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AROUND BRODY LEMMA

by

Julien Duval

Abstract. – Brody’s lemma is a basic tool in hyperbolicity. It provides an entire curve,
i.e., a non constant holomorphic image of the complex line, out of a diverging sequence
of holomorphic discs. Consequently Brody’s Lemma characterizes hyperbolicity in
terms of absence of entire curves.

We present direct applications of Brody’s Lemma, including the Green theorem
(hyperbolicity of the complement of 5 lines in the projective plane) and an example
of a hyperbolic surface of degree 6 in the projective space. We also describe a variant
of Brody’s lemma aiming to better localize the entire curve it produces.

As a byproduct of this variant, hyperbolicity is characterized in terms of a linear
isoperimetric inequality for holomorphic discs.

1. Brody lemma

Let X be a compact complex manifold. An entire curve in X is a non constant
holomorphic map f : C → X. It is a Brody curve if its derivative ∥f ′∥ is bounded,
where the norm is computed with respect to the standard metric on C and a given
riemannian metric on X. Brody curves arise naturally as limits of sequences of larger
and larger holomorphic disks, thanks to Brody lemma [5].

Brody lemma. – Let fn : D → X a sequence of holomorphic maps from the unit disk
to a compact complex manifold. Suppose ∥f ′n(0)∥ unbounded. Then there exist affine
reparametrizations rn of C such that fn ◦ rn converges locally uniformly toward a
Brody curve, after extracting a subsequence.
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Proof. – We may suppose fn smooth up to the boundary (replacing fn(z) by fn( z
2 )).

Denote by δ(z) the euclidean distance from z to ∂D. As the function δ∥f ′n∥ vanishes
on ∂D it reaches its maximum inside D, say at an. This is where we will reparametrize
fn. Let Dn be the disk D(an, δ(an)

2 ). We have ∥δf ′n∥Dn ≤ δ(an)∥f ′n(an)∥. But δ ≥ δ(an)
2

on Dn so ∥f ′n∥Dn
≤ 2∥f ′n(an)∥.

Define the reparametrization by rn(z) = an + z
∥f ′

n(an)∥ . let D′
n be the preimage

of Dn by rn. Its radius is unbounded as δ(an)∥f ′n(an)∥ ≥ ∥f ′n(0)∥. We may sup-
pose that D′

n increases toward C after extracting. Moreover ∥(fn ◦ rn)′∥D′
n
≤ 2 and

∥(fn ◦ rn)′(0)∥ = 1. By Ascoli theorem we may extract a subsequence of fn ◦rn which
converges locally uniformly toward a holomorphic map f : C→ X such that ∥f ′∥C ≤ 2

and ∥f ′(0)∥ = 1. It is a Brody curve.

As a consequence we get a characterization of Kobayashi-hyperbolicity.
Recall that the Kobayashi pseudometric of X at p in the direction v is K(p, v) =

inf{r > 0 | ∃f : D→ X holomorphic, f(0) = p, f ′(0) = v
r }. It measures the size of the

holomorphic disks passing through a point in a given direction (the larger the disk
through p in direction v the smaller K(p, v)). The manifold X is Kobayashi-hyperbolic
if its pseudometric is non degenerate.

Criterion. – A compact complex manifold X is Kobayashi-hyperbolic if and only if
there is no entire curve in it.

Indeed the vanishing of K(p, v) gives rise to a sequence of holomorphic disks
fn : D→ X such that fn(0) = p and f ′n(0) is unbounded in the direction of v. By
Brody lemma we get a Brody curve in X. Conversely the Kobayashi pseudometric
has to vanish along any entire curve.

In the sequel we will say that U ⊂ X is hyperbolic if U does not contain any entire
curve. For instance D is hyperbolic by Liouville theorem. Hyperbolicity is invariant
under étale covering. Indeed if U → V is such a covering, any entire curve in U may
be pushed down in an entire curve in V . Conversely any entire curve in V can be
lifted to an entire curve in U . For instance compact complex curves of genus ≥ 2 are
hyperbolic as they are uniformized by D. Another consequence of Brody lemma is
that hyperbolicity is an open property.

Openness. – Let X be a compact complex manifold and F ⊂ X a closed subset. If
F is hyperbolic then so is any sufficiently small neighborhood of F .

Otherwise we would get an entire curve in each ϵ-neighborhood Fϵ of F . This
would allow us to construct a sequence of holomorphic disks fn : D → F 1

n
such

that ∥f ′n(0)∥ is unbounded, giving at the limit a Brody curve in F .
We discuss now some examples of hyperbolic complex surfaces. We start with

the simplest hyperbolic complement, generalizing Picard theorem (the hyperbolicity
of P1(C)\3 points).
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Green theorem [9]. – Let L be a collection of five lines in general position in P2(C).
Then P2(C) \ L is hyperbolic.

