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GENERIC POSITIVITY
AND APPLICATIONS TO HYPERBOLICITY OF MODULI SPACES

by

Benoît Claudon, Stefan Kebekus & Behrouz Taji

Abstract. – Moduli theory of algebraic varieties naturally includes the study of the
degeneration of varieties in families. For example, the obstruction to non-trivial de-
generation of certain families of varieties can be described as non-existence of some
subvarieties in their associated moduli spaces. We study the conjectural role of the
Kodaira dimension as an invariant that can be used to describe such obstructions.

Recent advances in our understanding of the positivity properties of tangent
sheaves of non-uniruled varieties, and the natural generalizations to the logarith-
mic setting for pairs (X, D), has proved to be a powerful tool in the study of Kodaira
dimension of base spaces of varying families of manifolds.

We give a detailed account of Campana and Păun’s generalization of the generic
semi-positivity results of Miyaoka. In its simplest form this result asserts that quo-
tients of the logarithmic cotangent bundle Ω1

X(log D) have semi-positive slopes with
respect to any ample divisor, as long as the log-canonical divisor KX + D is pseudo-
effective.

A key consequence then relates bigness of KX + D to positivity properties of
the sheaf of pluri-(log-)differential forms. Together with a result of Viehweg and Zuo
on the bigness of the sheaf of pluri-differential forms for moduli stacks of canonically
polarized manifolds, one is led to a proof of a celebrated conjecture of Viehweg on the
“algebraic hyperbolicity” ’ of such spaces: subvarieties of moduli (stacks) of canonically
polarized manifolds are all of log-general type.
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1. Introduction

In 1962 Shafarevich conjectured that a smooth family f◦ : X◦ → Y ◦ of complex
projective curves of genus at least equal to 2, parameterised by Y ◦ = P1, C, C∗, or an
elliptic curve E is isotrivial, so that is there is no variation in the algebraic structure
of the members of the family. Equivalently this conjecture can be expressed as the
prediction that the base Y ◦ of any smooth, non-isotrivial family of projective curves
with g ≥ 2 is of log-general type. In other words, we have κ(Y,KY + D) = 1 for
any smooth compactification (Y,D) of Y ◦, with snc boundary divisor D. Shafarevich
conjecture was shown by Parshin and Arakelov.

To generalize the Shafarevich conjecture to higher dimensional fibers and parame-
terising spaces, Viehweg considered the hyperbolicity properties of the moduli stack
of canonically polarized manifolds. Recall that the moduli functor M of canonically
polarized manifolds with fixed Hilbert polynomial, is equipped with a natural trans-
formation

Ψ : M (·) → Hom(·,M),

where M denotes the coarse moduli scheme associated with M . The scheme M was
proved by Viehweg to be quasi-projective, cf. [43]. Also recall that a complex analytic
space U is said to be Brody hyperbolic if there are no non-constant holomorphic
maps f : C→ U . In the spirit of this definition, Shafarevich’s conjecture is equivalent
to the assertion that the base Y ◦ of non-isotrivial, smooth, projective families of
high genus curves is algebraically Brody hyperbolic in the sense that there are no
non-constant morphisms from C∗ to Y ◦.

Generalizing Shafarevich’s conjecture, Viehweg predicted that the moduli stack of
canonically polarized manifolds is not only algebraically Brody hyperbolic but that it
is Brody hyperbolic. More precisely, a smooth quasi-projective variety Y ◦ admitting a
generically finite morphism µ : Y ◦ →M, must be Brody hyperbolic. This conjecture
was settled by Viehweg and Zuo in [45]. On the other hand, a long-standing conjecture
of Lang predicts that for a quasi-projective Y ◦, Kobayashi hyperbolicity (which is
equivalent to Brody hyperbolicity for projective varieties) implies that all subvarieties
of Y ◦, including Y ◦, are of log-general type. In the light of Lang’s problem, Viehweg
extended his question on the hyperbolic nature of the moduli stack of canonically
polarized manifolds to the following conjecture.

Conjecture 1.1 (Viehweg’s hyperbolicity conjecture). – Let Y ◦ be a smooth quasi-
projective variety admitting a generically finite morphism µ : Y ◦ → M. Then, the
smooth compactification (Y,D) of Y ◦ is of log-general type.

