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ON BLOW-ANALYTIC EQUIVALENCE

by

Toshizumi Fukui & Laurentiu Paunescu

Abstract. — We study function and map germs which become real analytic after com-
posing with a locally finite number of blowing-ups. The main purpose of this article
is to give a reasonably self-contained survey on this topic, including historical details
concerning the development of this area, motivation, recent results, and important
open problems.

Résumé(Sur l’équivalence par éclatements). — Nous étudions les fonctions et appli-
cations qui deviennent analytiques après composition avec un nombre localement
fini d’éclatements. Le but principal de cet article est de donner de cette théorie un
panorama indépendant contenant l’historique, des motivations, ainsi que des résultats
récents et des questions ouvertes.

Blowing-up is a fundamental notion in singularity theory, algebraic geometry and
analytic geometry. In this article we study function and map germs which become real
analytic when composed with a locally finite number of blowing-ups. For example,
the real function germ

f(x, y) = x3/(x2 + y2) : R2, 0 −→ R, 0

becomes real analytic when composed with the blowing-up of R2 at the origin. As we
shall see in §2, a number of classical examples in calculus are also blow-analytic.

Motivated by the classification problem of analytic function germs, T.-C. Kuo [30]
introduced the notions of blow-analytic map and blow-analytic equivalence. He dis-
covered a finite classification theorem for analytic function germs with isolated singu-
larities and also found some important triviality theorems. Ever since, several people
have been working in this field and have obtained new results and gained deeper in-
sight. The purpose of this article is to give a reasonably self-contained survey on this
topic, including some open problems.

The article is organized as follows. In §1, we present the motivation of the classi-
fication problem. We give a naive definition of blow-analytic map in §2, and discuss
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another variant in the rest of the section and also in §4. A number of blow-analytic
triviality theorems are stated and discussed in §3. The arc lifting property, which
is of fundamental importance for us, is defined in §5. Some blow-analytic invariants
for analytic function germs are defined and discussed in §6. In §§7–9, we investigate
properties of blow-analytic maps themselves. Relations between Lipschitz maps and
blow-analytic maps are also discussed in §7. In particular, a blow-analytic homeo-
morphism (and even a blow-analytic isomorphism which we define in §8) need not be
bilipschitz. This fact was first discovered by S. Koike [27]. A blow-analytic homeo-
morphism may have exotic pathologies; this is illustrated by the examples in §8. We
then introduce a strengthened notion, called blow-analytic isomorphism, and discuss
the behaviour of their jacobians. In §9.1, we present a version of the inverse mapping
theorem for blow-analytic isomorphisms. Several open problems are stated in the last
section.

The authors would like to thank G. Fichou, G. Ishikawa, S. Izumi, S. Koike and
T.-C. Kuo for valuable discussions. K. Kurdyka and A. Parusiński have carefully read
an earlier version of this paper, and have made constructive criticisms and very useful
suggestions. To them, special thanks.

1. Motivations

The notion of blow-analytic equivalence arises from attempts to classify analytic
function germs. To begin with, one is tempted to use the following equivalence rela-
tions.

Definition 1.1. — Let k = 0, 1, 2, . . . ,∞, ω. We say that two analytic function
germs f, g : Rn, 0 → R, 0 are Ck-equivalent if there is a Ck-diffeomorphism germ
h : Rn, 0 → Rn, 0 so that f = g ◦ h.

However, the following example, due to H. Whitney, shows that the C1-equivalence
is already too fine for the purpose of classification.

Example 1.2(see[41]). — Consider the functions

ft : R2, 0 −→ R, 0 < t < 1, ft(x, y) = xy(y − x)(y − tx).

Then ft is C1-equivalent to ft′ , if and only if t = t′.

Proof. — If ft and ft′ are C1-equivalent, then there is a C1-diffeomorphism

h : R2, 0 −→ R2, 0
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with ft′ = ft ◦ h. We may assume that h is a linear isomorphism of R2; replace h by
its linear approximation at the origin, the tangent map dh0 : T0R

2 → T0R
2. The zero

set of ft′ is sent isomorphically onto the zero set of ft. Let

v1 =
(1

0

)
, v2 =

(1

t

)
, v3 =

(1

1

)
, v4 =

(0

1

)

be the corresponding four direction (column) vectors for ft. The classical cross ratio

of v1, v2, v3, v4 is defined by

σijk` =
det(vivk) · det(vjv`)

det(viv`) · det(vjvk)
, where

{
i, j, k, `} = {1, 2, 3, 4

}
.

It is clear that the cross ratio is invariant under the action of the general linear group
and by multiplying each vector by a nonzero constant.

Similarly we consider

v′1 =
(1

0

)
, v′2 =

( 1

t′

)
, v′3 =

(1

1

)
, v′4 =

(0

1

)

for ft′ and the corresponding cross ratios denoted by σ′
ijk` , {i, j, k, `} = {1, 2, 3, 4}.

Cross ratio may take only six values, corresponding to all permutations of v′1, v
′
2,

v′3, v
′
4, in our situation

t′,
1

t′
, 1 − t′,

1

1 − t′
, − 1 − t′

t′
, − t′

1 − t′
,

and similarly for ft. It follows that σ′
1423 = t′ should equate one of the corresponding

values from ft. Two of them are negative and two are bigger than one, so we remain
with only two possibilities t′ = t or t′ = 1− t. The value 1− t is realised by one of the
following σ1243, σ4312, σ2134 and σ3421. Observe that the region ft ≥ 0 should also be
preserved.

These imply t = t′.

On the other hand, if we set x = y′/a, y = ((t− 1)x′ + y′)/a, where a is a constant
with a4 + (1 − t)2 = 0, then

xy(y − x)(y − tx) = x′y′(y′ − x′)
(
y′ − (1 − t)x′

)

and thus ft and f1−t are analytically equivalent as complex functions.

