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MCQUILLAN’S APPROACH
TO THE GREEN-GRIFFITHS CONJECTURE FOR SURFACES

by

Carlo Gasbarri

Abstract. – After reviewing the proof by Bogomolov of the fact that, on smooth
projective surfaces with c21 > c2, curves of bounded geometric genus form a bounded
family, we explain the main steps of the proof, given by McQuillan, of the Green-
Griffiths conjectures for these surfaces. Viewed from afar the two proofs follow the
same strategy, but the second requires a much deeper analysis of the tools involved.

In order to describe McQuillan’s proof we explain the construction of the Ahlfors
currents associated to entire curves in a variety and we show how these can be used to
produce a substitute for intersection numbers. A proof of the tautological inequality
in both the standard case and the logarithmic case is given. We explain how the
hypotheses allow us to suppose that the involved entire curve (which a posteriori
should not exist) is a leaf of a foliation. In order to simplify some technical points
of the proof we impose some restrictions on the singularities of this foliation (the
general case requires a much more involved analysis but the main ideas of the proof
are already visible under this restriction).

In the last section we give a very brief description of a possible strategy (proposed
by McQuillan) for the proof of the general case of the conjecture, together with an
explanation of the main difficulties that must be overcome.

1. Introduction

Let X be a smooth projective variety. If X is hyperbolic, then there is no, non
constant analytic map f : C → X. It is also known that hyperbolicity implies algebraic
hyperbolicity. Thus if X is hyperbolic and L is an ample line bundle on it, we can
find a constant A for which the following holds: for every smooth projective curve C

of genus g and morphism f : C → X we have deg(f∗(L)) ≤ A(2g − 2).
For a smooth projective surface of general type we cannot expect that an inequality

like the one above holds. This is, for instance, due to the fact that one can find rational
or elliptic curves on it. But probably the following conjecture holds:
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Conjecture 1.1. – Let X be a smooth projective surface of general type. Let L an ample
line bundle on it. Then there exist constants A and B for which the following holds:
for every smooth projective curve C of genus g and morphism f : C → X we have

(1.1) deg(f∗(L)) ≤ Ag + B.

This conjecture is very deep and, in particular, it implies that on a surface of
general type there are only finitely many rational or elliptic curves. More specifically
the conjecture implies the following:

Conjecture 1.2. – Let X be a smooth surface of general type. Then there exists a proper
Zariski closed set Z ⊂ X for which the following holds: If C is a rational or an elliptic
curve and f : C → X is a non constant map, then f factorize through Z.

The Green-Griffiths conjecture is a generalization of this last conjecture:

Conjecture 1.3 (Green-Gritffiths Conjecture). – Let X be a smooth surface of general
type. Then there exists a proper Zariski closed set Z ⊂ X for which the following
holds: every non constant analytic map f : C → X factorizes through Z.

If, in the possibility that Conjecture 1.2 is false, we may weaken the Conjecture 1.3
by requiring only that the closed set Z depends only on f (but it should be one
dimensional).

In this chapter we will discuss some advances on these conjectures and a strategy,
due to McQuillan, to attack Conjecture 1.3 in general.

The reader can refer also to the paper [7] for another description of the proof.

2. Curves of bounded genus on surfaces with big cotangent bundle

Definition 2.1. – Let X be a smooth projective variety and E be a vector bundle over
it. We will say that E is ample, big, nef, . . . , if the tautological bundle O(1) is ample,
big, nef, . . . on the projective bundle P(E) respectively.

We start this section by showing how to prove algebraically a strong version of Con-
jecture 1.1 on varieties with ample cotangent bundle. Remark that if a variety X has
ample cotangent bundle, then his canonical line bundle KX is ample too.

Theorem 2.2. – Let X be a smooth projective variety with ample cotangent bundle.
Then there exists a constant A with the following property: for every smooth curve C

of genus g and every non constant map f : C → X we have

(2.1) deg(f∗(KX)) ≤ A(2g − 2).
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Proof. – Consider the structure morphism p : P(Ω1
X) → X. Since, by hypoth-

esis, O(1) is ample on P(Ω1
X), there is an integer N for which the line bundle

MN := O(N)⊗ p∗(K−1
X ) is ample on it.

