the identity is either:

(i) a single point of irrational coordinates, or

(ii) a segment with irrational slope containing no rational points.

Note that both cases are realized; the first one by minimal rotations, and the second by
Avila’s example.

In the case of diffeomorphisms, J. Kwapisz has shown that the possible existence of an
example whose rotation set is an interval contained in a line of irrational slope having a
rational point outside the interval is equivalent to the existence of an example with a non-
trivial segment of rational slope containing no rational points [17]. This was adapted to the
C 0 setting by Béguin, Crovisier and Le Roux [4]. Using these results, we have the following:

C. – Case (ii) of the previous theorem can only hold if the supporting line of the
segment contains no rational points.
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Finally, it should be mentioned that one of the main theorems in [17] contains the previous
corollary, and moreover states that rotation sets which are intervals of rational slope having
no rational points cannot be realized by diffeomorphisms. Unfortunately, there is a critical
flaw in the proof (4), which uses some convoluted estimations relying in quasiconformality
properties and extremal length. AK was supported by FAPERJ-Brasil and CNPq-Brasil, AP
and MS were partially supported by CSIC group 618.

1.2. Comments on the proof of Theorem I

In [13] it is proved that an extension f of an irrational rotation having an interval as
rotation set has a semiconjugacy to an irrational rotation so that every fiber is an essential
annular continuum, and almost every fiber contains points realizing both extremal rotation
vectors.

In order to prove Theorem I we develop some techniques concerning the geometry of
essential loops which have the property of remaining under iteration close enough to two
points having different rotation vectors (see Section 4). In Section 3 we show that one can
choose a topological annulus A which contains at least two fibers of the semiconjugacy and
whose “width” remains small enough after most iterations by f . Applying the results from
Section 4, we are able to show that every essential loop in f n.A/ will contain arcs whose
winding number becomes arbitrarily large with n. This in turn will imply thatA is increasingly
distorted, and as a consequence of this distortion we show that the two boundary circles
of f n.A/ contain points arbitrarily close to each other. This leads to a contradiction since
the (pointwise) distance between two different fibers remains bounded below by a constant
under iterations, due to the semiconjugation to a rigid rotation.

Acknowledgments. – We would like to thank Sylvain Crovisier for the fruitful conversations
related to this article, as well as the anonymous referees for the helpful comments and
corrections.

2. Preliminaries

We denote by pr1WR2 ! R and pr2WR2 ! R the projections onto the first and second
coordinates, respectively, and we define T1.x; y/ D .x C 1; y/, T2.x; y/ D .x; y C 1/. We
consider the open annulus A defined as R=hT1i, and we let � WR2 ! A be the covering
projection. The vertical translation T2 induces a vertical translation on A which we still
denote T2, and we consider the torus T2 D A=hT2i with covering projection � WA ! T2.
Note that the map � D � ı � is a universal covering of T2. All spaces are endowed by the
metric induced by the euclidean metric in R2.

For a surface S , we denote by Homeo0.S/ the space of homeomorphisms of S isotopic
to the identity. Any f 2 Homeo0.T2/ can be lifted (by the covering � ) to a homeomor-
phism Of 2 Homeo0.A/ which commutes with T2, and Of in turn lifts to a homeomorphism
F WR2 ! R2, which commutes with both T1 and T2, and which is also a lift of f (by the
covering �).

(4) As acknowledged by the author.
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For convenience, let us denote by �F WA ! R the horizontal displacement function
associated to F , defined on A by �F .x/ D pr1.F. Qx/ � Qx/ for any Qx 2 ��1.x/. Note
that since z 7! F.z/ � z is Z2-periodic, this definition is independent on the choice
of Qx, and moreover �F is T2-periodic. In particular it is bounded. It is useful to note that
�F n.x/ D

Pn�1
kD0 �F .

Of k.x// D pr1.F
n. Qx/ � Qx/ for any Qx 2 ��1.x/.

2.1. Some topological definitions and facts

An arc in A from x to y is a continuous map � W Œa; b� ! A such that �.a/ D x and
�.b/ D y. Two arcs are equivalent if one is a reparametrization of the other (preserving
the endpoints). We identify equivalent arcs. The arc is simple if the map � may be chosen
injective. In the case of a simple arc, we often use the same notation for � and the image of � .
A loop is an arc 
 whose two endpoints coincide. In that case we say that 
 is simple if there
is a parametrization 
 W Œa; b�! A which is injective on Œa; b/. A simple loop 
 is essential if
its complement in A has two unbounded components.

An essential continuum E � A is a continuum such that A n E has two unbounded
connected components, which we denote UC.E/ and U�.E/ (where UC is the one
unbounded above and U� is the one unbounded below). We say that E is an essential
annular continuum if A n E has exactly two connected components, both of which are
unbounded.

A continuum C � T2 is called a horizontal (annular) continuum if each connected
component of ��1.C / is an essential (annular) continuum. Similarly, an open or closed
(topological) annulus A � T2 is called horizontal if each connected component of ��1.A/
contains an essential loop.

IfX; Y are two sets inA orT2, we write d.X; Y / D inffd.x; y/ W x 2 X; y 2 Y g. WhenX is
a singleton we write d.x; Y / instead of d.fxg; Y /. By Br .X/ we denote the r-neighborhood
of X , i.e., the set fy W d.y;X/ < rg. If X; Y are compact we denote by dH .X; Y / the
Hausdorff distance between the two sets, i.e., the infimum of all numbers � > 0 such that
X � B�.Y / and Y � B�.X/. The Hausdorff distance is a complete metric.

Given two essential continuaC1; C2 in A, we writeC1 � C2 ifC1 � U�.C2/. This defines
a partial order. The following lemma is contained in [12, Lemma 3.8].

L 2.1. – If a sequence of essential continua .Ck/k2N is increasing and bounded from
above in the partial order �, then there is an essential continuum C such that dH .Ck ; C /! 0

as k ! 1. Moreover, C D @
S
k2N U�.Ck/. A similar property holds for a decreasing

sequence.

Given an essential annular continuum A � A, we define its upper width as

uw.A/ D supfdH .C1; C2/ W C1; C2 are essential continua in Ag

and its lower width as

lw.A/ D supfd.C1; C2/ W C1; C2 are essential continua in Ag:

If A is a closed topological annulus, one can easily verify that lw.A/ D d.@CA; @�A/, where
@CA and @�A are the two boundary components ofA, and uw.A/ D dH .@

CA; @�A/. Note
that we used the infimum distance in the first case and the Hausdorff distance for the second
case.
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We remark that an equivalent definition of uw.A/ is as the smallest number " > 0 such
that for every essential continuum C � A one has A � B�.C /. Note also that if A � A0 then
uw.A/ � uw.A0/ and lw.A/ � lw.A0/.

If A � T2 is a horizontal annular continuum, we define its upper and lower width as the
upper and lower width of any lift ofA toA, respectively (and this is independent of the choice
of the lift).

3. Extensions of irrational rotations

Let us say that hWT2 ! T1 is a horizontal map if h is continuous, surjective, and h�1.t/ is
a horizontal annular continuum for each t 2 T1.

Given f 2 Homeo0.T2/, we say that f is a horizontal extension of an irrational rotation if
there exists a horizontal map h such that hf D Rh, whereR is an irrational rotation of T1. In
this case, it follows from the main results of [13] that such hmay be chosen to be homotopic
to the projection T2 ! T1 onto the second coordinate; thus we will always assume this to
be the case.

We will use the following result due to T. Jäger and the second author of this article [13]:

T 3.1. – If f is an extension of an irrational rotation, then f is topologically
conjugate to a horizontal extension of an irrational rotation.

As mentioned in the introduction, the proof of Theorem I is based in showing that if we
iterate certain annular neighborhood A of a fiber of the horizontal semiconjugacy, then the
d -distance between its two boundary components becomes arbitrarily small. A proof of this
fact would be easier if we knew that every fiber of the semiconjugacy has small upper width
(bounded above by the continuity module of 1

4
for f ), which would be true for instance

if every fiber was a circloid (5). Unfortunately, we cannot ensure this fact; instead we will
strongly use that only finitely many fibers can have large upper width, which in turn will imply
that with a high frequency of iterations the boundary components of A are within a small
Hausdorff distance from each other.

For the remainder of this section, fix a horizontal extension of an irrational rotation
f 2 Homeo0.T2/, and let h be a horizontal map such that hf D RhwhereR is an irrational
rotation and h is homotopic to the projection T2 ! T1 onto the second coordinate. We also
fix a lift Of 2 Homeo0.A/ of f and a lift F WR2 ! R2 of Of .

Our main purpose in this section is to show the following result, which enumerates the key
properties which will be used in the proof of our main theorem. Recall that the lower density
of a set G � N is defined as lim infn!1 #fk 2 G W k � ng=n. We state the lemma in the
annulus A since we will work in that setting later.

L 3.2. – Suppose that �.F / D Œ��; �C� � f˛g. Then, given ı > 0 and � > 0, there
exists a closed essential topological annulus A � A, an essential simple loop 
 � A n A, two
points x; y 2 A n A, a set G � Z and B D B.f / > 0 such that

(1) �F n.x/=n! �� and �F n.y/=n! �C as n!1;

(5) A minimal annular continuum with respect to the inclusion.
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(2) If n 2 G, then d. Of n.x/; Of n.
// < � and d. Of n.y/; Of n.
// < �;

(3) The lower density of G is at least 1 � ı;

(4) diam.pr2. Of
n.A/ [ fx; yg [ 
// � B for all n 2 N;

(5) A separates fx; yg from 
 in A, and

inf
n2N

lw. Of n.A// > 0:

Before proceeding to its proof, we need some results about the fibers of the map h. Note
that the family F of all fibers of h is a decomposition ofT2 into horizontal annular continua.
From the continuity of h follows that F is an upper semicontinuous decomposition: ifCn 2 F

is a sequence of fibers such that Cn ! C in the Hausdorff topology, then C � C 0 for
some C 0 2 F . We also note that h lifts to a map H WA ! R whose fibers are the lifts of
fibers of h, and choosing the orientation of R adequately we have that H�1.x/ � H�1.y/ if
and only if x < y. Finally we remark that due to the fiber structure of h, whenever I � T1 is
an open interval, its preimage A D h�1.I / is a horizontal open topological annulus. This
follows from the analogous claim for H : if I � R is an open interval then H�1.I / is an
essential topological annulus in A. The latter claim is true because, since the fibers of H are
compact and connected,H�1.I / is open and connected, and since the fibers are essential and
connected, H�1.I / is “filled” (its complement has no inessential components). From these
observations we also see that when I � T1 is a closed interval, h�1.I / is a horizontal annular
continuum, as it can be written as a decreasing intersection of horizontal topological annuli.

L 3.3. – For each � > 0 and t 2 T1 there exists a neighborhood It of t such that
whenever I � It n ftg is a closed interval one has uw.h�1.I // < �.

Proof. – It suffices to prove the analogous claim on A, i.e., for each t 2 R there exists
a neighborhood It of t such that whenever I � It n ftg is a closed interval one has
uw.H�1.I // < �. Suppose this is not the case. Then there exists a sequence Jn of closed
intervals disjoint from t , converging to t , such that uw.H�1.Jn// � �. For each Jn we
may find two essential continua C 1n ; C

2
n � Jn such that dH .C 1n ; C

2
n / � �. Passing to a

subsequence we may assume that the intervals Jn are either increasing or decreasing (in the
linear order of R). We assume the former case, as the other case is analogous. This implies
that both sequences .C in/n2N are increasing in the order �. Thus by Lemma 2.1 we have
dH .C

i
n; C

i / ! 0 where C i WD @U�i and U�i D
S
k2N U�.C i

k
/. But one easily verifies

that U�i D H�1..�1; t �/, so C 1 D C 2. This implies that dH .C 1n ; C
2
n / ! 0 as n ! 1,

a contradiction.

R 3.4. – We note that as a consequence of the previous lemma, the set of all fibers
of hwhose upper width is greater than a given � > 0must be finite. Indeed the lemma implies
that the set ft 2 T1 W uw.h�1.t// � �g has no accumulation points.

L 3.5. – Given � > 0 and ı > 0, there exists � > 0 such that for any closed
interval I � T1 of length smaller than �, if A D h�1.I / the set fn 2 N W uw.f n.A// < �g has
lower density at least 1 � ı.
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Proof. – Consider a cover of T1 by finitely many neighborhoods It1 ; : : : ; Itk as in
Lemma 3.3, and let 0 < � < ı=k be such that whenever a closed interval I has length smaller
than � one has I � Iti for some i . This means that any such I satisfies uw.h�1.I // < �

unless it contains ti for some i . IfGi .I / � N denotes the set of all n 2 N such that ti … Rn.I /,
we have from the unique ergodicity of the irrational rotation R that Gi .I / has lower density
1� `.I / > 1� �, where `.I / denotes the length of I . Hence the set G.I / D

Tk
iD1Gi .I / has

lower density at least 1�k� > 1�ı. Note that sinceRn.I / has the same length as I , we have
uw.h�1.Rn.I /// < � whenever n 2 G.I /. The proof is concluded noting that if A D h�1.I /
then f n.A/ D h�1.Rn.I //.

L 3.6. – If A D h�1.I / for some nontrivial closed interval I � T1, then

infflw.f n.A// W n 2 Zg > 0:

Proof. – Let a; b be the endpoints of I , and � D d.a; b/. Choose ı > 0 such that
whenever d.x; y/ < ı for x; y 2 T2 one has d.h.x/; h.y// < �. Note that this means
that d.h�1.a/; h�1.b// � ı. Moreover, since d.Rn.a/; Rn.b// D d.a; b/ D �, we also have
for any n 2 N

d.f n.h�1.a//; f n.h�1.b/// D d.h�1.Rn.a//; h�1.Rn.b/// � ı:

Thus Ca D f n.h�1.a// and Cb D f n.h�1.b// are two horizontal continua in f n.A/ such
that d.Ca; Cb/ � ı, and it follows easily that lw.f n.A// � ı for all n 2 N.

L 3.7. – There exists B > 0 such that for every interval I � T1, if A � A is a lift
of A0 D h�1.I / then diam.pr2. Of

n.A/// � B for all n 2 Z.

Proof. – Fix t 2 T1, let C be a lift to A of h�1.t/. If A � A is the annulus bounded
by C and its vertical translation by two, i.e., T 22 .C /, then for each n there is i 2 Z such
that Of n.A/ � T i .A /. Since T is an isometry, B D diam.pr2.A // satisfies the required
property.

3.1. Proof of Lemma 3.2

Let � < 1 be as in Lemma 3.5, let A 0 D h�1.I0/ where I0 � T1 is some closed
(nondegenerate) interval of length smaller than �, and choose any lift A0 � A of A 0. Note
that A0 is fibered by the fibers of H , i.e., A0 D H�1.I 00/ for some interval I 00 � R (which is
a lift of I0). Noting also that the preimage by H of an open interval is an open topological
annulus, and in particular contains an essential simple loop, by an easy argument one obtains
a loop 
 and two disjoint closed topological annuli A;A0 � A0 such that:

— 
 � A � A0;

— H�1.I / � A for some nontrivial closed interval I � I0;

— H�1.J / � A0 for some nontrivial closed interval J � I0.
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Since extremal points of the rotation set are realized by ergodic measures, there exist
nonempty f -invariant sets SC and S� in T2 with the following property (see [20])

lim
n!1

.F n.x/ � x/=n D .�˙; ˛/ for all x 2 ��1.S˙/:

Recalling that �.A0/ is the projection of A0 into T2, we know that h�1.J0/ � �.A0/ for some
nontrivial interval J0 (the projection of J � R into T1). Since R is an irrational rotation,S
n2ZR

n.J0/ D T1, thus
S
n2Z f

n.�.h�1.J0/// D T2 (from the fact that hf D Rh). Hence
h�1.J0/ intersects the invariant setSC, and thereforeA0 contains some point x which projects
into SC, which implies that �F n.x/=n ! �C. The point y 2 A0 is obtained similarly. Since
x; y were chosen inA0 and 
 � A � A0 we deduce thatA separates fx; yg from 
 . In addition,
lw. Of n.A// � lw. Of n.H�1.I /// which is uniformly bounded below by Lemma 3.6 (which is
stated on T2 but clearly implies this), so (5) holds (and (1) as well).

