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FIBRATIONS IN ALGEBRAIC GEOMETRY AND APPLICATIONS

by

Claire Voisin

Abstract. – We give a survey of various methods for constructing rational fibrations on
algebraic varieties (i.e., dominant rational mappings of normal varieties that induce
an algebraically closed extension of function fields), and their applications.

These fibrations are a major tool in the classification theory of algebraic varieties.
The most important among them are the Iitaka fibration, the MRC fibration, and
the Gamma fibration. We present them together with several concrete modes of use.

We discuss finally the core fibration, introduced more recently by Campana, which
is a conjectural bridge between these algebraically defined fibrations and hyperbolic-
ity.

0. Introduction

This paper is devoted to a crucial tool for the study of algebraic varieties, namely
fibrations. We will in this survey paper use the following definition.

Definition 0.1. – A (rational) fibration on a projective variety or compact complex
manifold X is a dominant (rational or meromorphic) map X 99K Y with connected
general fiber.

The obvious interest of a fibration is that it allows to deduce properties of the total
space from properties of the base and of the fibers. For example, the following facts
hold:

1. If the base is Brody (resp. algebraically) hyperbolic, and all the fibers are Brody
(resp. algebraically) hyperbolic then the total space is Brody hyperbolic.

2. If the base is of general type and the fiber is of general type, then the total space
is of general type (see [32], [49]).

3. If the base is rationally connected and the fiber is rationally connected, so is the
total space (see Section 3.2, [28]).
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Note however that a general fibration, especially rational fibration, may not be
very useful : Indeed, starting from any smooth projective variety X, and choosing a
Lefschetz pencil of high degree hypersurfaces in X, we get a rational map X̃ 99K P1

which does not say much about X since the base has Kodaira dimension −∞ and the
fiber is of general type. What happens in this case is the fact that the blown-up locus
is of codimension 2 in X but of codimension 1 and ample in the fibers. The case of a
morphism is much better but an interesting morphism to a smaller dimensional basis
does not always exist and many interesting fibrations are only defined as rational
maps. This paper will rather describe carefully constructed fibrations for which the
fibers are instead simpler than the total space, reducing in principle the study to
phenomena on the base. There are two ways of constructing fibrations: The first way,
which is more classical in birational geometry, consists in exploiting the presence of
sections of the adequate tensors, or divisors. This method was initiated by Iitaka for
sections of line bundles, and the exploitation of holomorphic contravariant tensors
has been developed over the time by Castenuovo-de Franchis, Bogomolov, Catanese,
Campana. We will describe this method in Section 1.

The second way appears in [1], [13], [35] and consists in constructing geometrically
the fiber through a general point x by imposing that it contains all points that can
be reached from x by composing a certain number of allowed geometric processes.
The two striking instances of this approach are the MRC fibration, where the fiber
through a very general point contains all rational curves passing through this point,
and the Shafarevich map or Γ-reduction, for which the fiber through a very general
point contains all the varieties passing through this point and having a fundamental
group with small image in the ambient space. This is described in Sections 3.2, 3.3.

A third method presented in [16] beautifully combines both approaches to produce
the so-called core fibration which will be described in Section 4. This fibration into
special varieties is conjecturally the one which allows to understand the degeneracy
of the Kobayashi pseudodistance at the general point of a variety. For a long pe-
riod, standard conjectures about the Kobayashi pseudodistance ([37], [33]) were the
following:

Conjecture 0.2. – A variety of general type has its Kobayashi pseudometric nondegen-
erate at a general point.

Very nice recent evidences for this conjecture have been obtained by Diverio-
Merker-Rousseau [24] and Brotbek [11], who work in the case of hypersurfaces in
projective space, and by Demailly [23].

Conjecture 0.3. – A variety with trivial canonical bundle has a vanishing Kobayashi
pseudodistance.

