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SOME ARITHMETIC ASPECTS OF HYPERBOLICITY

by

Pietro Corvaja

Abstract. – We give a survey of the study of integral points and some aspects of
Diophantine approximation on algebraic varieties, and we treat arithmetic analogues
of the notion of hyperbolicity for algebraic varieties.

According to a conjecture by Lang and Vojta, those (quasi projective) algebraic
varieties, defined over number fields, whose complex points form a hyperbolic manifold
(in the complex analytic sense) should admit only degenerate sets of integral or
rational points.

In dimension one, after the work of Siegel and Faltings, it is known that the
analytic and arithmetic notions of hyperbolicity are equivalent. We show, mainly
focusing on the two-dimensional case, that many apparently unrelated Diophantine
problems can be reduced to questions about the distribution of integral points on
certain algebraic surfaces.

Significant examples are the following. The theorem of Darmon and Granville on
the generalized Fermat equation xp + yq = zr is proved here in a slightly simplified
way and its connection with the hyperbolicity of the triple of exponents (p, q, r)

is developed in detail. A conjecture about the denominators of rational points on
elliptic curves is linked to Vojta’s conjecture, and a weaker version is unconditionally
established.

A main tool in the proofs of finiteness or degeneracy results for integral points
on varieties is provided by Diophantine approximation. The theory of Diophantine
approximation is also linked to questions of hyperbolicity, and in particular a new
“gap principle” for rational points on elliptic curves is proved and its formulation is
shown to be directly linked to a hyperbolicity condition.

1. Introduction

1.1. Introducing the problems. – Our main concern will be the following problem:

To find geometric properties for an algebraic variety X defined over a number
field κ which ensure that for every number field K ⊃ κ the set X(K) of K-rational
points of X is not Zariski-dense.
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This property can be considered to be the arithmetic analogue of a weak-form of
hyperbolicity, namely: there exists no entire curve f : C → X(C) with Zariski-dense
image.

An analogue question arises naturally concerning integral points.
The investigation on these problems led to considering two other different issues,

namely Diophantine approximation and gap principles.
Diophantine approximation refers, at first instance, to the theory of approximating

algebraic numbers by rationals. More generally, one can fix one or more ‘targets’ on
an algebraic variety in which rational points (over a fixed number field) are dense,
in some archimedean or p-adic topology, and look at how fast these targets can be
approached by a sequence of rational points. Usually the targets are hypersurfaces on
the given algebraic variety, so they are themselves points if the variety is a curve. In
any case, they are supposed to be defined over the field of algebraic numbers.

The so called gap principles arise when a sequence of rational points converges
‘rapidly’ to any point, possibly a transcendental one; we dispose of a gap principle if
we can deduce, from the rapidity of its convergence, that the approximating sequence
is ‘sparse’.

In the case the ambient algebraic variety X is a curve, we have a rather satisfactory
solution to all the above issues, due mainly to works of K. Roth, C.-L. Siegel, L.
Mordell, A. Weil and G. Faltings.

In each case, a hyperbolicity condition on the variety or on the sequence of ap-
proximants implies a finiteness or a sparseness result. More precisely, for a smooth
algebraic curve C , of genus g with d points at infinity (in a smooth completion), we
define its Euler characteristic χ to be the number

χ = 2g − 2 + d.

If d = 0, i.e., the curve is projective, then χ = 2g− 2 coincides with the degree of the
canonical bundle. We say that a curve is hyperbolic if χ > 0, parabolic if χ = 0 and of
elliptic type (1) if χ < 0. Hence the hyperbolicity condition reads

(1.1) χ := 2g − 2 + d > 0 (Hyperbolicity).

Let us review the mentioned arithmetic results, by starting from the problem of
density. Recalling that on an irreducible curve the Zariski-dense sets are just the
infinite ones, we are interested in describing those algebraic curves which can contain
infinitely many rational or integral points.

In the case of integral points, a theorem proved by Siegel in 1929 (see [62] and [69])
reads:

Theorem (Siegel’s Theorem). – Let X ⊂ AN be an affine irreducible curve, defined
over a number field κ. If the curve contains infinitely many points with coordinates in
the ring of algebraic integers of κ then X is a rational curve and it has at most two
points at infinity.