Lemma 3.5 implies that the set G D fn 2 Z W uw. Of n.A0// < �g has density at least
1 � ı. Thus, since Of n.
/ is an essential loop in Of n.A0/, for any n 2 G one has Of n.A0/ �
B�. Of

n.
//, and in particular (2) and (3) hold, since fx; yg � A0 � A0. Finally, part (4)
follows from Lemma 3.7 applied to A0.

4. Topological lemmas in the annulus

In this section we develop some results concerning essential loops in the annulus which
under iteration remain close enough to two points having different rotation vectors. This
allows to find in the sequence of iterations of the loop a sequence of arcs with increasingly
large winding numbers. This will be the key point for proving Theorem I.

The winding number of an arc � W Œa; b� ! A is the number W.�/ D pr1. Q�.b/ � Q�.a//
where Q� W Œa; b� ! R2 is a lift of � and pr1 denotes the projection onto the first coordinate.
This number is independent of the choice of the lift. The homotopical diameter D.�/ is the
diameter of the projection of Q� onto the first coordinate, which again is independent of the
lift. The following simple remarks will be used:

— if �1; �2 are two arcs which can be concatenated, then

W.�1 � �2/ DW.�1/CW.�2/I

— if �1 and �2 are homotopic with fixed endpoints, then W.�1/ DW.�2/;

— D.�/ D sup� 0

ˇ̌
W.� 0/

ˇ̌
, where the supremum runs over all subarcs � 0 of � ;

— if 
 is a simple loop, then
ˇ̌
W.
/

ˇ̌
� 1.

Recall the definition of the horizontal displacement function �F WA! R from Section 2.

L 4.1. – If Of 2 Homeo0.A/ is a homeomorphism isotopic to the identity with a lift
F WR2 ! R2, for any arc � in A joining x to y,

W. Of .�// DW.�/C �F .y/ � �F .x/:

Proof. – It suffices to note that if Q� is a lift of � to R2 joining Qx to Qy, then F. Q�/ is a lift
of Of .�/ and its endpoints are F. Qx/ and F. Qy/, so W. Of .�// D pr1.F. Qy// � pr1.F. Qx// D
pr1. Qy/ � pr1. Qx/C �F .y/ � �F .x/ and the claim follows.
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L 4.2. – Suppose ˛ is a simple arc, and � is any arc disjoint from ˛ except at their
two endpoints, which coincide. Then

ˇ̌
W.˛/

ˇ̌
� D.�/C 1.

Proof. – We may assume that � is a simple arc by choosing a simple arc in its image
joining the same two endpoints (which can be chosen with a homotopical diameter smaller
than or equal to that of � ). Since � and ˛ are simple arcs intersecting only at their endpoints,
after a change in orientation of � if necessary we have that ��1 � ˛ is a simple loop. This
means that

ˇ̌
W.˛/ �W.�/

ˇ̌
D
ˇ̌
W.��1 � ˛/

ˇ̌
� 1. Hence

ˇ̌
W.˛/

ˇ̌
� 1C

ˇ̌
W.�/

ˇ̌
� 1CD.�/

as claimed.

L 4.3. – Suppose ˛; ˇ are two disjoint simple arcs. Let �1 be an arc joining the initial
point of ˛ to the initial point of ˇ and otherwise disjoint from ˛ and ˇ, and �2 an arc joining the
final point of ˛ to the final point of ˇ and otherwise disjoint from ˛ and ˇ. Thenˇ̌

W.˛/ �W.ˇ/
ˇ̌
� 2D.�1/C 2D.�2/C 2:

Proof. – We may assume that �1 and �2 are simple arcs by choosing a simple arc in their
images joining the same two endpoints. Suppose first that �1 intersects �2. In that case, we
may choose an arc � in the union of their images, joining the final point of ˛ to its initial
point. Since � is disjoint from ˛ except at its two endpoints, the previous lemma impliesˇ̌

W.˛/
ˇ̌
� D.�/C 1 � D.�1/CD.�2/C 1:

A similar argument shows that
ˇ̌
W.ˇ/

ˇ̌
� D.�1/CD.�2/C 1, and the claim follows.

Now assume that �1 and �2 are disjoint. Then since they are also disjoint from ˛

and ˇ except at their endpoints, it follows that ˛ � �2 � ˇ � ��11 is a simple loop, henceˇ̌
W.˛ � �2 � ˇ

�1 � ��11 /
ˇ̌
� 1. This implies thatˇ̌

W.˛/CW.�2/ �W.ˇ/ �W.�1/
ˇ̌
� 1;

and so ˇ̌
W.˛/ �W.ˇ/

ˇ̌
� 1C

ˇ̌
W.�1/

ˇ̌
C
ˇ̌
W.�2/

ˇ̌
� 1CD.�2/CD.�1/;

which implies the claim of the lemma.

The following is a key lemma. Although we give a general statement, we will be interested
in the case where an essential loop remains close to two points having different rotation
vectors.

L 4.4 (Dragging lemma). – Suppose that Of WA ! A is isotopic to the identity, and
let 
 � A be a simple loop. Given x; y 2 A, let �x ; �y be two simple arcs joining x; y to 
 and
disjoint from 
 except at their endpoints x0; y0, respectively. Similarly let � Of .x/; � Of .y/ be two

simple arcs joining Of .x/; Of .y/ to Of .
/ and disjoint from Of .
/ except at their endpoints x1; y1,
respectively. Let I be a simple arc in 
 joining x0 to y0 and I 0 a simple arc in Of .
/ joining x1
to y1. Thenˇ̌

W.I 0/ �W. Of .I //
ˇ̌
� 3CD.� Of .x//CD. Of .�x//CD.� Of .y//CD. Of .�y//:
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Proof. – Fix a point z in Of .
/ disjoint from Of .I /. Let ˛x be a simple arc in Of .
/

joining x1 to Of .x0/ not containing z, and ˛y a simple arc in Of .
/ joining y1 to Of .y0/ not
containing z. Note that the endpoints of ˛x are connected by the arc ��1

Of .x/
� Of .�x/, which

is disjoint from ˛x except at its endpoints.
Thus from Lemma 4.2, we have W.˛x/ � D.��1

Of .x/
� Of .�x//C 1 � D.� Of .x//CD. Of .�x//C 1.

A similar argument shows that W.˛y/ � D.� Of .y//CD. Of .�x//C 1. Note that ˛�1y � Of .I / � ˛x

is an arc contained in the simple loop Of .
/ and does not contain the point z, so it is
homotopic (with fixed endpoints) to a simple arc J in Of .
/ joining x1 to y1, and we have
W.J / DW.˛y/CW. Of .I //CW.˛x/. Note that the arc I 0 from the statement and J are both
simple subarcs of the simple loop Of .
/ joining the same points, so there are two possibilities:
I 0 D J or I 0 is the complementary arc of J in 
 . In the first case, we have W.I 0/ D W.J /,
and in the latter case I 0 � J�1 is a simple loop, so

ˇ̌
W.I 0/ �W.J /

ˇ̌
D
ˇ̌
W.I 0 � J�1/

ˇ̌
� 1. In

both cases, we haveˇ̌
W.I 0/ �W. Of .I //

ˇ̌
�
ˇ̌
W.I 0/ �W.J /

ˇ̌
C
ˇ̌
W.J / �W. Of .I //

ˇ̌
� 1C

ˇ̌
W.˛x/

ˇ̌
C
ˇ̌
W.˛y/

ˇ̌
and the desired inequality follows.

4.1. Distortion of loops and annuli

If 
 � A is an essential loop, we define its distortion as

dist.
/ D supfD.�/ W � is a simple arc in Ag:

If A � A is an essential closed topological annulus we define its distortion as

dist.A/ D inffdist.
/ W 
 is an essential loop in Ag:

The lower width of an annulus in a compact region of A is related to its distortion by the
next lemma.

L 4.5. – If A � A is an essential closed topological annulus and dist.A/ > 1, then

lw.A/ �
diam.pr2.A//

dist.A/ � 1
:

R 4.6. – With some additional work, one may improve the bound on the right
hand side to diam.pr2.A//=.2dist.A/ � 1/, but we leave the details to the reader as we will
not need this fact.

Proof. – Let M D dist.A/, and fix a vertical line L in A. Let I be the family of all
connected components of A\L which connect two points from different boundary compo-
nents of A. We claim that the number of elements of I is bounded below by dist.A/ � 1.
To show this, let m be the number of elements of I (which we assume finite, otherwise
there is nothing to be done). Choose an essential loop 
 in A intersecting each element
of I exactly once. If ˛ is any simple subarc of 
 with D.˛/ � 1, then ˛ is a concatena-
tion of arcs ˛0 � ˛1 � � � � � ˛k such that each ˛i is disjoint from L except perhaps at its
endpoints, and when 0 < i � k the initial point of ˛i belongs to some element of I . Since
˛i is simple and contained in 
 , each element of I appears as the initial point of at most
one ˛i . This implies that k � m. From the fact that ˛i is disjoint from L except at most
at its endpoints, we deduce that D.˛i / � 1. Since ˛ is the concatenation of the arcs ˛i , we
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have D.˛/ � k C 1 � m C 1, and taking the supremum among all such arcs ˛ we obtain
dist.
/ � mC 1. Thus m � dist.
/ � 1 � dist.A/ � 1 as claimed.

Finally, since the elements of I are pairwise disjoint intervals in the vertical line L, their
total length is at most diam.pr2.A//, and since there are at least dist.A/ � 1 such elements,
there must exist some I 2 I of length at most ` D diam.pr2.A//=.dist.A/ � 1/. Since the
endpoints of I are in different connected components of @A, it follows from the definition
of lower width that lw.A/ � `, as claimed.

5. Proof of the main theorem

Let f 2 Homeo0.T2/ be a horizontal extension of an irrational rotation, let Of WA! A be
a lift of f and let F WR2 ! R2 be a lift of Of (which also lifts f ). Suppose for a contradiction
that �.F / is not a singleton, so it is an interval of the form Œ��; �C� � f˛g where �C > ��.
Since �.F n/ D n�.F /, replacing f by some power of f if necessary we may assume that
�C � �� � 10.

Fix 0 < � < 1=4 such that whenever z1; z2 2 R2 satisfy d.z1; z2/ < � one has
d.F.z1/; F .z2// < 1=4. Note that this implies that for z1; z2 2 A,

(5.1) if d.z1; z2/ < � then
ˇ̌
�F .z1/ � �F .z2/

ˇ̌
< 1=4C �:

Moreover, we remark that for any arc � in A,

(5.2) if D.�/ < � then D. Of .�// < 1=4.

Fix ı > 0, and let A � A, x; y 2 A nA, G � N, and the essential loop 
 � A nA be as in
Lemma 3.2. LetK D maxz2A

ˇ̌
�F .z/

ˇ̌
, which is finite since �F is continuous and T2-periodic.

Note that for any arc � in A one has

(5.3) D. Of .�// � D.�/C 2K:

We will show that dist. Of n.A//!1 as n!1. For each n � 0 fix a geodesic arc �x;n such
that �x;n joins Of n.x/ to a point xn of Of n.
/ minimizing the distance from Of n.x/ to Of n.
/,
and similarly let �y;n be a geodesic arc joining Of n.y/ to a point yn of Of n.
/ minimizing the
distance from Of n.y/ to Of n.
/. Note that both arcs are disjoint from Of n.
/ except for their
endpoints xn; yn, and D.�x;n/ � d. Of n.x/; Of n.
// (and similarly for �y;n).

For each n � 0, let In be a simple arc in Of n.
/ joining xn to yn. Note that if n 2 G,
from Lemma 3.2 we have D.�x;n/ < � < 1=4, so by (5.2) we have D. Of .�x;n// < 1=4. An
analogous estimate holds for �y;n. Thus from Lemma 4.4 we have

W.InC1/ �W. Of .In// � 4

and so from Lemma 4.1,

W.InC1/ �W.In/C �F .yn/ � �F .xn/ � 4:

Noting that d.xn; Of n.x// < � when n 2 G, from (5.1) we haveˇ̌
�F .xn/ � �F . Of

n.x//
ˇ̌
< 1=4C � < 1=2;

and similarly for y. Thus,

(5.4) W.InC1/ �W.In/C �F . Of
n.y// � �F . Of

n.x// � 5:
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On the other hand, if n … G we may obtain a rougher estimate: Lemma 3.2(4) implies
D.�x;n/ � B, so by (5.3) we have D. Of .�x;n// � 2K C B, hence again from Lemma 4.4

W.InC1/ �W. Of .In// � .3C 4B C 4K/

and from Lemma 4.1,

W.InC1/ �W.In/C �F .yn/ � �F .xn/ � .3C 4B C 4K/:

Since j�F .xn/ � �F . Of n.x//j � 2K, we conclude

(5.5) W.InC1/ �W.In/C �F . Of
n.y// � �F . Of

n.x// � .3C 4B C 6K/:

Combining (5.4) and (5.5) we obtain

W.In/ �W.I0/ � 5rn � .3C 4B C 6K/.n � rn/C

n�1X
kD0

�F . Of
k.y// � �F . Of

k.x//;

where rn is the cardinality of G \ f1; 2; : : : ; ng. Note that the summation above is the same
as �F n.y/��F n.x/. Thus, using the fact that limn!1 �F n.y/=n��F n.x/=n D �C��� � 10

and that the density of G is at last 1 � ı, we have

lim inf
n!1

W.In/=n � �5.1 � ı/ � .3 � 4B C 6K/ı C 10:

Recalling that the constants K and B depend only on f and not on ı, we may fix
ı < .3 � 4B C 6K/�1 to conclude that

lim inf
n!1

W.In/=n � 4:

In particular, W.In/ ! 1 as n ! 1. Now let 
 0 � Of n.A/ be any essential simple
loop. Recall from Lemma 3.2(5) that A separates 
 from fx; yg, so Of n.A/ separates Of n.
/
from f Of n.x/; Of n.y/g. This implies that any arc joining Of n.x/ or Of n.y/ to a point of Of n.
/
intersects every essential loop in Of n.A/. In particular, the arcs �x;n and �y;n must intersect 
 0.
Let � 0x;n and � 0y;n be simple subarcs of �x;n and �y;n joining xn to a point x0 of 
 0 and yn to
a point y0 of 
 0, and otherwise disjoint from 
 0. Denoting by I 0 a simple subarc of 
 0 joining
x0 to y0, we have from Lemma 4.3 thatˇ̌

W.In/ �W.I 0/
ˇ̌
� 2D.� 0x;n/C 2D.� 0y;n/C 2:

Since D.� 0x;n/ � B and D.� 0y;n/ � B, we conclude that

W.I 0/ �W.In/ � 4B � 2:

Thus

D.
 0/ �
ˇ̌
W.I 0/

ˇ̌
�
ˇ̌
W.In/ � 4B � 2

ˇ̌
:

Since this estimate is independent of the choice of the loop 
 0 in Of n.A/, we conclude that

dist. Of n.A// �
ˇ̌
W.In/ � 4B � 2

ˇ̌
!1

as n ! 1. But then, recalling that diam.pr2. Of
n.A/// � B, Lemma 4.5 implies that

lw. Of n.A//! 0 as n!1, contradicting Lemma 3.2(5). This completes the proof.
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RESOLVENT ESTIMATES
ON ASYMPTOTICALLY CYLINDRICAL MANIFOLDS

AND ON THE HALF LINE

 T J. CHRISTIANSEN  K DATCHEV

A. – Manifolds with infinite cylindrical ends have continuous spectrum of increasing mul-
tiplicity as energy grows, and in general embedded resonances (resonances on the real line, embedded
in the continuous spectrum) and embedded eigenvalues can accumulate at infinity. However, we prove
that if geodesic trapping is sufficiently mild, then the number of embedded resonances and eigenval-
ues is finite, and moreover the cutoff resolvent is uniformly bounded at high energies. We obtain as a
corollary the existence of resonance free regions near the continuous spectrum.

We also obtain improved estimates when the resolvent is cut off away from part of the trapping, and
along the way we prove some resolvent estimates for repulsive potentials on the half line which may be
of independent interest.

