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Abstract. — We survey here a few recent results and methods to stabilization of
equilibrium solutions to Navier-Stokes in 2-D and 3-D.

1. The stabilization problem

Consider the Navier-Stokes equation in a domain O ⊂ Rd, d = 2, 3, with smooth
boundary ∂O,

(1.1)

∂y

∂t
− ν∆y + (y · ∇)y = fe +∇p in R+ ×O,

∇ · y = 0 in R+ ×O,

y = 0 on R+ × ∂O,

y(0) = y0 on R+ × ∂O,

where fe ∈ (L2(O))d, ∇ · fe = 0, fe · n = 0.

Here n is the unit normal and is directed toward the exterior of ∂O.

Let ye ∈ (H2(O))d be an equilibrium solution to (1.1), that is,

(1.2)
−ν∆ye + (ye · ∇)ye = fe +∇pe in O,

∇ · ye = 0 in O, ye = 0 on ∂O.
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2 V. BARBU

1.1. Internal stabilization. — Let O0 ⊂ O be an open subdomain of O and consider
the controlled system associated with (1.1)

(1.3)

∂y

∂t
− ν∆y + (y · ∇)y = fe +∇p+ 1lO0

u in R+ ×O,

∇ · y in R+ ×O; y = 0 on R+ × ∂O,

y(0) = y0 in O,

where the controller u is in L2(0,∞; (L2(O))d).

Problem 1.1. — Find the controller u in feedback form, that is u(t) = φ(y(t) − ye)
such that the solution to the corresponding solution y to the closed loop system (1.3)
satisfies for all y0 in a neighborhood of ye

(1.4) ‖y(t)− ye‖(L2(O))d ≤ Ce−γt‖y0 − ye‖(L2(O))d , ∀t ≥ 0,

where γ > 0.

If we set y− ye → y, Problem 1.1 reduces to find u = φ(y) such that the solution y
to the equation

(1.5)

∂y

∂t
− ν∆y+(y·∇)y+(ye·∇)y+(y·∇)ye=∇p+1lO0

u, t ≥ 0,

∇ · y = 0 in R+ ×O,

y = 0 on R+ × ∂O,

y(0, x) = y0(x)− ye(x) = y0(x), x ∈ O.

satisfies

(1.6) ‖y(t)‖(L2(O))d ≤ Ce−γt‖y0‖(L2(O))d , ∀t ≥ 0.

We use the standard formalism to represent the Navier-Stokes equations as infinite-
dimensional differential equations (see, e.g., [9], [20], [21]). That is we set

H = {y ∈ (L2(O))d;∇ · y = 0 in O, y · n = 0 on ∂O},

Ay = −P (∆y), ∀y ∈ D(A) = y ∈ H ∩ (H1
0 (O))d ∩ (H2(O))d,

A0y = P ((ye · ∇)y + (y · ∇)ye), D(A0) = H ∩ (H1
0 (O))d,

By = P ((y · ∇)y),

where P : (L2(O))d → H is the Leray projector.

We may rewrite (1.5) as

(1.7) dy

dt
+ νAy +A0y +By = P (1lO0u), t ≥ 0, y(0) = y0,
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or, in a more compact form,

(1.8) dy

dt
+Ay +By = P (1lO0

u), t ≥ 0, y(0) = y0,

where A : D(A) ⊂ H → H is the so called Oseen-Stokes operator

(1.9) A = νA+A0, D(A) = D(A).

Then the internal stabilization problem reduces to find a feedback controller u = φ(y)

such that the corresponding solution y to (1.8), that is,

(1.10) dy

dt
+Ay +By = P (1lO0

φ(y)), ∀t ≥ 0, y(0) = y0,

satisfies

(1.11) |yτ |H ≤ Ce−γt|y0|H , ∀t ≥ 0,

for γ > 0 and all y0 in a neighborhood of the origin. Here and everywhere in the
following, | · |H is the norm of the space H and (·, ·)H is the corresponding scalar
product.

1.2. Boundary stabilization. — Consider the boundary control system associated with
(1.1)

(1.12)

∂y

∂t
− ν∆y + (y · ∇)y = fe +∇p in R+ ×O,

∇ · y = 0 on R+ ×O, y = u on R+ × ∂O,

y(0) = y0 in O.

Problem 1.2. — Find a boundary controller u in the feedback form u = ψ(y−ye) such
that the corresponding solution y to (1.5) satisfies (1.4) for all y0 in a neighborhood
of ye.

Equivalently, the solution y to

(1.13)

∂y

∂t
− ν∆y+(y·∇)y+(y·∇)ye+(ye·∇)y = ∇p in R+×O,

y = u on R+ × ∂O, y(0) = y0 − ye,

∇ · y = 0 on R+ ×O,

where u = ψ(y), satisfies (1.4).

If u is tangential, that is u · n = 0 on R+ × ∂O, then the stabilization is said to be
tangential while, if u · τ = 0 on R+ × ∂O (where τ is the tangent vector to ∂O), the
stabilization is called normal.

Denote by D : (L2(∂O))d → H the Dirichlet map defined by

(1.14) −ν∆(Du)+(ye·∇)Du+(Du·∇)ye+kDu = ∇p in O, Du = u on ∂O,

where k > 0 is sufficiently large but fixed.
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It turns out that D is well defined on the space of all u ∈ (L2(∂O))d such that
u·n = 0 on ∂O and that D is continuous from (Hs(∂O))d → (Hs+ 1

2 (O))d∩H if s ≥ 1
2 .

(See Theorem A.2.1 in [1].) Then (1.13) reduces to

(1.15) dy

dt
+A(y −Du) +By = kDu, t ≥ 0, y(0) = y0.

If we denote by ‹A the extension, by transposition, ‹A : H → (D(A∗))′ with respect
to H as pivot space of the original operator A, that is, ( ‹Ay, z) = (y,A∗z), for
all z ∈ D(A), we can write (1.15) as

(1.16) dy

dt
+ ‹Ay +By = kDu+ ‹ADu, t ≥ 0, y(0) = y0,

and so, the tangential stabilization problem reduces to find a feedback controller
u = ψ(y) such that the solution y to (1.16) satisfies (1.4) for all y in a neighborhood
of the origin.

It is obvious that the solution y to the Cauchy problem is taken here in a mild
sense

(1.17) yτ = e−Aty0 −
∫ t

0

e−Ã(t−s)(By(s) + kDu+ ‹ADu(s))ds, t ≥ 0.

Of course, if
d

dt
Du ∈ L2

loc(0,∞;H), we may rewrite (1.17) as

(1.18)
yτ = Duτ + e−At(y0 −Du(0))

−
∫ t

0

e−A(t−s)
(
By(s) + kDu(s)− d

ds
Du(s)

)
ds, ∀t ≥ 0.

The functional representation of system (1.13) with normal boundary controller is
a more delicate problem.

1.3. Main results

Theorem 1.3 (Barbu & Triggiani 2004). — There is a feedback controller

(1.19) u =
M∑
i=1

(R(y − ye), ψi)(L2(O0))dψi, R ∈ (L2(O)),

which stabilizes exponentially ye for

‖y0 − ye‖W ≤ ρ, W = (H
1
2 (O))d.

Here M∗ is dependent of the multiplicity of eigenvalues λj of the Oseen-Stokes oper-
ator Re λj ≤ 0, j = 1, . . . , N . The functions ψj are linear combinations of eigenfunc-
tions ϕ∗j .
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