Let C be a smooth projective curve and f : C → X be a non constant map. The
natural map f∗(Ω1

X) → Ω1
C gives, by functoriality, a map f ′ : C → P(Ω1

X) such
that f = p ◦ f ′.

By construction f ′∗( O(1)) ↪→ Ω1
C . Thus deg(f ′∗( O(1)) ≤ 2g − 2.

Since MN is ample on P(Ω1
X)) we have that deg(f ′∗(MN )) ≥ 0. Consequently

deg(f∗(KX)) ≤ N(2g − 2).

We observe that, in particular, we obtain that such a variety do not contain rational
or elliptic curves.

Bogomolov Theorem 2.3 [1] generalize Theorem 2.2 to surfaces whose cotangent
bundle is big.

Theorem 2.3 (Bogomolov). – Let X be a smooth projective surface with big cotangent
bundle. Then there exist constants A1 and A2 with the following property: for every
smooth curve C of genus g and every non constant map f : C → X we have

(2.2) deg(f∗(KX)) ≤ A1(2g − 2) + A2.

Observe that a sufficient condition for the cotangent bundle to be big is
that c1(X)2 > c2(X) (exercise).

Let’s remark an interesting corollary:

Corollary 2.4. – Let X be a surface with big cotangent bundle. Then X contains only
finitely many rational or elliptic curves.

Proof. – Indeed, curves of bounded genus in such a surface are a bounded family and
surfaces of general type are not covered by rational or elliptic curves.

We now prove Theorem 2.3.

Proof. – As before we fix an ample line bundle L on X. Consider the natural mor-
phism p : P(Ω1

X) → X. If M is a line bundle on P(Ω1
X), we denote by Bs(M) the

base locus of it; it is a Zariski closed set which coincides with P(Ω1
X) if and only if

H0(X, M) = {0}.
For every positive integers n and m, consider the closed set Bn,m := Bs(( O(m)⊗

p∗(L−1))⊗n) ⊂ P(Ω1
X). Let B =

⋂
n,m Bn,m.

Since O(1) is big, we have that B ̸= P(Ω1
X). By Noetherianity we may suppose

that there exists n0 and m0 such that B = Bn0,m0
.

Let C be a smooth projective curve of genus g and f : C → X be a non constant
map. Suppose that the lift f ′ : C → P(Ω1

X) of f do not factor through B. This implies
that there is a global section s ∈ H0(P(Ω1

X); ( O(n0) ⊗ p∗(L−1))m0) which do not
vanish identically along f ′(C). Consequently deg(f ′( O(n0))⊗ f∗(L−1)) ≥ 0. Thus

(2.3) deg(f∗(L)) ≤ n0(2g − 2).
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Thus, for these curves it suffices to take A2 bigger then n0.
We must now deal with the case when the morphism f ′ factor through B. Consider

an irreducible component of B. By abuse of notation we will denote it again by B.
If p(B) is of dimension at most one the conclusion of the theorem easily follows:

f(C) can be contained in a finite list of curves inside X, the genus and the degree of
which can be absorbed by the constant A2.

Suppose that p : B → X is dominant. In this case, since B ̸= P(Ω1
X), the dimension

of B is two.
We will now show that the image of C in B is leaf of a natural foliation on it.

Lemma 2.5. – there exists a smooth projective surface B̃, a birational morphism
B̃ → B and a natural algebraic foliation F on B̃ with the following property: Let
f1 : C → B̃ be a lift of f ′. Then, either f1(C) belongs to a finite list or f1(C) is leaf
of the foliation F .

Before we start the proof of the lemma, we recall some basic definitions of foliations
on surfaces.

2.1. Standard fact about algebraic foliations on surfaces

Definition 2.6. – Let Y be a smooth algebraic surface. An algebraic foliation F is a
sub sheaf N de Ω1

Y which is locally free of rank one such that the quotient Ω1
Y /N is

torsion free.