R. – Les variétés à bouts infinis cylindriques ont du spectre continu dont la multiplicité
est croissante en fonction de l’énergie, et en général les résonances plongées (les résonances sur l’axe
réel, plongées dans le spectre continu) et les valeurs propres plongées peuvent s’accumuler à l’infini.
Cependant, on démontre que si les géodésiques sont suffisamment peu captées, alors le nombre de
résonances plongées et de valeurs propres plongées est fini, et en plus la résolvante tronquée est
uniformément bornée en hautes énergies. On obtient comme corollaire l’existence de certaines régions
sans résonance près du spectre continu.

On obtient aussi des estimations améliorées lorsque la résolvante est tronquée loin de certaines
géodésiques captées, et, en chemin, on démontre des estimations de la résolvante pour des potentiels
répulsifs sur la demi-droite, qui peuvent avoir leur intérêt propre.

1. Introduction

1.1. Resolvent estimates for manifolds with infinite cylindrical ends

The high energy behavior of the Laplacian on a manifold of infinite volume is, in many
situations, well known to be related to the geometry of the trapped set; this is the set of
bounded maximally extended geodesics. In the best understood cases, such as when the
manifold has asymptotically Euclidean or hyperbolic ends (see [57, §3] for a recent survey),
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the trapped set is compact. Some results have been obtained for more general trapped sets
(e.g., manifolds with cusps were studied in [7]) but less detailed information is available.

In this paper we study manifolds with infinite asymptotically cylindrical ends, which
have noncompact trapped sets. A motivation for this study comes from waveguides and
quantum dots connected to leads. The spectral geometry of these is closely related to that of
asymptotically cylindrical manifolds, and they appear in certain models of electron motion in
semiconductors and of propagation of electromagnetic and sound waves. We give just a few
pointers to the physics and applied math literature here [34, 46, 47, 25, 2]. In [9], we prove
analogues of some of the results below for suitable (star-shaped) waveguides.

The fundamental example of a manifold with cylindrical ends is the Riemannian product
R � S1, which has an unbounded trapped set consisting of the circular geodesics. We are
interested in the behavior of the resolvent of the Laplacian (and its meromorphic continu-
ation, when this exists) for perturbations of such cylinders and their generalizations. As we
discuss below, this behavior can sometimes be very complicated, but we show that if some
geometric properties of the manifold are favorable, then the resolvent is uniformly bounded
at high energy. In the companion paper [10], we study the closely related problem of long
time wave asymptotics on such manifolds.

We begin with an illustration of a more general theorem to follow, by stating a high energy
resolvent estimate for two kinds of mildly trapping manifolds .X; g/ with infinite cylindrical
ends.

E 1. – Let .r; �/ be polar coordinates in Rd for some d � 2, and let

X D Rd ; g0 D dr
2
C F.r/dS;

where dS is the usual metric on the unit sphere, F.r/ D r2 near r D 0, and F 0 is compactly
supported on some interval Œ0; R� and positive on .0; R/; see Figure 1.1.

F 1.1. A cigar-shaped warped product.

Then for r.t/ > 0 all g0-geodesics obey

Rr.t/ WD
d2

dt2
r.t/ D 2j�j2F 0.r.t//F.r.t//�2 � 0;

where r.t/ is the r coordinate of the geodesic at time t and � is the angular momentum.
Consequently, the only trapped geodesics are the ones with Pr.t/ � F 0.r.t// � 0, that is
the circular ones in the cylindrical end. This is the smallest amount of trapping a manifold
with a cylindrical end can have.

Let g be any metric such that g � g0 is supported in f.r; �/ j r < Rg, and such that g and
g0 have the same trapped geodesics. For example we may take g D g0 C cg1, where g1 is
any symmetric two-tensor with support in f.r; �/ j r < Rg, and c 2 R is chosen sufficiently
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small depending on g1. Alternatively, we may take g D dr2CgS .r/, where gS .r/ is a smooth
family of metrics on the sphere such that gS .r/ D r2dS near r D 0 and gS .r/ D F.r/dS

near r � R, and such that @rgS .r/ > 0 on .0; R/. This way we can construct examples where
g � g0 is not small.

E 2. – Let .X; gH / be a convex cocompact hyperbolic surface, such as the
symmetric hyperbolic ‘pair of pants’ surface with three funnels depicted in Figure 1.2.

r

cosh2r

F.r/

F 1.2. A hyperbolic surface .X; gH / with three funnels, and a modification
of the metric which changes the funnel ends to cylindrical ends.

In particular, there is a compact set N � X (the convex core of X ) such that

X nN D .0;1/r � Yy ; gH jXnN
D dr2 C cosh2r dy2;

where Y is a disjoint union of k � 1 geodesic circles (possibly having different lengths).

We modify the metric in the funnel ends so as to change them into cylindrical ends in the
following way. Take g such that

gjN
D gH jN

; gjXnN
D dr2 C F.r/dy2;

where F.r/ D cosh2r near r D 0, and F 0 is compactly supported and positive on the interior
of the convex hull of its support.

To obtain higher dimensional examples, we can take .X; gH / to be a conformally compact
manifold of constant negative curvature, with dimension d � 3, but in this case we need
the additional assumption that the dimension of the limit set is less than .d � 1/=2. The
construction of g now becomes more complicated and we give it in §3.3 below.

Our first result concerns only the above examples.

T 1.1. – Let .X; g/ be as in Example 1 or 2 above, and let� � 0 be its Laplacian.
There is z0 > 0 such that for any � 2 C1c .X/ there is C > 0 such that

(1.1) k�.�� � z/�1�kL2.X/!L2.X/ � C

for all z 2 C with Re z � z0 and Im z ¤ 0.
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Here .�� � z/�1 denotes the standard resolvent which maps L2.X/ ! L2.X/, and
not its meromorphic continuation. Below, in Theorem 5.6, we also obtain bounds for the
meromorphic continuation, but these are more complicated to state.

The bound (1.1) is optimal in the sense that we cannot replace the right hand side by a
function of z which tends to 0 as Re z ! 1. Indeed, taking the case of Example 1 with
d D 2 for definiteness, we have .�� � k2/v.r/eik� D �v00.r/eik� for any v 2 C1c ..R;1//
and k 2 Z.

Note also that the resolvent in these examples is better behaved than it is for the (geomet-
rically simpler) Riemannian product .X; g/ D .R � Y; g D dr2 C gY /, where .Y; gY / is a
compact Riemannian manifold. Indeed, take � 2 C1c .X/ a function of r such that � � 0

and � 6� 0, and take �0 2 C1c .X/ such that �0� D �, and let � be an eigenfunction of the
Laplacian on .Y; gY / with ��� D �2�. Then, by separation of variables,

k�.�� � z/�1��0�kL2.X/ D k�kL2.Y /k�.�@
2
r � z C �

2/�1�kL2.R/
z!�2

����! C1;(1.2)

where we take the limit using the explicit formula for the resolvent [23, (2.2.1)]. For our proof
of Theorem 1.1 it will be crucial that F 0 > 0 near the cylindrical ends in Examples 1 and 2,
and this is what is missing in the Riemannian product just discussed.

We will deduce Theorem 1.1 from Theorem 3.1 below, which gives a stronger result
(allowing � to be replaced by a noncompactly supported weight) and also applies to
Schrödinger operators on more general manifolds with asymptotically cylindrical ends. We
will further prove in Theorem 3.2 that we can obtain stronger resolvent bounds by suitably
refining the cutoffs �.

An estimate like (1.1) has well-known implications for the spectrum of ��. In particular,
by [48, Theorem XIII.20], the spectrum is purely absolutely continuous on .z0;1/, which
rules out any embedded eigenvalues there, and we will see below, in §5, that embedded
resonances (resonances on the real line, embedded in the continuous spectrum) are also
ruled out.

To our knowledge ours is the first result ruling out the presence of infinitely many
embedded eigenvalues or resonances for a large class of examples of manifolds with infinite
cylindrical ends.

The situation can be very different for other manifolds with cylindrical ends. For example,
letX D R�Y and g D dr2CF.r/gY , where .Y; gY / is a compact Riemannian manifold and
F 2 C1.RI .0;1//, 1�F is compactly supported, and maxF > 1. Then �� has infinitely
many embedded eigenvalues converging toC1 ([11, §3], [45, (3.6)]).

The study of the spectral and scattering theory of the Laplacian on manifolds with cylin-
drical ends, and their perturbations, goes back to Guillopé [28] and Melrose [36] and is an
active and wide-ranging area of research: see for example [31, 38, 49] for some recent results
and more references. There is also a large body of literature on the closely related study of the
Laplacian on waveguides: something of a survey can be found in [33], and let us also mention
the older result [26], and that there is a nonexistence result for eigenvalues in [20]. In a slightly
different direction, weighted resolvent estimates up to the spectrum and limiting absorption
principles have been investigated using Mourre theory [37, 1, 21], and this has been applied
to geometric situations such as ours in [40].
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Our results also have implications for the distribution of resonances; these are the poles of
the meromorphic continuation of the resolvent, and their study in this context also goes back
to [28, 36]. An existence result for resolvent poles (in the presence of appropriate quasimodes,
and which may be embedded in the real line or complex) on waveguides can be found in [24],
and for more such results see [33]. Upper bounds on the number resonances for manifolds
with infinite cylindrical ends are given in [8].

In Theorem 5.6, we will use an identity due to Vodev [52] to prove that (1.1) (or a more
general resolvent estimate up to the spectrum) implies the existence of a resonance free region
near the continuous spectrum. In a companion paper to this one, [10], we use these results
to prove an asymptotic expansion for solutions to the wave equation.

1.2. Repulsive potentials on the half line

In this paper we also obtain some resolvent estimates for Schrödinger operators on the
half line which we need in the course of the proofs of our main results, and which may be of
independent interest. We state them here.

Let VD be a bounded, nonnegative, nonincreasing potential on the half line, such that

(1.3) V 0D.r/ � �ıV .1C r/
�1VD.r/ � 0

for some ıV > 0 and for all r � 0, where if VD is not everywhere differentiable then (1.3) is
meant in the sense of measures. Note that in particular the potential is repulsive in the sense
of classical mechanics, since V 0D.r/ < 0 except where VD.r/ D 0.

For h > 0 and � 2 C n Œ0;1/ let

.�h2@2r C VD � �/
�1

denote the Dirichlet resolvent. In this paper we prove the following semiclassical resolvent
estimates:

T 1.2. – For all s; s1; s2 > 1=2 with s1 C s2 > 2 there is C > 0 such that for all
� 2 C n Œ0;1/ and h > 0 we have

k.1C r/�s.�h2@2r C VD.r/ � �/
�1.1C r/�sk �

C

h
p
j�j
;(1.4)

k.1C r/�s1.�h2@2r C VD.r/ � �/
�1.1C r/�s2k �

C

h2
;(1.5)

and

kVD.r/
1=2.1C r/�1=2.�h2@2r C VD.r/ � �/

�1.1C r/�sk �
C

h
;(1.6)

where the norms are L2.RC/! L2.RC/.

Recall that, in the case VD � 0, (1.4) and (1.5) are well known to be sharp as
dist.�; Œ0;1// ! 0; this can be checked from the explicit formula for the resolvent in
that case, which we give below in (5.4).

In fact, we will deduce these estimates from some uniform estimates for Schrödinger
operators with repulsive potentials, replacing C by an explicit constant. To state them, let

PD WD �@
2
r C VD.r/;
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regarded as a self-adjoint operator on L2.RC/ with domain fu 2 H 2.RC/ j u.0/ D 0g.

T 1.3. – For all ı > 0, � 2 Œ0; 1�, and z 2 C n Œ0;1/, we have

k.1C r/�
1Cı
2 .PD � z/

�1.1C r/�
1Cı
2 k �

1C
p
2p

jzj

�
1

ı
C

1

ıV

�
;(1.7)

k.1C r/�
1Cı
2 �� .PD � z/

�1.1C r/�
1Cı
2 �.1��/k � .1C

p
2/

�
1

ı
C

1

ıV

�
;(1.8)

and

kVD.r/
�
2 .1C r/�

1C.1��/ı
2 .PD � z/

�1VD.r/
1��
2 .1C r/�

1C�ı
2 k �

2
p
2

ıV

r
1C

ıV

ı
;

(1.9)

where the norms are L2.RC/! L2.RC/.

Note that Theorem 1.3 implies Theorem 1.2.

If VD 2 C 1.Œ0;1// is compactly supported and has V 0D < 0 on the interior of the
support of VD , then (1.3) is satisfied for some ıV > 0 (because logVD and .logVD/0 tend
to �1 at the boundary of the support). Moreover the class of potentials satisfying (1.3) for
a given ıV > 0 is closed under nonnegative linear combinations and contains all functions of
the form .1C r/�m withm � ıV . The same proof could also handle potentials VD satisfying
(1.3) and such that VD.r/ ! 1 as r ! 0, provided VD.r/ju.r/j2 ! 0 as r ! 0 for all u in
the domain of PD .

The bounds (1.4) and (1.7) are best when the spectral parameter is not too close to 0, and
(1.5) and (1.8) are best when the spectral parameter is close to 0. We can think of (1.6) and
(1.9) as being a kind of Agmon or elliptic estimate in the limit jzj ! 0 (see also (4.14) below);
they give an improvement when we are looking at the resolvent in the elliptic and classically
forbidden range in the interior of the support of VD . When VD.r/ � .1 C r/�m as r ! 1
for somem > 0, the weights in (1.9) are also to be compared to the weights in [55, 39]; see in
particular [39, Theorem 1.3].

If we do not demand explicit constants in the estimates, then Theorem 1.3 is essentially
well-known if either VD.0/ (which we can think of as a coupling constant) is not large (see
[55, Chapter 4] for a more general discussion of scattering on the half line, and [32] for some
more recent results and references), or if VD.0/ and jzj are large (this is the semiclassical,
nontrapping regime: see [55, Chapter 7, Theorem 1.6] for a similar result). The main novelty
here is that we cover all values of VD.0/ and jzj uniformly, and for our applications in §3
we will especially need the case where VD.0/ is large compared to jzj: this corresponds to a
low-energy semiclassical problem.

We prove Theorem 1.3 in §2 below.
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1.3. Notation

Throughout the paper C is a large constant which can change from line to line, and all
estimates are uniform for h 2 .0; h1�, where h1 can change from line to line. It will sometimes
be convenient to write derivatives with respect to r using the notation Dr WD �i@r . We use

kukHm
h
.X/ WD k.�h

2�C 1/m=2ukL2.X/

and similarly define kukHm
h
.R/ and kukHm

h
.RC/ (in the latter case we will only be concerned

with u vanishing near r D 0, so the boundary condition on the Laplacian implicit in the
notation in this case is immaterial).

The energy level E0 > 0 is fixed in §3.1, along with the rest of the notation needed for
our general abstract setup of a mildly trapping Schrödinger operator on a manifold with
asymptotically cylindrical ends. The auxiliary notations Ej and E� are defined in §4.2 in
terms of this setup. The notation E without a subscript is used in §2 and §5 to denote a
variable positive energy, not related in any particular way to E0 or Ej or E�.

The radial variable r on the cylindrical end has the same meaning in §3.1, in §4, and in
§5. The usage in §2 is consistent with this usage, if we separate variables to write Schrödinger
operator on an asymptotically cylindrical end as a sum of Schrödinger operators on RC. For
example, if � is the Laplacian on ..0;1/ � Y; dr2 C gY / we write

�� D

1X
jD0

.�@2r C �
2
j /�j ˝ �j ; to mean ��u D

1X
jD0

�j

Z
Y

.�@2r C �
2
j /u.r; y/�j .y/dvol.y/;

where f�j g1jD0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian
on Y and ��Y �j D �2j �j .