Viehweg’s conjecture has attracted the interest of many algebraic geometers for a
long time. We refer the reader to the survey [26] for more details, including references
to earlier results that are not mentioned here for lack of space.
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1.1. Viehweg’s conjecture according to Viehweg-Zuo and Campana-Păun. – A general
strategy to prove Conjecture 1.1 consists of two main steps. Combining deep results
of analytic [47], algebraic [42] and Hodge theoretic [19] nature, Viehweg and Zuo
construct in a first step a subsheaf of the sheaf of pluri-log differential forms of the
base whose birational positivity captures the variation (1) in the family.

Theorem 1.2 (Existence of pluri-logarithmic forms in the base, cf. [44, Thm. 1.4])

If the smooth family of canonically polarized manifolds f◦ has maximal variation,
then there exist a positive integer N an invertible subsheaf L ⊆ SymN

(
Ω1

Y log(D)
)

such that κ(Y,L ) = dimY .

Theorem 1.2 immediately resolves the original conjecture of Shafarevich. The goal
in the second step is to trace a connection between the birational positivity (bigness)
of L in Theorem 1.2 and that of KY + D, thus resolving Conjecture 1.1. Working
along these lines, the second author and Kovács established Conjecture 1.1 for moduli
stacks of dimension two and three, [27, 28] and see [26] for an overview. The work
relied, among other things, on the log-abundance theorem for surfaces and threefolds.
In the absence of these methods in higher dimensions, for instance a complete solution
to the abundance problem, Campana and Păun devised an additional tool, namely
a vast generalization of the famous generic semipositivity result of Miyaoka to the
context of pairs with rational coefficients. Here, we state their result in its simplest
form and we refer the reader to Section 5 for a general statement.

Theorem 1.3 (Logarithmic generic semipositivity, cf. [10, Thm. 2.1])

Let (X,D) be a reduced, projective, snc pair. If KX +D is pseudo-effective, then
for every ample divisor H on X and every torsion free quotient Q of Ω1

X(logD) we
have

c1(Q) · [H]n−1 ≥ 0.

Despite its importance, we found the paper [10] lacking in some details. This chap-
ter is meant to serve as an exposition of Campana and Păun’s proof of Theorem 1.3
and its application to resolving Conjecture 1.1.

1.2. Structure of the current chapter. – In Section 2 we gather some preliminary def-
initions and notions that are used throughout this chapter. In Section 3 we review
some of the basics of the theory of orbifolds. In Section 4 we delve deeper into some
technical details that will be crucial to the proof of the generic semipositivity result in
Section 8. In Section 5 we state Theorem 1.3 in its full generality. Section 6 sketches
the proof of Conjecture 1.1 using this result. Part II is devoted to the proof of the
semipositivity result of Campana and Păun.

(1) A family f◦ : X◦ → Y ◦ of canonically polarized manifolds is said to have maximal variation if
the moduli map Ψ(f◦) : Y ◦ →M is generically finite.
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1.3. A note on further results. – Constructing degenerate Kähler-Einstein metrics,
Campana and Păun have established a second proof of Theorem 5.3 that works for
Kähler manifolds, [11].

More recently, they strengthened Theorems 1.3 and 5.3 also in another direction,
by proving the pseudo-effectivity of torsion free quotients, [12]. This latter result is
especially significant for the proof of Viehweg’s conjecture, as it makes the LMMP
methods redundant. For a concise exposition of [12] and its application to Viehweg’s
problem we refer the reader to the first author’s notes written for the Bourbaki sem-
inar, [13].

In a slightly different, but closely related, direction a more general version of
Viehweg’s conjecture, that is perhaps closer to the spirit of the original conjecture
of Shafarevich, was formulated by Campana. In this Conjecture Campana proposed
the so-called special varieties as higher dimensional analogues of C, C∗, P1 and E in
Shafarevich conjecture. We refer the reader to the original paper of Campana, [9], for
the basic definitions and background in the theory of special varieties.

Conjecture 1.4 (The isotriviality conjecture). – Any smooth family of canonically po-
larized manifolds f◦ : X◦ → Y ◦ parameterised by a special quasi-projective vari-
ety Y ◦ is isotrivial.