We refer to [51] for examples and discussions concerning Conjecture 0.3. A beautiful
progress on this conjecture has been obtained recently by Verbitsky [48] in the case
of hyper-Kähler manifolds (see also Diverio’s contribution to this volume). The two
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conjectures together suggest a parallel between the Kodaira dimension of an algebraic
variety and the degeneracy level of its Kobayashi pseudometric or pseudodistance.
The great novelty of Campana’s ideas developed in [16], [17] is to suggest that apart
from the two extreme cases presented in the two conjectures above, the relationships
between these two measures of positivity of the cotangent bundle is much more subtle.
Indeed, Campana makes the following conjecture (cf. [16]);

Conjecture 0.4. – Special varieties have vanishing Kobayashi pseudodistance.

As we will discuss in Section 4, special varieties may have all possible Kodaira
dimensions except for the maximal one, i.e., they cannot be of general type. For
example, most elliptic fibrations over Pn−1 will have Kodaira dimension n − 1 and
will be special.

An essential feature of projective or compact Kähler geometry which makes the
second strategy work is the fact that parameter spaces for compact closed algebraic
(or analytic) subsets of a projective (or compact Kähler) manifold is compact. We
refer for Section 2.1 for details. If we drop the Kähler assumption, then the local
deformation theory of closed analytic subschemes is unchanged, but we completely
loose the compactness, as shows the example of the twistor family of a K3 surface S
(see Section 2.1, Example 2.2).

1. Fibrations and holomorphic forms

This section is devoted to the construction of rational fibrations using sections of
line bundles or differential forms. The main applications concern the geometry of the
canonical line bundle, with the beginning of a birational classification of algebraic
varieties by the Kodaira dimension.

1.1. General facts on fibrations and holomorphic forms. – Let f : X → Y be a surjec-
tive morphism, where X and Y are smooth complex projective varieties or compact
Kähler manifolds.

Remark 1.1. – Starting from a morphism f : X → Y , up to replacing f by its Stein
factorization fSt : X → YSt, one may assume the fibers are connected, but then YSt is
only normal and some extra work is needed if one also wants smoothness of Y .

The morphism f is proper and we have:

Lemma 1.2. – The following properties hold:

(i) The morphism f∗ : π1(X) → π1(Y ) has image of finite index (and is surjective
if the fibers are connected).

(ii) The morphisms f∗ : Hi(Y,Q) → Hi(X,Q) are injective morphisms of Hodge
structures.
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(iii) The morphisms f∗ : H0(Y,ΩiY ) → H0(X,ΩiX) are isomorphisms for i ≥ 0 if the
smooth fibers Xs of f are connected and satisfy H0(Xs,Ω

j
Xs

) = 0 for all j such
that i ≥ j > 0.

Proof. – (i) follows from the fact that there is a dense Zariski (or analytic-Zariski)
open set U ⊂ Y such that the restriction fU : XU → U is smooth, hence a locally
topologically trivial fibration. Then the statements hold for fU∗ : π1(XU ) → π1(U)

and we conclude using the fact the map π1(U) → π1(Y ) is surjective because Y is
smooth.

For items (ii) and (iii), we use the fact that there is a left inverse on cohomology
with real coefficients given by α 7→ f∗(ω

d ⌣ α), where d = dimX − dimY is the
relative dimension and ω is the class of a Kähler form on X with volume 1 along the
fibers of f . It follows that both maps f∗ are injective. Finally the proof of (iii) uses
the cotangent bundle sequence along smooth fibers

0 → f∗ΩY,s → ΩX|Xs
→ ΩXs → 0,(1)

which induces a filtration of ΩiX|Xs
, showing that under our assumptions

H0(Xs,Ω
i
X|Xs

) = H0(Xs, f
∗ΩiYs

).

We then conclude that any holomorphic differential i-form on X is a section of f∗ΩiY ,
at least over the open set Y 0 of regular values of f and more precisely is of the
form f∗β, where β is a holomorphic differential i-form on Y 0. But then β extends
to Y as β′ = f∗(ω

d∧α), and we thus conclude that α = f∗β′ on X0 = f−1(Y 0) hence
everywhere.