Of course the results of §2 also apply to more general Schrödinger operators on RC.
The variable r is used a little differently in §1.1, §3.3, and §3.4. To convert the r in one of

these sections to the r in the rest of the paper, use the affine map

(1.10) r 7! 6.r �R1/=.R2 �R1/;

for suitably chosen R1 and R2, and then multiply g by .R2 � R1/2=36 to remove the factor
that appears in front of dr2. For Example 1, take R1 such that inffr > 0 j g.r; y/ D

g0.r; y/ for all yg < R1 < R and use R2 D R. For Example 2, let R2 D max suppF 0, and
take R1 2 .0; R2/. For §3.3, let R1 D RC 1 and R2 D max suppF 0. For §3.4, let R1 D R=2
and R2 D R.

2. Resolvent estimates on the half line

In this section we prove Theorem 1.3. All function norms and inner products in this
section are in L2.RC/, and operator norms are L2.RC/! L2.RC/.

Proof of (1.7). – LetE WD Re z and " WD j Im zj. We begin by proving an a priori estimate
when E > 0 and " > 0. Roughly speaking, the idea is to exploit the fact that, since V 0D � 0,
we have the positive commutator ŒPD; r@r � D �2@2r � rV

0
D.r/ � 0. However, to be able

to control the remainder terms in our positive commutator argument, we must replace r@r
withw.r/@r wherew grows more slowly. Such commutants have been used by many authors
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(see [48, §XIII.7] and references therein); below we take an approach inspired by [52, 15] and
papers cited therein.

Take w 2 C 1.Œ0;1/I Œ0; 1�/ such that w0.r/ > 0 for all r � 0, and take u 2 H 2.RC/ such
that u.0/ D 0 and .w0/�1=2.PD�z/u 2 L2; in particular, u.r/ and u0.r/ tend to 0 as r !1.
Adding together the integration by parts identities

�h.w.VD �E//
0u; ui D 2Rehw.VD �E/u; u0i

and

hw0u0; u0i C w.0/ju0.0/j2 D �2Rehwu00; u0i

gives

Ek
p
w0uk2 C k

p
w0u0k2 � h.wVD/

0u; ui C w.0/ju0.0/j2

D 2Rehw.PD � z/u; u0i � 2 Im z Imhwu; u0i:

Since 0 � w � 1, this implies

(2.1) Ek
p
w0uk2Ck

p
w0u0k2�h.wVD/

0u; ui � 2





 1
p
w0
.PD � z/u





 kpw0u0kC2"kukku0k:
Later we will choosew so that .wVD/0 � 0, but first we estimate the second term on the right,
which we think of as a remainder term. Since VD � 0, integrating by parts gives

ku0k2 � Reh.PD � z/u; ui CEkuk2 �





 1
p
w0
.PD � z/u





 kpw0uk CEkuk2
and we also have

"kuk2 D j Imh.PD � z/u; uij �





 1
p
w0
.PD � z/u





 kpw0uk:
Combining these gives

"2kuk2ku0k2 � .E C "/





 1
p
w0
.PD � z/u





2 kpw0uk2
and then plugging this into (2.1) gives

Ek
p
w0uk2 C k

p
w0u0k2 � h.wVD/

0u; ui � 2





 1
p
w0
.PD � z/u





 �kpw0u0k CpE C "kpw0uk� :
Completing the square gives

(2.2) 
p
Ek
p
w0uk �

p
E C "
p
E





 1
p
w0
.PD � z/u






!2
C

�
k
p
w0u0k �





 1
p
w0
.PD � z/u





�2
� h.wVD/

0u; ui �
2E C "

E





 1
p
w0
.PD � z/u





2 :
We now take

(2.3) w.r/ WD 1 �
ıV

ıV C ı
.1C r/�ı ;
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so that, by (1.3), we have

(2.4) .wVD/
0.r/ D

ııV VD.r/

.ıV C ı/.1C r/1Cı
C w.r/V 0D.r/ �

ıV VD.r/

1C r

�
.1C r/�ı � 1

�
� 0;

where, as with (1.3), we understand (2.4) in the sense of measures in the case that VD is not
differentiable everywhere. We may now drop the second and third terms from the left hand
side of (2.2), giving

(2.5)
p
Ek
p
w0uk �

p
E C "C

p
2E C "

p
E





 1
p
w0
.PD � z/u





 :
From (2.5) we can deduce a weighted resolvent estimate when Re z > 0, Im z ¤ 0. To

obtain an estimate for all z 2 C n Œ0;1/, we use the Phragmén–Lindelöf principle in the
following way. For u; v 2 L2.RC/, put

(2.6) U.z/ WD h.1C r/�
1Cı
2 .PD � z/

�1.1C r/�
1Cı
2 u; vi

p
z;

and for ˛ > 0 put
�˛ WD fz 2 C j ˛Re z < j Im zjg:

Then U is holomorphic in �˛, where it obeys

jU.z/j �
j
p
zjkukkvk

dist.z; Œ0;1//
�

p
1C ˛�2kukkvk

j
p
zj

:

Moreover, by (2.5), for z 2 @�˛ n f0g, we have

(2.7) jU.z/j �
�p

1C ˛ C
p
2C ˛

� �
ı�1 C ı�1V

�
kukkvk:

Then the Phragmén–Lindelöf principle (see e.g., [48, p. 236]) implies (2.7) for all z 2 �˛.
Taking ˛ ! 0 gives (1.7).

Proof of (1.8). – We begin by following the proof of (1.7), but we drop the first term,
rather than the second, from the left hand side of (2.2), so that in place of (2.5) we have

k
p
w0u0k �

�
1C

p
2C "E�1

� 



 1
p
w0
.PD � z/u





 :
We now integrate by parts to obtain a weighted version of the Poincaré inequality:


.1C r/�3�ı2 u




2 D 2

2C ı
Re
D
.1C r/�2�ıu0; u

E
�




.1C r/�1�ı2 u0



 


.1C r/�3�ı2 u




 ;
giving

(2.8)



.1C r/�3�ı2 u




 �qı�1V C ı�1 �1Cp2C "E�1� 



 1
p
w0
.PD � z/u





 :
We now apply the Phragmén–Lindelöf principle as in the proof of (1.7), with the difference
that in place of (2.6) we use

U.z/ WD h.1C r/�
3Cı
2 .PD � z/

�1.1C r/�
1Cı
2 u; vi;

to obtain (1.8) when � D 1. Then taking the adjoint gives the result for � D 0, and
interpolating (that is to say, applying the Phragmén–Lindelöf principle with respect to � 2 C
such that Re � 2 Œ0; 1�) gives the result for � 2 .0; 1/.
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Proof of (1.9). – We again proceed as in the proof of (1.7), but this time we replace (2.3)
by

w.r/ WD 1 �
ıV

2.ıV C ı/
.1C r/�ı ;

so that (2.4) is replaced by

.wVD/
0.r/ � �

ıV VD.r/

2.1C r/
:

Now dropping the first two terms on the left hand side of (2.2) gives�
ıV VD.r/

2.1C r/
u; u

�
�
2E C "

E





 1
p
w0
.PD � z/u





2 ;
or

kVD.r/
1
2 .1C r/�

1
2 .PD � z/

�1.1C r/�
1Cı
2 k �

2
p
2C "E�1
p
ıV

q
ı�1 C ı�1V :

We now proceed as in the proof of (1.8), applying the Phragmen–Lindelöf principle to
obtain (1.9) for � D 1, and then taking the adjoint and interpolating to obtain (1.9) for
� 2 Œ0; 1/.

3. Resolvent estimates for mildly trapping manifolds

In §3.1 we state our main resolvent estimates for mildly trapping manifolds with asymp-
totically cylindrical ends, under suitable abstract assumptions. In the remainder of §3 we give
examples which satisfy the assumptions, and then in §4 we prove the estimates.

3.1. Resolvent estimates for asymptotically cylindrical manifolds

Let .X; g/ be a smooth Riemannian manifold of dimension d � 2, with or without
boundary, with the following kind of asymptotically cylindrical ends: we assume there is an
open set Xe � X such that @X \Xe D ;, X nXe is compact, and

Xe D .0;1/r � Y; gjXe
D dr2 C f .r/4=.d�1/gY :

Here Y is a compact, not necessarily connected, manifold without boundary of dimen-
sion d �1, gY is a fixed smooth metric on Y and f 2 C1.Œ0;1/I .0; 1�/. We suppose further
that there is ı0 > 0 such that

(3.1) j.f � 1/.k/.r/j � Ck.1C r/
�k�ı0 for all k 2 N0 and r � 0

and

(3.2) f 0.r/ � ı0.1C r/
�1.1 � f / � 0 for all r � 0:

Suppose finally that f .r/ < 1 for r < 6. Note that if we replace r < 6 by r < r0 in this last
condition, we can reduce to the case r0 D 6 by multiplying g by a constant and rescaling r
(i.e., using (1.10) with R1 D 0 and R2 D r0).

We briefly discuss the assumptions (3.1) and (3.2). Note that the class of functions f such
that (3.1) and (3.2) hold for a given ı0 > 0 is convex, and contains all functions of the
form f .r/ D 1 � .1 C r/�m whenever m � ı0. Moreover, all functions f , such that f 0 is
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compactly supported and positive on the interior of the support of .1 � f /, obey (3.1) and
(3.2) for some ı0 > 0; indeed, letting Rf WD max supp.1 � f /, we have

lim
r"Rf

log.1 � f .r// D lim
r"Rf

d

dr
log.1 � f .r// D �1:

If f 0 is compactly supported then the ends are cylindrical, rather than just asymptotically
cylindrical.

For notational convenience let us extend r to be a continuous function on X with
�1=2 � r < 0 on X nXe, and extend f to be constant for r � 0.

Let � � 0 be the Laplacian on X . Let

P D Ph WD �h
2�C V;

where h 2 .0; h0� for some h0 > 0, and:

— V D Vh 2 C
1.X � .0; h0�IR/ is bounded, together with all derivatives, uniformly

in h 2 .0; h0�.

— V jXe
is a function of r and h only, and has a decomposition V jXe

D VLC hVS , where

VL and VS may also depend on h, and VS D 0 for r � 5 and jV .k/S .r/j C jV
.k/
L .r/j �

Ck.1C r/
�k�ı0 for all k � 0, uniformly in h.

— V 0L.r/ � �ı0.1C r/
�1VL.r/ � 0 for all r � 0.

Note that the assumptions allow V � 0 but not f � 1. Such a restriction is necessary to
obtain a resolvent bound which is uniform up to the spectrum, in light of the computation in
(1.2), which rules out such a bound in the case .X; g/ D .R� Y; dr2C dS/ and P D �h2�.

FixE0 > 0. We suppose thatE0 is a “mildly trapping” energy level for P in the sense that
adding a complex absorbing barrier supported on Xe gives a polynomial resolvent bound.
More specifically, suppose that for someWK 2 C1.RI Œ0; 1�/withWK D 0 near .�1; 5� and
WK D 1 near Œ6;1/, there is N 2 R such that

(3.3) k.P � iWK.r/ �E0/
�1
kL2.X/!L2.X/ DW a.h/h

�1
� h�N ;

for all h 2 .0; h0�.
We have the following weighted resolvent bound up to the spectrum.

T 3.1. – Let .X; g/; P; E0; and a.h/ be as above. Fix s1; s2 > 1=2 such that
s1 C s2 > 2. There are C > 0 and h1 > 0 such that

(3.4) k.1C r/�s1.P �E0 � i"/
�1.1C r/�s2kL2.X/!L2.X/ � C.a.h/C h

�1/h�1;

for all " 2 R n 0 and for all h 2 .0; h1�.

Note that the condition on s1 and s2 is the same as the one in §1.2 above, see in particular
(1.5) and (1.8). This is the resolvent weighting needed to have a low energy bound for
scattering on the half line (and for more general Euclidean scattering problems).

To deduce Theorem 1.1 from Theorem 3.1, in Examples 1 and 2 we letXe be the part ofX
where r � r1, for any r1 > 0 such that F 0.r1/ > 0, and put V � 0. Then, after redefining r
as in the remark following (3.2), we see that g has the desired form in Xe, and it remains to
check that (3.3) holds withN � 2. Below in §3.2 and §3.3 we will show this for some examples
which generalize Examples 1 and 2 above.
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We also have an improved bound when we cut off away from the trapping in the end. To
state it, let �… 2 C1.RI Œ0; 1�/ be 0 near .�1; 0� and 1 near Œ1;1/. Let�Y � 0 be the Lapla-
cian on .Y; gY /, and let f�j g1jD0 be a complete real-valued orthonormal set of its eigenfunc-
tions, with ��Y �j D �2j �j , where 0 D �0 � �1 � � � � . For any J � f0; 1; : : :g, we denote
the orthogonal projection onto modes corresponding to J by …J WL

2.Xe/! L2.Xe/, so
that

.…J u/.r; y/ WD
X
j2J

�j .y/

Z
Y

u.r; y0/�j .y
0/dvol.y0/;

where y and y0 denote points in Y . Then k…J �….r/kL2.X/!L2.X/ D 1, unless J is empty.

T 3.2. – Fix s > 1=2 and cJ > 0. Let

J WD fj j Ej WD E0 � h
2�2j 62 Œ�cJ h; cJ �g:

Define a microlocal cutoff �J WL
2.X/! L2.X/ by putting

(3.5) �J u WD

8<:
�
…J �….r/C

p
VL.r/C f .r/�4=.d�1/ � 1

�
u; u 2 L2.Xe/;

u; u 2 L2.X nXe/;

and then extending to general u 2 L2.X/ by linearity. There are C > 0 and h1 > 0 such that

(3.6) k.1C r/�s�J .P �E0 � i"/
�1.1C r/�skL2.X/!L2.X/ � C.1C a.h//h

�1;

for all " 2 R n 0 and for all h 2 .0; h1�.

By taking the adjoint, we see that (3.6) implies

(3.7) k.1C r/�s.P �E0 � i"/
�1�J .1C r/

�s
kL2.X/!L2.X/ � C.1C a.h//h

�1:

Note that the statement is strongest when cJ is chosen very small, much smaller thanE0.
We think of �J as cutting off away from (or, almost, projecting away from)

TJ D fu 2 L
2.Xe/ j f u D u; VLu D 0; …J u D 0g � L

2.X/:

Observe that the condition Ej 2 Œ�cJ h; cJ � corresponds, when VL D 0 and f D 1,
to the condition that �2 2 Œ�cJ h; cJ �, where � is the dual variable to r . In this sense TJ

corresponds to a neighborhood of the bicharacteristics in T �Xe along which r is constant,
that is to say bicharacteristics trapped in the cylindrical ends. In this sense �J cuts off away
from the trapping in the cylindrical ends. The asymmetry in the interval Œ�cJ h; cJ � is due to
the fact that our estimates are much easier when Ej � �Ch for any C > 0 (see in particular
the sentence following (4.41) below); we do not expect this form of the interval to be optimal.

To simplify matters, in our discussion of the interpretation and context of this result we
focus on the special case of the following corollary, although most of the statements could
be adapted to apply to the more general case.

C 3.3. – Let .X; g/ D .Rd ; g/ be as in Example 1. In the notation of that
example, fix � 2 C1c .X/ with supp� � f.r; �/ 2 Rd j r < Rg, and fix s > 1=2. Then
there are z0 > 0 and C > 0 such that
(3.8)
k.1C r/�s.��� z/�1�kL2.X/!L2.X/ C k�.��� z/

�1.1C r/�skL2.X/!L2.X/ � C=
p

Re z;

for all z 2 C with Re z � z0 and Im z ¤ 0.
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Note that this � is local, in contrast to the microlocal �J of Theorem 3.2. Recall thatR is
the radius at which the cylindrical end begins; hence � is a cut off away from the trapping
on the cylindrical end, and in this example there is no other trapping. The right hand side
of (3.8) is the usual nontrapping upper bound, cf. (1.7) and the bound of Ch�1 in (1.4).
There have been many results in asymptotically Euclidean, conic, and hyperbolic scattering
proving that such nontrapping bounds hold when one cuts off away from trapping on both
sides of the resolvent: these go back to work of Cardoso and Vodev [7], refining an earlier
result of Burq [4]. Intriguingly, in (3.8) we get a nontrapping bound by applying a spatial
cutoff away from trapping on only one side of the resolvent; to our knowledge no such result
is known in asymptotically Euclidean, conic, and hyperbolic scattering, although a related
weaker bound can be found in [6, 12, 19] (and note that the weaker bound is shown to be
optimal in a special example in [22]). A possible interpretation is the following: unlike in
any of the examples studied in [6, 19], in Example 1 the set K of bicharacteristics trapped
as t !C1 and t ! �1 is the same as the set�˙ of bicharacteristics trapped as t !C1 or
t ! �1, and one expects resolvent estimate losses due to mild trapping to be concentrated
on �˙.