(1) By elliptic curve we mean something different, namely a parabolic complete curve.
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Vice-versa, if a curve is rational (i.e., of genus zero with at least one rational point)
and has one or two smooth points at infinity, then a suitable model of it contains
infinitely many integral points, as we now show. First, if it has exactly one point at
infinity, a normalization of it is isomorphic to the affine line. On a suitable integral
model (i.e., after changing coordinates) it will clearly have infinitely many integral
points. Note that the coordinate-change is unnecessary if we replace the ring of integers
with a suitable ring of S-integers (defined below). If a rational curve has two points at
infinity, then after possibly a quadratic field extension a normalization of it becomes
isomorphic to the variety Gm = A1 {0} (defined e.g., as a closed subset in the plane
by the equation xy = 1) and again it has infinitely many integral points, at least after
enlarging the ring of integers so to acquire infinitely many units.

In view of these considerations, Siegel’s theorem can be considered to be a best-
possible result.

For rational points, Faltings theorem, proved in 1983, states that:

Theorem (Faltings’ Theorem). – Let X be an irreducible algebraic curve defined over
a number field κ. If the genus of X is ≥ 2, then its set of κ-rational points is finite.

As for Siegel’s Theorem, the above statement is essentially optimal, since, as we
shall see, every algebraic curve of genus ≤ 1 contains infinitely many rational points,
after suitably enlarging the ground number field.

Let us now consider briefly the two other issues, starting from Diophantine approx-
imation.

It is well known that every real irrational number α admits infinitely many rational
approximations p/q, where p, q are coprime integers, q > 0, such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

A proof of this fact is obtained via Dirichlet’s box principle (see Chapter I of [58]);
an explicit sequence of rational approximations is provided by the continued fraction
development of α.

The celebrated Theorem of Roth (see §2.3) asserts that for every real number δ > 2

and every real algebraic number α, the inequality

(1.2)
∣∣∣∣α− p

q

∣∣∣∣ < 1

qδ

admits only finitely many solutions p/q ∈ Q (where p, q are coprime integers, q > 0).
Note that the approximants p/q ∈ Q (and the target α) are points on the line P1,
whose Euler characteristic χ equals −2. Hence the finiteness result of Roth requires

(1.3) χ + δ > 0,

which is the analogue of the hyperbolicity condition (1.1).
We shall see (Theorem 2.21) that when approximating an algebraic point on an

elliptic curve with rational ones, the analogue of Roth’s theorem holds with any
exponent δ > 0; this is in accordance with the fact that the Euler characteristic of an
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elliptic curve is zero, so the inequality (1.3) holds in that case whenever δ is strictly
positive.

If the limit point of the sequence of rational approximations is transcendental, the
conclusion of Roth’s Theorem does not hold; in fact, for every δ one can construct a
real number α such that the inequality (1.2) admits infinitely many rational solutions.
However, we dispose in that situation of a gap principle (Theorem 2.27), asserting that
if the sequence of approximations p1/q1, p2/q2, . . . is ordered by increasing denomina-
tors, then

lim inf
n→∞

log qn+1

log qn
≥ δ − 1,

which is a non-trivial result whenever δ > 2 (i.e., when χ + δ > 0). The analogue for
elliptic curves provides, mutatis mutandis, the bound 1 + δ for the above limit, which
is non trivial for every δ > 0, i.e., again when χ + δ > 0.

1.2. Integrality over algebraic varieties. – We shall formulate in a unified way the
two problems (and the general results in dimension one) for the integral and for the
rational points, by giving a suitable definition of what we mean by an integral point.

Definition 1.1. – Let κ be a number field, S a finite set of places of κ containing the
archimedean ones. The ring of S-integers of κ, denoted by OS, is defined as the set

OS = {x ∈ κ : |x|ν ≤ 1 for all v ̸∈ S}.

Its group of units, called the group of S-units, is then

O
×
S = {x ∈ κ : |x|ν = 1 for all v ̸∈ S}.