Remark 1.3. – The final argument given above fails if we replace holomorphic forms
by pluridifferential holomorphic forms. We will see in Section 4 that for pluricanonical
forms, it is not true that a section of Ω⊗iX , which is a section of f∗Ω⊗iY ⊂ Ω⊗iX along
a dense Zariski open set XU = f−1(U) ⊂ X is the pull-back of a section of Ω⊗iY .
However Lemma 1.2, (iii) is also true for pluridifferential forms.

Remark 1.4. – The exact sequence (1) is a particular case of the conormal bundle
exact sequence

0 → N∗
Xs/X

→ ΩX|Xs
→ ΩXs

→ 0,(2)

where in this case NXs/X = f∗TY,s.

Note also the following standard fact which will apply more generally to a covering
family of X by d-dimensional varieties ϕs : X s → X, that can be seen as a diagram

X
ϕ
//

f

��

X

Y ,

(3)

where f is a fibration and ϕ is dominant generically finite:
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Lemma 1.5. – In case of a fibration f : X → Y , one has KX|Xs
= KXs . For a

covering family ( X s)s∈Y , and for a general member X s of the covering family, one
has KXs

= ϕ∗sKX +D, where D is effective on X s.

Proof. – The first statement follows from (1) by taking determinants, using the
fact that f∗ΩY is trivial along the fiber X s. Only the second point needs to be
proved. However we have by the first property KXs

= KX |Xs
and on the other hand

KX = ϕ∗KX +R, where R ⊂ X is the ramification divisor of ϕ. Thus the statement
holds once X s is not contained in R.

We end this section with a standard lemma that will be used (sometimes implicitly)
throughout the paper:

Lemma 1.6. – The holomorphic pluridifferential forms, that is sections of Ω⊗kX , k ≥ 0,
are bimeromorphic invariants of the compact complex manifold X.

Proof. – Let ϕ : X 99K Y be a bimeromorphic map, with X and Y compact. There
exists a Zariski-analytic open set U ⊂ X such that codimX \ U ≥ 2 and ϕ is well
defined on U . We can thus define (because k ≥ 0)

ϕ∗ : H0(Y,Ω⊗kY ) → H0(U,Ω⊗kU ).

This morphism is injective because ϕ is generically of maximal rank. By Hartogs’
theorem, we have H0(U,Ω⊗kU ) = H0(X,Ω⊗kX ). We thus constructed an injective mor-
phism ϕ∗ : H0(Y,Ω⊗kY/K) → H0(X,Ω⊗kX/K), which admits as inverse (ϕ−1)∗.

1.2. Iitaka fibration. – LetX be a smooth projective variety and let L be a line bundle
on X. The subset M(L) ⊂ N defined as

M(L) = {k ∈ N, H0(X, kL) ̸= 0}

is a submonoid of N hence except for small values of k, it agrees with the set of positive
multiples of an integer k0. We assume from now on that k0 ̸= 0. The integer k0 has the
property that for any sufficiently large number m divisible by k0, there are nonzero
sections of mL. Typical examples where k0 is actually needed, that is, powers of L of
order nondivisible by k0 have no nonzero sections, are given by X = E × Y , where
E is an elliptic curve, and L = L0 ⊠LY , where L0 is a torsion line bundle of order k0

on E and LY is an ample line bundle on Y . The Iitaka dimension κ(X,L) of (X,L) is
defined as −∞ if M(L) = {0} and as the maximal dimension of the images of the
maps

ϕkL : X 99K PN

induced by the linear systems |kL| for k ∈ M(L). For example κ(X,L) = 0 is equiv-
alent to the fact that M(L) ̸= {0} and h0(X, kL) = 1 for any k ∈ M(L). When
L = KX , the Iitaka dimension of L is the Kodaira dimension of X.
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