On the other hand, in [17] it is shown that for a “well in an island” semiclassical
Schrödinger operator (in which case incidentally K does equal �˙), losses due to trap-
ping extend beyond �˙ and cutting off on one side only is not enough to give nontrapping
bounds; as discussed in that paper, this is closely related to the fact that the trapping in this
case is stable (so that tunneling can produce losses away from �˙), unlike in Example 1 or
in the examples in [19]. It is then natural to ask: when is cutting off a resolvent away from
trapping on one side sufficient to give nontrapping bounds, and when is it necessary to cut
off on both sides?

3.2. Examples with no trapping away from the ends

Let X have no boundary and let KE0 be the set of bicharacteristics of P at energy E0
which do not intersect T �Xe. If KE0 D ;, then it is essentially well-known that

(3.9) k.P � iWK.r/ �E0/
�1
kL2.X/!L2.X/ � Ch

�1
I

the proof of (3.9) follows from the proof of [23, Theorem 6.11] or that of [16, Proposition 3.2].
In the case that jV j � Ch, demanding that KE0 D ; is equivalent to demanding that all
maximally extended geodesics on X intersect Xe; specific examples are given in Example 1.

3.3. Hyperbolic and normally hyperbolic trapped sets.

IfKE0 ¤ ; we cannot hope to have (3.9), but ifKE0 is hyperbolic or normally hyperbolic
then we may have

(3.10) k.P � iWK.r/ �E0/
�1
kL2.X/!L2.X/ � C log.h�1/h�1:

In the case of a closed hyperbolic orbit, such bounds are due to Burq [5] and Christianson
[12]. For hyperbolic trapped sets satisfying a pressure condition they are due to Nonnen-
macher and Zworski [42], and for normally hyperbolic trapped sets to Wunsch and Zworski
[54] and to Nonnenmacher and Zworski [43] (and see also [22]). Some recent surveys of the
substantial wider literature concerning estimates like (3.10) can be found in [41, 57].
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To deduce (3.10) from [42] or [43], note that the difference between (3.10) and [42, (2.7)] or
[43, (1.18)] lies in the assumptions in the region whereWK D 1. But in this region P � iWK is
semiclassically elliptic, so the discrepancy can be removed using a parametrix G0 analogous
to the one in (4.1) below, and rather than having to go through a procedure like that in §4.5
we just have .P � iWK.r/ �E0/G0 D I CO.h1/.

Rather than discussing the general dynamical assumptions further, we now specialize to
more concrete examples.

Let .X; gH / be a conformally compact manifold of constant negative curvature. We recall
that this means that the metric gH is asymptotically hyperbolic in the sense of [35] (see also
[23, §5.1]), so there is an open set X 0e and R 2 R such that X nX 0e is compact and

X 0e D .R;1/r � Y; gH jX 0e
D dr2 C e2rgY .e

�r /;

where Y is a compact, not necessarily connected, manifold without boundary and gY .x/ is
a family of metrics on Y depending smoothly on x up to x D 0. Such a ‘normal form’ of the
metric was first found in [27], and it is also in [23, §5.1.1].

We modify the metric to obtain a manifold with cylindrical ends in the following way. We
first observe that, denoting points in T �X 0e by .r; y; �; �/, where y 2 Y , � is dual to r , and
� is dual to y, along gH -geodesics we have

d2

dt2
r DW Rr D �2@r .e

�2r
j�j2r;y/ D 4e

�2r
j�j2r;y.1CO.e

�r //;

where the length j�jr;y is taken with respect to the dual metric to gY .e�r /. Hence, after

possibly redefining R to be larger, we may suppose that Rr � 2e�2r j�j2r;y for r � R, and in
particular that no bounded gH -geodesics intersectX 0e. Indeed, sinceE0 WD �2Ce�2r j�j2r;y is
conserved and Pr D 2�, in X 0e we have

Rr � 2e�2r j�j2r;y D 2E0 � Pr
2=2;

which means r is not bounded for all t .
Fix �H 2 C1.RI Œ0; 1�/ such that �H .r/ D 1 near .�1; R� and �H .r/ D 0 near

ŒR C 1;1/, and fix F 2 C1.ŒR;1/; .0;1// such that F 0 is compactly supported, positive
on the interior of its support, and such that F 0.r/ > 0 for r � R C 2. Take g such
that gjXnX 0e

D gH jXnX 0e
, and

gjX 0e
D �H .r/gH C Cg.1 � �H .r//

�
dr2 C F.r/gY .0/

�
:

We claim that if Cg is large enough, then Rr � 0 along g-geodesics in Xe. Indeed,

Rr=2 D ��H .r/@r .e
�2r
j�j2r;y/C Cg.1 � �H .r//F

0.r/j�j20 � �
0
H .r/.e

�2r
j�j2r;y � CgF.r/j�j

2
0/;

so it is enough to take Cg large enough that on T � supp�0H .r/ we have

e�2r j�j2r;y � CgF.r/j�j
2
0:

Now we may take Xe to be the part of X 0e in which r > RC 1, and, after redefining r by
(1.10), we see that it remains only to check (3.3).

We take WK 2 C1.RI Œ0; 1�/ which is 1 near ŒR C 2;1/ and 0 near .�1; R C 1�, and
suppose jV j � Ch and E0 D 1. Let K denote the set of trapped unit speed geodesics
of .X; gH /, regarded as a subset of T �X . We see thatK is also the set of the bicharacteristics
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of P at energy E0 which do not intersect T �Xe, and that gH D g near the projection of K
onto X .

Let dK be the Hausdorff dimension of K. If dK < d , then the assumptions of [42] are
satisfied, and (3.10) holds.

If d D 2 and V � 0, then we can dispense with the requirement that dK < d thanks to a
recent result of Bourgain and Dyatlov [3, Theorem 2] (this is the case presented in Example 2
above). To do this we use the fact (see [5, Lemma 4.7] or e.g., [23, Proof of (6.3.10)]) that [3,
(1.1)] implies

k�.�h2�0 �E0 � i0/
�1�kL2.X/!L2.X/ � C log.h�1/h�1

for any � 2 C1c .X/. Then the gluing result of [18, Theorem 2.1] together with the semiclassi-
cally outgoing property of .�h2�0�E0� i0/�1 (established by Vasy in [50] and see also [23,
Theorem 5.34]) implies (3.10). In the interest of brevity we do not discuss this further here.

3.4. Warped products with embedded eigenvalues

Let X WD R � Y and g WD dr2 C f .r/4=.d�1/gY for some f 2 C1.RI .0; 1�/ which is 1
on R n .�R;R/ for some R > 0 and has a nondegenerate minimum as its only critical point
in .�R;R/: see Figure 3.1.

F 3.1. An hourglass shaped surface of revolution.

Suppose V D h2VW , with VW D VW .r/ 2 C1c ..�R;R//. Then the part of the trapped set
away from the cylindrical ends is normally hyperbolic and we have (3.10) (see [23, (6.3.10)],
and see also [14, 13] for the case of a degenerate minumum where incidentally we also have
(3.3)). Consequently, by Theorem 3.1, there is z0 > 0 such that for all s1; s2 > 1=2 such
that s1 C s2 > 2, there is C > 0 such that

k.1C jr j/�s1.��C VW � z/
�1.1C jr j/�s2kL2.X/!L2.X/ � C;

for all z 2 C with Re z � z0 and Im z ¤ 0. In particular the spectrum of �� C VW is
absolutely continuous on .z0;1/.

But if f and VW are suitably chosen, then � C VW has an eigenvalue embedded in the
spectrum in Œ0; z0�. Indeed, we have

� D f .r/�1

0@ 1X
jD0

�
@2r � f

00.r/f .r/�1 � �2j f .r/
�4=.d�1/

�
� ˝ �

1Af .r/;
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where f�j g1jD0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian
on Y and ��Y �j D �2j �j . For J 2 N0, consider the effective potential

VJ .r/ WD f
00.r/f .r/�1 C �2J .f .r/

�4=.d�1/
� 1/C VW .r/:

Then D2
r C VJ has an eigenvalue as long as

R
VJ .r/dr � 0 by [48, Theorem XIII.110],

and this corresponds to an embedded eigenvalue for �� C VW as long as it is positive,
for which it suffices to have minVJ .r/ > ��2J . For example, we may take f such thatR
.f .r/�4=.d�1/ � 1/ � 1=4 and VW 2 C1c ..�R;R/I Œ��

2
J =2; 0�/ such that VW .r/ D ��2J =2

on Œ�R=2;R=2�, and then J sufficiently large.

By elaborating the above constuction one can also find examples with any finite number
of embedded eigenvalues.

It is not clear whether there are examples of manifolds with cylindrical ends such
that �� has a finite but nonzero number of eigenvalues. For all known examples where
eigenvalues occur, the existence of infinitely many eigenvalues is either also established
[11, 45] or at the least it is not ruled out [33]. On the other hand 0 is always a resonance
of �� on a manifold with cylindrical ends, with the constant functions as resonant states,
unless there is a boundary condition somewhere that eliminates them.

4. Proof of Theorems 3.1 and 3.2

4.1. Outline of proof

The idea of the proofs is to define a parametrix for P � z by

(4.1) G WD �K.r � 1/.P � iWK.r/ � z/
�1�K.r/C �e.r C 1/.Pe � z/

�1�e.r/;

where �e; �K 2 C1.R/ obey �e C �K D 1, supp�e � .3;1/, and supp�K � .�1; 4/, and
Pe is a suitably chosen differential operator such that Pe D P on the part of X where r > 2.
Then

.P�z/G D ICŒh2D2
r ; �K.r�1/�.P�iWK.r/�z/

�1�K.r/CŒh
2D2

r ; �e.rC1/�.Pe�z/
�1�e.r/

and we will construct an inverse for .P � z/ by removing this remainder using a Neumann
series; although the remainder above need not be small, we will see that powers of it are. We
call the part of X where r 2 .2; 5/ the resolvent gluing region, because the functions in the
range of the remainder are supported in that region. To prove that powers of the remainder
are small, we will need to know that:

1. The resolvents of P � iWK.r/ and Pe obey estimates analogous to (3.4) and (3.6). This
is the case for P � iWK.r/ thanks to the assumption (3.3), and we will prove it for a
suitable choice of Pe in §4.3 and §4.4.

2. The resolvents of P � iWK.r/ and Pe obey improved estimates when multiplied by
cutoffs with suitable support properties in the resolvent gluing region, corresponding
to a (special case of a) semiclassically outgoing condition so that we are able to remove
the remainders. The needed estimates are proved in [18] forP � iWK.r/ and in §4.3 and
§4.4 for Pe.
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We combine these estimates to prove Theorems 3.1 and 3.2 in §4.5. There we follow a
procedure analogous to that in [18], but with some finer analysis of remainders to remove
the losses due to trapping in the cylindrical end (see also [16, §3] for another, in some ways
related, variation on this resolvent gluing procedure).

4.2. Model operators for Xe

On Xe, � can be written as a direct sum of one-dimensional Schrödinger operators:

�jXe
D f .r/�1

0@ 1X
jD0

�
@2r � f

00.r/f .r/�1 � �2j f .r/
�4=.d�1/

�
� ˝ �

1Af .r/;
where f�j g1jD0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian
on Y and ��Y �j D �2j �j . We will introduce model operators Pj obeying
(4.2)
Pj jŒ2;1/

D �h2@2r C Vj .r/; Vj .r/ WD V.r/C h
2f 00.r/f .r/�1C h2�2j .f .r/

�4=.d�1/
� 1/;

and we will be studying them near the energy levels

Ej WD E0 � h
2�2j :

We will study two ranges of j separately, and the model operators Pj will act on different
spaces depending on j . These two ranges correspond to a different behavior in the resolvent
gluing region, which is the part of X where r 2 .2; 5/ (see §4.1). To define the ranges, fix
E� 2 R, independent of h, such that

0 < E� � cJ ;

where cJ is as in the statement of Theorem 3.2, and

(4.3) Ej � E� H) h2�2j f .5/
�4=.d�1/

� E0I

note that the conditions are compatible because Ej D 0 when E0 D h2�2j and f .5/ < 1.

The first range we consider is Ej � E�; in this range the set where r < 5 is classically
forbidden because Vj > Ej , and we control remainders in the gluing region using Agmon
estimates, taking care to prove that our estimates are uniform as j ! 1 (although the
effective potentials Vj become unbounded as j !1, they are nonnegative, so the relevant
estimates actually get better in this limit). The second range is Ej � E�; in this range the
set where r < 5 is not classically forbidden, but the energy levels Ej are bounded below by a
positive constant and the effective potentials Vj are repulsive, so nontrapping propagation of
singularities estimates hold, which we can use to control the remainders in the gluing region
(once again we take care to prove that the estimates are uniform in j ).

For the first range of j we define the operators Pj to act on L2.RC/, with a Dirichlet
boundary condition at 0, in order to be able to use Theorem 1.3 (the Dirichlet boundary
condition makes it easier to analyze the behavior of the resolvent when jEj j is small). For the
second range of j it is more convenient to work over R than RC, in order to avoid reflection
phenomena when studying propagation of singularities.
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4.3. Analysis when Ej � E�

In §4.3 all function norms and inner products are in L2.RC/, and operator norms are
L2.RC/! L2.RC/, unless otherwise specified.

For this range of j , we put

(4.4) Pj WD h
2D2

r C Vj .r/;

regarded as a self-adjoint operator onL2.RC/with a Dirichlet boundary condition at r D 0.

We first prove resolvent estimates for Pj analogous to (3.4) and (3.6).

P 4.1. – Fix s1; s2; s > 1=2 such that s1 C s2 > 2. Then

(4.5) k.1C r/�s1.Pj �Ej � i"/
�1.1C r/�s2k � Ch�2

and
(4.6)
k.1Cr/�s�.r/.Pj �Ej �i"/

�1.1Cr/�skCk.1Cr/�s.Pj �Ej �i"/
�1�.r/.1Cr/�sk � Ch�1

for all " 2 R n 0, j 2 N such that Ej � E�, where

�.r/ D

q
VL.r/C f .r/�4=.d�1/ � 1:

Proof. – The idea of the proof is to apply Theorem 1.3; more precisely (4.5) corresponds
to (1.8) (see also (1.5)), and (4.6) corresponds to (1.9) (see also (1.6)).

Before beginning the proof proper, by way of outline let us briefly discuss the terms in Vj ,
and explain how they each do or do not satisfy (1.3). The term h2�2j .f .r/

�4=.d�1/ � 1/ does
satisfy it thanks to (3.2) and (4.3), and moreover those bounds and f .r/ < 1 for r < 6 imply
that the term is nontrivial when r < 6. The term VL satisfies it, and we think of it as being
harmless. The term VS does not satisfy it, but we will show that its effect is compensated by
that of the h2�2j .f .r/

�4=.d�1/�1/ term. The most difficult term to treat is the h2f 00.r/f .r/�1

term. This term may prevent h�2Vj from satisfying (1.3), but we will show that thanks to (4.3)
we can treat it as a small perturbation.