As for the C0-equivalence, the functions (x, y) 7→ x2 + y2k+1, k ≥ 1, for instance,
are C0-equivalent to the regular function (x, y) 7→ y. Hence it is hopeless to expect a
decent classification theory.

Now we consider the blowing-up π : M → R2 at 0. This map is illustrated by the
following picture:
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The anti-podal points of the inner circle of the annulus in the middle figure are
identified to obtain the Möbius strip in the left figure. Collapsing the inner circle to a
point yields a mapping from the Möbius strip to the disk at the right. This is called
the blowing-up of the disk at its centre. One can introduce local coordinates on the
Möbius strip and express the above as a real analytic map, as follows. Let

M =
{
(x, y) × [ξ : η] ∈ D2 × P 1 : xη = yξ

}
,

where D2 is a 2-dimensional disk and P 1 is the real projective line. The restriction
of the projection (x, y) × [ξ : η] 7→ (x, y) to M is the desired π. For the functions ft

in example 1.2, all ft ◦ π are Cω- equivalent to each other (see [30]).

2. Definition of blow-analytic map

2.1. A naive introduction

Definition 2.1(Blowing-up). — Let U be a disk in Rn centered at 0 with analytic
coordinates x1, . . . , xn, and let C ⊂ U be the locus x1 = · · · = xk = 0. Let [ξ1 : · · · : ξk]

be homogeneous coordinates of the real projective space P k−1 and let Ũ ⊂ U ×P k−1

be the nonsingular manifold defined by

Ũ =
{
(x1, . . . , xn) × [ξ1 : · · · : ξk] : xiξj = xjξi, 1 ≤ i, j ≤ k

}
.

The projection π : Ũ → U on the first factor is clearly an isomorphism away from C.

The manifold Ũ , together with the map π : Ũ → U , is called the blowing-up with

nonsingular center C. It is well-known that the blowing-up π : Ũ → U is independent
of the coordinates chosen in U . This allows us to globalize the definition. Let M
be a real analytic manifold of dimension n and C a submanifold of codimension k.
Let {Uα} be a collection of disks in M covering C such that in each disc Uα the sub-

manifold C ∩ Uα may be given as the locus (x1 = · · · = xk = 0), and let πα : Ũα → Uα

be the blowing-up with center C ∩ Uα. We then have isomorphisms

παβ : π−1
α (Uα ∩ Uβ) −→ π−1

β (Uα ∩ Uβ),

and we can patch together the Ũα to form a manifold Ũ =
⋃

παβ
Ũα with map

π : Ũ → ⋃
Uα. Since π is an isomorphism away from C, we can take

M̃ = Ũ ∪π (M − C), M̃

together with the map π : M̃ → M extending π on Ũ and the identity on M − C,
is called the blowing-up of M with center C. We call E = π−1(C) the exceptional

divisor of the blowing-up π.

Let M be a real analytic manifold. Take a function f defined on M except possibly
on some nowhere dense subset of M . We often denote this function by

f : M 99K R,

and say that f is defined almost everywhere.
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Definition 2.2. — Let π : M̃ →M be a locally finite composition of blowing-ups with
nonsingular centers. We say that f : M 99K R is blow-analytic via π if f ◦ π has an

analytic extension on M̃ . We say that f is blow-analytic if there is π : M̃ → M ,
a locally finite composition of blowing-ups with nonsingular centers, so that f is
blow-analytic via π.

Many functions, used as counterexamples in Calculus, are blow-analytic. Some of
them are as follows.

Example 2.3. — (i) f(x, y) = xy
x2+y2

, (x, y) 6= (0, 0). This function f is not continu-

ously extendable at the origin. It is clearly blow-analytic via the blowing-up at the
origin (for instance f(xy, y) = x

x2+1 becomes analytic).

(ii) f(x, y) = x2y
x4+y2 , (x, y) 6= (0, 0). This function is not continuously extendable

at the origin, although all directional derivatives exist, if we define f(0, 0) = 0. This
function f is also blow-analytic.

(iii) f(x, y) = xy(x2−y2)
x2+y2 , (x, y) 6= (0, 0). This function is continuously extendable

at the origin, but the second order derivatives depend on the order of differentiation:

∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0).

This function f is also blow-analytic via the blowing-up at the origin.

Example 2.4(see[2]). — Another typical example of blow-analytic function is

f(x, y) =
√
x4 + y4. The zero set of z3 + (x2 + y2)z + x3 is also the graph of

a blow-analytic function z = g(x, y). In fact, by applying Cardano’s formulas,
we obtain

g(x, y) = −2
1
3 (x2 + y2)

h(x, y)
+
h(x, y)

3 · 2 1
3

, h(x, y) =
(
−27x3 +

√
729x6 + 108(x2 + y2)3

) 1
3 ,

and g is blow-analytic via the blow-up at the origin. It is also possible to show that g
is blow-analytic using theorem 4.9.

The notion of blow-analytic map between real analytic manifolds is defined using
local coordinates.

Definition 2.5. — Let X , Y be real analytic manifolds. We say that f : X → Y is a
blow-analytic homeomorphism (bah, for short) if f is a homeomorphism and both f
and f−1 are blow-analytic.

Definition 2.6. — Let f, g : Rn, 0 → R, 0 be analytic functions. We say that f
and g are blow-analytically equivalent if there is a blow-analytic homeomorphism
h : Rn, 0 → Rn, 0 so that f = g ◦ h.

Note that h preserves the zero sets of f and g. The equivalence relation determined
by the above relation on the set of analytic function-germs Rn, 0 → R, 0 will be called
blow-analytic equivalence.
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