Here general position means there is no triple point in the configuration.

Proof. – Embedd P2(C) into P4(C) by z 7→ [l1(z) : · · · : l5(z)] using the equations of
the lines. Call P its image and P ∗ = P \ H the complement of the collection H of
coordinate hyperplanes in P4(C). We want to prove the hyperbolicity of P ∗. Let Fn be
the self-map of P4(C) given by z 7→ [zn

1 : · · · : zn
5 ]. It induces an étale covering from

P4(C) \H to itself, so the hyperbolicity of P ∗ and F−1
n (P ∗) are equivalent. The point

is that F−1
n (P ) converges toward a polyhedron whose hyperbolicity is easily checked

by Liouville theorem. This will conclude the proof by openness.
Let us make it precise.
By the general position assumption, P avoids the coordinate lines (zi = zj = zk = 0).

So P is contained in Xϵ =
⋂
{i,j,k}(max(|zi|, |zj |, |zk|) ≥ ϵ∥z∥) for some small ϵ > 0.

Here ∥z∥ = max|zi|. Now F−1
n (Xϵ) = X

ϵ
1
n

decreases toward the polyhedron X = X1

when n goes to infinity. Note that on X ∥z∥ is reached on one out of three arbitrary
components of z, meaning that ∥z∥ is always reached on three components at least.
So X is alternatively seen as a finite union of faces Xi,j,k = (|zi| = |zj | = |zk| = ∥z∥).

Let us check its hyperbolicity. Let f : C → P4(C) be a holomorphic map. It lifts
to (C5)∗ (essentially because H1(C, O

∗) = 0, see [10]) so f(z) = [f1(z) : · · · : f5(z)]

where fi is holomorphic. Now if f(C) ⊂ X it has to spend some time in one of
the faces, say X1,2,3. This implies by analytic continuation that |f1| = |f2| = |f3|
everywhere. But ∥f∥ = max(|f1|, |f2|, |f3|) by definition of X. Hence |f1| dominates
the other components everywhere, meaning that f is bounded in the chart (z1 = 1)

thus constant by Liouville theorem. Therefore X does not contain any entire map.

Remark. – This argument is dynamical in essence as X is nothing but an intermediate
Julia set for F2 which is known to attract backward iterates of a generic plane. It stems
from the proof of Picard theorem by A. Ros [17] and works in any dimension [2].

We focus now on examples of hyperbolic surfaces of low degree in P 3(C). This fits
into the framework of Kobayashi conjecture which predicts that a generic surface of
degree ≥ 5 in P3(C) is hyperbolic. It holds true for degree ≥ 18 [16] but few examples
of hyperbolic surfaces of smaller degree are known, according to the motto “the lower
the degree the harder the hyperbolicity”. Here we adapt a deformation method due to
M. Zaidenberg [19] to produce examples of degree 6 by reduction to Green theorem.
This also works for higher degrees and higher dimensions [11]. Note that the following
remains open.

Question. – Find a hyperbolic quintic surface in P3(C).

We will use Brody lemma in the following form.
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Sequences of entire curves. – Let X be a compact complex manifold. Then any se-
quence of entire curves in X can be made converging toward an entire curve after
reparametrization and extraction.

Indeed let (fn) be the sequence of entire curves. By translating we may suppose
that f ′n(0) does not vanish and by dilating that actually ∥f ′n(0)∥ is unbounded. It
remains to apply Brody lemma.

We will also invoke the following fact.

Stability of intersections. – Let X be a complex manifold and H ⊂ X an analytic
hypersurface. Suppose that a sequence (fn) of entire curves in X converges toward an
entire curve f . If f(C) is not contained in H then f(C) ∩H ⊂ lim fn(C) ∩H.

Indeed let z be a point in f−1(H) and h a local equation of H near f(z). As h ◦ f

does not vanish identically near z, h◦fn has to have a zero in any small neighborhood
of z for large n by Rouché theorem.

We construct now our example of hyperbolic sextic surface as a suitable small
deformation of a union of six planes (see also [6], [7] for other examples).

A hyperbolic sextic surface. – Let (Pi = (pi = 0)) be a collection of six planes in
general position in P 3(C). Then we can find a sextic surface S = (s = 0) such that
the surface Σϵ = (Πpi = ϵs) is hyperbolic for ϵ ̸= 0 sufficiently small.

Here general position means there is no quadruple point in the configuration. More-
over S will be in general position with respect to the Pi, in the sense that it will avoid
the triple points of the configuration. Note that by definition Σϵ ∩ Pi ⊂ S.