More precisely, let

VM .r/ WD Vj .r/ � h
2f 00.r/f .r/�1

and observe that for h sufficiently small VM obeys (1.3) for some ıV > 0, since VL and
f �4=.d�1/ � 1 obey it and jVS j C jV 0S j � C.f �4=.d�1/ � 1/ thanks to (4.3). Indeed, to see
that f �4=.d�1/ � 1 obeys it we write, using ˛ WD 4=.d � 1/ and (3.2),

�.f .r/�˛ � 1/0 D f̨ 0.r/f .r/�˛�1 � ˛ı0
f .r/�˛�1 � f .r/�˛

1C r
�
f .r/�˛ � 1

C.1C r/
;

where we also used the fact that if a < b then

(4.7) C�1.1 � f / � f a � f b � C.1 � f /:

Hence by (1.8) with VD D h�2VM , we have

(4.8) k.1C r/�s1.h2D2
r C VM �Ej � i"/

�1.1C r/�s2k � Ch�2:
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Note that by the resolvent identity

.1C r/�s1.Pj �Ej � i"/
�1.1C r/�s2 D .1C r/�s1.h2D2

r C VM �Ej � i"/
�1.1C r/�s2

�

1X
kD0

�
�.1C r/s2h2f 00.r/f .r/�1.h2D2

r C VM �Ej � i"/
�1.1C r/�s2

�k
;

(4.9)

the proof of (4.5) is reduced to the proof of

(4.10) k.1C r/s2h2f 00.r/f .r/�1.h2D2
r C VM �Ej � i"/

�1.1C r/�s2k � 1=2:

But by (1.9), with � D 1 and VD D h�2VM � h�2.f �4=.d�1/ � 1/=C (again using (4.3)), we
have

k.f .r/�4=.d�1/ � 1/
1
2 .1C r/�

1
2 .h2D2

r C VM �Ej � i"/
�1.1C r/�s2k � Ch�1

and interpolating this with (4.8) gives

k.f .r/�4=.d�1/ � 1/
1
4 .1C r/�

s1
2 �

1
4 .h2D2

r C VM �Ej � i"/
�1.1C r/�s2k � Ch�3=2:

Hence to prove (4.10), and consequently also (4.5), it is enough to show that

(4.11) .1C r/s2 jf 00.r/j � C.f .r/�4=.d�1/ � 1/
1
4 .1C r/�

s1
2 �

1
4 :

To prove (4.11) we will use the fact that any bounded ' 2 C 2.Œr;1/I Œ0;1// satisfies

(4.12) j'0.r/j2 � 2 sup' sup j'00j;

where the suprema are taken over Œr;1/. Indeed, by Taylor’s theorem, for every t � 0 there
is t0 2 Œr; r C t � such that

t j'0.r/j D j'.r C t / � '.r/ � t2'00.t0/=2j � sup' C t2 sup j'00j=2;

and taking t D j'0.r/j= sup j'00j gives (4.12). Applying (4.12) once with ' D f 0 and once
with ' D 1 � f gives

jf 00.r/j4 � 4 sup jf 0j2 sup jf 000j2 � 8 sup.1 � f / sup jf 00j sup jf 000j2

D 8.1 � f .r// sup jf 00j sup jf 000j2;

where the suprema are still all taken over Œr;1/. Applying (3.1) gives

jf 00.r/j � C.1 � f .r//
1
4 .1C r/�2�

3ı0
4 :

By (4.7) this implies (4.11) as long as s1C2s2 � .7C3ı0/=2, which we may suppose without
loss of generality. This completes the proof of (4.5).

The proof of (4.6) proceeds along similar lines. Applying (4.9) with s1 D s2 D s allows us
to reduce the proof of the bound on the first term in (4.6) to the proof of

(4.13) k.1C r/�s�.r/.h2D2
r C VM �Ej � i"/

�1.1C r/�sk � Ch�1:

But (4.13) follows from (1.9) with � D 1 and VD D h�2VM � h�2.VLCf �4=.d�1/�1/=C D
h�2�2=C . The bound on the second term of (4.6) follows from the bound on the first term
after taking the adjoint.

We will also need the following Agmon estimates:
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P 4.2. – Let R 2 .0; 5�, �� 2 C1c ..0; R//; �C 2 C
1
c ..R;1//; and s > 1=2.

Then

k��.Pj �Ej � i"/
�1.1C r/�skL2.RC/!H1h .RC/

C k.1C r/�s.Pj �Ej � i"/
�1��k � C;

(4.14)

k��.Pj �Ej � i"/
�1�Ck � e

�1=.Ch/(4.15)

for all " 2 R n 0, and j 2 N such that Ej � E�.

Recall that the norms without subscripts are L2.RC/ ! L2.RC/ here, and that �� is
supported in the classically forbidden region for Pj �Ej .

Proof. – These are similar to the usual Agmon estimates as in [56, §7.1] but we keep track
of the j dependence.

Let v 2 L2.RC/, and letu WD .Pj�Ej�i"/�1.1Cr/�sv. Fix '0 2 C1c ..0; R/I Œ0; 1�/which
is identically 1 on a neighborhood I of supp��, and let '.r/ WD m'0.r/, for a constantm to
be chosen later. Then define

P' WD e
'=h.Pj �Ej � i"/e

�'=h

D h2D2
r C 2i'

0hDr C Vj � '
02
C h'00 �Ej � i":

Put w WD �0e
'=hu, where �0 2 C1c ..0; R// is 1 near supp'. Using Reh2h'0w0; wi D

�hh'00w;wi, write

RehP'w;wi D khw0k2 C h.Vj � '02 �Ej /w;wi:

We now observe that, using (4.3) and the fact that 1� f .r/�4=.d�1/ > 1� f .5/�4=.d�1/ > 0
for r 2 .0; 5/, we can choosem > 0 small enough, independent of h and j , such that there is
c0 > 0 independent of h and j for which Vj � '02 �Ej > c0 on suppw for h small enough.
This implies

kwk � CkP'wk � Cke
'=h�0vk C CkŒP; �0�uk;

where we used '�00 D 0 to deduce ŒP' ; �0�e'=hu D ŒP; �0�u. We use an elliptic estimate to
bound the commutator term: for �1 2 C1c ..0; R// we have, using Vj �Ej � V0�E0 � �C ,

Ck�1vkk�1uk � Reh.1C r/�sv; �21ui D Reh.Pj �Ej /u; �21ui

� k�1hu
0
k
2
� Chk�1hu

0ukL1.RC/ � Ck�1uk
2;

(4.16)

from which it follows that, provided �2 D 1 near supp�0,

kŒP; �0�uk � Chk�2uk C Chk�2vk � Ch
�1
kvk;

where we used (4.5). Consequently

(4.17)
Z
I

juj2 D e�2m=h
Z
I

jwj2 � Ce�2m=h
�
ke'=h�0vk

2
C h�2kvk2

�
� Ckvk2;

where we used ' � m.

To estimate u0 we apply (4.16) with �1 2 C1c .I /, giving

k�1hu
0
k
2
� C

�Z
I

juj2dr C k�1hvk
2

�
;
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which implies the bound on the first term of (4.14). The bound on the second term follows
from taking the adjoint, and (4.15) follows from the fact that if supp v � .R;1/, then
�0v D 0 and we can improve (4.17) toZ

I

juj2 D e�2m=h
Z
I

jwj2 � Ce�2m=hh�2kvk2:

4.4. Analysis when Ej > E�

In §4.4 all function norms and inner products are in L2.R/, and operator norms are
L2.R/! L2.R/, unless otherwise specified.

For this range of j the Agmon estimate (4.15) must be replaced by a propagation of
singularities estimate. It is convenient to introduce a complex absorbing barrier and to work
over R: let We 2 C1.RI Œ0; 1�/ be 1 near .�1; 1� and 0 near Œ2;1/, and let

Vj;0 WD �0Vj ;

where �0 2 C1.RI Œ0; 1�/ is 0 near .�1; 0� and 1 near Œ1;1/. We now put

Pj WD h
2D2

r C Vj;0.r/ � iWe.r/;

regarded as an unbounded operator on L2.R/ with domain H 2.R/. We will prove

P 4.3. – For any s > 1=2 we have

(4.18) k.1C rC/
�s.Pj �Ej � i"/

�1.1C rC/
�s
k � Ch�1;

where rC WD maxf0; rg. For any �� 2 C1c ..0; 3//; �C 2 C
1
c ..3;1//;  2 C

1
c ..0;1//, we

have

(4.19) k��.r/.Pj �Ej � i"/
�1�C.r/ .hDr /k D O.h

1/:

Both (4.18) and (4.19) hold uniformly for all " > 0, and for all j 2 N0 such that Ej > E�.

Note that since Ej is bounded from below away from 0, we can think of (4.18) as the
analogue of (1.7) in this setting; we do not need a weight for r < 0 because the �iWe term
makes the operator Pj � Ej � i" semiclassically elliptic there. It is also similar to the usual
nontrapping resolvent estimate as in [51] and in other papers cited therein, but we need an
estimate which is uniform in j .

The propagation of singularities estimate (4.19) is a microlocalized version of (4.18). The
improved bound is due to the fact that solutions to the classical equations of motion Pr D 2�,
P� D �V 0j .r/ with r.0/ > 3 and �.0/ > 0 cannot have r.t/ < 3 for any t > 0.

Proof of (4.18). – We prove (4.18) using a microlocal positive commutator argument,
rather than (as is probably possible) integration by parts arguments as in the proof of (1.7).
We do this because the proof of (4.19) follows along very similar lines, and the latter estimate
does not seem to be provable by integration by parts arguments. The idea is to construct a
microlocal commutant, based on the w.r/@r of the proof of (1.7), but which is nonnegative.
This will be obtained as the quantization of an escape function, defined in (4.26) below.

As in [51] we will use the semiclassical scattering calculus, and we begin by recalling its
relevant properties. We use .r; �/ to denote points in T �R, and for l; m 2 R we define the
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symbol class Sm
l

to be the set of a 2 C1.T �R/ such that, for any n1; n2 2 N0 there is Cn1;n2
such that

(4.20) j@n1r @
n2
� a.r; �/j � Cn1;n2.1C jr j/

l�n1.1C j�j/m�n2 ;

for all .r; �/ 2 T �R. We also write S1
l
WD

S
m S

m
l

, S�1
l
WD

T
m S

m
l

, and similarly for Sm1
and Sm�1. Below we will consider symbols depending on h and j , and the constants Cn1;n2
in (4.20) will always be uniform with respect to those parameters. For such a, we denote the
semiclassical quantization by Oph.a/, which we define by

(4.21) Oph.a/u WD
1

2�h

ZZ
ei.r�r

0/�=ha.r; �/u.r 0/dr 0d�:

When a symbol is denoted by a lowercase letter (with possible subscripts and superscripts),
we will denote its quantization by the corresponding uppercase letter (with the same
subscripts and superscripts, if any).

We recall the composition and adjoint formulas. If a 2 Sm1
l1

and b 2 Sm2
l2

, then there is

a # b 2 Sm1Cm2
l1Cl2

such that
AB D Oph.a # b/;

and, for any N 2 N,

a # b.r; �/ D e�ih@r0@�0
�
a.r; �0/b.r 0; �/

�
j.r;�/D.r 0;�0/

D

N�1X
kD0

.�ih/k

kŠ
@k�a.r; �/@

k
r b.r; �/C h

N zN .r; �/;
(4.22)

where zN 2 S
m1Cm2�N

l1Cl2�N
is given by

zN .r; �/ WD
.�i/N

.N � 1/Š

Z 1

0

.1 � t /N�1e�ith@r0@�0
�
@N�0a.r; �

0/@Nr 0 b.r
0; �/

�
j.r;�/D.r 0;�0/

dt:(4.23)

Indeed, [56, Theorem 4.14] gives the formula for Schwartz symbols, and [56, Theo-
rems 4.13 and 4.18] give it for a larger class of symbols than the ones we consider, but
with weaker bounds on zN . The statement that zN 2 S

m1Cm2�N

l1Cl2�N
follows from applying [56,

Theorem 4.17] to (4.23). See also [23, Proposition E.8], [44, (3) and (9)], [53], and [30, §18.5]
for similar expansions, and [29] for a much more general version.

Similarly, if a 2 Sm
l

there is a� 2 Sm
l

such that the formal adjoint of A is given by

A� D Oph.a
�/

and, for any N 2 N,

(4.24) a�.r; �/ D e�ih@r@� Na.r; �/ D

N�1X
kD0

.�ih/k

kŠ
@kr @

k
� Na.r; �/C h

N zN .r; �/;

where this time zN 2 Sm�Nl�N
is given by

zN .r; �/ WD
.�i/N

.N � 1/Š

Z 1

0

.1 � t /N�1e�ith@r@�@Nr @
N
� Na.r; �/dt:

Let
pj WD �

2
C Vj;0.r/ � iWe.r/
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be the semiclassical symbol of Pj (in the sense that pj 2 S20 and Pj D Oph.pj /), let

Rj WD inffr > 0 j both Vj .r/ D Vj;0.r/ and Vj;0.r/ � E�=2g;

so that R0 � R1 � � � � , and let

Fj WD f.r; �/ j r � 1 and �2 � 2E0g n f.r; �/ j Rj < r and �2 < E�=3g:

Note that each Fj is a closed neighborhood of the energy surface pj D Ej , and they have
been chosen such that they form a nested sequence F0 � F1 � � � � . Moreover, since we only
consider j such that Ej > E�, all of the Fj agree outside of a compact set: see Figure 4.1.

r r

� �

Rj1

p
E�=3

p
2E0

the case Rj > 1 the case Rj < 1

F 4.1. The shaded regions are the sets Fj . They are closed nested neighbor-
hoods of the energy surfaces pj D Ej which agree outside of a compact set.

Observe that we have jpj � Ej � i"j � c.1 C �2/ on T �R n Fj , for some c > 0, which
implies the following elliptic estimate: for any a 2 Sm

l
; a0 2 Sm�2

l
satisfying supp a\Fj D ;

and ja0.r; �/j � .1C jr j/l .1C j�j/m�2 for .r; �/ 2 supp a, and for any N 2 R, we have

(4.25) kAuk � CkA0.Pj �Ej � i"/uk C h
N
kZNuk;

for some zN 2 Sm�N
l�N

. This follows from (4.22) by the usual iterative elliptic parametrix
construction as in [23, Theorem E.32].

To handle Fj , we define an escape function (based on the usual �r� but modified to be
nonnegative nearFj and more slowly growing) as follows. For ı 2 .0; 1=4/, take Qqı 2 C1.R/
with Qqı.x/ D xı for x � 2, Qqı.x/ D jxj�ı for x � �2, and Qq0

ı
.x/ > 0 for jxj < 2, and put

(4.26) q.r; �/ WD Qqı.�r�/�q.r; �/;

where �q 2 S�10 is real valued, is 1 near all of the Fj , and vanishes in a neighborhood of

f.r; �/ j r 62 .�1; 1Cmax
j
Rj / and � D 0g;

whose boundary consists of two line segments and four half lines as in Figure 4.2.
Then q 2 S�1

ı
, and near Fj we have

(4.27) fRepj ; q2g D 2.�2�2 C rV 0j .r// Qq
0
ı.�r�/ Qqı.�r�/ � �cr

�1�2ı ;

for some c > 0 (here we used Vj � E�=2 H) rV 0j � �1=C ).
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r

�

�1 1CmaxjRj

F 4.2. The kind of neighborhood where �q must vanish.

Consequently, there are real valued symbols b 2 S�1
� 12Cı

and a0 2 S�1�1C2ı such that

(4.28) b2 D fq2;Repj g C a0;

and such that supp a0 \ Fj D ; and b � cr�
1
2�ı > 0 near Fj ; for example we can take

b WD fq2;Repj g1=2�b for some �b 2 S�10 with �b D 1 near Fj and supported in the set
where (4.27) holds. Note that q depends on ı, and b and a0 depend on ı and j , although our
notation does not reflect this.

Using (4.28), (4.22), and (4.24), we can write

B�B D
i

h
ŒQ�Q;RePj �C A0 C hA1;

for some a1 2 S�1�2C2ı , giving

kBuk2 D
i

h
hŒQ�Q;RePj �u; ui C hA0u; ui C hhA1u; ui:

Combining this with (4.25) and the similar elliptic estimate

(4.29) kB 0uk � CkBuk C hN kZNuk;

which holds for all b0 2 S�1
� 12�ı

which is supported in a small enough neighborhood of Fj
and for suitable zN 2 S�1

� 12�ı�N
, we have (since ı < 1=4),

k.1C rC/
� 12�ıuk2 � C

i

h
hŒQ�Q;RePj �u; ui C Ck.Pj �Ej � i"/uk2:

Next

ihŒQ�Q;RePj �u; ui D �2 ImhQ.Pj �Ej � i"/u;Qui � 2RehQ.We.r/C "/u;Qui;

giving

k.1C rC/
� 12�ıuk2 �

C

h2
k.1C rC/

1
2C3ı.Pj �Ej � i"/uk

2
�
C

h
RehQ.We.r/C "/u;Qui:

But

�RehQ.We.r/C "/u;Qui � jRehQ�ŒQ;We.r/�u; uij;

thanks to We C " � 0, and by (4.22) and (4.24) we have ReQ�ŒQ;We.r/� D h2a2 for
some a2 2 S�1�1 , giving

jRehQ�ŒQ;We.r/�u; uij D h2hA2u; ui:

This proves (4.18) with s D 1
2
C 3ı, and taking ı > 0 small enough proves it for all

s > 1=2.
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Proof of (4.19). – Let

u WD .Pj �Ej � i"/
�1�C.r/ .hDr /v;

with kvk D 1, and fix ı 2 .0; 1=4/. We will use the following argument by induction to prove
(4.19).