Following the strategy of Campana and Păun and by using the result of [25],
Conjecture 1.4 has been settled in [39]. More recently, in [35], Popa and Schnell have
proved a vast generalization of Conjecture 1.1 by extending Theorem 1.2 to smooth
projective families of varieties with good minimal models. Where their strategy follows
the same two-steps approach discussed above, the main breakthrough in their result
comes from an interesting use of the theory of Hodge modules to extend some crucial
Hodge theoretic tools used in [45].

1.4. Recent developments. – After the conclusion of the writing of this article the field
has witnessed some further progress around hyperbolicity properties of moduli stacks
of polarized manifolds, or more generally the base spaces of certain smooth families
of varieties. Here we briefly mention a few more pertinent results.

— Based on the main result of [12, Thm. 1.2], Schnell [38] has given a new, simpler
proof of Theorem 6.1, Campana-Păun’s criterion to guarantee that a pair is of
general type.

— Popa, Wu, the third named author [36] and Deng [14] have generalized results of
Viehweg-Zuo [45] and To-Yeung [41] on the analytic hyperbolicity of base spaces
of families of projective manifolds with good minimal models; see also Berndtsson-
Păun-Wang [3].

— Amerik and Campana [1] have extended the results of [39], allowing for families of
varieties with smooth reductions (“quasi-smooth families”). See [1, Sect. 9] for the
precise formulation, which involves the induced orbifold-structure on the base.
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— Brunebarbe and Cadorel study hyperbolicity properties of varieties supporting a
variation of Hodge structure, [8].

— Theorem 1.2 as well as the results of Popa-Schnell [35] were extended in [40]
to the case of non-isotrivial families of manifolds with good minimal models,
without using the theory of Hodge modules. This provides a partial solution to a
generalized Viehweg Hyperbolicity Conjecture, formulated by the second named
author and Kovács, cf. [40, Thm. 1.2].

1.5. Acknowledgements. – The authors owe a special thanks to Frédéric Campana,
Mihai Păun and Christian Schnell for many fruitful discussions. The authors would
also like to thank the referee for helping them to fix at least one rather embarrassing
mistake, as well as a fair number of typos.

2. Definitions and Notation

In the current section we gather some very basic definitions and concepts needed
for the arguments in the later parts of this chapter. For the more standard definitions,
we refer to [22]. The reader who is familiar with these preliminaries may wish to skip
Subsections 2.1 to 2.5 and move on Subsection 2.6. In this chapter, all varieties are
defined over C.

2.1. Varieties, subsets, sheaves and pairs. – Let us begin by introducing the most basic
objects, recurrent throughout this chapter.

Notation 2.1 (Small and big sets). – Let X be a variety. A subset S ⊆ X is called
small if its Zariski closure satisfies codimX S ≥ 2. A subset U ⊆ X is called big if its
complement is small.

Notation 2.2 (Families of curves on projective varieties). – Let X be a projective vari-
ety. A family of curves is a smooth subvariety T ⊆ Hilb(X) whose associated sub-
schemes (Ct)t∈T are reduced, irreducible and of dimension one. We say that the family
dominates X if ∪t∈TCt is dense in X. We say that the family avoids small sets if,
given any small set S ⊂ X, there exists a dense open T ◦ ⊂ T such that Ct ∩ S = ∅,
for all t ∈ T ◦.

Definition 2.3 (Pair). – A pair (X,∆) consists of a normal variety X and a Q-Weil
divisor ∆ on X with coefficients in [0, 1] ∩ Q. A pair (X,∆) is called snc if X is
smooth and if the support of ∆ has simple normal crossings only. We denote the
maximal open subset of X where (X,∆) is smooth by (X,∆)snc. Note that this is a
big subset of X. The fractional part of ∆ is written as {∆}.

Birational geometry discusses and defines numerous classes of singular pairs. For us,
the notions “Kawamata log terminal” (= klt), “divisorially log terminal” (= dlt) and
“log canonical” (= lc) will be the most relevant. We refer the reader to the standard
reference book [30, Sect. 2.3] for the definition and for a brief discussion.
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