Definition 1.2. – Let X be a quasi projective irreducible variety, defined over a number
field κ. Let us denote by X̃ a completion of X in a projective space PN . Then we can
write X = X̃ D, where D is a proper closed subvariety of X̃. We say that a rational
point p ∈ X(κ) is S-integral with respect to D if for no place outside S p reduces to
a point of D.

We note that in the above definition no mention of integral models appears: in fact,
we assume that our variety is already embedded in a projective space PN , which is
canonically provided with an integral model; this canonical integral model implicitely
appears via the notion of reduction modulo a prime.

We also note that whenever the variety X is affine, and embedded into the affine
space AN , the integral points with respect to the divisor at infinity of X exactly cor-
respond to the points of X having all their coordinates in OS . If X = X̃ is projective,
then D = ∅ and the set of S-integral points coincides with the full set of κ-rational
points.

An alternative definition of integrality, making use of Weil functions, will appear
later.

We now give some examples of integrality of rational points on quasi-projective
algebraic varieties.
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— Let X = A1 be the affine line, embedded into the projective line X̃ = P1

by the map t 7→ (t : 1) so that the complement X̃ X consists of the single
point D = {(1 : 0)}, also called the point at infinity. Letting κ = Q, we can
write a rational point on the line as t = a/b, where a, b ∈ Z are coprime integers,
b ̸= 0. Then t corresponds to the projective point (a : b), which reduces to (1 : 0)

modulo the primes dividing b. It is integral if and only if there are no such primes,
which amounts to b = ±1, i.e., t ∈ Z.

— Let X = Gm = P1 {0,∞}. For the same reason as in the previous example,
X( OS) = O

∗
S .

— Consider the quasi-projective surface X = A2 {(0, 0)}. It can be embedded
into P2 in the usual way: (x, y) 7→ (x : y : 1) = (x : y : z), so that X = P2 D,
with D consisting of the line z = 0 plus the single point (0 : 0 : 1). The
set X(Z) consists of pairs (x, y) ∈ Z2 with gcd(x, y) = 1. Note that by changing
the compactification X̃, e.g., replacing P2 by the plane blown up at the point
(0 : 0 : 1), we can view X as the complement of a hypersurface in a projective
surface.

— Let X̃ = P1 × P1 be the product of two lines; let D be its diagonal
and X = P2

1 D. Each Q-rational point of P1 × P1 can be written as
P = ((a : b), (c : d)) where a, b (resp. c, d) are coprime integers. The condi-
tion of integrality with respect to the diagonal is equivalent to the quantity
ad− bc being a unit, i.e., ad − bc = det

(
a b
c d

)
= ±1. Since (a, b) (resp. (c, d))

are defined up to constant, i.e., up to multiplying both of them by −1, we can
normalize so that the determinant is positive and the set X(Z) is in natural
bijection with PSL2(Z) = SL2(Z)/{±I}.

— Let f(x, y), g(x, y) ∈ OS [x, y] be polynomials. Suppose that the affine curves
of equations f(x, y) = 0 and g(x, y) = 0 intersect transversally at every point
of intersection. Letting P1, . . . , Pk ∈ A2 ⊂ P2 be the set of the intersection
points of the two curves, define X̃ to be the projective plane blown up at these
intersection points. Let now D be the union of the pull-back of the line at infinity
with the strict transform of the zero divisor of the polynomial g(x, y) and put
X = X̃ D. Then X( OS) is in natural bijection with the set of pairs (x, y) ∈ O

2
S

such that g(x, y) divides f(x, y) in the ring OS . In other words, it represents the
set of S-integral solutions to the equation z · g(x, y) = f(x, y).

— This example will be treated in detail in §5. Let 1 < p ≤ q ≤ r be three
natural numbers, S be the quasi-projective surface defined in A3 by the equation
xp + yq = zr with the origin removed. The integral points in S correspond to
the integral solutions (x, y, z) ∈ Z3 to the defining equation xp + yq = zr such
that (x, y, z) ̸≡ (0, 0, 0) (mod p) for every prime p, i.e., to the solutions (x, y, z)

in coprime integers.
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