The inductive hypothesis is that for a given k 2 R there is a neighborhood U of
Fj n .3;1/ � .0;1/ such that kAuk � Chk for any a 2 S�1

kC 12�ı
which is supported

in U .
The inductive step is that there is a (smaller) neighborhoodU 0 of Fj n.3;1/�.0;1/ such

that

(4.30) kA0uk � ChkC1=2

for any a0 2 S�1
kC1Cı

which is supported in U 0.
Let us see first that (4.30) for arbitrary k implies (4.19). Indeed, by the elliptic estimate

(4.25), the composition Formula (4.22), and the resolvent estimate (4.18), we see that

(4.31) kA00uk � CNh
N

for any N 2 R and a00 2 S1�1 such that supp a00 � .0; 3/ � R and supp a00 \ Fj D ;. Then
we can write

��.r/u D ��.r/'F .hDr /uC ��.r/.1 � 'F .hDr //u

for 'F 2 C1c .R/ chosen such that (4.30) applies to the first term on the right and (4.31)
applies to the second.

We remark in passing that elaborating this argument we can actually show that u is
semiclassically trivial everywhere away from the union of two sets (including uniformly
as jr j ! 1 and j�j ! 1): the first is supp�C�supp , and the second isFj\.3;1/�.0;1/
which we can think of as a neighborhood of the forward bicharacteristic flowout of the first.
Here we are focusing on a more concrete and narrower version of this conclusion which is
sufficient for our purposes.

Next observe that the base case (the inductive hypothesis with k D �1 and U D T �R)
follows from the resolvent estimate (4.18).

It remains to prove (4.30) under the inductive hypothesis. Roughly speaking, we use an
escape function which on Fj n .3;1/� .0;1/ agrees with the one used in the proof of (4.18)
above, but is adapted to vanish near supp�C � supp and Fj n U . (Note that Fj n U D ;
when k D �1 but that for k > �1 we expect Fj n U ¤ ; in general).

More specifically, to define the escape function, fix �k ;  k 2 C1.R/ nondecreasing, and
satisfying �k D 0 near .�1; 3�,  k D 0 near .�1; 0�,  k D 1 near Œ

p
E�=3;1/, and

�k.r/ k.�/ D 1 near Fj n U . Then let

qk.r; �/ WD QqkC 32�ı
.�r�/�q.r; �/.1 � �k.r/ k.�//;

where QqkC 32�ı and �q are as in (4.26), so that qk 2 S�1kC 32�ı
. Calculating as in (4.27), we see

that near Fj we have
fRepj ; q2kg � 0;

and near Fj n .3;1/ � .0;1/ we have �k.r/ k.�/ D 0 and hence fRepj ; q2kg �
�cr2kC2�2ı < 0 (this is slightly better than (4.27) because outside of a compact set we
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have � < 0 on Fj n .3;1/� .0;1/ and in particular we are staying away from the outgoing
part of the energy surface).

Consequently, as before, we can write

b2k D fq
2
k ;Repj g C a0;k ;

where bk 2 S�1kC1�ı , a0;k 2 S
�1
2kC2�2ı

, supp a0;k \ .Fj [ supp�C � supp / D ;, supp bk �
supp qk , and bk � crkC1�ı > 0 near Fj n .3;1/ � .0;1/. Hence

B�kBk D
i

h
ŒQ�kQk ;RePj �C A0;k C hA1;k ;

for some a1;k 2 S�12kC1�2ı . We refine this by using (4.22) and (4.24) to expand a1;k in powers
of h up to hN in terms of bk , qk , pj , a0;k , and their derivatives, which gives

B�kBk D
i

h
ŒQ�kQk ;RePj �C A0;k C hA

0
1;k C h

NZN ;

where a0
1;k
2 S�1

2kC1�2ı
has supp a0

1;k
� supp qk and zN 2 S�12kC2�2ı�N . Consequently

kBkuk
2
D
i

h
hŒQ�kQk ;RePj �u; ui C hA0;ku; ui C hhA

0
1;ku; ui C h

N
hZNu; ui:

By the elliptic estimate (4.29) with bk in place of b we see that to deduce (4.30) it is enough
to show

(4.32) kBkuk
2
� Ch2kC1:

Now hA0;ku; ui D O.h1/ by (4.25). Also, since qk vanishes near Fj nU , it follows that a0
1;k

vanishes near Fj n U , so by (4.25), (4.22), and the inductive hypothesis, we have

jhA01;ku; uij � Ch
2k :

Hence to show (4.32) it suffices to show that

(4.33) ihŒQ�kQk ;RePj �u; ui � Ch2kC2:

As before we write, for any N 2 R,

ihŒQ�kQk ;RePj �u; ui D �2 ImhQk.Pj �Ej � i"/u;Qkui � 2RehQk.We.r/C "/u;Qkui

� 2jRehQ�k ŒQk ; We.r/�u; uij CO.h
1/;

where we used supp qk \ supp�C � supp D ;. Now (4.33) follows from the induc-
tive hypothesis together with the fact that (arguing as in the construction of a0

1;k
above)

ReQ�
k
ŒQk ; We.r/� D h

2A2:k C h
NZN , with a2;k ; zN 2 S�1�1 , and supp a2;k \ Fj � U .

4.5. Proof of Theorems 3.1 and 3.2

In this section all operator norms are L2.X/ ! L2.X/. We implement the outline
discussed in §4.1. We assume without loss of generality that " 2 .0; 1�, as the statements with
" > 1 follow from self-adjointness and the statements with " < 0 then follow by taking the
adjoint.

We first explain the key dynamical property of the bicharacteristic flow inXe which allows
us to remove the remainders in the parametrix construction.
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Let us denote points in T �Xe by .r; y; �; �/, where y 2 Y , � is dual to r , and � is dual to y.
The energy surface for P in T �Xe at energy E0 is the subset of T �Xe defined by

p.r; y; �; �/ WD �2 C j�j2f .r/�4=.d�1/ C VL.r/ D E0;

and bicharacteristics in T �Xe of this energy surface are solutions 
.t/ WD ..r.t/; y.t/; �.t/; �.t//
to the Hamiltonian equation of motion P
.t/ WD d

dt

.t/ D fp; 
.t/g. The backward bichar-

acteristic flowout in T �Xe of a point 
0 2 T �Xe is the set of points 
 0 2 T �Xe such that if

.t/ is the bicharacteristic in T �Xe with 
.0/ D 
0, then 
.t/ D 
 0 for some t � 0; note that
some bicharacteristics enter T �.X n Xe/ in finite time, and our definition only counts them
while they stay in T �Xe.

If 
.t/ WD ..r.t/; y.t/; �.t/; �.t// is a bicharacteristic, then

(4.34) Pr.t/ D 2�.t/; P�.t/ D
4

d � 1
j�j2f 0.r.t//f .r.t//�.dC3/=.d�1/ � V 0L.r.t// � 0

and hence Rr D 2 P� � 0. Consequently no bicharacteristic can visit the sets T �..0; 4//,
T �..4; 5//, and T �..2; 3// in that order (here and below T �..a; b// denotes the subset
of T �Xe on which a < r < b), and this fact is exploited to prove the crucial remainder
estimate in (4.38) below.

Fix �e; �K 2 C1.R/ such that �e C�K D 1, supp�e � .3;1/, and supp�K � .�1; 4/.
Define a parametrix for P �E � i" by

G WD �K.r � 1/RK�K.r/C �e.r C 1/Re�e.r/:

Here
RK D RK.E0 C i"/ WD .�h

2� � iWK.r/ �E0 � i"/
�1

and

Re D Re.E0 C i"/ WD f .r/

1X
jD0

�
.Pj � i"/

�1�j ˝ �j
�
f .r/�1;

and

(4.35) kRKk � Ca.h/h
�1; k.1C r/�s1�e.r C 1/Re�e.r/.1C r/

�s2k � Ch�2:

Indeed, RK is well defined and obeys (4.35) thanks to (3.3); this follows from the resolvent
identity for " > 0 small enough and then from the bound Im.�h2�� iWK.r/�E0 � i"/ �
�" for all " > 0. Meanwhile �e.r C 1/Re�e.r/ acts on L2.X/ thanks to (4.2) and the
support property of �e, even though Re acts on a funny space due to the way we defined
the operators Pj differently depending on j ; moreover Re obeys (4.35) by (4.5) and (4.18).

Define operators AK and Ae by

.P�E0�i"/G D ICŒh
2D2

r ; �K.r�1/�RK�K.r/CŒh
2D2

r ; �e.rC1/�Re�e.r/ DW ICAKCAe:

Our next step is to remove the remainders AK and Ae. The idea of [18] is to do this using
a semiclassically outgoing property of the resolvents RK and Re.

To explain this property, we use the following notation: if U � T �Xe, then �CU is the
set of points in T �Xe whose backward bicharacteristic flowout intersects U . Now in the case
ofRK , the needed semiclassically outgoing property says (in the notation of (4.20) and (4.21))
that if Q� 2 C1c ..0;1// and a 2 S0

l
, then

(4.36) k Q�.r/Oph.a/AKk D O.h
1/;
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provided j@n1r @
n2
� a.r; �/j D O.h

1/ for every n1; n2 2 N0 and for every

.r; �/ 2 T �..0; 4// [ �CT
�..0; 4//:

This property follows from [18, Lemma 5.1].

On the other hand, the resolvent Re is only semiclassically outgoing for j such that
Ej � c > 0 (the relevant statement for us is (4.19)); as Ej ! 0 this property fails, but then
the gluing region (the part of X such that r 2 .2; 5/) becomes classically forbidden, and so
we will be able to estimate and remove remainders using the Agmon estimates of §4.3.

More specifically, we observe that

(4.37) kAKk � C.1C a.h//; kAe.1C r/
�s2k � C:

Indeed, AK obeys the bound thanks to the corresponding bound on RK in (4.35); note
that kRKkL2!H2

h
.X/ � CkRKk since V , W , and " are bounded, and E0 is fixed. Meanwhile

Ae obeys the bound by (4.14) and (4.18).

We refine the parametrix with some correction terms, observing that A2K D A
2
e D 0:

.P �E0 � i"/G.I � AK � Ae C AKAe/ D I � AeAK C AeAKAe:

We will show that

(4.38) kAeAKk D O.h
1/:

Assuming (4.38) for the moment, we may write (using Re�e.r/Ae D RK�K.r/AK D 0)

.P �E0 � i"/
�1
D G.I � AK � Ae C AKAe/.I � AeAK C AeAKAe/

�1

D �e.r C 1/Re�e.r/C �K.r � 1/RK�K.r/ � �e.r C 1/ReAK

� �K.r � 1/RKAe C �e.r C 1/ReAKAe CO.h
1/:

(4.39)

Note that by (4.14), (4.18), and the bound on kRKk in (4.35), we have

(4.40) k.1C r/�s1�e.r C 1/ReAKk � Ca.h/h
�1:

Now multiplying (4.39) on the left by .1Cr/�s1 and on the right by .1Cr/�s2 and estimating
the norm on the right term by term, we see that by (4.35) the first term on the right has norm
bounded byCh�2, while by (4.35), (4.37), and (4.40), the next four terms have norm bounded
by Ca.h/h�1. This implies (3.4).

We similarly deduce (3.6) from (4.39), but rather than using the bound onRe in (4.35), we
use

(4.41) k.1C r/�s�e.r C 1/�JRe�e.r/.1C r/
�s
k � Ch�1:

To prove (4.41), we use (4.6) when Ej 2 Œ�cJ h; cJ �, we use (4.18) when Ej � cJ , and we
use the fact that Pj is almost nonnegative (more precisely, Pj � �Ch2 by (4.2) and (4.4))
when Ej � �cJ h.

To complete the proofs of Theorems 3.1 and 3.2, it remains to show (4.38). We have

AeAK D Œ�e.r C 1/; h
2D2

r �ReŒ�K.r � 1/; h
2D2

r �RK�K.r/:

Fix Q� 2 C1c ..3; 6// which is 1 on Œ4; 5�, so that

AeAK D Œ�e.r C 1/; h
2D2

r �Re Q�.r/Œ�K.r � 1/; h
2D2

r �RK�K.r/:
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For any  2 C1c ..0;1// we have

kŒ�e.r C 1/; h
2D2

r �Re Q�.r/ .hDr /Œ�K.r � 1/; h
2D2

r �k D O.h
1/

by (4.15) and (4.19), so it remains to show that there is  2 C1c ..0;1// such that

k Q�.r/.I �  .hDr //Œ�K.r � 1/; h
2D2

r �RK�K.r/k D O.h
1/:

We will deduce this from (4.36). Indeed, it is enough to check that there is �0 > 0

such that if 
.t/ is a bicharacteristic at energy E0 with 
.0/ 2 T � supp�K.r/ and with

.T / 2 T � supp�0K.r � 1/ for some T > 0, then �.T / � �0 (we already know that �.T /2 � E0,
so we may then take  to be 1 near Œ�0;

p
E0�).

Thanks to (4.34) we know that �.t/ is nondecreasing, so we may assume that we have
max supp�K.r/ < r.t/ < min supp�0K.r � 1/ when t 2 .0; T /, which implies in particular
�.0/ � 0. Then, for t 2 .0; T /, we have f .r.t// � Cf 0.r.t// and VL.r.t// � �CV 0L.r.t//, so
that

P�.t/ � .j�j2f .r/�4=.d�1/ C VL.r//=C0 D .E0 � �.t/
2/=C0:

If �.0/ D
p
E0, then �.T / D

p
E0 and we are done; otherwise we can integrate and use

�.0/ � 0 to obtain

C0
p
E0

tanh�1
�
�.T /
p
E0

�
� T D

r.T / � r.0/

2 N�
�
r.T / � r.0/

2�.T /
;

where we used N� WD T �1
R T
0
�.t/dt � �.T /. This implies �.T / � �0, for some �0 > 0

depending on C0; E0; and �K .

5. Continuation of the resolvent

In this section we keep all of the assumptions of §3.1, and add the assumption that

r � 6 H) VL.r/ D f .r/ � 1 D 0:

In §5.1 we briefly review how meromorphic continuation works in this setting, following
[28] and [36, §6.7], and introduce the relevant notation. In §5.2 we prove some useful estimates
for a model problem on the cylindrical end. In §5.3 we use an identity of Vodev from [52] to
deduce the existence of a resonance free region.

Roughly speaking, writing R.z/ for the resolvent .P � z/�1 and for its meromorphic
continuation, we deduce from (3.4) that

k�R.E0 ˙ i0/�k . 1=�.h/;

where� 2 C1c .X/ and 0 < �.h/ � h2. Then we use Vodev’s identity to show that this implies

k�R.z/�k . 1=�.h/;

as long as the distance from z to E0 ˙ i0 is small compared to �.h/. However some care is
needed due to the complicated nature of the Riemann surface to which R.z/ continues (see
§5.1), and due to the fact that our model resolvent obeys somewhat weaker bounds than the
one used in [52] (see §5.2). The precise statement and proof are in §5.3.

Although we keep all of the assumptions of §3.1 in this section, strictly speaking they are
not all needed once we have (3.4). Instead, as long as we had (3.4), we could allow X to be
a more general manifold with cylindrical ends, or allow P to be a black-box perturbation of
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the Laplacian e.g., in the sense of [10, §2]. The proof could also be adapted to include the case
of waveguides. We omit these generalizations here, to simplify the presentation and because
all of our interesting examples satisfy the assumptions of §3.1.

