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STABILIZATION OF NAVIER-STOKES EQUATION

by

Viorel Barbu

Abstract. — We survey here a few recent results and methods to stabilization of
equilibrium solutions to Navier-Stokes in 2-D and 3-D.

1. The stabilization problem

Consider the Navier-Stokes equation in a domain @ C R?, d = 2,3, with smooth
boundary 00,

0
%—uAy—k(y-V)y:fe—l-Vp in R* x O,
Ly = i +
(1.1) V-y=0 in RT x O,
y=20 on Rt x 90,
y(0) = yo on Rt x 80,

where f. € (L?(0))4, V- f. =0, fo-n=0.
Here n is the unit normal and is directed toward the exterior of O.
Let y. € (H?(0))? be an equilibrium solution to (1.1), that is,

_VAye + (ye : v)ye = fe + Vpe in 07
V:-ye=0 in O, ¥e =0 on 00.

(1.2)
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2 V. BARBU

1.1. Internal stabilization. — Let Oy C O be an open subdomain of @ and consider
the controlled system associated with (1.1)

% —vAy+ (y-V)y= fo+ Vp+lp,u in RT x O,
(1.3) V-.y in RT x O; y=0 on R x 00,

y(0) =yo in O,

where the controller u is in L2(0, co; (L2(0))%).

Problem 1.1. — Find the controller u in feedback form, that is u(t) = é(y(t) — ye)
such that the solution to the corresponding solution y to the closed loop system (1.3)
satisfies for all yo in a neighborhood of vy,

(1.4) 1y(t) = yellz20))2 < Ce™lyo — yell L2 (0)yas ¥t >0,

where v > 0.

If we set y — y. — y, Problem 1.1 reduces to find u = ¢(y) such that the solution y
to the equation

0
5~ VAV (V)Y U V)Y (5 V)ye=Vp+lo,u, 20,

V-y=0 in Rt x O,

(1.5)
y=0 on Rt x 80,
y(0,2) = yo(z) — ye(z) = y°(2), € O.

satisfies

(1.6) Iyl 20 < Ce [yl 220y, ¥t > 0.

We use the standard formalism to represent the Navier-Stokes equations as infinite-
dimensional differential equations (see, e.g., [9], [20], [21]). That is we set

H={ye (L?(0)%4V-y=0 inO, y-n=0 on 80},
Ay = —P(Ay), Vy € D(A) =y € HN (Hg(0))"n (H*(0))?,
Aoy = P((ye - V)y + (y - V)ye), D(Ao) = H N (Hj(0))4,
By = P((y-V)y),
where P : (L?(0))¢ — H is the Leray projector.

We may rewrite (1.5) as

d
(1.7) dit’ +vAy + Agy + By = P(lo,u), t >0, y(0) = 1°,
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or, in a more compact form,

d
(18) =L+ Ay+ By = P(lo,u), t 20, y(0) =",
where A : D(A) C H — H is the so called Oseen-Stokes operator
(1.9) A=vA+ Ay, D(A)=D(A).

Then the internal stabilization problem reduces to find a feedback controller u = ¢(y)
such that the corresponding solution y to (1.8), that is,

d

(1.10) 4 A+ By = P(logé(y)), vt 20, y(0) = o,
satisfies
(1.11) lyT|ar < Ce™ ' |yolm, Yt >0,
for v > 0 and all yy in a neighborhood of the origin. Here and everywhere in the
following, | - |g is the norm of the space H and (-,-)g is the corresponding scalar
product.
1.2. Boundary stabilization. — Consider the boundary control system associated with
(1.1)

Oy ot

5 VAUt V)y=Ffo+Vp inRT %O,
(1.12) V-y=0 on Rt x O, y=u onRT x 0O,

y(0) = yo in O.

Problem 1.2. — Find a boundary controller u in the feedback form u = ¥ (y—y.) such
that the corresponding solution y to (1.5) satisfies (1.4) for all yo in a neighborhood

of Ye-
Equivalently, the solution y to

0
o — VAYHEV)yHy-V)ye+(yeV)y = Vp in B <O,

(1.13) y=u onR* x 90, y(0)=1y° - y.,
V-y=0 onRT x O,
where u = ¥(y), satisfies (1.4).

If v is tangential, that is u-n = 0 on RT x 80O, then the stabilization is said to be
tangential while, if u -7 = 0 on R x 90 (where 7 is the tangent vector to d0), the
stabilization is called normal.

Denote by D : (L?(00))? — H the Dirichlet map defined by
(1.14)  —vA(Du)+(ye-V)Du+(Du-V)ye+kDu = Vp in O, Du=u on 00,
where k£ > 0 is sufficiently large but fixed.

SOCIETE MATHEMATIQUE DE FRANCE 2015



4 V. BARBU

It turns out that D is well defined on the space of all u € (L?(80))¢ such that
u-n = 0 on HO and that D is continuous from (H*(00))% — (H*+2(0))?NH if s > i
(See Theorem A.2.1 in [1].) Then (1.13) reduces to

dy

(1.15) o

+ A(y — Du) + By = kDu, t >0, y(0)=1°.

If we denote by A the extension, by transposition, A : H — (D(A*))" with respect

to H as pivot space of the original operator A, that is, (Ay,z) = (y,A*z), for
all z € D(A), we can write (1.15) as

d —~ o~
(1.16) 7+ Ay + By = kDu+ADu, t >0, y(0) =3,

and so, the tangential stabilization problem reduces to find a feedback controller
u = 1(y) such that the solution y to (1.16) satisfies (1.4) for all y in a neighborhood
of the origin.

It is obvious that the solution y to the Cauchy problem is taken here in a mild
sense

t ~ —~
(1.17) yr = e~ Aty0 — / e At=9)(By(s) + kDu + ADu(s))ds, t>0.
0

2
loc

d
Of course, if pn Du € Li .(0,00; H), we may rewrite (1.17) as

y7 = Dut + e~ A*(y° — Du(0))

1.18 t
(1.18) _/ e~ Alt—3) (By(S) + kDu(s) — di Du(s))ds, vt > 0.
0 s

The functional representation of system (1.13) with normal boundary controller is
a more delicate problem.

1.3. Main results

Theorem 1.3 (Barbu & Triggiani 2004). — There is a feedback controller

M
(1'19) u= Z(R(y - ye)7¢i)(L2(Oo))d¢iv R e (LQ(O))a

i=1
which stabilizes exponentially y. for
1
%0 — vellw < p, W =(Hz(0))".

Here M* is dependent of the multiplicity of eigenvalues \; of the Oseen-Stokes oper-
ator Re \; <0, j=1,...,N. The functions v; are linear combinations of eigenfunc-
tions 7.
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