We recall the following facts:
a) The line bundle N is usually called the conormal sheaf of the foliation. The line

bundle det(Ω1
Y /N) is usually called the canonical sheaf of F and denoted by K F .

b) There is a zero dimensional subschema Z ⊂ Y (in general non reduced) which
is called the singular locus of the foliation and an exact sequence

(2.4) 0 −→ N −→ Ω1
Y −→ IZ ⊗K F −→ 0,

where IZ is the ideal sheaf of Z. Points in the support of Z are called singular points
of the foliation. Points outside Z are called regular, or smooth, points for the foliation.

c) Consequently we have KY = N ⊗K F .
d) Let M be a Riemann surface (not necessarily compact nor algebraic). A mor-

phism ι : M → Y is said to be a leaf of the foliation if:
d.1) There is a discrete set of points P ⊂ M such that ι|M\P

: M \ P → Y is a
local embedding;

d.2) the natural map ι∗(N) → ι∗(Ω1
Y ) → Ω1

M is the zero map.
e) If z ∈ Y is a regular point for the foliation, then there is a unique leaf of the

foliation passing through z.
f) Denote by ∆ the one dimensional unit disk. If z ∈ Y is a regular point for the

foliation, then there is an analytic neighborhood z ∈ U ⊂ Y isomorphic to ∆ × ∆
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with coordinates (z1, z2) and the restriction of the exact sequence 2.4 to U is the exact
sequence

(2.5) 0 −→ OUdz1 −→ OUdz1 ⊕ OUdz2 −→ OUdz2 −→ 0.

Consequently the leaves of the foliation passing through U are given by the equations
z1 = c (c ∈ ∆).

Point (f) above explains a bit the geometry of a foliation on the open set of regular
points: we can cover the regular locus of the foliation by open sets such that the
restriction of the foliation to each of them is just a product. On the other side, near
the singular locus of the foliation, the structure of the leaves may be much more
complicated.

g) Suppose that Y1 is a smooth projective surface and p : Y1 → Y is a dominant
morphism. We have an inclusion p∗(N) → p∗(Ω1

Y ) → Ω1
Y1

. The saturation N1 of N

inside Ω1
Y1

is then a foliation on Y1. It will be called the pull back of the foliation F

to Y1 via p and denoted by p∗( F ).
One should be aware that, in general, the conormal sheaf of p∗( F ) is not p∗(N)

and, in general, Kp∗( F ) ̸= p∗(K F ).
h) A leaf M of the foliation is said to be algebraic if the Zariski closure of its image

in Y is an algebraic curve.
i) Suppose that S is a smooth algebraic curve and f : Y → S is a dominant

morphism. The natural exact sequence

(2.6) 0 −→ f∗(Ω1
S) −→ Ω1

Y −→ Ω1
Y/S −→ 0

induces a foliation F f on Y . The leaves of this foliation are the fibers of f thus they
are all compact. Observe that in general f∗(Ω1

S) is not the conormal sheaf of F f .
The conormal sheaf of F f will be the saturation of f∗(Ω1

S) in Ω1
Y .

j) A foliation F is said to be a fibration if there is a a birational morphism
p : Y1 → Y and a dominant morphism f : Y1 → S where S is a smooth projective
curve such that p∗( F ) = F f . All the leaves of a fibration are algebraic.

The following theorem characterizes foliations with “many” algebraic leaves, cf. [4]:

Theorem 2.7 (Jouanoulou). – Let F be a foliation on a smooth projective surface.
Then F has infinitely many algebraic leaves if and only if it is a fibration (and thus
all the leaves are algebraic).

For a detailed reference on foliations on algebraic surfaces, cf. [2].
Let’s prove Lemma 2.5:

Proof. – Over P(Ω1
X) we have the tautological exact sequence

(2.7) 0 −→ Ω1
P(Ω1

X)/X(1) −→ p∗(Ω1
X) −→ O(1) −→ 0.

Observe that if f : C → X is a morphism and f ′ : C → P(Ω1
X) is the natural lift,

then the natural map f ′∗(Ω1
P(Ω1

X)/X
(1)) → f∗(Ω1

X) → Ω1
C is the zero map.
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