5.1. Meromorphic continuation of the resolvent

In §5.1 we think of h > 0 as being fixed, until Lemma 5.2, in which we prove an estimate
which is uniform as h! 0.

The spectrum ofP is given by Œ0;1/ together with a finite (possibly empty) set of negative
eigenvalues. For z not in the spectrum we define the resolvent

R.z/ WD .P � z/�1WL2.X/! L2.X/:

To define the Riemann surface onto whichR.z/meromorphically continues, for each j 2 N0,
and z 2 C n Œh2�2j ;1/, we introduce the notation

�j .z/ WD
q
z � h2�2j ;

with the branch of the square root chosen such that Im �j .z/ > 0 for this range of z (recall
that 0 D �0 � �1 � � � � are the square roots of the eigenvalues of the nonnegative Laplacian
on .Y; gY / included according to multiplicity).

For each j 2 N0, there is a minimal Riemann surface OZh;j onto which �j continues
analytically from C n Œh2�2j ;1/; this is a double cover of C ramified at the singular point

z D h2�2j . By elaborating the construction of OZh;j , we see that there is a minimal Riemann

surface OZh onto which all the �j extend simultaneously from C n Œ0;1/. This is a countable
cover of C, ramified at z D h2�2j for each j , and for each z 2 OZh we have Im �j .z/ > 0 for
all but finitely many j . For more details, see [28] and [36, §6.7].

We use p to denote the projection OZh ! C, we use the term physical region to refer to
the sheet over C n Œ0;1/ on which Im �j > 0 for all j , and for notational convenience we
identify the physical region with C n Œ0;1/. Then R.z/ continues meromorphically from the
resolvent set inCnŒ0;1/ to all of OZh, as an operator from compactly supportedL2 functions
to locally L2 functions, and we have .P � p.z//R.z/ D I . We refer to the poles of R.z/ as
resonances.

For E � 0, we denote by E ˙ i0 the points in OZh on the boundary of the physical region
which are obtained as limits lim˙ı#0E C iı. Note that �j .E ˙ i0/ 2 iRC if E < h2�2j , and

˙�j .E ˙ i0/ > 0 if h2�2j < E. Below we will only be concerned with points on OZh which
are quite close to the boundary of the physical region. To measure how far apart two points
on OZh are we use the following

L 5.1. – The function dh W OZh � OZh ! Œ0;1� given by

(5.1) dh.z; z
0/ WD sup

j

j�j .z/ � �j .z
0/j

takes only finite values and is a metric on OZh.
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Proof. – To see that j�j .z/ � �j .z0/j is bounded in j , note that

(5.2) p.z/ � p.z0/ D �2j .z/ � �
2
j .z
0/ D .�j .z/ � �j .z

0//.�j .z/C �j .z
0//:

Using that �2j .z/ D p.z/ � h2�2j , we find Re �2j .z/ ! �1 as j ! 1. Since Im �j .z/ > 0

if j is sufficiently large, Im �j .z/!1 as j !1 and we find, since the same is true for z0,
that for j large enough j�j .z/ � �j .z0/j < j�j .z/C �j .z0/j. Since by (5.2), we have

minfj�j .z/ � �j .z0/j; j�j .z/C �j .z0/jg � jp.z/ � p.z0/j1=2;

we have for j sufficiently large, j�j .z/ � �j .z0/j � jp.z/ � p.z0/j1=2.

That dh is a metric is fairly straightforward; for completeness we check the triangle
inequality. Let z; z0; w 2 OZh. Then

j�j .z/ � �j .z
0/j � j�j .z/ � �j .w/j C j�j .w/ � �j .z

0/j:

But then

dh.z; z
0/ D sup

j

j�j .z/ � �j .z
0/j � sup

j

.j�j .z/ � �j .w/j C j�j .w/ � �j .z
0/j/

� sup
j

j�j .z/ � �j .w/j C sup
j

j�j .w/ � �j .z
0/j D dh.z; w/C dh.w; z

0/:

Later we will want to use dh.z; z0/ in a resolvent identity, and now we show that dh.z; z0/
controls jp.z/ � p.z0/j, at least when z0 is on the boundary of the physical region:

L 5.2. – Let E > 0, and let E ˙ i0 denote one of the points on the boundary of the
physical space in OZh as described above. Then for any ı > 0, if h > 0 is sufficiently small,

jp.z/ �Ej � dh.z; E ˙ i0/Œdh.z; E ˙ i0/CO.h
1=2�ı/�

for z 2 OZh.

Proof. – We have, for any j 2 N,

jp.z/ �Ej D j�2j .z/ � �
2
j .E ˙ i0/j

D j�j .z/ � �j .E ˙ i0//jj�j .z/ � �j .E ˙ i0/C 2�j .E ˙ i0/j

� j�j .z/ � �j .E ˙ i0/j
�
j�j .z/ � �j .E ˙ i0/j C 2j�j .E ˙ i0/j

�
:(5.3)

By the Weyl law, for any ı0 > 0 there is an h0 D h0.ı
0/ > 0 so that if 0 < h < h0,

the interval ŒEh�2 � h�1�ı
0

; Eh�2 C h�1�ı
0

� contains an element of the spectrum of ��Y ;
call this �2j0 . We note that j0 depends on E and on h, but our notation does not reflect that
dependence. Then

j�j0.E ˙ i0/j
2
D jE � h2�2j0 j � h

1�ı0 :

Using this in (5.3) with j D j0 proves the lemma, since

j�j0.z/ � �j0.E ˙ i0/j � dh.z; E ˙ i0/:
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5.2. Resolvent estimates for the model problem on the cylindrical end.

Let X0 D Œ0;1/ � Y , let �0 � 0 be the Laplacian on .X0; dr2 C gY /, and for h > 0 and
z 2 C n Œ0;1/, let

R0.z/ WD .�h
2�0 � z/

�1

denote the semiclassical Dirichlet resolvent.

For Im � > 0, let RD.�/ be the resolvent for the Dirichlet Laplacian on the half-line with
spectral parameter �2 and Schwartz kernel given by

(5.4) RD.�; r; r
0/ D

i

2h�
.ei�jr�r

0j=h
� ei�.rCr

0/=h/:

Then, for z in the physical region of OZh (see §5.1), we have

(5.5) R0.z/ D

1X
jD0

RD.�j .z//�j ˝ �j ;

where f�j g1jD0 is a complete set of real-valued orthonormal eigenfunctions of the Laplacian
on Y and ��Y �j D �2j �j .

Moreover, R0.z/ continues holomorphically to OZh as an operator from compactly
supported L2 functions to locally L2 functions. In this section we prove some estimates
for R0.z/ which will be needed when we use a resolvent identity to find a neighborhood of
the boundary of the physical region in which R.z/ has no poles.

P 5.3. – Let � 2 C1c .Œ0;1// and fix N > 0. If Im �; Im � 0 > �Nh, then

(5.6) k�RD.�/� � �RD.�
0/�k � Ch�3j� � � 0j:

If Im �; Im � 0 > �Nh and ˛1 C ˛2 D 1; 2, then
(5.7)
k�h˛1D˛1

r RD.�/h
˛2D˛2

r ���h
˛1D˛1

r RD.�
0/h˛2D˛2

r �k � Ch
�2
j��� 0j.j�jCj� 0jC1/˛1C˛2�1:

Fix ı > 0 and suppose ı < arg �; arg � 0 < � � ı and j�j; j� 0j � 1. Then if ˛1 C ˛2 � 2,

(5.8) kh˛1D˛1
r RD.�/h

˛2D˛2
r � � �h

˛1D˛1
r RD.�

0/h˛2D˛2
r k � C j� � �

0
j:

All the norms above are L2.RC/! L2.RC/, and the constants depend on �, N , and ı.

Proof. – We begin with (5.6). Note that � d
d�
RD.�/� has Schwartz kernel

i�.r/

2h3.�=h/2

�
.�1C i jr � r 0j

�

h
/ei�jr�r

0j=h
� .�1C i.r C r 0/

�

h
/ei�.rCr

0/=h

�
�.r 0/:

With Im � > �Nh, this can be pointwise bounded by C=h3, even when � ! 0, and hence
since � is compactly supported we have k� d

d�
RD.�/�k �

C
h3

. Integrating from � to � 0 gives
(5.6). We note for future reference that if j�j � h, then we can improve the estimate to

ˇ̌̌̌
i�.r/

2h3.�=h/2

��
�1C i jr � r 0j

�

h

�
ei�jr�r

0j=h
�

�
�1C i.r C r 0/

�

h

�
ei�.rCr

0/=h

�
�.r 0/

ˇ̌̌̌
� C=.h2j�j/; when j�j � h:

(5.9)
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Next consider the operator h @
@r
RD.�/. It has Schwartz kernel

�1

2h

�
sgn.r � r 0/ei�jr�r

0j=h
� ei�.rCr

0/=h
�
:

Differentiating this with respect to � and proceeding as above gives



� d

d�
h @
@r
RD.�/�




 � C
h2
:

Integrating in � from � to � 0 gives (5.7) for ˛1 D 1, ˛2 D 0. To prove (5.7) for ˛1 D 2,
˛2 D 0; we can argue as before using the Schwartz kernel. Alternately, we can note
that h2 @

2

@r2
RD.�/ D I C �2RD.�/ and proceed as in the proof of the first inequality,

using the improvement (5.9). Similar techniques give (5.7) when ˛2 ¤ 0, if we consider the
Schwartz kernel of RD.�/ @@r .

When �; � 0 satisfy ı < arg �; arg � 0 < � � ı they are both in the physical region and we
can use the resolvent equation RD.�/ � RD.� 0/ D .�2 � � 02/RD.�/RD.�

0/. If j�j � 1, using
the bound on arg � we have kh˛1D˛1

r RD.�/h
˛2D

˛2
r k � C j�j˛1C˛2�2, where the constant

depends on ı. The same inequality holds if � is replaced by � 0 everywhere. Using this in the
resolvent equation proves (5.8).

P 5.4. – Let E > 0 and consider one of the points E ˙ i0 2 OZh which lies on
the boundary of the physical region. Fix N > 0 and � 2 C1c .X0/. Then

(5.10) k�R0.z/� � �R0.E ˙ i0/�k � Ch
�3dh.z; E ˙ i0/

for all z 2 OZh such that dh.z; E ˙ i0/ < Nh. If ˛1 C ˛2 D 1; 2, then instead

(5.11) k�h˛1D˛1
r R0.z/h

˛2D˛2
r � � �h

˛1D˛1
r R0.E ˙ i0/h

˛2D˛2
r �k � Ch

�2dh.z; E ˙ i0/

for all z 2 OZh such that dh.z; E ˙ i0/ < Nh.

Proof. – We begin by noting that for any j 2 N, Im �j .E ˙ i0/ � 0, and for h2�2j > E

we have �j .E ˙ i0/ 2 iRC. Hence if dh.z; E ˙ i0/ < Nh, then Im �j .z/ � �Nh and
Im �j .z/!1 as j !1.

Without loss of generality, we may assume � is a function of r only, so that we may
consider � as a function defined on Œ0;1/. Using the expression (5.5), we find that

k�R0.z/� � �R0.E ˙ i0/�kL2.X0/!L2.X0/

D sup
j

k�RD.�j .z//� � �RD.�j .E ˙ i0//�kL2.RC/!L2.RC/:

Now (5.10) follows directly from (5.6) and the Definition (5.1) of dh.z; E ˙ i0/.

To prove (5.11), we note that for j sufficiently large we have h2�2j > E C 5, and
�=4 < arg �j .z/, arg �j .E ˙ i0/ < 3�=4. Using (5.7) when h2�2j � E C 5 and (5.8)
when h2�2j > E C 5, along with the definition of dh.z; E ˙ i0/ proves (5.11).
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5.3. The resonance free region

Throughout §5.3, we keep all of the assumptions of §3.1, as well as the assumption that

r � 6 H) VL.r/ D f .r/ � 1 D 0:

To show the existence of a resonance free region, we use an identity due to Vodev [52,
(5.4)]. In [52] the identity is stated only for operators which are potential perturbations of
the Laplacian on Rd . However, it in fact holds in far greater generality for operators which
are, in an appropriate sense, compactly supported perturbations of each other. Here we state
a version adapted to our circumstance.

L 5.5 ([52, (5.4)]). – Let �1 2 C1c .X I Œ0; 1�/ be such that r � 6 near supp 1 � �1.
Choose � 2 C1c .X I Œ0; 1�/ so that ��1 D �1. Then for z; z0 2 OZh,

�R.z/� � �R.z0/� D .p.z/ � p.z0//�R.z/��1.2 � �1/�R.z0/�

C .1 � �1 � �R.z/�Œh
2�;�1�/ .�R0.z/� � �R0.z0/�/

� .1 � �1 C Œh
2�;�1��R.z0/�/:

It is important to note in the identity above that �R0� only appears where it is multiplied
both on the left and right by an operator (either 1 � �1 or Œh2�;�1�) supported in the set
where r � 6. If we think of this set as a subset of X0 D Œ0;1/ � Y , then the appearance
of �R0� makes sense.

We omit the proof of Lemma 5.5 because it is essentially the same as that of [52, (5.4)]
(see also [23, Lemma 6.26] and, for another version in the setting of cylindrical ends, [10,
Lemma 2.1]).

The proof we give of the following theorem follows the proof of [52, Theorem 1.5], but we
write it out in detail because it is short and to highlight the role of the estimates we proved
in §5.2.

T 5.6. – With � as in Lemma 5.5, using (3.4) take constants C and �.h/ such that

k�R.E ˙ i0/�kL2.X/!L2.X/ �
C

�.h/
;

whereE D E0 and 0 < �.h/ � h2. Then there are constantsC 0, QC so that for h > 0 sufficiently
small, �R.z/� is analytic in fz 2 OZh W dh.z; E ˙ i0/ < C 0�.h/g. Moreover, in this region the
cutoff resolvent satisfies the estimate

k�R.z/�kL2.X/!L2.X/ �
QC

�.h/
;

with QC depending on �.
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Proof. – We use the identity from Lemma 5.5, with z0 D E ˙ i0. Rearranging, we find
(all norms here are L2.X/! L2.X/)

k�R.z/�k � k�R.E ˙ i0/�k C 2jp.z/ �Ejk�R.z/�kk�R.E ˙ i0/�k

C k.1 � �1/.�R0.z/� � �R0.E ˙ i0/�/.1 � �1/k

C k�R.z/�kkŒh2�;�1�/.�R0.z/� � �R0.E ˙ i0/�/.1 � �1/k

C k.1 � �1/ .�.R0.z/� � �R0.E ˙ i0/�/ Œh
2�;�1kk�R.E ˙ i0/�k

C k�R.z/�kk�R.E ˙ i0/�kkŒh2�;�1� .�R0.z/� � �R0.E ˙ i0/�/ Œh
2�;�1�k:

By writing this bound in this detailed fashion we hope to indicate the importance of the
improved estimate (5.11) as compared to (5.10), so that, for example,

(5.12) kŒh2�;�1�.�R0.z/� � �R0.E ˙ i0/�/.1 � �1/k

D kŒh2�;�1�.R0.z/� �R0.E ˙ i0/�/.1 � �1/k � Cdh.z; E ˙ i0/=h:

Using the bound on k�R.E ˙ i0/�k from the assumptions along with bounds of Proposi-
tion 5.4, we find

k�R.z/�k �
C

�.h/
C
Cdh.z; E ˙ i0/

�.h/
k�R.z/�k C

Cdh.z; E ˙ i0/

h�.h/

C Cdh.z; E ˙ i0/

�
1

h
C

1

�.h/

�
k�R.z/�k:

Here we have also bounded jp.z/ � Ej � dh.z; E ˙ i0/, which is weaker than the estimate
from Lemma 5.2 since we will have dh.z; E ˙ i0/ D O.�.h//. If we choose C 0 sufficiently
small, the coefficients of k�R.z/�k on the right hand side above will be small enough that
the terms with k�R.z/�k can be absorbed in the left hand side, proving the result.
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