Proof. – The first step reduces the problem to the hyperbolicity of complements. It is
the heart of Zaidenberg’s method (see [19]) and goes as follows. If Σϵn

is not hyperbolic
for ϵn going to zero we have entire curves fn : C → Σϵn

. By Brody lemma we get at
the limit an entire curve f : C→ Σ0 = ∪Pi. It lands inside one of the planes.

We analyze now its position with respect to the other planes. The crucial remark
is the following. If f(C) is not contained in Pi then f(C)∩Pi ⊂ S. Indeed by stability
of intersections

f(C) ∩ Pi ⊂ lim fn(C) ∩ Pi ⊂ lim Σϵn ∩ Pi ⊂ S.

We infer that f(C) cannot land into a double line of the configuration of planes. If it
were the case f(C) would have to avoid the 4 triple points on the line by the remark
and the general position of S, contradicting Picard theorem.

We end up with f(C) contained in one plane and avoiding the others except
at points of S, again by the remark. So f(C) is in a complement of the form
Pi \ (

⋃
j ̸=i Pj \ S). Hence we are finished if we are able to find a sextic surface S such

that all these complements are hyperbolic.
The second step consists in constructing this sextic surface. Note that the situation

is similar to Green theorem. We have plane complements of five lines on which a
few points are deleted. To create S we proceed by deformation in order to remove
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these points on more and more double lines. Our starting point is the collection of
complements Pi \ (

⋃
j ̸=i Pj) which are hyperbolic by Green theorem.

We want to remove points on a double line, say L = P1 ∩ P2, keeping the hyper-
bolicity. For this consider a sextic surface S0 = (s0 = 0) in general position with
respect to the Pi and deform it toward the union of the remaining planes by taking
S1 = (p3p4p

2
5p

2
6 = ϵ0s0) for a small ϵ0 ̸= 0. In restriction to L, this pushes the points of

the sextic surface toward the triple points. So the complement P1\(
⋃

i ̸=1 Pi\(L∩S1)) is
close to P1 \ (

⋃
i ̸=1 Pi), hence hyperbolic by a suitable openness argument.

This is a particular case of the following lemma which we apply inductively to
conclude.

Lemma. – Let ∆k be a collection of k double lines, L = Pi1 ∩ Pi2 an extra one and
∆k+1 = ∆k∪L. Assume Sk = (sk = 0) already constructed such that the complements
Pi \ (

⋃
j ̸=i Pj \ (∆k ∩ Sk)) are hyperbolic. Then so are Pi \ (

⋃
j ̸=i Pj \ (∆k+1 ∩ Sk+1))

where Sk+1 = (pi3pi4p
2
i5

p2
i6

= ϵksk) for any small enough ϵk ̸= 0.

Note that Sk+1 is still in general position with respect to the Pi if Sk was. Remark
also that the geometry does not change on ∆k. We have ∆k ∩ Sk = ∆k ∩ Sk+1.

Proof of the lemma. – Take L = P1 ∩ P2 for simplicity. If we cannot find such an
ϵk, we have a sequence of sextic surfaces Sk+1,n converging toward P3 ∪ P4 ∪ P5 ∪ P6

and entire curves fn(C) sitting in one of the corresponding complements, say
P1 \ (

⋃
j≥2 Pj \ ((∆k ∩ Sk) ∪ (L ∩ Sk+1,n))). We get at the limit an entire curve f(C)

in P1. As before it cannot degenerate inside a double line. By stability of intersections,
for j ≥ 2 we have f(C) ∩ Pj ⊂ limfn(C) ∩ Pj ⊂ (∆k ∩ Sk) ∪ lim L ∩ Sk+1,n. If j ≥ 3

we infer that f(C) ∩ Pj ⊂ ∆k ∩ Sk as Pj ∩ L ∩ Sk+1,n is empty by general position.
Note now that lim L∩Sk+1,n consists in the triple points of L hence sits in

⋃
j≥3 Pj .

Then thanks to the previous case we also have fC) ∩ P2 ⊂ ∆k ∩ Sk. Therefore f(C)

lands in P1 \ (
⋃

j≥2 Pj \ (∆k ∩ Sk)) contradicting the hypothesis.

2. A variant

A drawback of Brody lemma is the lack of information about the location of the
entire curve it produces. It might land far away from the points where the disks
blow up. Here is a simple example due to J. Winkelmann (see also [18], and [10] for
background on blow-ups).

Example. – Let A = C2/(Z ⊕ iZ)2 be the standard torus and π : Ã → A the blow-
up of A at a point p. Take a dense injective line L in A, say L = (z2 = λz1) for
λ irrational. Consider the sequence of disks fn(D) on L given by fn(z) = (nz, λnz).
Let f̃n the strict transform of fn. If f̃ is a Brody curve obtained from the f̃n by
reparametrization, as in the Brody lemma, then f̃(C) is contained in the exceptional
divisor E.
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